WorldWideScience

Sample records for nanocrystal p-i-n diodes

  1. Characterization of an Mg-implanted GaN p-i-n Diode

    Science.gov (United States)

    2016-03-31

    Characterization of an Mg- implanted GaN p-i-n Diode Travis J. Anderson, Jordan D. Greenlee, Boris N. Feigelson, Karl D. Hobart, and Francis J...Kub Naval Research Laboratory, Washington, DC 20375 Abstract: A p-i-n diode formed by the implantation of Mg in GaN was fabricated and...characterized. After implantation , Mg was activated using the symmetrical multicycle rapid thermal annealing technique with heating pulses up to 1340C

  2. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  3. Recombination of charge carriers in the GaAs-based p-i-n diode

    International Nuclear Information System (INIS)

    Ayzenshtat, G. I.; Yushenko, A. Y.; Gushchin, S. M.; Dmitriev, D. V.; Zhuravlev, K. S.; Toropov, A. I.

    2010-01-01

    It is established that the radiative recombination of charge carriers plays a substantial role in the GaAs-based p-i-n diodes at high densities of the forward current. It is shown experimentally that the diodes operating in microwave integrated circuits intensely emit light in the IR range with wavelengths from 890 to 910 nm. The obtained results indicate the necessity of taking into account the features of recombination processes in the GaAs-based microwave p-i-n diodes.

  4. Signal amplification and leakage current suppression in amorphous silicon p-i-n diodes by field profile tailoring

    International Nuclear Information System (INIS)

    Hong, W.S.; Zhong, F.; Mireshghi, A.; Perez-Mendez, V.

    1999-01-01

    The performance of amorphous silicon p-i-n diodes as radiation detectors in terms of signal amplitude can be greatly improved when there is a built-in signal gain mechanism. The authors describe an avalanche gain mechanism which is achieved by introducing stacked intrinsic, p-type, and n-type layers into the diode structure. They replaced the intrinsic layer of the conventional p-i-n diode with i 1 -p-i 2 -n-i 3 multilayers. The i 2 layer (typically 1 ∼ 3 microm) achieves an electric field > 10 6 V/cm, while maintaining the p-i interfaces to the metallic contact at electric fields 4 V/cm, when the diode is fully depleted. For use in photo-diode applications the whole structure is less than 10 microm thick. Avalanche gains of 10 ∼ 50 can be obtained when the diode is biased to ∼ 500 V. Also, dividing the electrodes to strips of 2 microm width and 20 microm pitch reduced the leakage current up to an order of magnitude, and increased light transmission without creating inactive regions

  5. Influence of production technology and design on characteristics neutron-sensitive P-I-N diodes

    International Nuclear Information System (INIS)

    Perevertaylo, V.L.; Kovrygin, V.I.

    2012-01-01

    This paper presents the results of tests on neutron-sensitive p-i-n diode with local p-n junction, which allows to measure not only the integral dose by nonionizing energy loss (NIEL), but also the real-time dose and dose rate because of ionizing energy losses (IEL). The influence of design and process parameters and the lifetime of minority carriers on the radiation characteristics of the device considered. Sensitivity at low doses (from one to ten rad) is limited due to a decrease in the lifetime because of influence of lateral sides of cut. The sensitivity and accuracy of dose can be increased by moving of p-n junction away from the cut surface. The dependence of the voltage drop across the diode on the neutron dose irradiation up to 5 krad received, and the sensitivity was 2 - 3 mV/rad. We have demonstrated that replacement of the bulk p-i-n diode with total p-n junction by new diodes with local p-n junction allow for increase sensitivity, accuracy of dose and application in NIEL and IEL measurements simultaneously. Explanation for the extinction of a direct current through the diode with increasing doses of neutron irradiation proposed

  6. Noise in a-Si:H p-i-n detector diodes

    International Nuclear Information System (INIS)

    Cho, G.; Qureshi, S.; Drewery, J.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D.

    1991-10-01

    Noise of a-Si:H p-i-n diodes (5 ∼ 50 μm thick) under reverse bias was investigated. The current dependent 1/f type noise was found to be the main noise component at high bias. At low bias the thermal noise from a series resistance of the p-layer and of the metallic contacts is the dominant noise source which is unrelated to the reverse current through the diode. The noise associated with the p-layer resistance decreased significantly on annealing under reverse bias, reducing the total zero bias noise by a factor 2 approximately. The noise recovered to the original value on subsequent annealing without bias. In addition to the resistive noise there seems to be a shaping time independent noise component at zero biased diodes

  7. Design and characterization of GaN p-i-n diodes for betavoltaic devices

    Science.gov (United States)

    Khan, Muhammad R.; Smith, Joshua R.; Tompkins, Randy P.; Kelley, Stephen; Litz, Marc; Russo, John; Leathersich, Jeff; Shahedipour-Sandvik, Fatemeh (Shadi); Jones, Kenneth A.; Iliadis, Agis

    2017-10-01

    The performance of gallium nitride (GaN) p-i-n diodes were investigated for use as a betavoltaic device. Dark IV measurements showed a turn on-voltage of approximately 3.2 V, specific-on-resistance of 15.1 mΩ cm2 and a reverse leakage current of -0.14 mA/cm2 at -10 V. A clear photo-response was observed when IV curves were measured under a light source at a wavelength of 310 nm (4.0 eV). In addition, GaN p-i-n diodes were tested under an electron-beam in order to simulate common beta radiation sources ranging from that of 3H (5.6 keV average) to 63Ni (17 keV average). From this data, we estimated output powers of 53 nW and 750 nW with overall efficiencies of 0.96% and 4.4% for our device at incident electron energies of 5.6 keV and 17 keV corresponding to 3H and 63Ni beta sources respectively.

  8. Waveguide photonic crystals with characteristics controlled with p-i-n diodes

    International Nuclear Information System (INIS)

    Usanov, D. A.; Skripal, A. V.; Abramov, A. V.; Bogolyubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2010-01-01

    A one-dimensional waveguide photonic structure-specifically, a photonic crystal with a controllable frequency characteristic-is designed. The central frequency of the spectral window of the photonic crystal can be tuned by choosing the parameters of disturbance of periodicity in the photonic crystal, whereas the transmission coefficient at a particular frequency can be controlled by varying the voltage at a p-i-n diode. It is shown that the possibility exists of using the waveguide photonic crystal to design a microwave device operating in the 3-cm-wavelength region, with a transmission band of 70 MHz at a level 3 dB and the transmission coefficient controllable in the range from -1.5 to -25 dB under variations in the forward voltage bias at the p-i-n diode from zero to 700 mV.

  9. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  10. InP/ZnS nanocrystals for colour conversion in white light emitting diodes

    DEFF Research Database (Denmark)

    Shirazi, Roza

    In this work a comprehensive study of a colloidal InP/ZnS nanocrystals (NC) as the colour conversion material for white light emitting diodes (WLED) is shown. Studied nanocrystals were synthesised by wet chemistry using one pot, hot injection method. A quantum efficiency (QE) of photoluminescence......, radiative and non-radiative recombination rates were determined and QE of 63% for the population of NCs that emit light was derived. A search for source of exciton losses in bright nanocrystals temperature resolved TRPL was studied and it revealed carrier trapping most likely at core-shell interface as well...... as at the surface and which competes with bright and dark exciton states. A presence of long-lived dark excitons and trapped charges lead to strong Auger recombination at high (relative to the trapping times) excitation. A colour conversion efficiency of the nanocrystals upon light absorption and in a process...

  11. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  12. The 1/f noise in a p-i-n diode and in a diode laser below threshold

    NARCIS (Netherlands)

    Fronen, R.J.; Hooge, F.N.

    1991-01-01

    --A theoretical treatment is given of number fluctuations induced by mobility fluctuations in the intrinsic region of a p-i-n diode. Mobility fluctuations lead to fluctuations in voltage across the intrinsic region. In the a.c. short-circuit situation, fluctuations across the intrinsic region result

  13. Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

    KAUST Repository

    Davis, Nathaniel J. L. K.

    2017-01-24

    Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.

  14. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  15. The Electrical Characteristics of The N-Organic Semiconductor/P-Inorganic Semiconductor Diode

    International Nuclear Information System (INIS)

    Aydin, M. E.

    2008-01-01

    n-organic semiconductor (PEDOT) / p-inorganic semiconductor Si diode was formed by deep coating method. The method has been achieved by coating n-inorganic semiconductor PEDOT on top of p-inorganic semiconductor. The n-organic semiconductor PEDOT/ p-inorganic semiconductor diode demonstrated rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The barrier height , ideality factor values were obtained as of 0.88 eV and 1.95 respectively. The diode showed non-ideal I-V behavior with an ideality factor greater than unity that could be ascribed to the interfacial layer

  16. Simulation of Si P-i-N diodes for use in a positron emission tomography detector module

    International Nuclear Information System (INIS)

    Bailey, M.J.; University of Wollongong, NSW; Rosenfeld, A.; Lerch, M.; Taylor, G.; Heiser, G.

    2000-01-01

    Full text: Current Positron Emission Tomography (PET) systems consist of scintillation crystals optically coupled to photomultiplier tubes with associated electronics used to detect photons generated within the scintillator. The cost of photomultiplier tubes (PMTs) is considerable and is the major factor in the cost of PET systems. It has been suggested that Si P-i-N diodes can replace PMTs and provide Depth of Interaction (DOI) information for improved spatial resolution. Si P-i-N diodes of 25mm x 300μm and 3mm x 300μm cross sectional area were simulated using a 2D Monte Carlo program (PClD V5) from the UNSW photovoltics group. The diffusion lengths were varied from 0.5μm to 5μm and the charge collection characteristics of the diodes were observed. A 400nm monochromatic light source was used for the excitation as an approximation of the mean wavelength output from LSO crystal. The diodes were reverse biased with voltages 40V, 20V and 10V. The optimum diffusion length of up to 2μm and bias voltage of 40V were determined using the electric field, current density, carrier density and potential distribution results. These parameters will be used for the design of a device for optimal charge collection capabilities for the wavelengths encountered in PET applications. Further studies need to be conducted using spectra from LSO rather than a monochromatic source. The response of various Si P-i-N diodes to a monochromatic light source have been modeled in order to design a device for application in a PET detector module for DOI measurements. The charge collection within the first 2μm has been emphasized due to the strong absorption of photons from LSO near the surface.Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  17. Luminescence in amorphous silicon p-i-n diodes under double-injection dispersive-transport-controlled recombination

    International Nuclear Information System (INIS)

    Han, D.; Wang, K.; Yeh, C.; Yang, L.; Deng, X.; Von Roedern, B.

    1997-01-01

    The temperature and electric-field dependence of the forward bias current and the electroluminescence (EL) in hydrogenated amorphous silicon (a-Si:H) p-i-n and n-i-p diodes have been studied. Both the current and the EL efficiency temperature dependence show three regions depending on either hopping-controlled or multiple-trapping or ballistic transport mechanisms. Comparing the thermalization-controlled geminate recombination processes of photoluminescence to the features of EL, the differences can be explained by transport-controlled nongeminate recombination in trap-rich materials. copyright 1997 The American Physical Society

  18. Prediction of the Response of the Commercial BPW34FS Silicon p-i-n Diode Used as Radiation Monitoring Sensors up to Very High Fluences

    CERN Document Server

    Mekki, J; Glaser, M; Moll, M; Dusseau, L

    2010-01-01

    The effect of radiation damage on Silicon p-i-n diodes has been studied. I-V characteristics of BPW34FS silicon p-i-n diodes irradiated with 24 GeV/c protons up to 6.3 x 10(15) n(eq)/cm(2) have been measured and analyzed. A parameterization predicting the radiation response in the fluence range relevant for the use of the diodes as radiation monitors in Super-LHC experiments is presented.

  19. Bidirectional electroluminescence from p-SnO2/i-MgZnO/n-ZnO heterojunction light-emitting diodes

    International Nuclear Information System (INIS)

    Yang, Yanqin; Li, Songzhan; Liu, Feng; Zhang, Nangang; Liu, Kan; Wang, Shengxiang; Fang, Guojia

    2017-01-01

    Light-emitting diodes based on p-SnO 2 /i-MgZnO/n-ZnO heterojunction have been fabricated. The material properties and the performance of heterojunction device are characterized. Current-voltage characteristics of the device show a diode-like rectifying behavior. Under forward bias, two prominent emission peaks located at 589 nm and 722 nm in the visible region and a weak ultraviolet emission are observed from p-SnO 2 /i-MgZnO/n-ZnO heterojunction device. As the device is under reverse bias, a broad visible emission band dominates the electroluminescence spectrum at a high current. Furthermore, the emission mechanism has been discussed in terms of energy band structures of the device under forward and reverse biases.

  20. Silicon Waveguide with Lateral p-i-n Diode for Nonlinearity Compensation by On-Chip Optical Phase Conjugation

    DEFF Research Database (Denmark)

    Gajda, A.; Da Ros, Francesco; Porto da Silva, Edson

    2018-01-01

    A 1-dB Q-factor improvement through optical phase conjugation in a silicon waveguide with a lateral p-i-n diode enables BER

  1. Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode.

    Science.gov (United States)

    Miyano, Kenjiro; Tripathi, Neeti; Yanagida, Masatoshi; Shirai, Yasuhiro

    2016-02-16

    The lead halide perovskite photovoltaic cells, especially the iodide compound CH3NH3PbI3 family, exhibited enormous progress in the energy conversion efficiency in the past few years. Although the first attempt to use the perovskite was as a sensitizer in a dye-sensitized solar cell, it has been recognized at the early stage of the development that the working of the perovskite photovoltaics is akin to that of the inorganic thin film solar cells. In fact, theoretically perovskite is always treated as an ordinary direct band gap semiconductor and hence the perovskite photovoltaics as a p-i-n diode. Despite this recognition, research effort along this line of thought is still in pieces and incomplete. Different measurements have been applied to different types of devices (different not only in the materials but also in the cell structures), making it difficult to have a coherent picture. To make the situation worse, the perovskite photovoltaics have been plagued by the irreproducible optoelectronic properties, most notably the sweep direction dependent current-voltage relationship, the hysteresis problem. Under such circumstances, it is naturally very difficult to analyze the data. Therefore, we set out to make hysteresis-free samples and apply time-tested models and numerical tools developed in the field of inorganic semiconductors. A series of electrical measurements have been performed on one type of CH3NH3PbI3 photovoltaic cells, in which a special attention was paid to ensure that their electronic reproducibility was better than the fitting error in the numerical analysis. The data can be quantitatively explained in terms of the established models of inorganic semiconductors: current/voltage relationship can be very well described by a two-diode model, while impedance spectroscopy revealed the presence of a thick intrinsic layer with the help of a numerical solver, SCAPS, developed for thin film solar cell analysis. These results point to that CH3NH3PbI3 is an

  2. Bidirectional electroluminescence from p-SnO{sub 2}/i-MgZnO/n-ZnO heterojunction light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanqin [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Li, Songzhan, E-mail: liszhan@whu.edu.cn [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, Feng; Zhang, Nangang; Liu, Kan [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Wang, Shengxiang, E-mail: sxwang@wtu.edu.cn [School of Electronic and Electrical Engineering, Hubei Collaborative Innovation Center of Textile Industrial Chain Generic Technology, Wuhan Textile University, Wuhan 430073 (China); Fang, Guojia [Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-06-15

    Light-emitting diodes based on p-SnO{sub 2}/i-MgZnO/n-ZnO heterojunction have been fabricated. The material properties and the performance of heterojunction device are characterized. Current-voltage characteristics of the device show a diode-like rectifying behavior. Under forward bias, two prominent emission peaks located at 589 nm and 722 nm in the visible region and a weak ultraviolet emission are observed from p-SnO{sub 2}/i-MgZnO/n-ZnO heterojunction device. As the device is under reverse bias, a broad visible emission band dominates the electroluminescence spectrum at a high current. Furthermore, the emission mechanism has been discussed in terms of energy band structures of the device under forward and reverse biases.

  3. Fabrication of p-Si/n-ZnO:Al heterojunction diode and determination of electrical parameters

    Science.gov (United States)

    Ilican, Saliha; Gorgun, Kamuran; Aksoy, Seval; Caglar, Yasemin; Caglar, Mujdat

    2018-03-01

    We present a fundamental experimental study of a microwave assisted chemical bath deposition (MW-CBD) method for Al doped ZnO films. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) spectroscopy were used to analyze the microstructures and crystalline structures of these films, respectively. The p-Si/n-ZnO:Al heterojunction diodes were fabricated. The current-voltage (I-V) characteristics of these diodes were measured at room temperature. The important electrical parameters such as series resistance, the ideality factor and the barrier height were determined by performing plots from the forward bias I-V characteristics using different methods. The obtained results indicate that Al doping improve the electrical properties of the p-Si/n-ZnO diode. The best rectification properties were observed in the p-Si/n-ZnO:5%Al heterojunction diode, so only capacitance-voltage (C-V) measurements of this diode were taken. Electrical parameter values such as series resistance, the built-in potential and the acceptor concentration calculated for this heterojunction diode.

  4. Investigation of thermometrical characteristics of p+–n-GaP diodes

    Directory of Open Access Journals (Sweden)

    Sypko N. I.

    2008-12-01

    Full Text Available The method of reception of p+–n-diode epitaxial structures of GaP from liquid phase is developed. In the temperature range of 80—520 K thermometric and current-voltage characteristics of test models of diode temperature sensors are measured and their basic technical parameters are determined. Perspectivity of developed GaP-diodes application as sensitive elements of high-temperature sensor is shown.

  5. BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Ravotti, F; Moll, M; Saigne, F

    2008-01-01

    The BPW34 p-i-n diode was characterized at CERN in view of its utilization as radiation monitor at the LHC to cover the broad 1-MeV neutron equivalent fluence (Phieq) range expected for the LHC machine and experiments during operation. Electrical measurements for both forward and reverse bias were used to characterize the device and to understand its behavior under irradiation. When the device is powered forward, a sensitivity to fast hadrons for Phieq > 2 times1012 cm-2 has been observed. With increasing particle fluences the forward I- V characteristics of the diode shifts towards higher voltages. At Phieq > 3times1013 cm-2, the forward characteristic starts to bend back assuming a thyristor-like behavior. An explanation for this phenomenon is given in this article. Finally, detailed radiation-response curves for the forward bias-operation and annealing studies of the diode's forward voltage are presented for proton, neutron and gamma irradiation.

  6. Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol-Gel Technique

    Science.gov (United States)

    Mansour, Shehab A.; Ibrahim, Mervat M.

    2017-11-01

    Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.

  7. Investigations of thin p-GaN light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  8. P-n junction diodes with polarization induced p-type graded InxGa1-xN layer

    Science.gov (United States)

    Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.

    2017-10-01

    In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.

  9. InAs/InP/InSb Nanowires as Low Capacitance n-n Heterojunction Diodes

    Directory of Open Access Journals (Sweden)

    A. Pitanti

    2011-08-01

    Full Text Available Nanowire diodes have been realized by employing an axial heterojunction between InAs and InSb semiconductor materials. The broken-gap band alignment (type III leads to a strong rectification effect when the current-voltage (I-V characteristic is inspected at room temperature. The additional insertion of a narrow InP barrier reduces the thermionic contribution, which results in a net decrease of leakage current in the reverse bias with a corresponding enhanced rectification in terms of asymmetry in the I-V characteristics. The investigated diodes compare favorably with the ones realized with p-n heterostructured nanowires, making InAs/InP/InSb devices appealing candidates to be used as building blocks for nanowire-based ultrafast electronics and for the realization of photodetectors in the THz spectral range.

  10. Electrical characterization of proton irradiated p+-n-n+ Si diode

    International Nuclear Information System (INIS)

    Kim, J.H.; Lee, D.U.; Kim, E.K.; Bae, Y.H.

    2006-01-01

    Electrical characterization of p + -n-n + Si power electric diodes was done with proton irradiation. The kinetic energies of irradiated protons were 2.32, 2.55 and 2.97MeV, and for each energy condition, doses of 1x10 11 , 1x10 12 and 1x10 13 cm -2 were given. By modulating the kinetic energy, the proton penetration depth into Si crystal could be adjusted to the range of 55-90μm, and then controlled to the special depth regions such as junction region, depletion region and neutral region over the depletion layer in the p + -n-n + diode structure. Defects produced by the proton irradiation affected to electrical property of the Si diode because of their carrier trapping, and then the reverse recovery time was improved from 240 to 50ns. It appeared that the defect states with activation energies of 0.47 and 0.54eV may be responsible for the decrease of the minority carrier lifetime in the proton-irradiated diode with 2.97MeV energy and 1x10 13 cm -2 doses

  11. n-(CdMgTe/CdTe)/(p-(CdTe/ZnCdTe/ZnTe)/p-GaAs heterostructure diode for photosensor applications

    Science.gov (United States)

    Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Chusnutdinow, S.; Wojtowicz, T.; Karczewski, G.; Yakuphanoglu, F.; Al-Bassam, A.; El-Naggar, A. M.; El-Bashir, S. M.

    2016-05-01

    High quality n-(CdMgTe:I/n-CdTe:I)/(p-CdTe:N/p-ZnCdTe:N/p-ZnTe:N)/p-GaAs heterojunction diodes have been fabricated by molecular beam epitaxial growth. The illumination effect on the complex impedance and conductivity of heterostructure diode was investigated. The illumination intensities were taken up to the 200 mW/cm2 with frequency range of 42 Hz to 1 MHz. The observed real and imaginary parts of the complex impedance were strongly dependent on the illumination frequency. The inverse relation was observed between the illumination intensity and the complex impedance. The relaxation mechanism of the diode was analyzed by the Cole-Cole plots. The radius of the Cole-Cole curve decreases with increasing illumination intensity. This suggests a mechanism of illumination dependent on the relaxation process. It is also found that the conductivity increases linearly with increasing the illumination intensity. We can conclude that the new design heterostructure diode in our work is a good candidate in photodetector and optoelectronic applications.

  12. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Krivyakin, G. K.; Volodin, V. A., E-mail: volodin@isp.nsc.ru; Kochubei, S. A.; Kamaev, G. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Purkrt, A.; Remes, Z. [Institute of Physics ASCR (Czech Republic); Fajgar, R. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Stuchliková, T. H.; Stuchlik, J. [Institute of Physics ASCR (Czech Republic)

    2016-07-15

    Silicon nanocrystals are formed in the i layers of p–i–n structures based on a-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm{sup 2} (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.

  13. The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode

    Science.gov (United States)

    Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.

    We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

  14. p - n junction diodes fabricated from isolated electrospun fibers of (P(NDI2ODT2)) and an inorganic p-doped semiconductor

    Science.gov (United States)

    Rosado, Alexander; Pinto, Nicholas

    2013-03-01

    A simple method to fabricate, under ambient conditions and within seconds, p - n diodes using an individual electrospun poly{[N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}-(P(NDI2ODT2)) fiber and a commercially available p-doped Si/SiO2 substrate is presented. Band bending at the fiber/Si+ interface leads to asymmetric I-V characteristic curves resembling that of a diode. The diode turn-on voltage was in the range 1V and was unaffected via UV light irradiation. The rectification ratio however could be tuned reversibly thereby making this device multifunctional. In addition to being a rectifier, the advantage of our design is the complete exposure of the rectifying junction to the surrounding environment. This has the advantage of making them attractive candidates in the potential fabrication of low power, sensitive and rapid response photo-sensors. NSF

  15. Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique

    International Nuclear Information System (INIS)

    Keskenler, E.F.; Tomakin, M.; Doğan, S.; Turgut, G.; Aydın, S.; Duman, S.; Gürbulak, B.

    2013-01-01

    Highlights: ► Ag/n-ZnO/p-Si/Al heterojunction diode was grown via sol–gel technique. ► The characterization of ZnO material was investigated. ► The heterojunction structure showed a rectification behavior. ► Ideality factor and barrier height were found to be 2.03 and 0.71 eV, respectively. - Abstract: Polycrystalline ZnO thin film was obtained on the p-Si for the heterojunction diode fabrication by sol–gel method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) preferred direction. Scanning electron microscope image of ZnO showed that the obtained ZnO thin films had more porous character. High purity vacuum evaporated silver (Ag) and aluminum (Al) metals were used to make Ohmic contacts to the n-ZnO/p-Si heterojunction structure. The electrical properties of Ag/n-ZnO/p-Si/Al diode were investigated by using current–voltage measurements. Ag/n-ZnO/p-Si/Al heterojunction diode showed a rectification behavior, and its ideality factor and barrier height values were found to be 2.03 and 0.71 eV by applying a thermionic emission theory, respectively. The values of series resistance from dV/d (ln I) versus I and H(I) versus I curves were found to be 42.1 and 198.3 Ω, respectively.

  16. n-GaAs/InGaP/p-GaAs core-multishell nanowire diodes for efficient light-to-current conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Keller, Gregor; Prost, Werner; Tegude, Franz-Josef [Department of Solid-State Electronics and CeNIDE University of Duisburg-Essen, Duisburg (Germany); Braam, Daniel; Li, Zi-An; Geller, Martin; Spasova, Marina [Department of Experimental Physics and CeNIDE University of Duisburg-Essen, Duisburg (Germany)

    2012-03-07

    Heterostructure n-GaAs/InGaP/p-GaAs core-multishell nanowire diodes are synthesized by metal-organic vapor-phase epitaxy. This structure allows a reproducible, selective wet etching of the individual shells and therefore a simplified contacting of single nanowire p-i-n junctions. Nanowire diodes show leakage currents in a low pA range and at a high rectification ratio of 3500 (at {+-}1V). Pronounced electroluminescence at 1.4 eV is measured at room temperature and gives evidence of the device quality. Photocurrent generation is demonstrated at the complete area of the nanowire p-i-n junction by scanning photocurrent microscopy. A solar-conversion efficiency of 4.7%, an open-circuit voltage of 0.5 V and a fill factor of 52% are obtained under AM 1.5G conditions. These results will guide the development of nanowire-based photonic and photovoltaic devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Design and geometry of hybrid white light-emitted diodes for efficient energy transfer from the quantum well to the nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Shirazi, Roza

    2013-01-01

    We demonstrate light color conversion in patterned InGaN light-emitting diodes (LEDs), which is enhanced via nonradiative exciton resonant energy transfer (RET) from the electrically driven diode to colloidal semiconductor nanocrystals (NCs). Patterning of the diode is essential for the coupling...... between a quantum well (QW) and NCs, because the distance between the QW and NCs is a main and very critical factor of RET. Moreover, a proper design of the pattern can enhance light extraction....

  18. Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode

    Science.gov (United States)

    Dewan, Sheetal; Tomar, Monika; Tandon, R. P.; Gupta, Vinay

    2017-06-01

    Mixed transition metal oxide, zinc doped NiO, Z n x N i 1 - x O (x = 0, 0.01, 0.02, 0.05, and 0.10), thin films have been fabricated by the RF magnetron sputtering technique in an oxygen deficit ambience at a growth temperature of 400 °C. The present report highlights the effect of Zn doping in NiO thin films on its structural, optical, and electrical properties. Optical transmission enhancement and band gap engineering in a-axis oriented NiO films have been demonstrated via Zn substitution. Hall effect measurements of the prepared samples revealed a transition from p-type to n-type conductivity in NiO at 2% Zn doping. A NiO based transparent p-n homojunction diode has been fabricated successfully, and the conduction mechanism dominating the diode properties is reported in detail. Current-voltage (I-V) characteristics of the homojunction diode are found to obey the Space Charge Limited Conduction mechanism with non-ideal square law behaviour.

  19. Transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/Al-ZnO p-n heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil, E-mail: skbgudha@gmail.com; Ansari, Mohd Zubair; Khare, Neeraj [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi, Delhi-110016 (India)

    2016-05-23

    A p-type Organic inorganic tin chloride (CH{sub 3}NH{sub 3}SnCl{sub 3}) perovskite thin film has been synthesized by solution method. An n-type 1% Al doped ZnO (AZO) film has been deposited on FTO substrate by ultrasonic assisted chemical vapor deposition technique. A transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction diode has been fabricated by spin coating technique. CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows 75% transparency in the visible region. I-V characteristic of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows rectifying behavior of the diode. The diode parameters calculated as ideality factor η=2.754 and barrier height Φ= 0.76 eV. The result demonstrates the potentiality of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction for transparent electronics.

  20. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  1. Crosstalk of HgCdTe LWIR n-on-p diode arrays

    International Nuclear Information System (INIS)

    Sun Yinghui; Zhang Bo; Yu Meifang; Liao Qingjun; Zhang Yan; Wen Xin; Jiang Peilu; Hu Xiaoning; Dai Ning

    2009-01-01

    Crosstalk of HgCdTe long-wavelength infrared (LWIR) n-on-p diode arrays was measured using scanning laser microscopy. During the measurement, HgCdTe diode arrays with different diode pitches were frontside illuminated by a He-Ne laser at liquid nitrogen temperature and room temperature. The experimental results show that crosstalk between the nearest neighboring diodes decreases exponentially as the diode pitch increases, and the factors that affect the obtained crosstalk are presented and analyzed. Crosstalk out of the nominal diode area (optically sensitive area) is also measured and discussed.

  2. Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode

    International Nuclear Information System (INIS)

    Wang Chengxin; Yang Guowei; Liu Hongwu; Han Yonghao; Luo Jifeng; Gao Chunxiao; Zou Guangtian

    2004-01-01

    High-quality heterojunctions between p-type diamond single-crystalline films and highly oriented n-type ZnO films were fabricated by depositing the p-type diamond single-crystal films on the I o -type diamond single crystal using a hot filament chemical vapor deposition, and later growing a highly oriented n-type ZnO film on the p-type diamond single-crystal film by magnetron sputtering. Interestingly, anomalously high ideality factors (n>>2.0) in the prepared ZnO/diamond p-n junction diode in the interim bias voltage range were measured. For this, detailed electronic characterizations of the fabricated p-n junction were conducted, and a theoretical model was proposed to clarify the much higher ideality factors of the special heterojunction diode

  3. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  4. A new type photodiode: p-Si/GaN pn junction in series with GaN/Ag Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Yakuphanoglu, F., E-mail: fyhanoglu@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Shokr, F.S. [Physics Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh (Saudi Arabia); Gupta, R.K., E-mail: ramguptamsu@gmail.com [Department of Chemistry and Kansas Polymer Research Center, Pittsburg State University, Pittsburg (United States); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Al-Turki, Yusuf [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2015-11-25

    Large quantities of gallium nitride (GaN) nanoparticles were successfully synthesized via a facile sol-gel approach. X-ray diffraction analysis confirms the polycrystalline nature of the GaN with hexagonal wurtzite structure and lattice constants a = 0.3189 nm and c = 0.5185 nm. The morphology of the GaN film was investigated by field emission scanning electron microscopy. The obtained results indicate that the synthesized GaN nanorods have an average length of around 60 nm and an average diameter of 23 nm. The optical band gap of the GaN film was obtained to be 3.4 eV. The gallium nitride/p-Si Schottky diode was fabricated by thermal evaporation technique on p-silicon. The current–voltage (I–V) characteristics of the fabricated diode was tested under dark and various light intensities. T The diode ideality factor and barrier height were computed using forward bias I–V characteristics of the diode and are found to be 1.66 and 0.53 eV, respectively. The obtained results suggest that the film preparation by sol gel method is fast and simple to prepare GaN based photodiode by according to metal organic deposition methods. - Highlights: • Facile method was used to synthesize GaN powder. • The Al/p-Si/GaN/Ag diode was fabricated using thermal evaporator technique. • Al/p-Si/GaN/Ag diode can be used as a photosensor for optoelectronic applications.

  5. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  6. Room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diodes and high-frequency diode rectifiers

    International Nuclear Information System (INIS)

    Chen, Wei-Chung; Hsu, Po-Ching; Chien, Chih-Wei; Chang, Kuei-Ming; Hsu, Chao-Jui; Chang, Ching-Hsiang; Lee, Wei-Kai; Chou, Wen-Fang; Wu, Chung-Chih; Hsieh, Hsing-Hung

    2014-01-01

    In this work, we report successful implementation of room-temperature-processed flexible n-InGaZnO/p-Cu 2 O heterojunction diodes on polyethylene naphthalate (PEN) plastic substrates using the sputtering technique. Using n-type InGaZnO and p-type Cu 2 O films deposited by sputtering at room temperature, flexible n-InGaZnO/p-Cu 2 O heterojunction diodes were successfully fabricated on PEN plastic substrates. The didoes on PEN substrates exhibited a low apparent turn-on voltage of 0.44 V, a high rectification ratio of up to 3.4 × 10 4 at ±1.2 V, a high forward current of 1 A cm −2 around 1 V and a decent ideality factor of 1.4, similar to the characteristics of n-InGaZnO/p-Cu 2 O diodes fabricated on glass substrates. The characterization of the frequency response of the room-temperature-processed flexible n-InGaZnO/p-Cu 2 O heterojunction diode rectifiers indicated that they are capable of high-frequency operation up to 27 MHz, sufficient for high-frequency (13.56 MHz) applications. Preliminary bending tests on diode characteristics and rectifier frequency responses indicate their promise for applications in flexible electronics. (paper)

  7. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p-n diodes and InGaN LEDs

    Science.gov (United States)

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-12-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal-organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p-n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm-3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10-3-3.4 × 10-3 Ω·cm2, and the turn-on voltages of the diodes.

  8. 5.0 kV breakdown-voltage vertical GaN p-n junction diodes

    Science.gov (United States)

    Ohta, Hiroshi; Hayashi, Kentaro; Horikiri, Fumimasa; Yoshino, Michitaka; Nakamura, Tohru; Mishima, Tomoyoshi

    2018-04-01

    A high breakdown voltage of 5.0 kV has been achieved for the first time in vertical GaN p-n junction diodes by using our newly developed guard-ring structures. A resistance device was inserted between the main diode portion and the guard-ring portion in a ring-shaped p-n diode to generate a voltage drop over the resistance device by leakage current flowing through the guard-ring portion under negatively biased conditions before breakdown. The voltage at the outer mesa edge of the guard-ring portion, where the electric field intensity is highest and the destructive breakdown usually occurs, is decreased by the voltage drop, so the electric field concentration in the portion is reduced. By adopting this structure, the breakdown voltage (V B) is raised by about 200 V. Combined with a low measured on-resistance (R on) of 1.25 mΩ cm2, Baliga’s figure of merit (V\\text{B}2/R\\text{on}) was as high as 20 GW/cm2.

  9. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    International Nuclear Information System (INIS)

    Guellue, O.; Tueruet, A.

    2011-01-01

    Research highlights: → This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. → We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. → The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. → The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 ± 0.02 and 1.70 ± 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height Φ b determined from the I-V measurements was 0.75 ± 0.01 eV at 300 K and decreases to 0.61 ± 0.01 eV at 200 K. The forward voltage-temperature (V F -T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I F ) in the range 20 nA-6 μA. The V F -T characteristics were linear for three activation currents in the diode. From the V F -T characteristics at 20 nA, 100 nA and 6 μA, the values of the temperature coefficients of the forward bias voltage (dV F /dT) for the diode were determined as -2.30 mV K -1 , -2.60 mV K -1 and -3.26 mV K -1 with a standard error of 0.05 mV K -1 , respectively.

  10. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, O., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, 72060 Batman (Turkey); Osmaniye Korkut Ata University, Science and Art Faculty, Department of Physics, 80000 Osmaniye (Turkey); Tueruet, A. [Atatuerk University, Science Faculty, Department of Physics, 25240 Erzurum (Turkey)

    2011-01-21

    Research highlights: > This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. > We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. > The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. > The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 {+-} 0.02 and 1.70 {+-} 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height {Phi}{sub b} determined from the I-V measurements was 0.75 {+-} 0.01 eV at 300 K and decreases to 0.61 {+-} 0.01 eV at 200 K. The forward voltage-temperature (V{sub F}-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I{sub F}) in the range 20 nA-6 {mu}A. The V{sub F}-T characteristics were linear for three activation currents in the diode. From the V{sub F}-T characteristics at 20 nA, 100 nA and 6 {mu}A, the values of the temperature coefficients of the forward bias voltage (dV{sub F}/dT) for the diode were determined as -2.30 mV K{sup -1}, -2.60 mV K{sup -1} and -3.26 mV K{sup -1} with a standard error of 0.05 mV K{sup -1}, respectively.

  11. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  12. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  13. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    Science.gov (United States)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  14. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun

    2017-12-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  15. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun; Shang, Yuequn; Yin, Jun; de Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M.; Hedhili, Mohamed N.; Emwas, Abdul-Hamid M.; Mohammed, Omar F.; Ning, Zhijun; Bakr, Osman

    2017-01-01

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  16. Improvements in DC Current-Ioltage (I-V) Characteristics of n-GaN Schottky Diode using Metal Overlap Edge Termination

    International Nuclear Information System (INIS)

    Munir, T.; Aziz, A. A.; Abdullah, M. J.; Ain, M. F.

    2010-01-01

    Practical design of GaN Schottky diodes incorporating a field plate necessitates an understanding of how the addition of such plate affects the diode performance. In this paper, we investigated the effects on DC current-voltage (I-V) characteristics of n-GaN schottky diode by incorporating metal overlap edge termination. The thickness of the oxide film varies from 0.001 to 1 micron. Two-dimensional Atlas/Blaze simulations revealed that severe electric field crowding across the metal semiconductor contact will cause reliability concern and limit device breakdown voltage. DC current-voltage (I-V) measurements indicate that the forward currents are higher for thinner oxide film schottky diodes with metal overlap edge termination than those of unterminated schottky diodes. The forward current increased due to formation of an accumulation layer underneath the oxide layer. Extending the field plate to beyond periphery regions of schottky contact does not result in any significant increase in forward current. The new techniques of ramp oxide metal overlap edge termination have been implemented to increase the forward current of n-GaN schottky diode. In reverse bias, breakdown voltage increased with edge termination oxide up to a certain limit of oxide thickness.

  17. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  18. Titanium-dioxide nanotube p-n homojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Alivov, Yahya, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  19. Monte Carlo simulation of THz radiation from GaAs p-i-n diodes under high electric fields using an extended valley model

    International Nuclear Information System (INIS)

    Dinh Nhu Thao

    2008-01-01

    We have applied a self-consistent ensemble Monte Carlo simulation procedure using an extended valley model to consider the THz radiation from GaAs p-i-n diodes under high electric fields. The present calculation has shown an important improvement of the numerical results when using this model instead of the usual valley model. It has been shown the importance of the full band-structure in the simulation of processes in semiconductors, especially under the influence of high electric fields. (author)

  20. Optically transparent ZnO-based n-i-p ultraviolet photodetectors

    International Nuclear Information System (INIS)

    Wang, Kai; Vygranenko, Yuriy; Nathan, Arokia

    2007-01-01

    An optically transparent tin-doped indium oxide/ZnO/NiO n-i-p heterostructure photodiode was fabricated by ion beam assisted e-beam evaporation. The diode clearly demonstrates rectifying current-voltage (J-V) characteristics with a current rectification ratio up to 10 4 at bias ± 2 V and a low reverse current of ∼ 100 nA/cm 2 at - 5 V. Analysis of J-V characteristics including time dependence of the dark current shows that the leakage current at low biases is attributed to thermal generation via defect states, and at high biases, field-enhanced carrier generation from the ZnO layer dominates. Spectral response and linearity measurements indicate that such a diode is particularly suitable for low level of ultraviolet detection

  1. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    Energy Technology Data Exchange (ETDEWEB)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc, E-mail: jean-luc.pelouard@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), Route de Nozay, 91460 Marcoussis (France); Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); Haïdar, Riad [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); École Polytechnique, Département de Physique, F-91128 Palaiseau (France)

    2014-07-07

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  2. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    International Nuclear Information System (INIS)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc; Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel; Haïdar, Riad

    2014-01-01

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  3. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.

  4. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    International Nuclear Information System (INIS)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T.; Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2016-01-01

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al_0_._7_0Ga_0_._3_0N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm"2.

  5. Morphological Control of In <i>x> Ga 1–<i>x> P Nanocrystals Synthesized in a Nonthermal Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, Noah D. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Wheeler, Lance M. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Anderson, Nicholas C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Neale, Nathan R. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

    2018-04-09

    We explore the growth of InxGa1-xP nanocrystals (x = 1, InP; x = 0, GaP; and 1 > x > 0, alloys) in a nonthermal plasma. By tuning the reactor conditions, we gain control over the morphology of the final product, producing either 10 nm diameter hollow nanocrystals or smaller 3 nm solid nanocrystals. We observe the gas-phase chemistry in the plasma reactor using plasma emission spectroscopy to understand the growth mechanism of the hollow versus solid morphology. We also connect this plasma chemistry to the subsequent native surface chemistry of the nanocrystals, which is dominated by the presence of both dative- and lattice-bound phosphine species. The dative phosphines react readily with oleylamine in an L-type ligand exchange reaction, evolving phosphines and allowing the particles to be dispersed in nonpolar solvents. Subsequent treatment by HF causes the solid InP1.5 and In0.5Ga0.5P1.3 to become photoluminescent, whereas the hollow particles remain nonemissive.

  6. White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes

    International Nuclear Information System (INIS)

    Nizamoglu, S; Ozel, T; Sari, E; Demir, H V

    2007-01-01

    We introduce white light generation using CdSe/ZnS core-shell nanocrystals of single, dual, triple and quadruple combinations hybridized with InGaN/GaN LEDs. Such hybridization of different nanocrystal combinations provides the ability to conveniently adjust white light parameters including the tristimulus coordinates (x,y), correlated colour temperature (T c ) and colour rending index (R a ). We present the design, growth, fabrication and characterization of our white hybrid nanocrystal-LEDs that incorporate combinations of (1) yellow nanocrystals (λ PL = 580 nm) on a blue LED (λ EL = 440 nm) with (x,y) = (0.37,0.25), T c = 2692 K and R a 14.69; (2) cyan and red nanocrystals (λ PL = 500 and 620 nm) on a blue LED (λ EL = 440 nm) with (x,y) = (0.37,0.28), T c = 3246 K and R a = 19.65; (3) green, yellow and red nanocrystals (λ PL = 540, 580 and 620 nm) on a blue LED (λ EL = 452 nm) with (x,y) = (0.30,0.28), T c = 7521 K and R a = 40.95; and (4) cyan, green, yellow and red nanocrystals (λ PL = 500, 540, 580 and 620 nm) on a blue LED (λ EL = 452 nm) with (x,y) = (0.24,0.33), T c = 11 171 K and R a 71.07. These hybrid white light sources hold promise for future lighting and display applications with their highly adjustable properties

  7. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  8. Dual-polarization wavelength conversion of 16-QAM signals in a single silicon waveguide with a lateral p-i-n diode [Invited

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Gajda, Andrzej; Liebig, Erik

    2018-01-01

    with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due......A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated...

  9. Horizontal Assembly of Single Nanowire Diode Fabricated by p-n Junction GaN NW Grown by MOCVD

    Directory of Open Access Journals (Sweden)

    Ji-Hyeon Park

    2014-01-01

    Full Text Available Uniaxially p-n junction gallium nitride nanowires have been synthesized via metal-organic chemical vapor deposition method. Nanowires prepared on Si(111 substrates were found to grow perpendicular to the substrate, and the transmission electron microscopy studies demonstrated that the nanowires had singlecrystalline structures with a growth axis. The parallel assembly of the p-n junction nanowire was prepared on a Si substrate with a thermally grown SiO2 layer. The transport studies of horizontal gallium nitride nanowire structures assembled from p- and n-type materials show that these junctions correspond to well-defined p-n junction diodes. The p-n junction devices based on GaN nanowires suspended over the electrodes were fabricated and their electrical properties were investigated. The horizontally assembled gallium nitride nanowire diodes suspended over the electrodes exhibited a substantial increase in conductance under UV light exposure. Apart from the selectivity to different light wavelengths, high responsivity and extremely short response time have also been obtained.

  10. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M

    1999-01-01

    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  11. Growth and characterization of n-ZnO/p-GaN nanorods on silicon for the fabrication of heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Guan-Hung Shen [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    A heterojunction n-ZnO/p-GaN diode device was fabricated and characterized on Si (111) substrate. Vertically-aligned Mg-doped GaN nanorods (NRs) were grown on Si (111) by plasma assisted chemical vapor deposition. Intrinsic n-type ZnO was subsequently grown on top of p-GaN nanorods by hydrothermal method at low temperature. The effects of precursor concentrations on the morphology and optical properties of ZnO nanostructures were investigated. Various ZnO nanostructures could be synthesized to obtain different heterojunction nanostructures. The high resolution transmission electron microscopy and selected area electron diffraction results further verified that the GaN NRs were single crystals with the growth orientation along [0001], and the epitaxial wurtzite ZnO films were grown on GaN NRs. The n-ZnO film/p-GaN NR heterojunction diodes were thus fabricated. Diode-like rectifying behavior was actually observed with a leakage current of less than 2.0 × 10{sup −4} A at − 20 V bias, a forward current of 7.2 × 10{sup −3} A at 20 V bias, and the turn-on voltage at around 5.6 V. - Highlights: • High-quality zinc oxide layer was epitaxially grown on gallium nitride nanorods. • The morphology of zinc oxide can be controlled by varying the growth conditions. • The n-zinc oxide/p-gallium nitride diodes with rectifying behavior were fabricated.

  12. Growth and characterization of n-ZnO/p-GaN nanorods on silicon for the fabrication of heterojunction diodes

    International Nuclear Information System (INIS)

    Guan-Hung Shen; Hong, Franklin Chau-Nan

    2014-01-01

    A heterojunction n-ZnO/p-GaN diode device was fabricated and characterized on Si (111) substrate. Vertically-aligned Mg-doped GaN nanorods (NRs) were grown on Si (111) by plasma assisted chemical vapor deposition. Intrinsic n-type ZnO was subsequently grown on top of p-GaN nanorods by hydrothermal method at low temperature. The effects of precursor concentrations on the morphology and optical properties of ZnO nanostructures were investigated. Various ZnO nanostructures could be synthesized to obtain different heterojunction nanostructures. The high resolution transmission electron microscopy and selected area electron diffraction results further verified that the GaN NRs were single crystals with the growth orientation along [0001], and the epitaxial wurtzite ZnO films were grown on GaN NRs. The n-ZnO film/p-GaN NR heterojunction diodes were thus fabricated. Diode-like rectifying behavior was actually observed with a leakage current of less than 2.0 × 10 −4 A at − 20 V bias, a forward current of 7.2 × 10 −3 A at 20 V bias, and the turn-on voltage at around 5.6 V. - Highlights: • High-quality zinc oxide layer was epitaxially grown on gallium nitride nanorods. • The morphology of zinc oxide can be controlled by varying the growth conditions. • The n-zinc oxide/p-gallium nitride diodes with rectifying behavior were fabricated

  13. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    International Nuclear Information System (INIS)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2015-01-01

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10 4 at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements

  14. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Erdoğan, Erman, E-mail: e.erdogan@alparslan.edu.tr [Department of Physics, Faculty of Art and Science, Muş Alparslan University, Muş 49250 (Turkey); Kundakçı, Mutlu [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10{sup −5} mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  15. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  16. Enhancement of breakdown voltage for fully-vertical GaN-on-Si p-n diode by using strained layer superlattice as drift layer

    Science.gov (United States)

    Mase, Suguru; Hamada, Takeaki; Freedsman, Joseph J.; Egawa, Takashi

    2018-06-01

    We have demonstrated a vertical GaN-on-Si p-n diode with breakdown voltage (BV) as high as 839 V by using a low Si-doped strained layer superlattice (SLS). The p-n vertical diode fabricated by using the n‑-SLS layer as a part of the drift layer showed a remarkable enhancement in BV, when compared with the conventional n‑-GaN drift layer of similar thickness. The vertical GaN-on-Si p-n diodes with 2.3 μm-thick n‑-GaN drift layer and 3.0 μm-thick n‑-SLS layer exhibited a differential on-resistance of 4.0 Ω · cm2 and a BV of 839 V.

  17. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Manisha [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tomar, Monika [Physics department, Miranda House, University of Delhi, Delhi-110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.

  18. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  19. CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Berrellez-Reyes, F; Mizquez-Corona, R; Ramirez-Esquivel, O; Mejia, I; Quevedo-Lopez, M

    2015-01-01

    In this work we report a method to dope cadmium sulfide (CdS) thin films using pulsed laser deposition. Doping is achieved during film growth at substrate temperatures of 100 °C by sequential deposition of the CdS and the dopant material. Indium sulfide and copper disulfide targets were used as the dopant sources for n-type and p-type doping, respectively. Film resistivities as low as 0.2 and 1 Ω cm were achieved for indium and copper doped films, respectively. Hall effect measurements demonstrated the change in conductivity type from n-type to p-type when the copper dopants are incorporated into the film. The controlled incorporation of indium or copper, in the undoped CdS film, results in substitutional defects in the CdS, which increases the electron and hole concentration up to 4 × 10 18 cm −3 and 3 × 10 20 cm −3 , respectively. The results observed with CdS doping can be expanded to other chalcogenides material compounds by just selecting different targets. With the optimized doped films, CdS-based p-i-n diodes were fabricated yielding an ideality factor of 4, a saturation current density of 2 × 10 −6 A cm −2 and a rectification ratio of three orders of magnitude at ±3 V. (paper)

  20. Continuous Holdup Measurements with Silicon P-I-N Photodiodes

    International Nuclear Information System (INIS)

    Bell, Z.W.; Oberer, R.B.; Williams, J.A.; Smith, D.E.; Paulus, M.J.

    2002-01-01

    We report on the behavior of silicon P-I-N photodiodes used to perform holdup measurements on plumbing. These detectors differ from traditional scintillation detectors in that no high-voltage is required, no scintillator is used (gamma and X rays are converted directly by the diode), and they are considerably more compact. Although the small size of the diodes means they are not nearly as efficient as scintillation detectors, the diodes' size does mean that a detector module, including one or more diodes, pulse shaping electronics, analog-to-digital converter, embedded microprocessor, and digital interface can be realized in a package (excluding shielding) the size of a pocket calculator. This small size, coupled with only low-voltage power requirement, completely solid-state realization, and internal control functions allows these detectors to be strategically deployed on a permanent basis, thereby reducing or eliminating the need for manual holdup measurements. In this paper, we report on the measurement of gamma and X rays from 235 U and 238 U contained in steel pipe. We describe the features of the spectra, the electronics of the device and show how a network of them may be used to improve estimates of inventory in holdup

  1. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate

    Science.gov (United States)

    Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari

    2018-04-01

    Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.

  2. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  3. Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition

    Directory of Open Access Journals (Sweden)

    Ya-Ju Lee

    2014-05-01

    Full Text Available High-efficient ZnO-based nanorod array light-emitting diodes (LEDs were grown by an oblique-angle deposition scheme. Due to the shadowing effect, the inclined ZnO vapor-flow was selectively deposited on the tip surfaces of pre-fabricated p-GaN nanorod arrays, resulting in the formation of nanosized heterojunctions. The LED architecture composed of the slanted n-ZnO film on p-GaN nanorod arrays exhibits a well-behaving current rectification of junction diode with low turn-on voltage of 4.7 V, and stably emits bluish-white luminescence with dominant peak of 390 nm under the operation of forward injection currents. In general, as the device fabrication does not involve passivation of using a polymer or sophisticated material growth techniques, the revealed scheme might be readily applied on other kinds of nanoscale optoelectronic devices.

  4. Isoelectronic Ln doping in p-GaN and its effects on InGaN light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, C. S.; Cheong, H. S.; Kang, D. S.; Kim, J. Y.; Hong, C. H.; Suh, E. K.; Lee, H. J.; Cho, H. K.; Adesida, I.

    2004-01-01

    The effects of isoelectronic In doping in a Mg-doped p-GaN layer on device performance of InGaN light-emitting diodes (LED) were investigated. It was found that there was a decrease of Hall resistivity and contact resistivity in p-GaN with In doping, compared to typical Mg-doped p-GaN. Isoelectronic In doping in p-GaN seems to cause a kind of surfactant effect and/or purification effect similar to the In-doped GaN case, which exhibits a decrease of non-radiative recombination centers and an enhancement of carrier concentration. Light output power and operating voltage were improved by applying an In-doped p-GaN contact layer to the LED.

  5. Electrical parameters of metal doped n-CdO/p-Si heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, P. [Department of Physics, Sri Vidya College of Engineering & Technology, Virudhunagar 626005, Tamilnadu (India); Prithivikumaran, N., E-mail: janavi_p@yahoo.com [Nanoscience Research Lab, Department of Physics, VHNSN College, Virudhunagar 626001, Tamilnadu (India)

    2016-11-15

    The CdO, Al doped CdO and Cu doped CdO thin films were coated on p-type silicon substrates by sol–gel spin coating method. The structural, surface morphological and electrical properties of undoped, Al and Cu doped CdO films on silicon substrate were studied. The Ag/CdO/p-Si, Ag/Al: CdO/p-Si and Ag/Cu: CdO/p-Si heterojunction diodes were fabricated and the diode parameters such as reverse saturation current, barrier height and ideality factor of the diodes were investigated by current–voltage (I–V)characteristics. The reverse current of the diode was found to increase strongly with the doping. The values of barrier height and ideality factor were decreased by doping with aluminium and copper. Photo response of the heterojunction diodes was studied and it was found that, the heterojunction diode constructed with the doped CdO has larger Photo response than the undoped heterojunction diode.

  6. Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes

    International Nuclear Information System (INIS)

    He, Guan-Ru; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui

    2012-01-01

    The fabrication and detailed electrical properties of heterojunction diodes based on n-type ZnO and p-type Si were reported. The effect of interface modification by H 2 O 2 treatment on the electrical properties of n-type ZnO/p-type Si diodes was investigated. The n-type ZnO/p-type Si diode without H 2 O 2 treatment showed a poor rectifying behavior with an ideality factor (n) of 2.5 and high leakage, indicating that the interfacial ZnSi x O y layer influenced the electronic conduction through the device. However, the n-type ZnO/p-type Si diode with H 2 O 2 treatment showed a good rectifying behavior with n of 1.3 and low leakage. This is because the thin SiO x layer acts as a thermodynamically stable buffer layer to suppress interfacial reaction between ZnO and Si. In addition, the enhanced photo-responsivity can be interpreted by the device rectifying performance and interface passivation. - Highlights: ► The electrical properties of n-ZnO/p-Si heterojunction diodes were researched. ► The n-ZnO/p-Si diode without H 2 O 2 treatment showed a poor rectifying behavior. ► The n-ZnO/H 2 O 2 -treated p-Si diode showed a good rectifying behavior. ► The enhanced responsivity can be interpreted by the device rectifying performance.

  7. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.

    2013-11-07

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  8. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics

    Directory of Open Access Journals (Sweden)

    Sandro Rao

    2016-01-01

    Full Text Available Hydrogenated amorphous silicon (a-Si:H shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34–40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  9. The electrical properties of n-ZnO/p-SnO heterojunction diodes

    Science.gov (United States)

    Javaid, K.; Xie, Y. F.; Luo, H.; Wang, M.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Liang, L. Y.; Cao, H. T.

    2016-09-01

    In the present work, n-type zinc oxide (ZnO) and p-type tin monoxide (SnO) based heterostructure diodes were fabricated on an indium-tin-oxide glass using the radio frequency magnetron sputtering technique. The prepared ZnO/SnO diodes exhibited a typical rectifying behavior, with a forward to reverse current ratio about 500 ± 5 at 2 V and turn on voltage around 1.6 V. The built-in voltage of the diode was extracted to be 0.5 V based on the capacitance-voltage (C-V) measurement. The valence and conduction band offsets were deliberated through the band energy diagram of ZnO/SnO heterojunction, as 1.08 eV and 0.41 eV, respectively. The potential barrier-dependent carrier transportation mechanism across the space charge region was also investigated.

  10. Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability.

    Science.gov (United States)

    Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda

    2017-06-08

    In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.

  11. Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods

    Science.gov (United States)

    Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong

    2014-02-01

    Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.

  12. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    Science.gov (United States)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  13. Exciton dynamics in near-surface InGaN quantum wells coupled to colloidal nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Shirazi, Roza; Yvind, Kresten

    2013-01-01

    We study non-radiative energy transfer between InGaN quantum wells and colloidal InP nanocrystals separated by sub-10nm distance. A significant non-radiative energy transfer between the two layers is accompanied by reduced surface recombination in InGaN.......We study non-radiative energy transfer between InGaN quantum wells and colloidal InP nanocrystals separated by sub-10nm distance. A significant non-radiative energy transfer between the two layers is accompanied by reduced surface recombination in InGaN....

  14. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    Science.gov (United States)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction

  15. Barrier height and interface effect of Pt-n-GaN and Pd-n-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Khan, M.R.H.; Saha, S.L.; Sawaki, N.

    1999-01-01

    Schottky barriers on n-type GaN films by Pt and Pd are fabricated and characterized. A thin Pt or Pd layer is deposited on n-GaN layers to form Schottky contacts in a vacuum below 1x10/sup -6/ Torr. The area of all diodes is 3.46 x 10-4 cm/sup 2/. Several samples of Pt-n GaN and Pd-n GaN were studied. The ideality factor of Pt-n-GaN diode is 1.26 and of Pd-n-GaN is 1.17. The breakdown voltage of Pt-n-GaN and Pd-n-GaN diodes is 21 V and 26 V respectively. In both the cases the leakage current varies between 1x10-9 A and 5x 10-9 A. The Schottky barrier heights (phi/sub B/ ) of Pt-GaN diode is been determined to be 1.02 eV by current voltage (I-V) and 1.07 eV by capacitance (C-V) measurements Also, phi/sub B/ of Pd-GaN diode is determined to be 0.91 eV by I-V and 0.98 eV, by C-V measurements. The departure of the values of the ideality factor is considered to be due to spatial inhomogeneities at the meal semiconductor interface. The difference in the values of phi/sub B/ determined by I-V and C-V measurements is attributed to the deformation of the spatial barrier distribution. (author)

  16. On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes.

    Science.gov (United States)

    Kyaw, Zabu; Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ju, Zhen Gang; Zhang, Xue Liang; Ji, Yun; Hasanov, Namig; Zhu, Binbin; Lu, Shunpeng; Zhang, Yiping; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-01-13

    N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple quantum wells (MQWs) are systematically studied both experimentally and theoretically to increase the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN layer sandwiched in the NPNPN-GaN structure is completely depleted due to the built-in electric field in the NPNPN-GaN junctions, and the ionized acceptors in these P-GaN layers serve as the energy barriers for electrons from the n-GaN region, resulting in a reduced electron over flow and enhanced the current spreading horizontally in the n- GaN region. These lead to increased optical output power and external quantum efficiency (EQE) from the proposed device.

  17. Solution-processed n-ZnO nanorod/p-Co_3O_4 nanoplate heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Kim, Jong-Woo; Lee, Su Jeong; Biswas, Pranab; Lee, Tae Il; Myoung, Jae-Min

    2017-01-01

    Highlights: • The n-ZnO nanorods were epitaxially grown on p-Co_3O_4 nanoplates. • The heteroepitaxial p-n junction was fabricated by using hydrothermal process. • The LEDs emitted reddish-orange and violet light related to ZnO point defects. • The Co_3O_4 nanoplates function as a hole injection layer. • Junction between 1D NRs and 2D NPs provides a new approach to design nanostructures. - Abstract: A heterojunction light-emitting diode (LED) based on p-type cobalt oxide (Co_3O_4) nanoplates (NPs)/n-type zinc oxide (ZnO) nanorods (NRs) is demonstrated. Using a low-temperature aqueous solution process, the n-type ZnO NRs were epitaxially grown on Co_3O_4 NPs which were two-dimensionally assembled by a modified Langmuir-Blodgett process. The heterojunction LEDs exhibited a typical rectifying behavior with a turn-on voltage of about 2 V and emitted not only reddish-orange light at 610 nm but also violet light at about 400 nm. From the comparative analyses of electroluminescence and photoluminescence, it was determined that the reddish-orange light emission was related to the electronic transitions from zinc interstitials (Zn_i) to oxygen interstitials (O_i) or conduction-band minimum (CBM) to oxygen vacancies (V_O), and the violet light emission was attribute to the transition from CBM to valence-band maximum (VBM) or Zn_i to zinc vacancies (V_Z_n).

  18. Low temperature synthesis of InP nanocrystals

    International Nuclear Information System (INIS)

    Ung Thi Dieu Thuy; Tran Thi Thuong Huyen; Nguyen Quang Liem; Reiss, Peter

    2008-01-01

    We present a simple method for the chemical synthesis of InP nanocrystals, which comprises several advantages: (i) the use of simple reagents, namely InCl 3 .4H 2 O and yellow P as the In and P precursors, respectively, and NaBH 4 as the reducing agent in a mixed solvent of ethanol and toluene; (ii) a short reaction time (1-5 h) and low temperature (<75 deg. C); (iii) a high reaction yield approaching 100%. InP NCs in the zinc-blende structure have been obtained as confirmed by powder X-ray diffraction and Raman scattering measurements. Their mean size of 4 nm has been determined by transmission electron microscopy, Raman scattering and absorption spectroscopy

  19. Facile fabrication and electrical investigations of nanostructured p-Si/n-TiO2 hetero-junction diode

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2018-05-01

    In this work, we have fabricated the nanostructured p-Si/n-TiO2 hetero-junction diode by using a facile spin-coating method. The XRD analysis suggests the presence of well crystalline anatase TiO2 film on Si with small grain size (˜16 nm). We have drawn the band alignment using Anderson model to understand the electrical transport across the junction. The current-voltage (J-V) characteristics analysis reveals the good rectification ratio (103 at ± 3 V) and slightly higher ideality factor (4.7) of our device. The interface states are responsible for the large ideality factor as Si/TiO2 form a dissimilar interface and possess a large number of dangling bonds. The study reveals the promises to be used Si/TiO2 diode as an alternative to the traditional p-n homo-junction diode, which typically require high budget.

  20. Damage coefficient and defect level of copper-contaminated silicon N+P diode

    International Nuclear Information System (INIS)

    Usami, A.; Kato, Y.

    1975-01-01

    The damage coefficient at 298 0 K of copper-contaminated N + P diodes is smaller than that of non-contaminated ones. In these copper-contaminated samples, the higher the bulk resistivity is, the smaller is the damage coefficient. For non-contaminated diodes, the damage coefficient of samples of pulled bulk crystals is smaller than that of floating zone crystals, and the higher bulk resistivity diodes have smaller damage coefficient. At 217 0 K measurement, the effect of copper-contamination on the damage coefficient could not be observed. The energy levels of defects introduced by gamma ray irradiation are approximately0.30 eV, and approximately0.28 eV with non-contaminated FZ 135 ohm-cm and CZ 10 ohm-cm bulk samples, respectively. In copper-contaminated samples, approximately0.60 eV and approximately0.45 eV are obtained as the defect energy levels for FZ 135 ohm-cm and CZ 10 ohm-cm bulk samples. (U.S.)

  1. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    Science.gov (United States)

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

  2. Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Deng, R.; Yao, B.; Li, Y.F.; Xu, Y.; Li, J.C.; Li, B.H.; Zhang, Z.Z.; Zhang, L.G.; Zhao, H.F.; Shen, D.Z.

    2013-01-01

    The n-ZnO/p-NiO heterojunction was prepared by depositing a p-type NiO film on a c-plane sapphire by rf magnetron sputtering and then growing a n-type ZnO film on the NiO film by plasma-assisted molecular beam epitaxy. The heterojunction shows a diode-like rectification characteristic with a turn-on voltage of ∼3.6 V and emits UV light upon putting a forward bias. The intensity of the UV emission increases as injection current increases from 0.5 to 3.5 mA, but the wavelength of the UV emission decreases from 404 to 387 nm. It is demonstrated that the UV emission comes from near band-edge radiative recombination of electron and hole in the ZnO layer. The mechanism of the UV electroluminescence is discussed in the present work. - Highlights: ► The n-ZnO/p-NiO heterojunction was prepared by rf magnetron sputtering. ► The heterojunction shows a diode-like rectification characteristic with a turn-on voltage of ∼3.6 V. ► The heterojunction realizes UV EL emission with wavelength of 387 nm at the injection current of 3.5 mA.

  3. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    Science.gov (United States)

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  4. Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

    KAUST Repository

    Davis, Nathaniel J. L. K.; de la Peñ a, Francisco J.; Tabachnyk, Maxim; Richter, Johannes M.; Lamboll, Robin D.; Booker, Edward P.; Wisnivesky Rocca Rivarola, Florencia; Griffiths, James T.; Ducati, Caterina; Menke, S. Matthew; Deschler, Felix; Greenham, Neil C.

    2017-01-01

    is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a

  5. Characterisation of different hole transport materials as used in organic p-i-n solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfuetzner, Steffen; Petrich, Annette; Koch, Maik; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany); Malbrich, Christine [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany); Hildebrandt, Dirk; Pfeiffer, Martin [Heliatek GmbH, Dresden (Germany)

    2008-07-01

    This work focuses on the replacement of hole transport material MeO-TPD, which has been used so far in organic p-i-n- solar cells despite its has unfavourable behaviour at elevated temperatures. For this reason, different characterisation and investigations of the hole transport materials PV-TPD, PV-TPDoM, Di-NPB and MeO-Spiro-TPD were done, i.e. dopability, hole mobility, absorption, reflection, cyclic voltametry and glass transition temperature were measured. With simplified structures, e.g. m-i-p diodes, and simplified solar cells, consisting of the blue absorbing fullerene C{sub 60} as acceptor and the transparent donor material 4P-TPD, further specific material properties were determined.

  6. Low temperature synthesis of InP nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ung Thi Dieu Thuy [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Tran Thi Thuong Huyen [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); National University of Thai Nguyen, 2 Luong Ngoc Quyen, Thai Nguyen (Viet Nam); Nguyen Quang Liem [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)], E-mail: liemnq@ims.vast.ac.vn; Reiss, Peter [DSM/INAC/SPrAM, UMR 5819 CEA-CNRS-Universite Joseph Fourier/LEMOH, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2008-12-20

    We present a simple method for the chemical synthesis of InP nanocrystals, which comprises several advantages: (i) the use of simple reagents, namely InCl{sub 3}.4H{sub 2}O and yellow P as the In and P precursors, respectively, and NaBH{sub 4} as the reducing agent in a mixed solvent of ethanol and toluene; (ii) a short reaction time (1-5 h) and low temperature (<75 deg. C); (iii) a high reaction yield approaching 100%. InP NCs in the zinc-blende structure have been obtained as confirmed by powder X-ray diffraction and Raman scattering measurements. Their mean size of 4 nm has been determined by transmission electron microscopy, Raman scattering and absorption spectroscopy.

  7. Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes

    Science.gov (United States)

    Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.

  8. Dual-wavelength electroluminescence from an n-ZnO/p-GaN heterojunction light emitting diode

    International Nuclear Information System (INIS)

    Tsai, Bor-Sheng; Chiu, Hung-Jen; Chen, Tai-Hong; Lai, Li-Wen; Ho, Chai-Cheng; Liu, Day-Shan

    2015-01-01

    Highlights: • The LEDs fabricated by 450 °C- and 700 °C-annealed n-ZnO/p-GaN heterojunction structures were investigated. • The structure annealed at 700 °C emitted yellowish light composed of the dual-wavelength radiations centered at 420 and 610 nm. • The long-wavelength radiation was attributed to emerge from the deep-level emission and the Ga–O interlayer emission. - Abstract: We investigated the electro-optical properties of light emitting diodes (LEDs) fabricated by using the n-ZnO/p-GaN heterojunction structures annealed at 450 °C and 700 °C, in vacuum ambient. A dominant near-UV emission at approximately 420 nm was observed from the LED fabricated by the 450 °C-annealed n-ZnO/p-GaN heterojunction structure, whereas that of the structure annealed at 700 °C emitted a yellowish light composed of the dual-wavelength emissions centered at 420 and 610 nm. The mechanism responsible for the broad long-wavelength radiation was ascribed to the transitions associated with both the deep-level emissions due to the activation of the native defects on the n-ZnO side surface and the formation of the Ga–O interlayer resulting from the in-diffusion of oxygen atoms to the p-GaN side surface of the n-ZnO/p-GaN interface.

  9. An investigation of characteristics parameters of Ag/p-Si Schottky diodes based on I-V-T and C-V-T measurements

    International Nuclear Information System (INIS)

    Selcuk, A.B.

    2004-01-01

    The current-voltage (I-V) measurements on Ag/p-Si Schottky barrier diodes in the temperature range 125-300 K were carried out. The experimental values of n and Φ b 0 were determined from intercepts and slopes of the forward bias In I-V plot at each temperature. The Φ b 0 and n determined from semilog-forwaid I- V plots were found to be a strong function of temperature. The ideality factor n was found to increase, while the Φ b 0 decrease with decreasing temperature. The flat-band barrier height Φ b f and series resistance R s are also determined from the I-V measurements. Furthermore, the diffusion potential V D , experimental carrier doping density N A , Fermi level E F and barrier height Φ C V are determined from the C- V measurements. It is shown that the values of R s estimated from Cheung's method were strongly temperature dependent decreased with increasing temperature

  10. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  11. Effect of interface voids on electroluminescence colors for ZnO microdisk/p-GaN heterojunction light-emitting diodes

    Science.gov (United States)

    Mo, Ran; Choi, Ji Eun; Kim, Hyeong Jin; Jeong, Junseok; Kim, Jong Chan; Kim, Yong-Jin; Jeong, Hu Young; Hong, Young Joon

    2017-10-01

    This study investigates the influence of voids on the electroluminescence (EL) emission color of ZnO microdisk/p-GaN heterojunction light-emitting diodes (LEDs). For this study, position-controlled microdisk arrays were fabricated on patterned p-GaN via wet chemical epitaxy of ZnO, and specifically, the use of trisodium citrate dihydrate (TCD) yielded high-density voids at the bottom of the microdisk. Greenish yellow or whitish blue EL was emitted from the microdisk LEDs formed with or without TCD, respectively, at reverse-bias voltages. Such different EL colors were found to be responsible for the relative EL intensity ratio between indigo and yellow emission peaks, which were originated from radiative recombination at p-GaN and ZnO, respectively. The relative EL intensity between dichromatic emissions is discussed in terms of (i) junction edge effect provoked by interfacial voids and (ii) electron tunneling probability depending on the depletion layer geometry.

  12. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Rajeev R., E-mail: rajeevrprabhu@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Saritha, A.C.; Shijeesh, M.R. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Jayaraj, M.K. [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Centre for Advanced Materials, Cochin University of Science and Technology, Kochi 682 022 (India)

    2017-06-15

    Highlights: • Facile all-solution growth of nanostructured p-CuO and n-ZnO TSO films is reported. • Annealing the films in air affects the structural, electrical and optical properties. • p-n heterojunction using these films was fabricated in ITO/n-ZnO/p-CuO/Au structure. • Transparent heterojunction diode performed well with a V{sub on} of 2.5 V and n of 3.15. • Fabricated p-CuO/n-ZnO heterojunction diode can be used for UV detector application. - Abstract: We report a facile all-solution approach for the growth of nanostructured p-CuO and n-ZnO thin films. The influence of annealing temperature on the physical properties of CuO and ZnO thin films was examined. XRD and Raman spectra depict the structural and phase purity of solution grown CuO and ZnO films. The electrical as well as the optical properties of thin films were also studied. The average optical transmission of CuO and ZnO thin films in the visible spectral region was found to be above 80 and 95% respectively. Band gap energy variations on annealing temperature were investigated for CuO as well as ZnO films. Surface morphology analyzed by FESEM shows that the films are very smooth. All solution grown p-n heterojunction using p-CuO and n-ZnO films was fabricated in the structure ITO/n-ZnO/p-CuO/Au which showed rectification behavior with a turn on voltage of 2.5 V and an ideality factor of 3.15.

  13. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    Science.gov (United States)

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  14. Diode characteristics and residual deep-level defects of p+n abrupt junctions fabricated by rapid thermal annealing of boron implanted silicon

    International Nuclear Information System (INIS)

    Usami, A.; Katayama, M.; Wada, T.; Tokuda, Y.

    1987-01-01

    p + n diodes were fabricated by rapid thermal annealing (RTA) of boron implanted silicon in the annealing temperature range 700-1100 0 C for around 7 s, and the RTA temperature dependence of electrical characteristics of these diodes was studied. Deep-level transient spectroscopy (DLTS) measurements were made to evaluate residual deep-level defects in the n-type bulk. Three electron traps were observed in p + n diodes fabricated by RTA at 700 0 C. It was considered that these three traps were residual point defects near the tail of the implantation damage after RTA. Residual defect concentrations increased in the range 700-900 0 C and decreased in the range 1000-1100 0 C. The growth of defects in the bulk was ascribed to the diffusion of defects from the implanted layer during RTA. Concentrations of electron traps observed in p + n diodes fabricated by RTA at 1100 0 C were approx. 10 12 cm -3 . It was found that these residual deep-level defects observed by DLTS were inefficient generation-recombination centres since the reverse current was independent of the RTA temperatures. (author)

  15. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    Science.gov (United States)

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  16. Photosensitive and temperature-dependent I–V characteristics of p-NiO film/n-ZnO nanorod array heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Long, Hao; Ai, Lei [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Li, Songzhan [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, Hubei 430073 (China); Huang, Huihui; Mo, Xiaoming; Wang, Haoning; Chen, Zhao; Liu, Yuping [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Fang, Guojia, E-mail: gjfang@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-05-01

    Highlights: • A p-NiO film/n-ZnO nanorod array heterojunction was prepared. • The heterojunction shows good morphology and crystal properties. • The diode exhibits excellent rectifying behavior. • The diode exhibits strong temperature dependent I–V properties. • The hybrid diode shows good photosensitivity under the ultraviolet irradiation. - Abstract: A p-NiO film/n-ZnO nanorod (NR) array heterojunction was prepared by deposition of NiO film on ZnO NRs using radio-frequency reactive magnetron sputtering. The well-aligned ZnO NRs were fabricated by a simple and economic hydrothermal method on a ZnO:Al-coated glass substrate. Good morphology and crystal properties of the fabricated ZnO NRs and NiO film were confirmed by scanning electron microscopy and X-ray diffraction. The p–n heterojunction exhibits excellent rectifying behaviour and strong temperature-dependent current–voltage properties in the range from −50 to 80 °C. The hybrid NR heterojunction diode shows good photosensitivity under the irradiation of 365 nm ultraviolet light. These results present potential applications in future microelectronic devices based on NiO films and the one-dimensional ZnO nanomaterials.

  17. Electrical performance of GaN diode as betavoltaic isotope battery energy converter

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Liu Yebing; Hu Rui; Li Hao; Zhong Zhengkun; Luo Shunzhong

    2013-01-01

    Two kinds of GaN PiN diodes were prepared to be the energy converters of betavoltaic batteries, and irradiated by 63 Ni and 3 H radioactive sources. The I sc was 5.4 nA and V oc was 771 mV for 63 Ni source; the I sc was 10.8 nA and V oc was 839 mV for 3 H source. These results show that their V oc are far better than silicon diodes', but their I sc are poor. And there are some differences between the theory values and experiment results. There would be greatly improving space in electrical performance of beta voltaic isotope batteries with GaN diodes as the energy converters, if the dislocation could be reduced in GaN material producing process, the Ohmic contact could be prepared very well and the diodes configuration could be designed more optimizedly in the future. (authors)

  18. Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes

    International Nuclear Information System (INIS)

    Zheng Hao; Mei, Z.X.; Zeng, Z.Q.; Liu, Y.Z.; Guo, L.W.; Jia, J.F.; Xue, Q.K.; Zhang, Z.; Du, X.L.

    2011-01-01

    High quality single crystalline n-type ZnO film was grown on p-type GaN substrate using molecular beam epitaxy. Transmission electron microscopy reveals a sharp ZnO/GaN interface. Light-emitting diode was fabricated from this heterostructure, and a turn-on voltage of ∼ 3.4 V was demonstrated. We found that the emission peak shifts from violet (430 nm) to near-ultraviolet (375 nm) when the driving current increases from 0.38 mA to 3.08 mA. This intriguing phenomenon can be understood by charged carrier's radical recombination occurring at both sides of the device, and the current enhancement of ZnO emission efficiency.

  19. Nano-crystalline p-ZnGa{sub 2}Te{sub 4}/n-Si as a new heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Sakr, G.B. [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Fouad, S.S. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Semicondcutor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel Basset, D.M. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yakuphanoglu, F. [Physics Department, Faculty of Science and Arts, Firat University, Elazig (Turkey)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► ZnGa{sub 2}Te{sub 4}/Si thin film was prepared by thermal evaporation technique. ► XRD and AFM graphs support the nano-crystalline of the studied device. ► Dark current–voltage characteristics of the heterojunction diode were investigated. ► Electrical parameters and conduction mechanism were determined. ► Conduction mechanisms were controlled by TE, SCLC and TCLC. -- Abstract: In this communication, ZnGa{sub 2}Te{sub 4} thin film was prepared by thermal evaporation technique on n-Si substrate. P-ZnGa{sub 2}Te{sub 4}/n-Si heterojunction diode was fabricated. The structure of ZnGa{sub 2}Te{sub 4} thin film was checked by XRD pattern and confirmed by AFM micrographs. The dark current–voltage characteristics of the heterojunction diode were investigated to determine the electrical parameters and conduction mechanism as a function of forward and reverse biasing conditions in the range (−10 V to 10 V) at temperature interval (303–423 K). The conduction mechanism was controlled by thermionic emission, space charge limited (SCLC) and trap-charge limited current (TCLC) mechanisms. The basic parameters such as the series resistance R{sub s}, the shunt resistance R{sub sh}, the ideality factor n and the barrier height φ{sub b} of the diode, the total density of trap states N{sub 0} and the exponential trapping distribution P{sub o} were determined. The obtained results showed that ZnGa{sub 2}Te{sub 4} is a good candidate for the applications of electronic devices.

  20. Two dimensional MoS{sub 2}/graphene p-n heterojunction diode: Fabrication and electronic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Chang, Hsuan-Chen [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Wang, Yi-Ping [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Hsu, Hung-Pin [Department of Electronic Engineering, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan (China); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2016-06-25

    Molybdenum disulfide (MoS{sub 2}) films are currently the most potential semiconductor materials of the two-dimensional nano-material heterojunction. Few-layer MoS{sub 2} is an n-type semiconductor that has good mechanical strength, high carrier mobility, and has similar thickness as graphene. Graphene is presently the thinnest two-dimensional material with good thermal conductivity and high carrier mobility. The graphene Fermi level can be precisely controlled using the oxygen adsorption. Therefore, graphene can be tuned from zero-gap to p-type semiconductor material using the amount of adsorbed oxygen. In this study we combine few-layer MoS{sub 2} and graphene to produce a heterojunction and exhaustively study the interface properties for heterojunction diode application. According to the results, the MoS{sub 2} band-gap increases with decreasing thickness. The I–V characteristics of the MoS{sub 2}/Graphene p-n junction diodes can be precisely tuned by adjusting different thicknesses of the MoS{sub 2} films. By applying our fabricating method, MoS{sub 2}/Graphene heterojunction diode can be easily constructed and have potential to different applications. - Highlights: • We controlled the layer thickness of MoS{sub 2} by different exfoliation times. • We presented Raman scattering of MoS{sub 2} and define their layers number. • The few-layer MoS{sub 2}/graphene pn junction diode was synthesized. • We measured the device current and voltage characteristics. • The built-in potential barrier could be adjusted by controlling MoS{sub 2} thicknesses.

  1. Very high resolution detection of gamma radiation at room-temperature using P-I-N detectors of CdZnTe and HgCdTe

    Science.gov (United States)

    Hamilton, W. J.; Rhiger, D. R.; Sen, S.; Kalisher, M. H.; James, K.; Reid, C. P.; Gerrish, V.; Baccash, C. O.

    1994-08-01

    High-energy photon detectors have been constructed by engineering and fabricating p-i-n diode structures consisting of bulk CdZnTe and epitaxial HgCdTe. The p-i-n structure was obtained by liquid-phase epitaxial growth of p and n doped HgCdTe layers on 'intrinsic' CdZnTe material about 1mm thick and approximately 25mm square. Curve tracing shows I-V curves with diode characteristics having resistivity above 1011 Omega -cm and leakage current of less than 400 pA to about - 60V reverse bias on a typical test piece approximately 5 x 8 x 1 mm. Spectra of similar test pieces have been obtained at room temperature with various nuclear isotopic sources over the range of 22 keV to 662 keV which show exceptionally high energy resolution. Resolution as good as 1.82% FWHM was obtained for the 356 keV line of 133Ba with a P/V = 3.4. The performance of these detectors combined with contemporary infrared technology capable of fabricating 2D arrays of these II-VI materials opens up manifold exciting applications in astrophysics, medical, industrial, environmental, and defense spectroscopy and imaging.

  2. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  3. Change of I-V characteristics of SiC diodes upon reactor irradiation; Modification des caracteristiques I-V de jonctions p-n au SiC du fait d'une irradiation dans un reacteur; Izmeneniya kharakteristik I-V vyrashchennogo v SiC perekhoda tipa p-n posle oblucheniya ego v reaktore; Modificaciones que sufren por irradiacion en un reactor las caracteristicas I-V de uniones p-n en SiC

    Energy Technology Data Exchange (ETDEWEB)

    Heerschap, M; De Coninck, R [Solid State Physics Dept., SCK-CEN, Mol (Belgium)

    1962-04-15

    In search for semiconductors, which can be used in high-flux reactors in order to measure flux distributions, we irradiated SiC p-n junctions in the Belgium BR-1 reactor. Two types of SiC-diodes of different origin have been irradiated. These junctions are grown in the Lely-furnace. The change in forward and reverse characteristics have been measured during and after irradiation up to temperatures of 150{sup o}C, while measurements up to a temperature of 500{sup o}C are in progress. It has been found that one type resists BR-1 neutrons up to an integrated flux of 10{sup 15} n/cm{sup 2}, while the other resists irradiation up to a flux of 10{sup 17} n/cm{sup 2}. The changes in characteristics are given as well as the result of some annealing experiments. (author) [French] En recherchant des semi-conducteurs pouvant servir a mesurer les distributions de flux dans les reacteurs a haut flux de neutrons, les auteurs ont irradie des jonctions p-n au SiC dans le reacteur belge BR-1. Deux types de diodes a SiC d'origines differentes ont ete ainsi irradies. Les jonctions en question sont preparees par etirage dans le four Lely. Les auteurs ont mesure les modifications subies par les caracteristiques I-V apres et pendant l'irradiation a des temperatures allant jusqu'a 150{sup o}C; ils poursuivent leurs mesures dans la gamme des temperatures allant de 150{sup o}C a 500{sup o}C. Us ont constate que l'un des types de diode a SiC resiste aux neutrons du reacteur BR-1 jusqu'a 10{sup 15} n/cm{sup 2}, tandis que l'autre type resiste a l'irradiation jusqu'a 10{sup 17} n/cm{sup 2}. Les auteurs indiquent les modifications subies par les caracteristiques, ainsi que le resultat de certaines experiences de recuit. (author) [Spanish] Los autores estan tratando de encontrar semiconductores con los que sea posible medir distribuciones de flujo en reactores de flujo elevado, y con este fin irradiaron uniones p-n del SiC en el reactor BR-1 de Belgica. Irradiaron dos tipos de diodos de SiC de

  4. Study of seed layer effect in nuclear battery with P-N diode junction

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Son, Kwang Jae; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Kookmin Univ., Seoul (Korea, Republic of)

    2014-10-15

    A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amps, is generated in devices. If a radioisotope (RI) with a long halflife (over 50 years) is used, a lifetime of a power source is extended as long as halflife time of RI.. Some special applications require long-lived compact power sources. These include space equipment, sensors in remote locations (space, underground, etc.), and implantable medical devices. Conventionally, these sources rely on converting chemical energy to electricity. This means they require a large storage of chemical 'fuel' since the amount of energy released per reaction is small. The nuclear battery is a novel solution to solve the power needs of these applications. For the {sup 63}Ni beta-source we used, the half-life is 100.2 years. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system could gain learned behavior without worrying about the power turning off. Radioactive thin-film-based power sources also have energy density orders of magnitude higher than chemical-reaction-based energy sources. In this study, we fabricate nuclear battery using {sup 63}Ni source with diode junction, and studied seed layer effect for optimization of structure of p-n junction.

  5. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  6. Fabrication of p-{beta}-Fe{sub 1{minus}x}Mn{sub x}Si{sub 2}/nSi heterostructure diode and their electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Takada, T; Katsumata, H; Makita, Y; Kobayashi, N; Hasegawa, M; Uekusa, S

    1997-07-01

    The authors report on the fabrication of p-type {beta}-FeSi{sub 2} layers on n-type Si(100) substrates and the investigation of their p-n diode characteristics. Since the undoped {beta}-FeSi{sub 2} layers have typically shown n-type conductivity, the p-type layers were formed by the introduction of Mn impurity into {beta}-FeSi{sub 2} layers using two types of doping methods; one is an Electron-Beam-Deposition (EBD) procedure of Fe{sub 1{minus}x}Mn{sub x}Si{sub 2} (x < {approximately}0.1) at room temperature and subsequent annealing at 900 C for 1--120 min, where FeSi{sub 2} ingots added with Mn({approximately}10%) were used as starting materials. The other is a {sup 55}Mn{sup +}-implantation into {beta}-FeSi{sub 2} layers formed by EBD and subsequent annealing at 850 C for 1--120 min. From van der Pauw measurements, p-type {beta}-Fe{sub 1{minus}x}Mn{sub x}Si{sub 2} layers with the resistivity of 0.0036--0.031 {Omega}{center{underscore}dot}cm and hole mobility of 11.9--89.0 cm{sup 2}/V{center{underscore}dot}sec were found to be successfully formed on n-Si substrates by both doping methods. The p-n diode characteristics of these heterostructure diodes were investigated by I-V and C-V measurements. The results indicate that the carrier distribution does not agree with either ideal one-side step or one-side slop junctions, although optical transmittance and reflectance measurements indicate that the silicide/Si interface is of good quality.

  7. Investigation of p-n-junctions in n-InP based on voltage dependence of differential capacity

    International Nuclear Information System (INIS)

    Agaev, Ja.; Atabaev, Kh.; Gazakov, O.; Sadykov, K.B.

    1976-01-01

    The barrier capacity of alloyed p-n transitions on n-InP crystals grown by the crystallization method has been investigated. The transitions have been obtained by fusing In + 3 - 10% Zn. Step-by-step distribution of the impurity concentration in the space charge layer takes place in the alloyed diodes under investigation. The coefficient characterizing the impurity distribution in the space charge layer has been determined. The well-expressed dependence of I/C 2 =f/u) observed both at a room temperature and at the temperature of liquid nitrogen indicates that the density of ground carriers in the p-n regions are constant at a definite distance from the p-n transition. The main parameters of p-n transitions have been determined

  8. Recombination centers and electrical characteristics in silicon power p-i-n diodes irradiated with high energy electrons

    International Nuclear Information System (INIS)

    Fuochi, P.G.; Martelli, A.; Passerini, B.; Zambelli, M.

    1988-01-01

    Recombination centers introduced by irradiation with 12 MeV electrons in large area silicon diodes with p-i-n structure are studied with the Deep Level Transient Spectroscopy technique (DLTS). The effects of these levels on the electrical characteristics of the devices are related to their position Esub(t) in the silicon forbidden gap, their concentration and their electron capture cross section. Changes of defect configuration during an annealing process at 360 0 C have been observed and a detailed analysis of the DLTS spectra has shown a complex defect pattern. Four major recombination centers have been identified: Esub(c) - Esub(t) = 0.17 eV, Esub(c) - Esub(t) = 0.19 eV, Esub(c) -Esub(t) 0.31 eV, Esub(c) - Esub(t) = 0.39 eV, where Esub(c) is the energy corresponding to the lower limit of the conduction band. The first energy level, known as A-center, is the dominant recombination level controlling the minority carrier lifetime after room temperature irradiation. As the annealing proceeds the center at Esub(c) - Esub(t) = 0.31 eV becomes the dominant one. The complex structure of the centers has been studied and demonstrated with the aid of proper modelling implemented on a set of numerical simulation tools. In this way it has been possible to analyze more accurately the defect kinetics during annealing. The study of the defect behaviour during the annealing process has resulted in an improved application of electron irradiation as a standard production technique in the manufacturing process of high power devices. (author)

  9. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    KAUST Repository

    Mughal, Asad J.

    2017-11-27

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.

  10. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    KAUST Repository

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-01-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.

  11. Solution-processed n-ZnO nanorod/p-Co{sub 3}O{sub 4} nanoplate heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Woo; Lee, Su Jeong; Biswas, Pranab [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Tae Il [Department of BioNano Technology, Gachon University, 1342 Seongnam Daero, Seongnam 13120 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of)

    2017-06-01

    Highlights: • The n-ZnO nanorods were epitaxially grown on p-Co{sub 3}O{sub 4} nanoplates. • The heteroepitaxial p-n junction was fabricated by using hydrothermal process. • The LEDs emitted reddish-orange and violet light related to ZnO point defects. • The Co{sub 3}O{sub 4} nanoplates function as a hole injection layer. • Junction between 1D NRs and 2D NPs provides a new approach to design nanostructures. - Abstract: A heterojunction light-emitting diode (LED) based on p-type cobalt oxide (Co{sub 3}O{sub 4}) nanoplates (NPs)/n-type zinc oxide (ZnO) nanorods (NRs) is demonstrated. Using a low-temperature aqueous solution process, the n-type ZnO NRs were epitaxially grown on Co{sub 3}O{sub 4} NPs which were two-dimensionally assembled by a modified Langmuir-Blodgett process. The heterojunction LEDs exhibited a typical rectifying behavior with a turn-on voltage of about 2 V and emitted not only reddish-orange light at 610 nm but also violet light at about 400 nm. From the comparative analyses of electroluminescence and photoluminescence, it was determined that the reddish-orange light emission was related to the electronic transitions from zinc interstitials (Zn{sub i}) to oxygen interstitials (O{sub i}) or conduction-band minimum (CBM) to oxygen vacancies (V{sub O}), and the violet light emission was attribute to the transition from CBM to valence-band maximum (VBM) or Zn{sub i} to zinc vacancies (V{sub Zn}).

  12. Polarization-engineered GaN/InGaN/GaN tunnel diodes

    International Nuclear Information System (INIS)

    Krishnamoorthy, Sriram; Nath, Digbijoy N.; Akyol, Fatih; Park, Pil Sung; Esposto, Michele; Rajan, Siddharth

    2010-01-01

    We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel-Kramers-Brillouin calculations were used to model and design tunnel junctions with narrow band gap InGaN-based barrier layers. N-polar p-GaN/In 0.33 Ga 0.67 N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient interband tunneling was achieved close to zero bias with a high current density of 118 A/cm 2 at a reverse bias of 1 V, reaching a maximum current density up to 9.2 kA/cm 2 . These results represent the highest current density reported in III-nitride tunnel junctions and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

  13. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    Science.gov (United States)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-04-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N2. Then respectively RCA1(i.e., boiling in NH3+H2O2+6H2O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H2O2+6H2O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N2. After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ~ 4,2 10-6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N2. Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ~ 1 10-6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I-V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C-V measurements were performed with HP 4192A (50-13 MHz) LF Impedance Analyzer at room temperature and in dark.

  14. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  15. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  16. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    Science.gov (United States)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  17. Fabrication and Measurement of Electroluminescence and Electrical Properties of Organic Light-Emitting Diodes Containing Mott Insulator Nanocrystals.

    Science.gov (United States)

    Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki

    2016-04-01

    By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.

  18. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites.

    Science.gov (United States)

    Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K

    2015-10-05

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 10(9) cm × Hz(1/2)/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2.

  19. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Shirazi, Roza; Kovacs, Andras; Dan Corell, Dennis; Gritti, Claudia; Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul; Kardynal, Beata

    2014-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active

  20. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Roza, E-mail: rozas@fotonik.dtu.dk [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Kovacs, Andras [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grunberg Institute, Forschungszentrum Julich, 52425 Julich (Germany); Dan Corell, Dennis [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gritti, Claudia [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Kardynal, Beata [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); PGI-9, Forschungszentrum Julich, JARA FIT, 52425 Julich (Germany)

    2014-01-15

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active.

  1. Admittance studies of neutron-irradiated silicon p+-n diodes

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1977-01-01

    Defects introduced in n-type silicon by neutron irradiation were investigated by measuring the conductance (G) and the capacitance (C) of p + -n diodes. The method of the determination of the energy level, capture cross section, and concentration for each defect from the G-T and C-T curves for various frequencies was presented. Assuming that capture cross sections are independent of temperature, the energy levels of E/sub c/-0.15 eV, E/sub c/-0.22 eV, and E/sub c/-0.39 eV were obtained. For these defects, the calculated values of the electron capture cross section were 2.6 x 10 -14 , 3.7 x 10 -15 , and 2.0 x 10 -14 cm 2 , respectively. The introduction rate of defects for E/sub c/-0.39 eV was twice that for E/sub c/-0.22 eV which was twice that for E/sub c/-0.15 eV. Comparing with other published data, the energy levels of E/sub c/-0.15 eV and E/sub c/-0.39 eV were found to be correlated with the A center and the divacancy, respectively

  2. Temperature dependent characterization of gallium arsenide X-ray mesa p-i-n photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G., E-mail: G.Lioliou@sussex.ac.uk; Barnett, A. M. [Semiconductor Materials and Devices Laboratory, Department Engineering and Design, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Meng, X.; Ng, J. S. [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2016-03-28

    Electrical characterization of two GaAs p{sup +}-i-n{sup +} mesa X-ray photodiodes over the temperature range 0 °C to 120 °C together with characterization of one of the diodes as an X-ray detector over the temperature range 0 °C to 60 °C is reported as part of the development of photon counting X-ray spectroscopic systems for harsh environments. The randomly selected diodes were fully etched and unpassivated. The diodes were 200 μm in diameter and had 7 μm thick i layers. The leakage current density was found to increase from (3 ± 1) nA/cm{sup −2} at 0 °C to (24.36 ± 0.05) μA/cm{sup −2} at 120 °C for D1 and from a current density smaller than the uncertainty (0.2 ± 1.2) nA/cm{sup −2} at 0 °C to (9.39 ± 0.02) μA/cm{sup −2} at 120 °C for D2 at the maximum investigated reverse bias (15 V). The best energy resolution (FWHM at 5.9 keV) was achieved at 5 V reverse bias, at each temperature; 730 eV at 0 °C, 750 eV at 20 °C, 770 eV at 40 °C, and 840 eV at 60 °C. It was found that the parallel white noise was the main source of the photopeak broadening only when the detector operated at 60 °C, at 5 V, 10 V, and 15 V reverse bias and at long shaping times (>5 μs), whereas the sum of the dielectric noise and charge trapping noise was the dominant source of noise for all the other spectra.

  3. Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes.

    Science.gov (United States)

    Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee

    2016-11-10

    We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.

  4. Analytic formalism for current crowding in light emitting diodes

    International Nuclear Information System (INIS)

    Lee, Kyu-Seok

    2012-01-01

    This paper presents an analytic approach to simulating current crowding (CC) in light-emitting diodes with parallel p- and n-contacts. The electrical potential difference across the p-i-n layers is derived from the Laplace equation, whereas the current density through the p-i-n layers is obtained from the current density - voltage relation of a single-diode model. Since these two properties influence each other, they are calculated iteratively. It is found that CC depends on the applied voltage (or the average current density), the sheet resistances of the p- and the n-contact layers, the width of the active region, and the specific series resistance and ideality factor of the p-i-n layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  6. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  7. Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes

    Science.gov (United States)

    Zhang, Yiping; Zhang, Zi-Hui; Tan, Swee Tiam; Hernandez-Martinez, Pedro Ludwig; Zhu, Binbin; Lu, Shunpeng; Kang, Xue Jun; Sun, Xiao Wei; Demir, Hilmi Volkan

    2017-01-01

    Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.

  8. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    International Nuclear Information System (INIS)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-01-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N 2 . Then respectively RCA1(i.e., boiling in NH 3 +H 2 O 2 +6H 2 O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H 2 O 2 +6H 2 O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N 2 . After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ∼ 4,2 10 -6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N 2 . Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ∼ 1 10 -6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I–V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C–V measurements were performed with HP 4192A (50–13 MHz) LF Impedance Analyzer at room temperature and in dark. (paper)

  9. Microscopic investigation of InGaN/GaN heterostructure laser diode degradation using Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Lochthofen, A; Mertin, W; Bacher, G; Furitsch, M; Bruederl, G; Strauss, U; Haerle, V

    2008-01-01

    We report on Kelvin probe force microscopy (KPFM) measurements on fresh and artificially aged InGaN/GaN laser test structures. In the case of an unbiased laser diode, a comparison of the surface potential between a fresh and a stressed laser diode shows a pronounced modification of the laser facet due to the aging process. Performing KPFM measurements under forward bias, a correlation between the macroscopic I-V characteristics and the microscopic voltage drop across the heterostructure layer sequence is found. This clearly demonstrates the potential of KPFM for investigating InGaN/GaN laser diode degradation

  10. Radiation effects on the current-voltage and capacitance-voltage characteristics of advanced p-n junction diodes surrounded by shallow trench isolation

    International Nuclear Information System (INIS)

    Poyai, A.; Simoen, E.; Claeys, C.; Hayama, K.; Kobayashi, K.; Ohyama, H.

    2002-01-01

    This paper investigates the impact of 20 MeV proton irradiation on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of different geometry n + -p-well junction diodes surrounded by shallow trench isolation and processed in a 0.18 μm CMOS technology. From I-V characteristics, a higher current damage coefficient was found for the bulk than for the peripheral component. The radiation-induced boron de-activation resulted in a lowering of the p-well doping, which has been derived from high-frequency C-V measurements. This was confirmed by deep level transient spectroscopy (DLTS) analysis, revealing the presence of interstitial boron related radiation defects. As will be demonstrated for the bulk leakage-current damage coefficient, the electric field enhanced generation rate of charge carriers and the radiation-induced boron de-activation should be accounted for properly

  11. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  12. Effect of annealing temperature on electrical properties of Au/polyvinyl alcohol/n-InP Schottky barrier structure

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Reddy, M. Siva Pratap; Kumar, A. Ashok; Choi, Chel-Jong

    2012-01-01

    In the present work, thin film of polyvinyl alcohol (PVA) is fabricated on n-type InP substrate as an interfacial layer for electronic modification of Au/n-InP Schottky contact. The electrical characteristics of Au/PVA/n-InP Schottky diode are determined at annealing temperature in the range of 100–300 °C by current–voltage (I-V) and capacitance–voltage (C-V) methods. The Schottky barrier height and ideality factor (n) values of the as-deposited Au/PVA/n-InP diode are obtained at room temperature as 0.66 eV (I-V), 0.82 eV (C-V) and 1.32, respectively. Upon annealing at 200 °C in nitrogen atmosphere for 1 min, the barrier height value increases to 0.81 eV (I-V), 0.99 eV (C-V) and ideality factor decreases to 1.18. When the contact is annealed at 300 °C, the barrier height value decreases to 0.77 eV (I-V), 0.96 eV (C-V) and ideality factor increases to 1.22. It is observed that the interfacial layer of PVA increases the barrier height by the influence of the space charge region of the Au/n-InP Schottky junction. The discrepancy between Schottky barrier heights calculated from I-V and C-V measurements is also explained. Further, Cheung's functions are used to extract the series resistance of Au/PVA/n-InP Schottky diode. The interface state density as determined by Terman's method is found to be 1.04 × 10 12 and 0.59 × 10 12 cm −2 eV −1 for the as-deposited and 200 °C annealed Au/PVA/n-InP Schottky diodes. Finally, it is seen that the Schottky diode parameters changed with increase in the annealing temperature. - Highlights: ► Electrical properties of Au/polyvinyl alcohol (PVA)/n-InP structure have been studied. ► The Au/PVA/n-InP Schottky structure showed a good rectifying behavior. ► A maximum barrier height is obtained when the contact is annealed at 200 °C. ► Interface state density found to be 0.59 × 10 12 cm −2 eV −1 for 200 °C annealed contact. ► Significant effect of interface state density and series resistance on electrical

  13. Electrical properties of Au/perylene-monoimide/p-Si Schottky diode

    International Nuclear Information System (INIS)

    Yüksel, Ö.F.; Tuğluoğlu, N.; Gülveren, B.; Şafak, H.; Kuş, M.

    2013-01-01

    Graphical abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. An emphasis is placed on how electrical and interface characteristics like current–voltage (I–V) variation, ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of Au/PMI/p-Si diode structure change with the temperatures between 100 and 300 K. The temperature dependence of barrier height shows that the Schottky barrier height is inhomogeneous in nature at the interface. Such inhomogeneous behavior was explained on the basis of thermionic emission mechanism by assuming the existence of a Gaussian distribution of barrier heights. -- Highlights: •An Au/perylene-monoimide (PMI)/p-Si Schottky diode having an organic interlayer has been fabricated. •I–V characteristics have been investigated over a wide temperature range 100–300 K. •C–V measurements have been analyzed at room temperature. -- Abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. We have investigated how electrical and interface characteristics like current–voltage characteristics (I–V), ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of diode change with temperature over a wide range of 100–300 K. Detailed analysis on the electrical properties of structure is performed by assuming the standard thermionic emission (TE) model. Possible mechanisms such as image force lowering, generation–recombination processes and interface states which cause deviations of n values from the unity have been discussed. Cheung–Cheung method is also employed to analysis the current–voltage characteristics and a good agreement is observed between the results. It is shown that the electronic properties of Schottky diode are very sensitive to the modification of perylene-monoimide (PMI) interlayer organic material and also to the temperature. The ideality factor was found to decrease and the barrier

  14. Optical characterization of magnesium incorporation in p-GaN layers for core–shell nanorod light-emitting diodes

    Science.gov (United States)

    Gîrgel, I.; Šatka, A.; Priesol, J.; Coulon, P.-M.; Le Boulbar, E. D.; Batten, T.; Allsopp, D. W. E.; Shields, P. A.

    2018-04-01

    III-nitride nanostructures are of interest for a new generation of light-emitting diodes (LEDs). However, the characterization of doping incorporation in nanorod (NR) structures, which is essential for creating the p-n junction diodes, is extremely challenging. This is because the established electrical measurement techniques (such as capacitance–voltage or Hall-effect methods) require a simple sample geometry and reliable ohmic contacts, both of which are difficult to achieve in nanoscale devices. The need for homogenous, conformal n-type or p-type layers in core–shell nanostructures magnifies these challenges. Consequently, we demonstrate how a combination of non-contact methods (micro-photoluminescence, micro-Raman and cathodoluminescence), as well as electron-beam-induced-current, can be used to analyze the uniformity of magnesium incorporation in core–shell NRs and make a first estimate of doping levels by the evolution of band transitions, strain and current mapping. These techniques have been used to optimize the growth of core–shell nanostructures for electrical carrier injection, a significant milestone for their use in LEDs.

  15. White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias

    International Nuclear Information System (INIS)

    Zhang, Lichun; Li, Qingshan; Qu, Chong; Zhang, Zhongjun; Huang, Ruizhi; Zhao, Fengzhou

    2013-01-01

    Heterojunction light-emitting diodes (LEDs) based on arrays of ZnO nanorods were fabricated on p-GaN films by the hydrothermal method. Without any phosphors, white-light electroluminescence (EL) from ZnO nanorods/p-GaN heterojunction LEDs operated at reverse breakdown bias was observed. The EL spectra are composed of an ultraviolet (UV) emission centered at 382 nm, a blue light located at 431 nm and a broadband yellow–green light at around 547 nm, which originated from band-edge emission in ZnO, the Mg acceptor levels in p-GaN and the deep-level states near the ZnO/GaN interface, respectively. The chromaticity coordinates of EL spectrum are very close to the (0.333, 0.333) of standard white light. The origin of these emissions has been discussed and the tunneling effect in the interface is probably the mechanism to explain EL emission. (paper)

  16. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  17. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.

    Science.gov (United States)

    Kan, Kevin H M; Li, Jian; Wijesekera, Kushlani; Cranston, Emily D

    2013-09-09

    Cellulose nanocrystals (CNCs) are a sustainable nanomaterial with applications spanning composites, coatings, gels, and foams. Surface modification routes to optimize CNC interfacial compatibility and functionality are required to exploit the full potential of this material in the design of new products. In this work, CNCs have been rendered pH-responsive by surface-initiated graft polymerization of 4-vinylpyridine with the initiator ceric(IV) ammonium nitrate. The polymerization is a one-pot, water-based synthesis carried out under sonication, which ensures even dispersion of the cellulose nanocrystals during the reaction. The resultant suspensions of poly(4-vinylpyridine)-grafted cellulose nanocrystals (P4VP-g-CNCs) show reversible flocculation and sedimentation with changes in pH; the loss of colloidal stability is visible by eye even at concentrations as low as 0.004 wt %. The presence of grafted polymer and the ability to tune the hydrophilic/hydrophobic properties of P4VP-g-CNCs were characterized by Fourier transform infrared spectroscopy, elemental analysis, electrophoretic mobility, mass spectrometry, transmittance spectroscopy, contact-angle measurements, thermal analysis, and various microscopies. Atomic force microscopy showed no observable changes in the CNC dimensions or degree of aggregation after polymer grafting, and a liquid crystalline nematic phase of the modified CNCs was detected by polarized light microscopy. Controlled stability and wettability of P4VP-g-CNCs is advantageous both in composite design, where cellulose nanocrystals generally have limited dispersibility in nonpolar matrices, and as biodegradable flocculants. The responsive nature of these novel nanoparticles may offer new applications for CNCs in biomedical devices, as clarifying agents, and in industrial separation processes.

  18. Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric p-n diode

    Science.gov (United States)

    Watanabe, Yukio

    1999-05-01

    Current through (Pb,La)(Zr,Ti)O3 ferroelectrics on perovskite semiconductors is found to exhibit diode characteristics of which polarity is universally determined by the carrier conduction-type semiconductors. A persisting highly reproducible resistance modulation by a dc voltage, which has a short retention, is observed and is ascribed to a band bending of the ferroelectric by the formation of charged traps. This interpretation is consistent with a large relaxation current observed at a low voltage. On the other hand, a reproducible resistance modulation by a pulse voltage, which has a long retention, is observed in metal/(Pb,La)(Zr,Ti)O3/SrTiO3:Nb but not in metal/(Pb,La)(Zr,Ti)O3/(La,Sr)2CuO4 and is attributed to a possible band bending due to the spontaneous polarization (P) switching. The observed current voltage (IV) characteristics, the polarity dependence, the relaxation, and the modulation are explicable, if we assume a p-n or a p-p junction at the ferroelectric semiconductor interface (p: hole conduction type, n: electron conduction type). The analysis suggests that an intrinsically inhomogeneous P (∇P) near the ferroelectric/metal interface is likely very weak or existing in a very thin layer, when a reaction of the metal with the ferroelectric is eliminated. Additionally, the various aspects of transport through ferroelectrics are explained as a transport in the carrier depleted region.

  19. Universal tunneling behavior in technologically relevant P/N junction diodes

    International Nuclear Information System (INIS)

    Solomon, Paul M.; Jopling, Jason; Frank, David J.; D'Emic, Chris; Dokumaci, O.; Ronsheim, P.; Haensch, W.E.

    2004-01-01

    Band-to-band tunneling was studied in ion-implanted P/N junction diodes with profiles representative of present and future silicon complementary metal-oxide-silicon (CMOS) field effect transistors. Measurements were done over a wide range of temperatures and implant parameters. Profile parameters were derived from analysis of capacitance versus voltage characteristics, and compared to secondary-ion mass spectroscopy analysis. When the tunneling current was plotted against the effective tunneling distance (tunneling distance corrected for band curvature) a quasi-universal exponential reduction of tunneling current versus, tunneling distance was found with an attenuation length of 0.38 nm, corresponding to a tunneling effective mass of 0.29 times the free electron mass (m 0 ), and an extrapolated tunneling current at zero tunnel distance of 5.3x10 7 A/cm 2 at 300 K. These results are directly applicable for predicting drain to substrate currents in CMOS transistors on bulk silicon, and body currents in CMOS transistors in silicon-on-insulator

  20. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

    Directory of Open Access Journals (Sweden)

    Vinay Kabra

    2014-11-01

    Full Text Available A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current–voltage (I–V and capacitance–voltage (C–V measurements. The effect of UV illumination on the I–V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  1. Bulk GaN Schottky Diodes for Millimeter Wave Frequency Multipliers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the context of this project, White Light Power Inc. (WLPI) will demonstrate the feasibility of using vertical GaN Schottky diodes for high-power rectification...

  2. Current–voltage characteristics of high-voltage 4H-SiC p{sup +}–n{sub 0}–n{sup +} diodes in the avalanche breakdown mode

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P.; Grekhov, I. V. [Ioffe Physical–Technical Institute (Russian Federation)

    2017-03-15

    p{sup +}–n{sub 0}–n{sup +} 4H-SiC diodes with homogeneous avalanche breakdown at 1860 V are fabricated. The pulse current–voltage characteristics are measured in the avalanche-breakdown mode up to a current density of 4000 A/cm{sup 2}. It is shown that the avalanche-breakdown voltage increases with increasing temperature. The following diode parameters are determined: the avalanche resistance (8.6 × 10{sup –2} Ω cm{sup 2}), the electron drift velocity in the n{sub 0} base at electric fields higher than 10{sup 6} V/cm (7.8 × 10{sup 6} cm/s), and the relative temperature coefficient of the breakdown voltage (2.1 × 10{sup –4} K{sup –1}).

  3. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization

    International Nuclear Information System (INIS)

    Qing-Song, Huang; Dong-Qing, Dong; Jian-Ping, Xu; Xiao-Song, Zhang; Hong-Min, Zhang; Lan, Li

    2010-01-01

    Spherical organic-bonded ZnS nanocrystals with 4.0±0.2 nm in diameter are synthesized by a liquid-solid-solution method. The photoluminescence spectrum of sample ([S 2− ]/[Zn 2+ ] = 1.0) shows a strong white emission with a peak at 490 nm and ∼ 170 nm full widths at half maximum. By Gauss fitting, the white emission is attributed to the overlap of a blue emission and a green-yellow emission, originating from electronic transitions from internal S 2− vacancies level to valence band and to the internal Zn 2+ vacancy level, respectively. After sealingZnS nanocrystals onto InGaN chips, the device shows CIE coordinates of (0.29,0.30), which indicates their potential applications for white light emitting diodes

  4. Size effect on the SHG properties of Cu-doped CdI2 nanocrystals

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Because the optically induced second harmonic generation (SHG) is prevented by symmetry in a centrosymmetric material, one needs to form noncentrosymmetric processes in order to observe the SHG. However, one of the efficient ways to enhance the noncentrosymmetricity of a material is to dope it with an appropriate impurity and amount. We grow Cu-doped CdI 2 layered nanocrystal structures from the mixture of CdI 2 and CuI using the standard Bridgman-Stockbarger method and investigate the nano-confined effects by studying the second-order optical effect via the measurements of SHG. The second-order susceptibility for the nanocrystals is calculated and the values at liquid helium temperature range from 0.38 to 0.83 pm V -1 for the thicknesses of 10-0.8 nm respectively. The size dependence demonstrates the nano-sized quantum-confined effect with a clear increase in the SHG with decreasing the thickness of the nanocrystal or crystal temperature. Since the local electron-phonon anharmonicity is described by third-order rank tensors in disordered systems, the SHG is very similar to that one introduced for the third-order optical susceptibility. It has been confirmed by observing the large photoluminescent yield of the pure crystals. The Raman scattering spectra taken for thin nanocrystals confirm the phonon modes originating from interlayer phonons crucially responsible for the observed effects. The obtained results show that the Cu-doped CdI 2 layered nanocrystals are promising materials for applications in optoelectronic nano-devices.

  5. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    Science.gov (United States)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  6. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  7. Structural transformations of TiO{sub 2} films with deposition temperature and electrical properties of nanostructure n-TiO{sub 2}/p-Si heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seval; Caglar, Yasemin, E-mail: yasemincaglar@anadolu.edu.tr

    2014-11-15

    Highlights: • Titanium oxide (TiO{sub 2}) films have been deposited on p-Si substrates by sol gel spin coating technique. • The effect of deposition temperatures on structural and morphological properties of TiO{sub 2} films. • The electrical parameters of nanostructure n-TiO{sub 2}/p-Si heterojunction diode such as n, R{sub s} and ϕ{sub b} were investigated. - Abstract: Titanium oxide (TiO{sub 2}) films have been deposited on p-Si substrates by sol–gel method using spin coating technique. Structural and morphological properties were studied as a function of deposition temperatures by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The deposition temperatures were chosen from 700 °C to 1100 °C. Crystallization of the anatase phase and its transformation to the rutile phase were observed at 700 °C and 800 °C, respectively. The fabrication of nanostructure n-TiO{sub 2}/p-Si heterojunction diode was formed by using T7 film deposited at 700 °C. The electrical parameters such as barrier height (ϕ{sub b}) and ideality factor (n) of nanostructure n-TiO{sub 2}/p-Si heterojunction diode were investigated by using I–V measurements and observed to be 0.58 eV and 5.39, respectively. Also, the values of ϕ{sub b} and series resistance (R{sub s}) were determined by using Cheung’s and Norde methods. From the I–V measurements taken at room temperature, the space charge limited (SCLC) mechanism was determined at the low voltage region. The obtained results showed that n-TiO{sub 2}/p-Si heterojunction diode is a good candidate for the applications of semiconductor electronic devices.

  8. A circuital model of switching behaviour of 4H-SiC p+-n-n+ diodes valid at any current and temperature

    International Nuclear Information System (INIS)

    Bellone, S; Benedetto, L Di; Licciardo, G D; Corte, F Della

    2014-01-01

    A circuital model of 4H-SiC p + -n-n + diodes is presented, which is able to describe the switching behaviour of the devices in a wide range of current, voltage and temperature, at an arbitrary instant, with comparable accuracy of numerical simulations. The model has been analytically derived under generic conditions and is capable to calculate also the dynamic spatial distribution of minority carriers in the epitaxial layer. The accuracy of the model is shown by comparison with numerical simulations and experimental measurements.

  9. Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode.

    Science.gov (United States)

    Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C

    2017-09-04

    The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.

  10. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  11. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  12. Investigation of diode parameters using I-V and C-V characteristics of In/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, O.F. [Department of Physics, Faculty of Arts and Science, Selcuk University, Kampus, Konya 42075 (Turkey)], E-mail: fyuksel@selcuk.edu.tr; Selcuk, A.B.; Ocak, S.B. [PK, 14 Etlik, Ankara (Turkey)

    2008-08-01

    A study on interface states density distribution and characteristic parameters of the In/SiO{sub 2}/p-Si (MIS) capacitor has been made. The thickness of the SiO{sub 2} film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 A. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 {omega} and 0.592 eV, respectively. The energy distribution of the interface state density D{sub it} was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44x10{sup 13} eV{sup -1} cm{sup -2} in 0.329-E{sub v} eV to 1.11x10{sup 13} eV{sup -1} cm{sup -2} in 0.527-E{sub v} eV at room temperature. Furthermore, the values of interface state density D{sub it} obtained by the Hill-Coleman method from the C-V characteristics range from 52.9x10{sup 13} to 1.11x10{sup 13} eV{sup -1} cm{sup -2} at a frequency range of 30kHz-1 MHz. These values of D{sub it} and R{sub s} were responsible for the non-ideal behaviour of I-V and C-V characteristics.

  13. Colloidal nanocrystals for quality lighting and displays: milestones and recent developments

    Directory of Open Access Journals (Sweden)

    Erdem Talha

    2016-06-01

    Full Text Available Recent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals, colloidal quantum rods (nanorods, and colloidal quantum wells (nanoplatelets as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.

  14. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Science.gov (United States)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  15. The infra-red photoresponse of erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Kenyon, A.J.; Bhamber, S.S.; Pitt, C.W.

    2003-01-01

    We have exploited the interaction between erbium ions and silicon nanoclusters to probe the photoresponse of erbium-doped silicon nanocrystals in the spectral region around 1.5 μm. We have produced an MOS device in which the oxide layer has been implanted with both erbium and silicon and annealed to produce silicon nanocrystals. Upon illumination with a 1480 nm laser diode, interaction between the nanocrystals and the rare-earth ions results in a modification of the conductivity of the oxide that enables a current to flow when a voltage is applied across the oxide layer

  16. Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals

    Science.gov (United States)

    Shirazi, R.; Kopylov, O.; Kovacs, A.; Kardynał, B. E.

    2012-08-01

    In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV.

  17. Study of edge effects in the breakdown process of p sup + on n-bulk silicon diodes

    CERN Document Server

    Militaru, O; Bozzi, C; Rold, M D; Dell'Orso, R; Dutta, S; Messineo, A; Mihul, A; Tonelli, G; Verdini, P G; Wheadon, R; Xie, Z

    2000-01-01

    The paper describes the role of the n sup + edge implants in the breakdown process of p sup + on n-bulk silicon diodes. Laboratory measurements and simulation studies are presented on a series of test structures aimed at an optimization of the design in the edge region. The dependence of the breakdown voltage on the geometrical parameters of the devices is discussed in detail. Design rules are extracted for the use of n sup + -layers along the scribe line to avoid surface conduction of current generated by the exposed edges. The effect of neutron irradiation has been studied up to a fluence of 1.8x10 sup 1 sup 5 cm sup - sup 2.

  18. AlGaInN-based ultraviolet light-emitting diodes grown on Si(111)

    International Nuclear Information System (INIS)

    Kipshidze, G.; Kuryatkov, V.; Borisov, B.; Holtz, M.; Nikishin, S.; Temkin, H.

    2002-01-01

    Ultraviolet light-emitting diodes grown on Si(111) by gas-source molecular-beam epitaxy with ammonia are described. The layers are composed of superlattices of AlGaN/GaN and AlN/AlGaInN. The layers are doped n and p type with Si and Mg, respectively. Hole concentration of 4x10 17 cm -3 , with a mobility of 8 cm2/Vs, is measured in Al 0.4 Ga 0.6 N/GaN. We demonstrate effective n- and p-type doping of structures based on AlN/AlGaInN. Light-emitting diodes based on these structures show light emission between 290 and 334 nm

  19. Fabrication study of GaAs mesa diodes for X-ray detection

    OpenAIRE

    Ng, J.S.; Meng, X.; Lees, J.E.; Barnett, A.; Tan, C.H.

    2014-01-01

    A study of leakage currents using GaAs mesa p-i-n diodes for X-ray photon counting is presented. Different wet chemical etching solution and etch depth were used in the fabrication of these mesa diodes. Low and uniform leakage currents were achieved when the diode fabrication used (i) a combination of main etching solution and finishing etching solution for the etching, and (ii) partially etched mesas. The diodes fabricated using these methods showed well-defined X-ray peaks when illuminated ...

  20. Imbedded Nanocrystals of CsPbBr3 in Cs4 PbBr6 : Kinetics, Enhanced Oscillator Strength, and Application in Light-Emitting Diodes.

    Science.gov (United States)

    Xu, Junwei; Huang, Wenxiao; Li, Peiyun; Onken, Drew R; Dun, Chaochao; Guo, Yang; Ucer, Kamil B; Lu, Chang; Wang, Hongzhi; Geyer, Scott M; Williams, Richard T; Carroll, David L

    2017-11-01

    Solution-grown films of CsPbBr 3 nanocrystals imbedded in Cs 4 PbBr 6 are incorporated as the recombination layer in light-emitting diode (LED) structures. The kinetics at high carrier density of pure (extended) CsPbBr 3 and the nanoinclusion composite are measured and analyzed, indicating second-order kinetics in extended and mainly first-order kinetics in the confined CsPbBr 3 , respectively. Analysis of absorption strength of this all-perovskite, all-inorganic imbedded nanocrystal composite relative to pure CsPbBr 3 indicates enhanced oscillator strength consistent with earlier published attribution of the sub-nanosecond exciton radiative lifetime in nanoprecipitates of CsPbBr 3 in melt-grown CsBr host crystals and CsPbBr 3 evaporated films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    Science.gov (United States)

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  2. Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.

    Science.gov (United States)

    Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-24

    Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n + -i-n + InP nanowires. The axial doping profile of the n + -i-n + InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n + -i-n + InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.

  3. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    International Nuclear Information System (INIS)

    Weinberg, I.; Swartz, C.K.; Hart, R.E. Jr.; Coutts, T.J.

    1988-09-01

    The radiation resistance of ITO/InP cells processed by DC magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistance significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectroscopy, and determinations of surface conductivity types are used to investigate the configuration of the ITO/InP cells. It is concluded that thesee latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor

  4. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    Science.gov (United States)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-01

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 1019 cm-3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 1020 cm-3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 1019 cm-3. The p-GaN and p-Al0.11Ga0.89N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3-3.5 V and series resistances of 6-10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  5. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self

  6. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes

    Science.gov (United States)

    Yan, Fei; Xing, Jun; Xing, Guichuan; Quan, Lina; Tan, Swee Tiam; Zhao, Jiaxin; Su, Rui; Zhang, Lulu; Chen, Shi; Zhao, Yawen; Huan, Alfred; Sargent, Edward H.; Xiong, Qihua; Demir, Hilmi Volkan

    2018-05-01

    Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.

  7. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    DEFF Research Database (Denmark)

    Shirazi, Roza; Kovacs, Andras; Corell, Dennis Dan

    2013-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude...

  8. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    Science.gov (United States)

    Malinverni, M.; Lamy, J.-M.; Martin, D.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.; Grandjean, N.

    2014-12-01

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH3-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10-4 Ω cm2, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH3-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm2 ridge dimension and a threshold current density of ˜5 kA cm-2 in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al0.06Ga0.94N:Mg despite the low growth temperature.

  9. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  10. Size effect on the SHG properties of Cu-doped CdI{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-12-15

    Because the optically induced second harmonic generation (SHG) is prevented by symmetry in a centrosymmetric material, one needs to form noncentrosymmetric processes in order to observe the SHG. However, one of the efficient ways to enhance the noncentrosymmetricity of a material is to dope it with an appropriate impurity and amount. We grow Cu-doped CdI{sub 2} layered nanocrystal structures from the mixture of CdI{sub 2} and CuI using the standard Bridgman-Stockbarger method and investigate the nano-confined effects by studying the second-order optical effect via the measurements of SHG. The second-order susceptibility for the nanocrystals is calculated and the values at liquid helium temperature range from 0.38 to 0.83 pm V{sup -1} for the thicknesses of 10-0.8 nm respectively. The size dependence demonstrates the nano-sized quantum-confined effect with a clear increase in the SHG with decreasing the thickness of the nanocrystal or crystal temperature. Since the local electron-phonon anharmonicity is described by third-order rank tensors in disordered systems, the SHG is very similar to that one introduced for the third-order optical susceptibility. It has been confirmed by observing the large photoluminescent yield of the pure crystals. The Raman scattering spectra taken for thin nanocrystals confirm the phonon modes originating from interlayer phonons crucially responsible for the observed effects. The obtained results show that the Cu-doped CdI{sub 2} layered nanocrystals are promising materials for applications in optoelectronic nano-devices.

  11. N-isopropyl-p-[I[sup 123

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroshi; Morooka, Keiichi; Arimoto, Kiyoshi; Matsuo, Takiko; Takagi, Kazue; Yanagawa, Etsuko (Toho Univ., Tokyo (Japan). School of Medicine)

    1992-09-01

    We studied the clinical usefulness of I[sup 123]-IMP SPECT in 50 pediatric patients with CNS disorders, which were categorized into the convulsive disorder group (n=20), the cerebrovascular disorder group (n=10), the acute encephalopathy or CNS infection group (n=10), the metabolic or degenerative disorder group (n=6), the congenital abnormality group (n=2) and the migraine group (n=2). The findings obtained were compared with those of cranial CT. I[sup 123]-IMP SPECT revealed abnormal findings in 45 out of the 50 patients (90%), although cranial CT showed abnormal findings in only 24 patients (48%). This difference was statistically significant (p<0.01). In all groups except the migraine, we could find abnormal findings in more than 90% of the patients. Out of 28 patients without focal findings on the initial CT scanning. I[sup 123]-IMP SPECT showed focal abnormalities in 26 patients (93%). Moreover in many patients with focal neurological abnormalities, we found focal abnormalities of I[sup 123]-IMP SPECT related with neurological abnormalities of the patients. From these findings, we think I[sup 123]-IMP SPECT might be superior to CT scanning in examining a localized lesion. It was found that in many patients with focal abnormalities in CT scanning, I[sup 123]-IMP SPECT showed larger abnormalities in CT scanning. By using I[sup 123]-IMP SPECT we might be able to study the blood perfusional state surrounding the abnormal area shown by CT. In 3 patients with acute cerebrovascular disorders, I[sup 123]-IMP SPECT revealed abnormal findings 3 to 11 days earlier than cranial CT. I[sup 123]-IMP SPECT might be useful for early recognition of the pathological state. From these experiences, we concluded that I[sup 123]-IMP SPECT was useful for studying the pathophysiology of CNS disorders in children. (author).

  12. Amperometric Formaldehyde Sensor Based on a Pd Nanocrystal Modified C/Co2P Electrode

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2017-01-01

    Full Text Available Ultrafine Pd nanocrystals were grown on the cobalt phosphide (Co2P decorated Vulcan XC-72 carbon (C/Co2P, which is realized by first implementing the corresponding metal precursor and then the further chemical reduction process. The as-synthesized C/Co2P/Pd composite was further constructed to form a gas permeable electrode. This electrode can be applied for formaldehyde (HCHO detection. The results demonstrate that the Co2P nanocrystal can significantly improve the sensing performance of the C/Co2P/Pd electrode for catalytic oxidation of HCHO, which is considered to be attributed to the effective electron transfer from Co2P to Pd in the C/Co2P/Pd composites. Furthermore, the assembled C/Co2P/Pd sensor exhibits high sensitivity of 617 nA/ppm and good selectivity toward various interfering gases such as NO2, NO, SO2, CO2, and CO. It also shows the excellent linear response that the correlation coefficient is 0.994 in the concentration range of 1–10 ppm. Therefore, the proposed cost-effective C/Co2P/Pd nanocomposite, which owns advantages such as high activity and good stability, has the potential to be applied as an effective electrocatalyst for amperometric HCHO detection.

  13. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer

    International Nuclear Information System (INIS)

    Güllü, Ö.; Aydoğan, S.; Türüt, A.

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal–semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current–voltage (I–V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I–V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 μA and 240 mV, respectively.

  14. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak

    2015-01-01

    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  15. Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Feng Zhi-Hong; Gu Guo-Dong; Dun Shao-Bo; Yin Jia-Yun; Han Ting-Ting; Cai Shu-Jun; Lin Zhao-Jun

    2014-01-01

    Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current—voltage and capacitance—voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an AlGaN/GaN diode by self-consistently solving Schrödinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostructure results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an AlGaN/GaN diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Malinverni, M., E-mail: marco.malinverni@epfl.ch; Lamy, J.-M.; Martin, D.; Grandjean, N. [ICMP, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Feltin, E.; Dorsaz, J. [NOVAGAN AG, CH-1015 Lausanne (Switzerland); Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C. [EXALOS AG, CH-8952 Schlieren (Switzerland)

    2014-12-15

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH{sub 3}-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10{sup −4} Ω cm{sup 2}, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH{sub 3}-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm{sup 2} ridge dimension and a threshold current density of ∼5 kA cm{sup −2} in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al{sub 0.06}Ga{sub 0.94}N:Mg despite the low growth temperature.

  17. DLTS spectra of silicon diodes with p+-n-junction irradiated with high energy krypton ions

    Directory of Open Access Journals (Sweden)

    Nikolai A. Poklonski

    2016-06-01

    Full Text Available p+-n-Diodes have been studied. The diodes were manufactured on wafers (thickness 460 μm, (111 plane of uniformly phosphorus doped float-zone-grown single-crystal silicon. The resistivity of silicon was 90 Ω cm and the phosphorus concentration was 5×1013 cm−3. The diodes were irradiated with 250 MeV krypton ions. The irradiation fluence was 108 cm−2. Deep-level transient spectroscopy (DLTS was used to examine the defects induced by high energy krypton ion implantation. The DLTS spectra were recorded at a frequency of 1 MHz in the 78–290 K temperature range. The capacity-voltage characteristics have been measured at a reverse bias voltage from 0 to −19 V at a frequency of 1 MHz. We show that the main irradiation-induced defects are A-centers and divacancies. The behavior of DLTS spectra in the 150–260 K temperature range depends essentially on the emission voltage Ue. The variation of Ue allows us to separate the contributions of different defects into the DLTS spectrum in the 150–260 K temperature range. We show that, in addition to A-centers and divacancies, irradiation produces multivacancy complexes with the energy level Et = Ec−(0.5±0.02 eV and an electron capture cross section of ~4×10–13 cm2.

  18. Characterization of proton and neutron irradiated low resistivity p-on-n magnetic Czochralski ministrip sensors and diodes

    International Nuclear Information System (INIS)

    Pacifico, Nicola; Dolenc Kittelmann, Irena; Fahrer, Manuel; Moll, Michael; Militaru, Otilia

    2011-01-01

    Transient Current Technique (TCT) and Charge Collection Efficiency (CCE) measurements were performed on low resistivity (280Ωcm) n-bulk, p-readout magnetic Czochralski ministrip sensors and diodes. The detectors were irradiated with neutrons and 24 GeV/c protons up to a total NIEL equivalent fluence of 8×10 15 /cm 2 . The study was addressed to assess the radiation tolerance of the detectors up to fluences expected in the next generations of High Energy Physics experiments. The charge collection efficiency after irradiation was found to be much higher than for standard FZ silicon p-in-n sensors. The underlying physics of this remarkable result was investigated by performing Edge-TCT measurements on one of the neutron irradiated ministrip sensors to extract detailed informations about the field and efficiency profiles of the detector.

  19. What dictates which ion, I- or Br-, mediates the growth of cubic Pd nanocrystals?

    Science.gov (United States)

    Wang, Ze-Hong; Wu, Ya-Jiao; Xue, Huan-Huan; Zhou, Lin-Nan; Geng, Wen-Chao; Yi, Hai-Bo; Li, Yong-Jun

    2018-04-25

    Cubic Pd nanocrystals (CPNCs) as one of typical nanostructures are generally fabricated using I- or Br- as capping ions. However, which ion, I- or Br-, exclusively mediates the growth of CPNCs in a given reaction system is not well understood. Herein, regardless of I- or Br- as the capping ion, we successfully achieved CPNCs in the same reaction system simply by adjusting the pH. Based on the Finke-Watzky kinetic model, an increase in pH accelerates the overall reduction rate of Pd2+, and the formation of CPNCs only occurs over the range of specific solution reduction rate constants (k1). This kinetically illuminates that the reduction rate of Pd2+ is the physicochemical parameter that determines which ion, I- or Br-, dictates the growth of CPNCs. Also, density functional theory (DFT) calculations further elucidate the dependence of the reduction rate of Pd2+ on pH and the configuration of the activated Pd2+ complex.

  20. Influence of electron irradiation at elevated temperatures on silicon diffuse structures with p-n-junctions

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Marchenko, I.G.

    2012-01-01

    The behavior of the lifetime of nonequilibrium carriers (τ), reverse current (I R ), and forward voltage drop (U F ) in industrial p + -n-n + -diodes irradiated with electrons (E=6 MeV) at temperatures for the range T irr = 20-400 Celsius degree was investigated. The tests were conducted on the samples manufactured on phosphorous doped single-crystal Si during the CZ growing process of ingot (KAF) and using the nuclear reactions (KOF). The investigation showed that the problem to reach smaller τ values with a minimal increase of U F and I R in fast diodes can be solved by means of selection of a technological irradiation temperature regime. It was determined that the comparable changes of the τ value in the diode base area, the best trade-off of U F and I R in the samples (KAF) is observed at T irr = 300 Celsius degree, and in the KOF samples at T irr = 350 Celsius degree. (authors)

  1. Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri- n -octylphosphine Oxide as a Phosphorus Source

    KAUST Repository

    Zhang, Haitao; Ha, Don-Hyung; Hovden, Robert; Kourkoutis, Lena Fitting; Robinson, Richard D.

    2011-01-01

    A new method to produce hyperbranched Co 2P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co 2P NP products. The morphology of Co 2P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis. © 2011 American Chemical Society.

  2. Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri- n -octylphosphine Oxide as a Phosphorus Source

    KAUST Repository

    Zhang, Haitao

    2011-01-12

    A new method to produce hyperbranched Co 2P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co 2P NP products. The morphology of Co 2P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis. © 2011 American Chemical Society.

  3. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    Science.gov (United States)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in

  4. A hole modulator for InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-02-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ˜332 meV to ˜294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  5. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    Science.gov (United States)

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  6. Graphene enhanced field emission from InP nanocrystals.

    Science.gov (United States)

    Iemmo, L; Di Bartolomeo, A; Giubileo, F; Luongo, G; Passacantando, M; Niu, G; Hatami, F; Skibitzki, O; Schroeder, T

    2017-12-08

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  7. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-01-28

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10{sup 19} cm{sup −3} with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10{sup 20} cm{sup −3} show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10{sup 19} cm{sup −3}. The p-GaN and p-Al{sub 0.11}Ga{sub 0.89}N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  8. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    International Nuclear Information System (INIS)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-01

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10 19 cm −3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10 20 cm −3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10 19 cm −3 . The p-GaN and p-Al 0.11 Ga 0.89 N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K

  9. Studies of defects in neutron-irradiated p-type silicon by admittance measurements of n+-p diodes

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1978-01-01

    Defects introduced in p-type silicon by neutron irradiation were studied by measuring the admittance of n + -p diodes. It was shown that the energy levels and capture cross sections estimated from the temperature dependence of the admittance had some uncertainty due to the temperature dependence of the concentration of free carriers in the bulk and the high-frequency-junction capacitance. So, we presented the method of determination of the energy levels, capture cross sections, and concentrations of defects from the frequency dependence of the admittance. This method consists of the measurements of G/ω and C as a function of frequency. From this method, assuming that capture cross sections are independent of temperature, the energy levels of E/sub v/+0.16 and E/sub v/+0.36 eV were obtained. For these defects, the calculated values of the hole capture cross section were 2.4 x 10 -14 and 3.7 x 10 -14 cm 2 , respectively. Comparing with other published data, the energy level of E/sub v/+0.36 eV was found to be correlated with the divacancy

  10. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  11. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce; Alivisatos, A.Paul

    2008-06-24

    We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.

  12. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    Science.gov (United States)

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  13. Fabrication and characterization of high-brightness light emitting diodes based on n-ZnO nanorods grown by a low-temperature chemical method on p-4H-SiC and p-GaN

    International Nuclear Information System (INIS)

    Alvi, N H; Riaz, M; Tzamalis, G; Nur, O; Willander, M

    2010-01-01

    Light emitting diodes (LEDs) based on n-ZnO nanorods (NRs)/p-4H-SiC and n-ZnO (NRs)/p-GaN were fabricated and characterized. For the two LEDs the ZnO NRs were grown using a low temperature (<100 °C) aqueous chemical growth (ACG) technique. Both LEDs showed very bright nearly white light electroluminescence (EL) emission. The observed luminescence was a result of the combination of three emission lines composed of violet-blue, green and orange-red peaks observed from the two LEDs. Room temperature photoluminescence (PL) was also measured and consistency with EL was observed. It was found that the green and violet-blue peaks are red-shifted while the orange peak is blue-shifted in the EL measurement. It was also found that due to the effect of the GaN substrate the violet-blue peak in the EL measurement is more red-shifted in n-ZnO (NRs)/p-GaN LEDs as compared to n-ZnO (NRs)/p-4H-SiC LEDs

  14. Characterization of proton and neutron irradiated low resistivity p-on-n magnetic Czochralski ministrip sensors and diodes

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, Nicola, E-mail: nicola.pacifico@cern.ch [CERN, Geneva (Switzerland); Dolenc Kittelmann, Irena; Fahrer, Manuel; Moll, Michael [CERN, Geneva (Switzerland); Militaru, Otilia [UCL, Louvain (Belgium)

    2011-12-01

    Transient Current Technique (TCT) and Charge Collection Efficiency (CCE) measurements were performed on low resistivity (280{Omega}cm) n-bulk, p-readout magnetic Czochralski ministrip sensors and diodes. The detectors were irradiated with neutrons and 24 GeV/c protons up to a total NIEL equivalent fluence of 8 Multiplication-Sign 10{sup 15}/cm{sup 2}. The study was addressed to assess the radiation tolerance of the detectors up to fluences expected in the next generations of High Energy Physics experiments. The charge collection efficiency after irradiation was found to be much higher than for standard FZ silicon p-in-n sensors. The underlying physics of this remarkable result was investigated by performing Edge-TCT measurements on one of the neutron irradiated ministrip sensors to extract detailed informations about the field and efficiency profiles of the detector.

  15. Size-Controlled TiO{sub 2} nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wen-Yuan; Zhou, Qi [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Xing, E-mail: xingchen@iim.ac.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nanomaterials and Environmental Detection, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Yong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Huang, Xing-Jiu [Laboratory of Nanomaterials and Environmental Detection, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China)

    2016-08-15

    Highlights: • N-RGO/TiO{sub 2} nanocomposites were prepared via one-step hydrothermal method. • Facets of TiO{sub 2} nanocrystals were modulated with addition of HF. • Sizes of TiO{sub 2} nanocrystals were controlled by the contents of RGO-NH{sub 2.} • Obtained N-RGO/TiO{sub 2} nanocomposites exhibited excellent photocatalytic activity and stability. - Abstract: Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO{sub 2}/graphene nanocomposites (N-RGO/TiO{sub 2}) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO{sub 2} nanocrystals and graphene, but also the nitrogen dopant for TiO{sub 2} nanocrystals and graphene. During the hydrothermal process, facets of TiO{sub 2} nanocrystals were modulated with addition of HF, and sizes of TiO{sub 2} nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH{sub 2}). The obtained N-RGO/TiO{sub 2} nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO{sub 2} samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO{sub 2} catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO{sub 2}-N/F (61%) in 3 h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

  16. Nonvolatile memory characteristics influenced by the different crystallization of Ni-Si and Ni-N nanocrystals

    International Nuclear Information System (INIS)

    Chen, W.-R.; Yeh, J.-L.; Chang, C.-Y.; Chang, T.-C.; Chen, S.-C.

    2008-01-01

    The formation of Ni-Si and Ni-N nanocrystals by sputtering a Ni 0.3 Si 0.7 target in argon and nitrogen environment were proposed in this paper. A transmission electron microscope analysis shows the nanocrystals embedded in the nitride layer. X-ray photoelectron spectroscopy and x-ray diffraction also offer the chemical material analysis of nanocrystals with surrounding dielectric and the crystallization of nanocrystals for different thermal annealing treatments. Nonvolatile Ni-Si nanocrystal memories reveal superior electrical characteristics for charge storage capacity and reliability due to the improvement of thermal annealing treatment. In addition, we used energy band diagrams to explain the significance of surrounding dielectric for reliability

  17. Proto-I switching and diode studies

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Miller, P.A.; McDaniel, D.H.; Poukey, J.W.; Widner, M.M.; Goldstein, S.A.

    1975-01-01

    Proto-I is a 3 MV, 800 kA, 24 ns electron beam accelerator that is under development at Sandia Laboratories. It represents an initial effort to develop a scalable technology that is applicable to accelerators for electron beam driven, inertial confinement fusion studies. Energy is supplied to each of the two diodes from six oil-dielectric Blumlein transmission lines (PFL) operating in parallel. A Marx generator charges three intermediate storage, water-dielectric capacitors which subsequently transfer the stored energy to the PFL. The discharge of the PFL is initiated by the simultaneous closure of 12 triggered oil-dielectric rail switches. Data will be presented on the operation of these multichannel switches. The two diodes have a common anode. Cathode diameters can be varied from 10 to 60 cm. Results of initial diode experiments and comparisons with theory are discussed. Plasma filled diode experiments are also reported, indicating pinch collapse velocities in excess of 10 9 cm/s

  18. Site-controlled InGaN/GaN single-photon-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109 (United States); Teng, Chu-Hsiang; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

    2016-04-11

    We report single-photon emission from electrically driven site-controlled InGaN/GaN quantum dots. The device is fabricated from a planar light-emitting diode structure containing a single InGaN quantum well, using a top-down approach. The location, dimension, and height of each single-photon-emitting diode are controlled lithographically, providing great flexibility for chip-scale integration.

  19. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.

  20. Temperature-Dependent Electrical Characteristics of Au/Si3N4/4H n-SiC MIS Diode

    Science.gov (United States)

    Yigiterol, F.; Güllü, H. H.; Bayraklı, Ö.; Yıldız, D. E.

    2018-03-01

    Electrical characteristics of the Au/Si3N4/4H n-SiC metal-insulator-semiconductor (MIS) diode were investigated under the temperature, T , interval of 160-400 K using current-voltage (I-V), capacitance-voltage ( C {-} V ) and conductance-voltage ( G/ω {-} V ) measurements. Firstly, the Schottky diode parameters as zero-bias barrier height ( Φ_{B0} ) and ideality factor ( n ) were calculated according to the thermionic emission (TE) from forward bias I-V analysis in the whole working T . Experimental results showed that the values of Φ_{B0} were in increasing behavior with increasing T while n values decreased with inverse proportionality in n versus Φ_{{{{B}}0}} plot. Therefore, the non-ideal I-V behavior with inhomogeneous barrier height (BH) formation has been discussed under the assumption of Gaussian distribution (GD). From the GD of BHs, the mean BH was found to be about 1.40 eV with 0.1697 standard deviation and the modified Richardson constant A^{*} of this diode was obtained as 141.65 A/cm2 K2 in good agreement with the literature (the theoretical value of A^{*} is 137.21 A/cm2 K2). The relationship between Φ_{B0} and n showed an abnormal I-V behavior depending on T , and it was modeled by TE theory with GD of BH due to the effect in inhomogeneous BH at the interface. Secondly, according to Cheung's model, series resistance, R_{{S}} values were calculated in the T range of 160-400 K and these values were found to decrease with increasing T . Finally, the density of interface states, D_{{it}} was calculated and the T dependence of energy distribution of D_{{it}} profiles determined the forward I {-} V measurements by taking into account the bias dependence of the effective BH, Φ_{{e}} and n . D_{{it}} were also calculated according to the Hill-Coleman method from C {-} V and G/ω {-} V analysis. Furthermore, the variation of D_{{it}} as a function of frequency, f and T were determined.

  1. A hole accelerator for InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-10-01

    The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.

  2. In 0.35Ga 0.65P light-emitting diodes grown by gas-source MBE

    Science.gov (United States)

    Masselink, W. Ted; Zachau, Martin

    1993-02-01

    This paper describes the growth and optical characteristics of In yGa 1- yP with 0.3Raman spectra of these undoped films and observe strong excitonic luminescence over the entire composition range investigated. The band gap derived from the luminescence excitation spectra corresponds to that of a fully relaxed InGaP film with no residual strain, which is confirmed by the Raman measurements. Light-emitting diodes with peak (300 K) emission centered at less than 590 nm have been fabricated from p-i-n junctions in In 0.35Ga 0.65P. This alloy is close to that with the largest direct band gap in the In yGa 1- y P system and has lattice mismatch from the GaAs substrate of 1%.

  3. A hole modulator for InGaN/GaN light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-01-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332 meV to ∼294 meV at 80 A/cm 2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs

  4. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Hazra, Purnima; Jit, S.

    2014-01-01

    This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current—voltage and capacitance—voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at ±2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ±2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices. (semiconductor devices)

  5. Optoelectric Properties of GaInP p-i-n Solar Cells with Different i-Layer Thicknesses

    Directory of Open Access Journals (Sweden)

    Tsung-Shine Ko

    2015-01-01

    Full Text Available The optoelectric properties of GaInP p-i-n solar cells with different intrinsic layer (i-layer thicknesses from 0.25 to 1 μm were studied. Both emission intensity and full width at half maximum features of the photoluminescence spectrum indicate that the optimum i-layer thickness would be between 0.5 and 0.75 μm. The integrated current results of photocurrent experiment also point out that the samples with 0.5 to 0.75 μm i-layer thicknesses have optimum value around 156 nA. Electroreflectance measurements reveal that the built-in electric field strength of the sample gradually deviates from the theoretical value larger when i-layer thickness of the sample is thicker than 0.75 μm. I-V measurements also confirm crystal quality for whole samples by obtaining the information about short currents of photovoltaic performances. A series of experiments reflect that thicker i-layer structure would induce more defects generation lowering crystal quality.

  6. Effect of low temperature and electron irradiation on the volt-ampere characteristics of silicon structures with p-n junctions; Vliyanie nizkikh temperatur i ehlektronnogo oblucheniya na vol`t-ampernye kharakteristiki kremnievykh struktur s p-n perekhodami

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, F P [and others

    1994-12-31

    Features of volt-ampere characteristic behaviour of silicon, diffusion p-n-p structures making up the basis of force diodes under their operation in the mode of nominal and overload current densities are investigated.

  7. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    Science.gov (United States)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  8. A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μW emission power at 1.5 μm

    Science.gov (United States)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Balagan, S. A.; Dotsenko, S. A.; Galkin, K. N.; Galkin, N. G.; Shamirzaev, T. S.; Gutakovskii, A. K.; Latyshev, A. V.; Iinuma, M.; Terai, Y.

    2017-03-01

    This article describes the development of an Si-based light-emitting diode with β-FeSi2 nanocrystals embedded in the active layer. Favorable epitaxial conditions allow us to obtain a direct band gap type-I band alignment Si/β-FeSi2 nanocrystals/Si heterostructure with optical transition at a wavelength range of 1500-1550 nm at room temperature. Transmission electron microscopy data reveal strained, defect-free β-FeSi2 nanocrystals of diameter 6 and 25 nm embedded in the Si matrix. Intense electroluminescence was observed at a pumping current density as low as 0.7 A/cm2. The device reached an optical emission power of up to 25 μW at 9 A/cm2 with an external quantum efficiency of 0.009%. Watt-Ampere characteristic linearity suggests that the optical power margin of the light-emitting diode has not been exhausted. Band structure calculations explain the luminescence as being mainly due to radiative recombination in the large β-FeSi2 nanocrystals resulting from the realization of an indirect-to-direct band gap electronic configuration transformation arising from a favorable deformation of nanocrystals. The direct band gap structure and the measured short decay time of the luminescence of several tens of ns give rise to a fast operation speed for the device. Thus a method for developing a silicon-based photonic integrated circuit, combining complementary metal-oxide-semiconductor technology functionality and near-infrared light emission, is reported here.

  9. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Science.gov (United States)

    Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.

    2017-11-01

    Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.

  10. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Directory of Open Access Journals (Sweden)

    Abdul Halim N. Syafira

    2017-01-01

    Full Text Available Light emitting diode (LED employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW light emitting diode (LED is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED. Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW is also increases from 2.8V to 3.1V.

  11. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica.

    Science.gov (United States)

    Malgras, Victor; Tominaka, Satoshi; Ryan, James W; Henzie, Joel; Takei, Toshiaki; Ohara, Koji; Yamauchi, Yusuke

    2016-10-13

    Hybrid organic-inorganic metal halide perovskites have fascinating electronic properties and have already been implemented in various devices. Although the behavior of bulk metal halide perovskites has been widely studied, the properties of perovskite nanocrystals are less well-understood because synthesizing them is still very challenging, in part because of stability. Here we demonstrate a simple and versatile method to grow monodisperse CH 3 NH 3 PbBr x I x-3 perovskite nanocrystals inside mesoporous silica templates. The size of the nanocrystal is governed by the pore size of the templates (3.3, 3.7, 4.2, 6.2, and 7.1 nm). In-depth structural analysis shows that the nanocrystals maintain the perovskite crystal structure, but it is slightly distorted. Quantum confinement was observed by tuning the size of the particles via the template. This approach provides an additional route to tune the optical bandgap of the nanocrystal. The level of quantum confinement was modeled taking into account the dimensions of the rod-shaped nanocrystals and their close packing inside the channels of the template. Photoluminescence measurements on CH 3 NH 3 PbBr clearly show a shift from green to blue as the pore size is decreased. Synthesizing perovskite nanostructures in templates improves their stability and enables tunable electronic properties via quantum confinement. These structures may be useful as reference materials for comparison with other perovskites, or as functional materials in all solid-state light-emitting diodes.

  12. A large enhancement of photoinduced second harmonic generation in CdI2--Cu layered nanocrystals.

    Science.gov (United States)

    Miah, M Idrish

    2009-02-12

    Photoinduced second harmonic generation (PISHG) in undoped as well as in various Cu-doped (0.05-1.2% Cu) CdI2 nanocrystals was measured at liquid nitrogen temperature (LNT). It was found that the PISHG increases with increasing Cu doping up to approximately 0.6% and then decreases almost to that for the undoped CdI2 for doping higher than approximately 1%. The values of the second-order susceptibility ranged from 0.50 to 0.67 pm V(-1) for the Cu-doped nanocrystals with a thickness of 0.5 nm. The Cu-doping dependence shown in a parabolic fashion suggests a crucial role of the Cu agglomerates in the observed effects. The PISHG in crystals with various nanosizes was also measured at LNT. The size dependence demonstrated the quantum-confined effect with a maximum PISHG for 0.5 nm and with a clear increase in the PISHG with decreasing thickness of the nanocrystal. The Raman scattering spectra at different pumping powers were taken for thin nanocrystals, and the phonon modes originating from interlayer phonons were observed in the spectra. The results were discussed within a model of photoinduced electron-phonon anharmonicity.

  13. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  14. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui

    2018-01-01

    This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.

  15. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes

    Directory of Open Access Journals (Sweden)

    Alvi N

    2011-01-01

    Full Text Available Abstract In this article, the electroluminescence (EL spectra of zinc oxide (ZnO nanotubes/p-GaN light emitting diodes (LEDs annealed in different ambients (argon, air, oxygen, and nitrogen have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi appearing in the range from 620 nm (1.99 eV to 690 nm (1.79 eV, and to oxygen vacancies (Vo appearing in the range from 690 nm (1.79 eV to 750 nm (1.65 eV. The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96.

  16. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes

    Science.gov (United States)

    Alvi, N. H.; Ul Hasan, Kamran; Nur, Omer; Willander, Magnus

    2011-12-01

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96.

  17. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    Science.gov (United States)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  18. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  19. Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution

    Science.gov (United States)

    Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun

    2018-05-01

    The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.

  20. Schottky barrier diode embedded AlGaN/GaN switching transistor

    International Nuclear Information System (INIS)

    Park, Bong-Ryeol; Lee, Jung-Yeon; Lee, Jae-Gil; Lee, Dong-Myung; Cha, Ho-Young; Kim, Moon-Kyung

    2013-01-01

    We developed a Schottky barrier diode (SBD) embedded AlGaN/GaN switching transistor to allow negative current flow during off-state condition. An SBD was embedded in a recessed normally-off AlGaN/GaN-on-Si metal-oxide-semiconductor heterostructure field-effect transistor (MOSHFET). The fabricated device exhibited normally-off characteristics with a gate threshold voltage of 2.8 V, a diode turn-on voltage of 1.2 V, and a breakdown voltage of 849 V for the anode-to-drain distance of 8 µm. An on-resistance of 2.66 mΩcm 2 was achieved at a gate voltage of 16 V in the forward transistor mode. Eliminating the need for an external diode, the SBD embedded switching transistor has advantages of significant reduction in parasitic inductance and chip area. (paper)

  1. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra Kumar, E-mail: satyndra.singh.eee09@itbhu.ac.in [Department of Electronics and Communication Engineering, Model Institute of Engineering and Technology, Jammu, 181122 (India); Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004 (India); Hazra, Purnima, E-mail: purnima.hazra@smvdu.ac.in [Department of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320 (India)

    2017-04-01

    Highlights: • Synthesize ZnO nanoparticle thin film on p-Si substrate using RF sputtering method. • I–V and C–V characteristics of Si/ZnO heterojunction diode are studied. • High temperature performance is analyzed accounting barrier height inhomogeneities. • Gaussian distribution of BH inhomogeneities is considered to modify Richardson plot. • Modified R constant is 33.06 Acm{sup −2}K{sup −2}, i.e. nearer to theoretical value 32 Acm{sup −2}K{sup −2}. - Abstract: In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300–433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300–800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier

  2. Inductively coupled plasma-induced defects in n-type GaN studied from Schottky diode characteristics

    International Nuclear Information System (INIS)

    Nakamura, W.; Tokuda, Y.; Ueda, H.; Kachi, T.

    2006-01-01

    Inductively coupled plasma-(ICP-)induced defects in n-type GaN have been studied from current-voltage (I-V) characteristics and deep-level transient spectroscopy (DLTS) for Schottky diodes fabricated on etched surfaces. The samples after ICP etching show the ohmic I-V characteristics. Schottky characteristics are obtained after annealing at 600 and 800 deg. C in N 2 , but are not restored to that of the control samples. DLTS shows that the effect of ICP etching is small on the region beyond 80 nm from the surface. These results suggest that there remain ICP-induced damage in the near-surface region after thermal annealing

  3. Near-field microscopy of waveguide architectures of InGaN/GaN diode lasers

    Science.gov (United States)

    Friede, Sebastian; Tomm, Jens W.; Kühn, Sergei; Hoffmann, Veit; Wenzel, Hans; Weyers, Markus

    2016-11-01

    Waveguide (WG) architectures of 420 nm emitting InGaN/GaN diode lasers are analyzed by photoluminescence and photocurrent spectroscopy using a nearfield scanning optical microscope that scans along their front facets. The components of the ‘optical active cavity’, quantum wells, WGs, and cladding layers are individually inspected with a spatial resolution of ∼100 nm. Separate analysis of the p- and n-sections of the WG was achieved, and reveals defect levels in the p-part. Moreover, it is demonstrated that the homogeneity of the n-WG section directly affects the quantum wells that are grown on top of this layer. Substantially increased carrier capture efficiencies into InGaN/GaN-WGs compared to GaN-WGs are demonstrated.

  4. Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals

    DEFF Research Database (Denmark)

    Shirazi, Roza; Kopylov, Oleksii; Kovács, András

    2012-01-01

    In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence...

  5. Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Satoshi Suehiro

    2016-09-01

    Full Text Available ZnO nanocrystals (NCs were synthesized by heating Zn (II acetylacetonate in oleic acid/oleylamine in the presence of 1,2-hexadecanediol at 220 °C. Transmission electron microscopy (TEM and dynamic light scattering (DLS measurements revealed the formation of monodispersed ZnO NCs of ca. 7 nm. ZnO NC assembled films were fabricated on a glass substrate by deposition with the colloidal ZnO NCs dispersed in toluene. The film composed of the NCs showed good optical transparency in the visible to near-infrared region. A device coupling the ZnO NC film with a p-type Cu2ZnSnS4 (CZTS NC film exhibited an obvious diode-like current–voltage behavior. The results suggest that the transparent ZnO film has a potentiality to be used for an n-type window layer in some optoelectronic applications.

  6. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine

    Science.gov (United States)

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

  7. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Films Using Various p-Type Dopants and Their Application to GaN-Based Light-Emitting Diodes.

    Science.gov (United States)

    Lee, Byeong Ryong; Kim, Tae Geun

    2017-01-01

    This article reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWCNT) films using various p-type dopants and their application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWCNT films on the light-emitting diodes (LEDs), we increased the work function (Φ) of the films using chemical doping with AuCl₃, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and MoO₃; thereby reduced the Schottky barrier height between the RGO/SWCNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWCNT film doped with MoO₃ exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  8. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Film Using Various p-Type Dopants and Its Application to GaN-Based Light-Emitting Diodes.

    Science.gov (United States)

    Lee, Byeong Ryong; Kim, Tae Geun

    2016-06-01

    This paper reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films using various p-type dopants and its application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWNT films on the light-emitting diodes (LEDs), we increased the work function (φ) of the films using chemical doping with AuCl3, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and MoO3; thereby reduced the Schottky barrier height between the RGO/SWNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWNT film doped with MoO3 exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  9. Annealing effect on I-V characteristic of n-ZnO-p-InSe heterojunction

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2015-12-01

    Full Text Available The article is devoted to studying of influence of vacuum low-temperature annealing on the electrical and photoelectric characteristics of n-ZnO-p-InSe heterostructure. Indium monoselenide (InSe is a semiconductor of the A3B6 group of layered compounds. The basic unit consists of two planes of metal atoms sandwiched between two planes of chalcogen atoms (Se-In-In-Se. The absence of dangling bonds on InSe cleaved surface makes it possible to use this semiconductor as a substrate for fabrication of heterostructures based on semiconductor materials with different symmetries and lattice spacings. Zinc oxide (ZnO is the most suitable material for window materials and solar cells buffer layers application due to its marvelous transparency in the range of visible region. InSe single crystals were grown by the Bridgman technique from a nonstoichiometric melt and characterized by a pronounced layered structure along the whole length of a sample. ZnO thin oxide film was formed on freshly cleaved van der Waals surface of InSe layered crystal. n-ZnO-p-InSe heterostructure was prepared by the method of high-frequency magnetron sputtering. Sensitivity spectral areas were identified by MDR-3 monochromator with a resolution of 2.6 nm/mm. The current-voltage characteristics of the n-ZnO-p-InSe heterostructures showed a clearly pronounced diode character. In the forward bias of the initial samples, the diode factor had the value 3.7 at room temperature. It is shown that vacuum low-temperature annealing reduces shunt currents of the heterojunction, which is reflected in the decrease in the values of n from 3.7 to 2.7.

  10. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    International Nuclear Information System (INIS)

    Zhen, Aigong; Ma, Ping; Zhang, Yonghui; Guo, Enqing; Tian, Yingdong; Liu, Boting; Guo, Shikuan; Shan, Liang; Wang, Junxi; Li, Jinmin

    2014-01-01

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal could improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically

  11. Fabrication of InGaN/GaN nanopillar light-emitting diode arrays

    DEFF Research Database (Denmark)

    Ou, Yiyu; Fadil, Ahmed; Ou, Haiyan

    Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction.......Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction....

  12. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin' an, E-mail: layang@xidian.edu.cn; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue [State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2016-04-28

    Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al{sub 0.15}Ga{sub 0.85}N emitter barrier and a 1.7-nm-thick Al{sub 0.25}Ga{sub 0.75}N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al{sub 0.2}Ga{sub 0.8}N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In{sub 0.03}Ga{sub 0.97}N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.

  13. Effect of surface states on electrical characteristic of metal - insulator - semiconductor (MIS) diodes

    International Nuclear Information System (INIS)

    Altindal, S.; Doekme, I.; Tataroglu, A.; Sahingoez, R.

    2002-01-01

    The current-voltage (I-V) characteristics of Metal-Insulator-Semiconductor (MIS) Schottky barrier diodes which is consider distribution of interface states in equilibrium with semiconductor were determined at two (low and high) temperature. The interface states were responsible for non-ideal behavior of the forward I-V characteristic of diodes. Both diodes (n and p type Si) showed non-ideal behavior with an ideality factor 1.6 and 1.85 respectively at room temperature. The higher values of n-type Si were attributed to an order of magnitude higher density of interface states in the both diodes. The effect of an interfacial insulator layer between the metal and semiconductor are also studied. The high density of interface states also caused a reduction in the barrier height of the MIS diode. It is shown that by using Norde function at low and high temperature, barrier height □ b , series resistance R s and ideality factor n can be determined even in the case 1 s obtained from Norde function strongly depend on temperature, and decrease with increasing temperature. In addition, the potential barrier height increases with increasing temperature. The mean density of interface states N ss decreases with increasing temperature. Particularly at low temperature the I-V characteristics are controlled by interface states density

  14. Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks

    International Nuclear Information System (INIS)

    Bouangeune, Daoheung; Lee, Yeji; Cho, Jaehee; Shim, Kyuhwan; Choi, Cheljong; Choi, Sangsik; Cho, Deokho

    2014-01-01

    Transient voltage suppressor (TVS) diodes were fabricated using low-temperature epitaxy technology and were employed to improve the electrostatic discharge (ESD) strength of GaN light emitting diodes (LEDs). The ESD performance and the protection capability of the TVS diodes were investigated using various ESD simulators of the human body model (HBM), the IEC (International Electrotechnical Commission) 61000-4-2 (IEC), and a transmission line pulse (TLP) analysis. According to the IEC, the manufactured TVS diode could withstand in excess of ±30 kV without any degradation in the I-V characteristics; meanwhile, the GaN LED itself exhibited catastrophic degradation caused by weak ESD power. The GaN LED assembled with the TVS diode had improved ESD robustness from ±3.8 kV to ±8 kV according to the HBM, from ±1.2 kV to > ±30 kV according to the IEC, and from 4.3 A to > ±30 A according to the TLP analysis. Furthermore, its performance was maintained perfect I-V manner with negligible changes in radiant power, leakage current and breakdown voltage up to the limit of the ESD simulators. Namely, the manufactured TVS diodes were effective in the protection of sensitive GaN LEDs from very strong ESD shocks.

  15. Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bouangeune, Daoheung; Lee, Yeji; Cho, Jaehee; Shim, Kyuhwan; Choi, Cheljong [Chonbuk National University, Jeonju (Korea, Republic of); Choi, Sangsik; Cho, Deokho [Sigetronics, Inc., Jeonju (Korea, Republic of)

    2014-10-15

    Transient voltage suppressor (TVS) diodes were fabricated using low-temperature epitaxy technology and were employed to improve the electrostatic discharge (ESD) strength of GaN light emitting diodes (LEDs). The ESD performance and the protection capability of the TVS diodes were investigated using various ESD simulators of the human body model (HBM), the IEC (International Electrotechnical Commission) 61000-4-2 (IEC), and a transmission line pulse (TLP) analysis. According to the IEC, the manufactured TVS diode could withstand in excess of ±30 kV without any degradation in the I-V characteristics; meanwhile, the GaN LED itself exhibited catastrophic degradation caused by weak ESD power. The GaN LED assembled with the TVS diode had improved ESD robustness from ±3.8 kV to ±8 kV according to the HBM, from ±1.2 kV to > ±30 kV according to the IEC, and from 4.3 A to > ±30 A according to the TLP analysis. Furthermore, its performance was maintained perfect I-V manner with negligible changes in radiant power, leakage current and breakdown voltage up to the limit of the ESD simulators. Namely, the manufactured TVS diodes were effective in the protection of sensitive GaN LEDs from very strong ESD shocks.

  16. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    Science.gov (United States)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  17. Various vibration modes in a silicon ring resonator driven by p–n diode actuators formed in the lateral direction

    Science.gov (United States)

    Tsushima, Takafumi; Asahi, Yoichi; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-06-01

    In this paper, we describe p–n diode actuators that are formed in the lateral direction on resonators. Because previously reported p–n diode actuators, which were driven by a force parallel to the electrostatic force induced in a p–n diode, were fabricated in the perpendicular direction to the surface, the fabrication process to satisfy the requirement of realizing a p–n junction set in the middle of the plate thickness has been difficult. The resonators in this work are driven by p–n diodes formed in the lateral direction, making the process easy. We have fabricated a silicon ring resonator that has in-plane vibration using p–n–p and n–p–n diode actuators formed in the lateral direction. First, we consider a space charge model that can sufficiently accurately describe the force induced in p–n diode actuators and compare it with the capacitance model used in most computer simulations. Then, we show that multiplying the vibration amplitude calculated by computer simulation by the modification coefficient of 4/3 provides the vibration amplitude in the p–n diode actuators. Good agreement of the theory with experimental results of the in-plane vibration measured for silicon ring resonators is obtained. The computer simulation is very useful for evaluating various vibration modes in resonators driven by the p–n diode actuators. The small amplitude of the p–n diode actuator measured in this work is expected to increase greatly with increased doping of the actuator.

  18. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  19. Colour-tunable light-emitting diodes based on InP/GaP nanostructures

    International Nuclear Information System (INIS)

    Hatami, Fariba; Masselink, W Ted; Harris, James S

    2006-01-01

    We describe a novel colour-tunable light-emitting diode whose operation is based on direct band-gap emission from coupled configurations of InP quantum dots and quantum wells embedded in GaP. The control of the emission colour stems from a marked difference in the current dependence of intensities of two different emission processes. At lower currents, the emission is dominated by the 720 nm luminescence from the quantum dots and appears red; at higher currents, the emission is dominated by the 550 nm quantum-well luminescence and the perceived colour is green. Thus, we are able to tune the colour of such diodes from red to green by means of drive current. A multi-colour pixel can be realized by a single diode, with rapid switching between colour states to provide a range of colour mix

  20. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements. Application to n-InP

    International Nuclear Information System (INIS)

    Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Srour, Hussein

    2011-01-01

    Based on current voltage (I—V g ) and capacitance voltage (C—V g ) measurements, a reliable procedure is proposed to determine the effective surface potential V d (V g ) in Schottky diodes. In the framework of thermionic emission, our analysis includes both the effect of the series resistance and the ideality factor, even voltage dependent. This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C—V g measurements. The study clearly shows that the depletion width and the flat band barrier height deduced from C—V g , which are important parameters directly related to the surface potential in the semiconductor, should be estimated within our approach to obtain more reliable information. (semiconductor devices)

  1. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2017-03-01

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  2. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    Energy Technology Data Exchange (ETDEWEB)

    Soheyli, Ehsan [University of Arak, Department of Physics, Faculty of Science (Iran, Islamic Republic of); Sahraei, Reza, E-mail: r.sahraei@ilam.ac.ir [University of Ilam, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Nabiyouni, Gholamreza [University of Arak, Department of Physics, Faculty of Science (Iran, Islamic Republic of)

    2017-03-15

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from ~340 to ~382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  3. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  4. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters.

    Science.gov (United States)

    Chen, Bingkun; Pradhan, Narayan; Zhong, Haizheng

    2018-01-18

    Quantum dots with fabulous size-dependent and color-tunable emissions remained as one of the most exciting inventories in nanomaterials for the last 3 decades. Even though a large number of such dot nanocrystals were developed, CdSe still remained as unbeatable and highly trusted lighting nanocrystals. Beyond these, the ternary I-III-VI family of nanocrystals emerged as the most widely accepted greener materials with efficient emissions tunable in visible as well as NIR spectral windows. These bring the high possibility of their implementation as lighting materials acceptable to the community and also to the environment. Keeping these in mind, in this Perspective, the latest developments of ternary I-III-VI nanocrystals from their large-scale synthesis to device applications are presented. Incorporating ZnS, tuning the composition, mixing with other nanocrystals, and doping with Mn ions, light-emitting devices of single color as well as for generating white light emissions are also discussed. In addition, the future prospects of these materials in lighting applications are also proposed.

  5. Effect of N incorporation on the characteristics of InSbN P–N diodes

    International Nuclear Information System (INIS)

    Lim, K.P.; Pham, H.T.; Yoon, S.F.; Tan, K.H.

    2012-01-01

    We report on the effect of N incorporation in the characteristics of the 2 μm thick InSbN photoabsorption layer of a p–n diode grown by molecular beam epitaxy using a radio-frequency plasma-assisted nitrogen source. As compared to N free InSb layer, the absorption wavelength extends to near 9 μm. On the other hand, high reverse dark current and series resistances are observed in the electrical characteristics of the InSbN diode which are contributed with the presence of planar growth defects. These results will be useful to those working on midinfrared photodetectors.

  6. AlGaN-based laser diodes for the short-wavelength ultraviolet region

    International Nuclear Information System (INIS)

    Yoshida, Harumasa; Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Uchiyama, Kazuya; Kan, Hirofumi

    2009-01-01

    We have demonstrated the room-temperature operation of GaN/AlGaN and indium-free AlGaN multiple-quantum-well (MQW) laser diodes under the pulsed-current mode. We have successfully grown low-dislocation-density AlGaN films with AlN mole fractions of 20 and 30% on sapphire substrates using the hetero-facet-controlled epitaxial lateral overgrowth (hetero-FACELO) method. GaN/AlGaN and AlGaN MQW laser diodes have been fabricated on the low-dislocation-density Al 0.2 Ga 0.8 N and Al 0.3 Ga 0.7 N films, respectively. The GaN/AlGaN MQW laser diodes lased at a peak wavelength ranging between 359.6 and 354.4 nm. A threshold current density of 8 kA cm -2 , an output power as high as 80 mW and a differential external quantum efficiency (DEQE) of 17.4% have been achieved. The AlGaN MQW laser diodes lased at a peak wavelength down to 336.0 nm far beyond the GaN band gap. For the GaN/AlGaN MQW laser diodes, the modal gain coefficient and the optical internal loss are estimated to be 4.7±0.6 cm kA -1 and 10.6±2.7 cm -1 , respectively. We have observed that the characteristic temperature T 0 ranges from 132 to 89 K and DEQE shows an almost stable tendency with increase of temperature. A temperature coefficient of 0.049 nm K -1 is also found for the GaN/AlGaN MQW laser diode. The results for the AlGaN-based laser diodes grown on high-quality AlGaN films presented here will be essential for the future development of laser diodes emitting much shorter wavelengths.

  7. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    OpenAIRE

    H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; B. GRUZZA; J. M. BLUET; C. BRU-CHEVALLIER

    2014-01-01

    The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semicondu...

  8. Careful stoichiometry monitoring and doping control during the tunneling interface growth of an n + InAs(Si)/p + GaSb(Si) Esaki diode

    Science.gov (United States)

    El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.

    2018-02-01

    In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.

  9. The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates

    Science.gov (United States)

    Brummer, Gordon

    Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers

  10. Prepare core–multishell CdSe/ZnS nanocrystals with pure color and controlled emission by tri-n-octylphosphine-assisted method

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cuiling, E-mail: rencl@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Hao, Junjie, E-mail: haojj@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Chen, Hongli [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Wang, Kai, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Wu, Dan [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2015-10-30

    Graphical abstract: The core–multishell CdSe/ZnS QDs synthesized by the TOP-assisted SILAR method represent pure color, high luminescence and controlled emission wavelength, which can be continuously tuned by simply varying the emission of the core nanocrystals. - Highlights: • The prepared core–multishell QDs have pure color emission (FWHM, <25 nm) even after coating with 3-monolayer ZnS. • The emission wavelength can be continuously adjusted by simply varying the ODA:Cd ratio for preparing the core nanocrystals. • The CdSe/ZnS QDs still have good optical properties synthesized at 30 multi scales. • The knowledge gained in this study enabled us to better understand the mechanism of TOP-assisted method. - Abstract: Core–multishell semiconductor nanocrystals have great potential in light emitting devices (LEDs) display, fluorescent biomarkers and luminescent solar concentrators. However, their applications are strongly limited due to the wide full-width at half-maximum (FWHM), inaccurate controllable emission wavelength, and decreased quantum yield as the shell coverage growth. So there still remains a great challenge for improving the photoluminescence properties of core–multishell quantum dots. In this work, tri-n-octylphosphine (TOP) assisted method was used to prepare CdSe/ZnS QDs with narrow FWHM and controlled emission wavelength, the influence of experimental conditions on the photoluminescent properties of the core–multishell QDs were investigated. The experimental results indicated this is an effective method to prepare core–multishell QDs with pure color emission (FWHM value is smaller than 25 nm after coating with 3 monolayers of ZnS), accurately controlled emission and high QY (>95%). This is the smallest FWHM for core–multishell QDs. The emission wavelength of the as-prepared core–multishell QDs can be continuously tuned by simply varying the emission of the core nanocrystals. Furthermore, the knowledge gained in this study

  11. Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 202¯1¯ GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers.

    Science.gov (United States)

    Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P

    2018-01-22

    The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.

  12. Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta; Tripathi, S.K. [Panjab University, Centre of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2013-11-15

    This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al{sub 2}O{sub 3}/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N{sub ss}) and series resistance (R{sub s}) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias I-V, C-V, and G/w-V characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al{sub 2}O{sub 3} layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R{sub s}) and barrier height ({phi} {sub b}) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias I-V data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height ({phi} {sub e}) for MS and MIS diode. The N{sub ss} values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode. (orig.)

  13. Novel High Power Type-I Quantum Well Cascade Diode Lasers

    Science.gov (United States)

    2017-08-30

    Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved

  14. The Numerical Simulation of the Nanosecond Switching of a p-SOS Diode

    Science.gov (United States)

    Podolska, N. I.; Lyublinskiy, A. G.; Grekhov, I. V.

    2017-12-01

    Abrupt high-density reverse current interruption has been numerically simulated for switching from forward to reverse bias in a silicon p + P 0 n + structure ( p-SOS diode). It has been shown that the current interruption in this structure occurs as a result of the formation of two dynamic domains of a strong electric field in regions in which the free carrier concentration substantially exceeds the concentration of the doping impurity. The first domain is formed in the n + region at the n + P 0 junction, while the second domain is formed in the P 0 region at the interface with the p + layer. The second domain expands much faster, and this domain mainly determines the current interruption rate. Good agreement is achieved between the simulation results and the experimental data when the actual electric circuit determining the electron-hole plasma pumping in and out is accurately taken into account.

  15. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  16. Bis{2-[(diisopropylphosphanylamino]pyridine-κ2N1,P}copper(I hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Özgür Öztopcu

    2010-07-01

    Full Text Available The crystal structure of the title compound, [Cu(C11H19N2P2]PF6, is composed of discrete [Cu(PN-iPr2]+ cations [PN-iPr is 2-(diisopropylphosphanylaminopyridine] and PF6− anions. The Cu(I atom is bis-chelated by two independent PN-iPr ligands. It has a distorted tetrahedral coordination by two P atoms [Cu—P = 2.2277 (4 and 2.2257 (4 Å] and two pyridine N atoms [Cu—N = 2.0763 (11 and 2.0845 (12 Å]. Bond angles about Cu vary from 85.11 (3 (P—Cu—N to 130.37 (2° (P—Cu—P. In the crystal, N—H...F hydrogen bonds link the Cu complexes and the PF6− anions into continuous chains, which show a cross-bedded spatial arrangement. In addition, several weaker C—H...F interactions contribute to the coherence of the structure.

  17. Density of states measurements in a p-i-n solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, R.S.; Wang, Q. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe results of density of states (DOS) profiling in p-i-n solar-cell devices using drive-level capacitance (DLC) techniques. Near the p-i interface the defect density is high, decreasing rapidly into the interior, reaching low values in the central region of the cell, and rising rapidly again at the n-i interface. They show that the states in the central region are neutral dangling-bond defects, whereas those near the interfaces with the doped layers are charged dangling bonds.

  18. Multidentate-Protected Colloidal Gold Nanocrystals: pH Control of Cooperative Precipitation and Surface Layer Shedding

    Science.gov (United States)

    Kairdolf, Brad A.; Nie, Shuming

    2011-01-01

    Colloidal gold nanocrystals with broad size tunability and unusual pH-sensitive properties have been synthesized by using multidentate polymer ligands. Containing both carboxylic functional groups and sterically hindered aliphatic chains, the multidentate ligands are able to both reduce gold precursors and to stabilize gold nanoclusters during nucleation and growth. The “as-synthesized” nanocrystals are protected by an inner coordinating layer and an outer polymer layer, and are soluble in water and polar solvents. When the solution pH is lowered by just 0.6 units (from pH 4.85 to 4.25), the particles undergo a dramatic cooperative transition from being soluble to insoluble, allowing rapid isolation, purification, and redispersion of the multidentate-protected nanocrystals. A surprise finding is that when a portion of the surface carboxylate groups is neutralized by protonation, the particles irreversibly shed their outer polymer layer and become soluble in nonpolar organic solvents. Further, the multidentate polymer coatings are permeable to small organic molecules, in contrast to tightly packed self-assembled monolayers of alkanethiols on gold. These insights are important towards the design of “smart” imaging and therapeutic nanoparticles that are activated by small pH changes in the tumor interstitial space or endocytic organelles. PMID:21510704

  19. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  20. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  1. A comparative study of the electrodeposition and the aqueous chemical growth techniques for the utilization of ZnO nanorods on p-GaN for white light emitting diodes

    Science.gov (United States)

    Kishwar, S.; ul Hasan, K.; Alvi, N. H.; Klason, P.; Nur, O.; Willander, M.

    2011-01-01

    Vertically well aligned zinc oxide nanorods (ZnO NRs) were grown on p-GaN by electrodeposition (ED) and aqueous chemical growth (ACG) techniques and the structures were employed to fabricate white light emitting diodes (LEDs). Room temperature current voltage ( I-V), photoluminescence (PL), and electroluminescence (EL) measurements were performed to investigate and compare both LEDs. In general, the I-V characteristics and the PL spectra of both LEDs were rather similar. Nevertheless, the EL of the ED samples showed an extra emission peak shoulder at 730 nm. Moreover, at the same injection current, the EL spectrum of the ED light emitting diode showed a small UV shift of 12 nm and its white peak was found to be broader when compared to the ACG grown LED. The broadening of the EL spectrum of the LED grown by ED is due to the introduction of more radiative deep level defects. The presented LEDs have shown excellent color rendering indexes reaching a value as high as 95. These results indicate that the ZnO nanorods grown by both techniques possess very interesting electrical and optical properties but the ED is found to be faster and more suitable for the fabrication of white LEDs.

  2. Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes

    Science.gov (United States)

    Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson

    2015-03-01

    Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.

  3. Carrier-injection studies in GaN-based light-emitting-diodes

    Science.gov (United States)

    Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu

    2015-09-01

    Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.

  4. Background story of the invention of efficient blue InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuji [University of California, Santa Barbara, CA (United States)

    2015-06-15

    Shuji Nakamura discovered p-type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid-state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    H. MAZARI

    2014-05-01

    Full Text Available The current-voltage (I-V characteristics of Pt/(n.u.d-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.

  6. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  7. Design and experimental testing of air slab caps which convert commercial electron diodes into dual purpose, correction-free diodes for small field dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Charles, P. H., E-mail: paulcharles111@gmail.com [Department of Radiation Oncology, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Queensland 4102, Australia and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Cranmer-Sargison, G. [Department of Medical Physics, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Saskatchewan S7L 3P6, Canada and College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5 (Canada); Thwaites, D. I. [Institute of Medical Physics, School of Physics, University of Sydney, New South Wales 2006 (Australia); Kairn, T. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia and Genesis CancerCare Queensland, The Wesley Medical Centre, Suite 1, 40 Chasely Street, Auchenflower, Brisbane, Queensland 4066 (Australia); Crowe, S. B.; Langton, C. M.; Trapp, J. V. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Pedrazzini, G. [Genesis CancerCare Queensland, The Wesley Medical Centre, Suite 1, 40 Chasely Street, Auchenflower, Brisbane, Queensland 4066 (Australia); Aland, T.; Kenny, J. [Epworth Radiation Oncology, 89 Bridge Road, Richmond, Melbourne, Victoria 3121 (Australia)

    2014-10-15

    Purpose: Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods: Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (OR{sub Det}{sup f{sub c}{sub l}{sub i}{sub n}}) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to OR{sub Det}{sup f{sub c}{sub l}{sub i}{sub n}} measured using an IBA stereotactic field diode (SFD). k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which is “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r

  8. Specific features of the behaviour of excess currents in tunnel diodes of n-GaAs

    International Nuclear Information System (INIS)

    Vyatkin, A.P.; Glushchenko, V.A.; Parkhomenko, R.P.; Pastor, A.P.

    1981-01-01

    The behaviour of currents in the field of a valley of volt-ampere characteristics (VAC) and the effect of 2.0 MeV electron bombardment on the characteristics of tunnel n-GaAs of TD diodes is considered. Release of tunnel and thermal current components has shown that the first component of excess currents is due to electron tunneling through intermediate states situated in a wide region of the forbidden zone. The nature of the second current component is explained by far reaching into the region of the forbidden zone tails of electron states on which energy impurity states can superimpose. Highly-alloyed TD with concentrations n>=3x10 19 cm -3 and p=(1.5-2)x10 20 cm -3 practically are not sensitive to doses up to phi approximately 2x10 17 el/cm 2 . Radiation induced defects related with electron bombardment is rather small. Specific features of the preparation of n-GaAs tunnel diodes lead to the fact that as a result of complex alloying of the p-region of the diode a relatively slow increase of excess currents as compared with the TD corresponding currents from the p-GaAs is observed

  9. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Nishikawa, Junichi; Kosaka, Noboru; Ohtake, Tohru; Watanabe, Toshiaki; Yoshikawa, Kohki; Iio, Masahiro [Tokyo Univ. (Japan). Faculty of Medicine

    1989-09-01

    Eighteen patients with Alzheimer's disease (AD), 5 patients with Pick disease (PD), 6 patients with other types of degenerative dementia (O) and 12 age-matched normal control subjects (N) were studied using N-isopropyl p-(I-123)iodoamphetamine (I-123 IMP) with SPECT. Regional to cerebellar activity (R/CE) ratio and frontal to parietal (F/R) activity ratio were evaluated in each case. I-123 IMP-SPECT revealed focal abnormality in all cases in AD, PD, O group, while XCT and/or MRI were normal or showed cerebral atrophy without focal abnormal density or intensity. In AD group, R/CE ratio in all the regions except for bilateral Rolandic area and left primary visual cortex were significantly lower (p<0.05 or p<0.01) than that in N group, and F/P ratio were significantly higher (p<0.01) than that in P and O group. In conclusion, I-123 IMP-SPECT is useful to detect focal perfusion abnormality in dementia and may be of value in differentiating Alzheimer's disease from dementia of non-Alzheimer type. (author).

  10. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in Alzheimer's disease

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Nishikawa, Junichi; Kosaka, Noboru; Ohtake, Tohru; Watanabe, Toshiaki; Yoshikawa, Kohki; Iio, Masahiro

    1989-01-01

    Eighteen patients with Alzheimer's disease (AD), 5 patients with Pick disease (PD), 6 patients with other types of degenerative dementia (O) and 12 age-matched normal control subjects (N) were studied using N-isopropyl p-[I-123]iodoamphetamine (I-123 IMP) with SPECT. Regional to cerebellar activity (R/CE) ratio and frontal to parietal (F/R) activity ratio were evaluated in each case. I-123 IMP-SPECT revealed focal abnormality in all cases in AD, PD, O group, while XCT and/or MRI were normal or showed cerebral atrophy without focal abnormal density or intensity. In AD group, R/CE ratio in all the regions except for bilateral Rolandic area and left primary visual cortex were significantly lower (p<0.05 or p<0.01) than that in N group, and F/P ratio were significantly higher (p<0.01) than that in P and O group. In conclusion, I-123 IMP-SPECT is useful to detect focal perfusion abnormality in dementia and may be of value in differentiating Alzheimer's disease from dementia of non-Alzheimer type. (author)

  11. Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics

    Science.gov (United States)

    Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin

    2017-10-01

    We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.

  12. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions.

    Science.gov (United States)

    Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian

    2016-10-12

    Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.

  13. Measurement of Effective Drift Velocities of Electrons and Holes in Shallow Multiple Quantum Well P-I Modulators

    Science.gov (United States)

    Yang, Ching-Mei

    1995-01-01

    P-i-n diodes containing multiple quantum wells (MQWs) in the i-region are the building blocks for photonic devices. When we apply electric field across these devices and illuminate it with light, photo-carriers are created in the i-region. These carriers escape from the wells and drift toward the electrodes; thus photo-voltage is created. The rise- and decay-times of photo-voltages are related to the transport of carriers. In this dissertation, we present theoretical and experimental studies on carrier transport mechanisms of three shallow MQW GaAs/Al _{x}Ga_{1-x}As p-i-n diodes (x = 0.02, 0.04, 0.08) at various bias voltages. We start with the description of the sample structures and their package. We then present the characteristics of these samples including their transmission spectra and responsivity. We will demonstrate that the over-all high quality of these samples, including a strong exciton resonant absorption, ~100% internal quantum efficiencies and completely depleted i-region at bias between +0.75 V to -5 V bias. In our theoretical studies, we first discuss the possible carrier sweep-out mechanisms and estimate the response times associated with these mechanisms. Based on our theoretical model, we conclude that only the drift times of carriers and enhanced diffusion times are important for shallow MQW p-i-n diodes: at high bias, the fast drift times of electrons and holes control the rise-times; at low bias, the slow drift times of holes and the enhanced diffusion times control the decay-times. We have performed picosecond time-resolved pump/probe electro-absorption measurements on these samples. We then obtained the drift times, effective drift velocities and effective mobilities of electrons and holes for these devices. We find that the carrier effective drift velocities (especially for holes) seemed insensitive to the Al concentration in the barriers (in the range of x = 2% to 8%), even though the x = 2% sample does show an overall faster response

  14. Current Transport Mechanisms and Capacitance Characteristic in the InN/InP Schottky Structures

    Directory of Open Access Journals (Sweden)

    K. AMEUR

    2014-05-01

    Full Text Available In this work, electrical characterization of the current-voltage and capacitance- voltage curves for the Metal/InN/InP Schottky structures are investigated. We have studied electrically thin InN films realized by the nitridation of InP (100 substrates using a Glow Discharge Source (GDS in ultra high vacuum. The I (V curves have exhibited anomalous two-step (kink forward bias behaviour; a suitable fit was only obtained by using a model of two discrete diodes in parallel. Thus, we have calculated, using I(V and C(V curves of Hg/InN/InP Schottky structures, the ideality factor n, the saturation current Is, the barrier height jB, the series resistance Rs, the doping concentration Nd and the diffusion voltage Vd. We have also presented the band diagram of this heterojunction which indicates the presence of a channel formed by holes at the interface InN/InP which explain by the presence of two-dimensional electron gas (2-DEG and this was noticed in the presentation of characteristics C(V.

  15. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, A., E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Coelho, S.M.M.; Auret, F.D.; Mtangi, W. [Department of Physics, University of Pretoria, 0002 (South Africa); Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Nel, J.M.; Diale, M. [Department of Physics, University of Pretoria, 0002 (South Africa)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Ir/n-Ge (1 0 0) Schottky diodes were characterized using I-V, C-V and SEM techniques under various annealing conditions. Black-Right-Pointing-Pointer The variation of the electrical and structural properties can be due to effects phase transformation during annealing. Black-Right-Pointing-Pointer Thermal stability of these diodes is maintained up to 500 Degree-Sign C anneal. Black-Right-Pointing-Pointer SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current-voltage (I-V) and capacitance-voltage (C-V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 Degree-Sign C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C.

  16. Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Malinverni, Marco; Grandjean, Nicolas

    2016-02-01

    We grew heavily Mg-doped GaN using ammonia molecular-beam epitaxy. The use of low growth temperature (740 °C) allows decreasing the incorporation of donor-like defects (p-type doping compensation. As a result, a net acceptor concentration of 7 × 1019 cm-3 was achieved, and the hole concentration measured by Hall effect was as high as 2 × 1019 cm-3 at room temperature. Using such a high Mg doping level, we fabricated GaN backward diodes without polarization-assisted tunneling. The backward diodes exhibited a tunneling-current density of 225 A/cm2 at a reverse bias of -1 V at room temperature.

  17. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  18. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  19. Electrical and structural properties of a stacked metal layer contact to n-InP

    International Nuclear Information System (INIS)

    Huang, Wen-Chang; Horng, Chia-Tsung

    2011-01-01

    In this study, we found that the double metal contact structure in Pt/Al/n-InP diodes provides better rectification characteristics than conventional single-metal/n-InP Schottky diodes. The effective barrier height was measured to be 0.67 eV for a 400 deg. C-annealed Pt/Al/n-InP diode sample. The increase in the barrier height is attributed to the formation of Al 2 O 3 at the metal/n-InP contact interface during thermal annealing. The formation of the phase Al 2 O 3 phase was monitored by X-ray diffraction (XRD) analysis. The corresponding element profiles of Al and O were also confirmed at the metal/n-InP contact interface using secondary ion mass spectrum (SIMS) analysis. The lowering of the Schottky barrier height due to the inhomogeneity at the metal/n-InP junction is also discussed on the basis of the TE theory. The distribution of local effective Schottky barrier heights was explained by a model incorporating the existence of double Gaussian barrier heights, which represent the high barrier and low barrier of the full distribution in the temperature ranges of 83-198 and 198-300 K.

  20. Improved charge collection of the buried p-i-n a-Si:H radiation detectors

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Street, R.A.

    1989-09-01

    Charge collection in hydrogenated amorphous silicon (a-Si:H) radiation detectors is improved for high LET particle detection by adding thin intrinsic layers to the usual p-i-n structure. This buried p-i-n structure enables us to apply higher bias and the electric field is enhanced. When irradiated by 5.8 MeV α particles, the 5.7 μm thick buried p-i-n detector with bias 300V gives a signal size of 60,000 electrons, compared to about 20,000 electrons with the simple p-i-n detectors. The improved charge collection in the new structure is discussed. The capability of tailoring the field profile by doping a-Si:H opens a way to some interesting device structures. 17 refs., 7 figs

  1. Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joong; Ryu, Geun-Hwan; Yang, Won-Bo; Ryu, Han-Youl [Inha University, Incheon (Korea, Republic of)

    2014-11-15

    We present a method for determining the ideality factor of GaN-based light-emitting diodes (LEDs) by using the measured photovoltaic characteristics. The relation between the short-circuit current and the open-circuit voltage is obtained as the incident power of a laser diode emitting at 405 nm is varied, which is used to determine the ideality factor of the LED. From the photovoltaic measurements, the ideality factors of a blue and a green LED are determined to be 1.16 and 1.78, respectively. The ideality factors obtained by using the photovoltaic measurement are found to be much smaller than those obtained by using the I - V curve without illumination, which is believed to result from the different carrier generation and transport mechanisms. Investigating the photovoltaic characteristics of GaN-based LEDs is expected to provide insight into the origin of the high diode ideality factor in GaN-based devices.

  2. Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics

    International Nuclear Information System (INIS)

    Kim, Hyun-Joong; Ryu, Geun-Hwan; Yang, Won-Bo; Ryu, Han-Youl

    2014-01-01

    We present a method for determining the ideality factor of GaN-based light-emitting diodes (LEDs) by using the measured photovoltaic characteristics. The relation between the short-circuit current and the open-circuit voltage is obtained as the incident power of a laser diode emitting at 405 nm is varied, which is used to determine the ideality factor of the LED. From the photovoltaic measurements, the ideality factors of a blue and a green LED are determined to be 1.16 and 1.78, respectively. The ideality factors obtained by using the photovoltaic measurement are found to be much smaller than those obtained by using the I - V curve without illumination, which is believed to result from the different carrier generation and transport mechanisms. Investigating the photovoltaic characteristics of GaN-based LEDs is expected to provide insight into the origin of the high diode ideality factor in GaN-based devices.

  3. Analysis of waveguide architectures of InGaN/GaN diode lasers by nearfield optical microscopy

    Science.gov (United States)

    Friede, Sebastian; Tomm, Jens W.; Kühn, Sergei; Hoffmann, Veit; Wenzel, Hans

    2017-02-01

    Waveguide (WG) architectures of 420-nm emitting InAlGaN/GaN diode lasers are analyzed by photoluminescence (PL) and photocurrent (PC) spectroscopy using a nearfield scanning optical microscope (NSOM) for excitation and detection. The measurements with a spatial resolution of 100 nm are implemented by scanning the fiber tip along the unprepared front facets of standard devices. PL is collected by the fiber tip, whereas PCs are extracted from the contacts that are anyway present for power supply. The mechanisms of signal generation are addressed in detail. The components of the `optical active region', multiple quantum wells (MQW), WGs, and cladding layers are separately inspected. Even separate analysis of p- and n-sections of the WG become possible. Defect levels are detected in the p-part of the WG. Their presence is consistent with the doping by Mg. An increased efficiency of carrier capture into InGaN/GaN WGs compared to GaN WGs is observed. Thus, beyond the improved optical confinement, the electrical confinement is improved, as well. NSOM PL and PC at GaN based devices do not reach the clarity and spatial resolution for WG mode analysis as seen before for GaAs based devices. This is due to higher modal absorption and higher WG losses. NSOM based optical analysis turns out to be an efficient tool for analysis of single layers grown into InAlGaN/GaN diode laser structures, even if this analysis is done at a packaged ready-to-work device.

  4. Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction

    International Nuclear Information System (INIS)

    Mridha, S.; Basak, D.

    2007-01-01

    A n-ZnO/p-Si thin film heterojunction has been fabricated by a low cost sol-gel technique. The wavelength dependent photoresponse properties of the heterojunction is investigated in detail by studying the effect of light illumination on current-voltage (I-V) characteristics, photocurrent, and photocapacitance spectra at room temperature. It shows good diode characteristics with I F /I R =3.4x10 3 at 4 V and reverse leakage current density of 7.6x10 -5 A cm -2 at -5 V. From the photocurrent spectra, it is observed that the visible photons are absorbed in the depleted p-Si under reverse bias conditions, while ultraviolet (UV) photons are absorbed in the depleted n-ZnO under positive bias conditions. This indicates that such a sol-gel n-ZnO/p-Si thin film heterojunction can be used to sense both UV and visible photons though the photoresponse for UV is much slower than that of visible. The photocapacitance measurements suggest the presence of a shallow defect level in the sol-gel derived ZnO film which acts as an electron trap at ∼0.16 eV below the conduction band

  5. The ZnO p-n homojunctions modulated by ZnMgO barriers

    International Nuclear Information System (INIS)

    Yang, Jing-Jing; Fang, Qing-Qing; Wang, Dan-Dan; Du, Wen-Han

    2015-01-01

    In this paper, we fabricated the ultrathin ZnO p-n homojunctions, which modulated by ZnMgO asymmetrical double barriers (ADB). The ADB p-n homojunctions displays step-like curve in the absorption spectrums, this is the first time that quantum confinement effect has been observed in the absorption spectrums at room temperature (RT). The Hall-effect data confirm there is 2-dimensional electron gas in the interface of the ZnMgO ADB p-n junctions. The quantum confinement effect enhances the hall-mobility μ to 10 3 cm 2 V −1 s −1 based on the polarity of the films. There was no rectification property in the ZnO homojunctions with thickness of 250nm, however, when the ADB was added in the n-type layer of the homojunctions, it displays a typical Zener diode rectification property in the I-V curve

  6. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.

    Science.gov (United States)

    Li, Liang; Reiss, Peter

    2008-09-03

    InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.

  7. Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals

    International Nuclear Information System (INIS)

    Huang Lihui; Qin Guanshi; Arai, Yusuke; Jose, Rajan; Suzuki, Takenobu; Ohishi, Yasutake; Yamashita, Tatsuya; Akimoto, Yusuke

    2007-01-01

    Transparent Tb 3+ and Yb 3+ codoped oxyfluoride glass ceramics containing CaF 2 nanocrystals were prepared by melt quenching and subsequent heat treatment. Crystallization kinetics of CaF 2 nanocrystals was investigated by differential scanning calorimetric method. The average apparent activation energy E a of the crystallization was ∼498 kJ/mol. Moreover, the value of the Avrami exponent n was 1.01. These results suggest that the crystallization mechanism of CaF 2 is a diffusion controlled growth process of needles and plates of finite long dimensions. X-ray diffraction patterns and transmission electron microscopy image confirmed the CaF 2 nanocrystals in the glass ceramic. Ultraviolet (UV) and visible emission spectra of the as-made glass and the glass ceramic with an excitation of a 974 nm laser diode were recorded at room temperature. An intense UV emission at 381 nm was observed in the glass ceramic. The origin of the enhancement of the emission at 381 nm was investigated using spectroscopic technique and Judd-Ofelt analysis. The enhancement of the emission at 381 nm could be attributed to the change of the ligand field of Tb 3+ ions due to the incorporation of some Tb 3+ and Yb 3+ ions into CaF 2 nanocrystals in the glass ceramic

  8. Re-evaluation of microscopic and integral cross-section data for important dosimetry reactions. Re-evaluation of the excitation functions for the 24Mg(n,p)24Na, 32S(n,p)32P, 60Ni(n,p)60m+gCo, 63Cu(n,2n)62Cu, 65Cu(n,2n)64Cu, 64Zn(n,p)64Cu, 115In(n,2n)114mIn, 127I(n,2n)126I, 197Au(n,2n)196Au and 199Hg(n,n')199mHg reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2008-08-01

    Re-evaluations of cross sections and their associated covariance matrices have been carried out for ten dosimetry reactions: - excitation functions for the 63 Cu(n,2n) 62 Cu, 65 Cu(n,2n) 64 Cu, 64 Zn(n,p) 64 Cu, 115 In(n,2n) 114m In and 199 Hg(n,n') 199m Hg reactions were re-evaluated over the neutron energy range from threshold to 20 MeV; - excitation functions for the 24 Mg(n,p) 24 Na, 32 S(n,p) 32 P and 60 Ni(n,p) 60m+g Co were reevaluated in the energy range from threshold to 21 MeV; - excitation functions for the 127 I(n,2n) 126 I and 197 Au(n,2n) 196 Au reactions were reevaluated in the energy range from threshold to 32 and 40 MeV, respectively. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections derived from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  9. Edge and defect luminescence of powerful ultraviolet InGaN/GaN light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shamirzaev, V. T., E-mail: tim@isp.nsc.ru; Gaisler, V. A. [Novosibirsk State Technical University (Russian Federation); Shamirzaev, T. S. [Russian Academy of Science, Siberian Branch, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2016-11-15

    The spectrum of ultraviolet (UV) InGaN/GaN light-emitting diodes and its dependence on the current flowing through the structure are studied. The intensity of the UV contribution to the integrated diode luminescence increases steadily with increasing density of current flowing through the structure, despite a drop in the emission quantum efficiency. The electroluminescence excitation conditions that allow the fraction of UV emission to be increased to 97% are established. It is shown that the nonuniform generation of extended defects, which penetrate the active region of the light-emitting diodes as the structures degrade upon local current overheating, reduces the integrated emission intensity but does not affect the relative intensity of diode emission in the UV (370 nm) and visible (550 nm) spectral ranges.

  10. Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

    Science.gov (United States)

    Niteesh Reddy, Varra; Reddy, M. Siva Pratap; Gunasekhar, K. R.; Lee, Jung-Hee

    2018-04-01

    This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current-voltage-temperature, turn-on voltage-temperature and series resistance-temperature in the high-temperature range of 300-420 K. It is observed that an exponential decrease in the series resistance ( R S) and increase in the ideality factor ( n) and barrier height ( ϕ b) with increase in temperature. The thermal coefficient ( K j) is determined to be - 1.3 mV K-1 at ≥ 300 K. The effective ϕ b is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature ( T 0) resulting from the Cheung's functions [d V/d(ln I) vs. I and H( I) vs. I], is seen that there is good agreement between the T 0 values from both Cheung's functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.

  11. Thermal stability study of semimetal graphite n-InP and n-GaN Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2013-01-01

    Roč. 28, č. 5 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Gallium nitride * Schottky barrier diodes * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  12. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method

    Science.gov (United States)

    Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young

    2018-02-01

    The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.

  13. Single In x Ga1-x As nanowire/p-Si heterojunction based nano-rectifier diode.

    Science.gov (United States)

    Sarkar, K; Palit, M; Guhathakurata, S; Chattopadhyay, S; Banerji, P

    2017-09-20

    Nanoscale power supply units will be indispensable for fabricating next generation smart nanoelectronic integrated circuits. Fabrication of nanoscale rectifier circuits on a Si platform is required for integrating nanoelectronic devices with on-chip power supply units. In the present study, a nanorectifier diode based on a single standalone In x Ga 1-x As nanowire/p-Si (111) heterojunction fabricated by metal organic chemical vapor deposition technique has been studied. The nanoheterojunction diodes have shown good rectification and fast switching characteristics. The rectification characteristics of the nanoheterojunction have been demonstrated by different standard waveforms of sinusoidal, square, sawtooth and triangular for two different frequencies of 1 and 0.1 Hz. Reverse recovery time of around 150 ms has been observed in all wave response. A half wave rectifier circuit with a simple capacitor filter has been assembled with this nanoheterojunction diode which provides 12% output efficiency. The transport of carriers through the heterojunction is investigated. The interface states density of the nanoheterojunction has also been determined. Occurrence of output waveforms incommensurate with the input is attributed to higher series resistance of the diode which is further explained considering the dimension of p-side and n-side of the junction. The sudden change of ideality factor after 1.7 V bias is attributed to recombination through interface states in space charge region. Low interface states density as well as high rectification ratio makes this heterojunction diode a promising candidate for future nanoscale electronics.

  14. Effects of a highly Si-doped GaN current spreading layer at the n+-GaN/multi-quantum-well interface on InGaN/GaN blue-light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, C. S.; Cho, H. K.; Choi, R. J.; Hahn, Y. B.; Lee, H. J.; Hong, C. H.

    2004-01-01

    Highly Si-doped GaN thin current spreading layer (CSL) with various carrier concentrations were inserted before the n + -GaN/multi-quantum-well (MQW) interface controlled by the growth rate and the modulated Si-doping in InGaN/GaN blue light-emitting diodes (LEDs), and their effects were investigated by using capacitance-voltage (C-V), current-voltage (I-V), and output power measurements. The LEDs with a highly Si-doped CSL show enhanced I-V characteristics and increased output power with increasing carrier concentration up to some critical point in the CSL. This means that proper high Si-doping in some limited area before the interface may enhance the device performance through the current spreading effect.

  15. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    Science.gov (United States)

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  16. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    Science.gov (United States)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  17. Bright trions in direct-bandgap silicon nanocrystals revealed bylow-temperature single-nanocrystal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Pelant, Ivan; Valenta, J.

    2015-01-01

    Roč. 4, Oct (2015), e336 ISSN 2047-7538 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * single-nanocrystal spectroscopy * luminescing trions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.600, year: 2015

  18. Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    International Nuclear Information System (INIS)

    Kizilyalli, I C; Aktas, O

    2015-01-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p–n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (10 4 to 10 6 cm −2 ) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 10 15 cm −3 . This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A  ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p–n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p–n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p–n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p–n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T −3/2 , consistent with a phonon scattering model. Also

  19. Astrophysical s-factor measurements for 120Te(p,γ)121I and 120Te(p,n)120I reactions

    International Nuclear Information System (INIS)

    Gueray, R. T.; Oezkan, N.; Yalcin, C.; Goerres, J.; DeBoer, R.; Palumbo, A.; Tan, W. P.; Wiescher, M.; Fueloep, Zs.; Somorjai, E.; Lee, H. Y.

    2009-01-01

    Astrophysical S-factors for the 1 20Te(p,γ) 1 21I and 1 20Te(p,n) 1 20I reactions have been measured in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. Experimental data have been compared with the Hauser-Fesbach statistical model calculations obtained with the model codes NON-SMOKER and TALYS. The discrepancies between the experimental results and calculations can mainly be attributed to the optical model potentials used in the codes.

  20. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    Science.gov (United States)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  1. Influence of TiO2 Nanocrystals Fabricating Dye-Sensitized Solar Cell on the Absorption Spectra of N719 Sensitizer

    Directory of Open Access Journals (Sweden)

    Puhong Wen

    2012-01-01

    Full Text Available The absorption spectra of N719 sensitizer anchored on the films prepared by TiO2 nanocrystals with different morphology and size were investigated for improving the performance of dye-sensitized solar cell (DSC. We find that the morphology and size of TiO2 nanocrystals can affect the UV-vis and FT-IR spectra of the sensitizer anchored on their surfaces. In particular, the low-energy metal-to-ligand charge-transfer transitions (MLCT band in the visible absorption spectra of N719 is strongly affected, and locations of these MLCT bands revealed larger differences. The results indicate that there is a red shift of MLCT band in the spectra obtained by using TiO2 nanocrystals with long morphology and large size compared to that in solution. And it produced a larger red-shift on the MLCT band after TiO2 nanocrystals with small size mixed with some long nanocrystals. Accordingly, the utilization rate to visible light is increased. This is a reason why the DSC prepared by using such film as a photoelectrode has better performance than before mixing.

  2. n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes

    Science.gov (United States)

    Tsai, Jenn Kai; Shih, Jun Hong; Wu, Tian Chiuan; Meen, Teen Hang

    2012-12-01

    In this study, we report the effects of thermal annealing in nitrogen ambient on the optical and electrical properties of zinc oxide (ZnO) nanorod (NR) arrays for the application in light emission diodes (LED). The single-crystalline ZnO NR array was synthesized on p+-Si (111) substrate without seed layer using simple, low-cost, and low-temperature hydrothermal method. The substrate surface was functionalized by hydrofluoric acid and self-assembled monolayer of octadecyltrimethoxysilane ((CH3 (CH2)17Si(OCH3)3). ZnO NRs were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and micro-photoluminescence (micro-PL). The results of FESEM and XRD indicate that single crystalline ZnO NRs with (002) preferred orientation along the substrate surface is successfully grown on functionalized p+-Si (111) substrate. The current-voltage and electroluminescence (EL) characteristics of the LED show that the most suitable annealing temperature ranges from 400°C to 600°C. Both PL and EL spectra show broadband emissions, ultraviolet and visible (green-yellow) light. The white-like light emission is able to be observed by naked eyes.

  3. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  4. Study of System Pressure Dependence on n-TiO2/p-Si Hetrostructure for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    S. Ramezani Sani

    2015-01-01

    Full Text Available This study reports the fabrication of n-TiO2/p-Si hetrojunction by deposition of TiO2nanowires on p-Si substrate. The effect of system pressure and the current-voltage (I-V characteristics of n-TiO2/p-si hetrojunction were studied. The morphology of the samples was investigated by Field Emission Scanning Electron Microscopy (FESEM which confirms formation of TiO2 nanowires that their diameters increase with increasing the pressure of system. The I-V characteristics were measured to investigate the hetrojunction effects of under forward and reverse biases at different system pressure by sweeping in the voltage from 0 to +6 V, then to -6 V, and finally reaching 0 V. TiO2/Si diodes   in the system pressure 60 mbar and 30 mbar indicated that a p-n junction formed in the n-TiO2/p-Si hetrojunction. But as the system pressure increased to 1000 mbar, the I-V characteristics became inversed. This treatment can be scribed by the change of the energy band structure of TiO2.

  5. Simulation based comparative analysis of photoresponse in front- and back-illuminated GaN P-I-N ultraviolet photodetectors

    Science.gov (United States)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan

    2016-10-01

    This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.

  6. P-type doping of GaN(000\\bar{1}) by magnesium ion implantation

    Science.gov (United States)

    Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu

    2017-01-01

    Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).

  7. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    Science.gov (United States)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  8. Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Ryong [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Department of physics, Dongguk University, Seoul, 100-715 (Korea, Republic of); Ram, S.D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Kang, Tae Won, E-mail: twkang@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, 100-715 (Korea, Republic of); Clean Energy and Nano Convergence Centre, Hindustan University, Chennai 600 016 (India); Kwon, Sangwoo; Yang, Woochul [Department of physics, Dongguk University, Seoul, 100-715 (Korea, Republic of); Shin, Sunhye [Soft-Epi Inc., 240 Opo-ro, Opo-eup, Gwangju-si, Gyeonggi-do (Korea, Republic of); Woo, Yongdeuk [Department of Mechanical and Automotive Engineering, Woosuk University, Chonbuk 565-701 (Korea, Republic of)

    2015-08-30

    Highlights: • Uniaxial p–n junction diode in GaN nanorod is made by Hydride vapor phase epitaxy method. • The p–n junction diode property is clearly observed from the fabricated uniaxial p–n junction nanorod GaN nanorod. • Graphene is used as a current spreading layer to reduce the lateral resistance up to 700 times when compared with the commercial sapphire substrate, which is clearly explained with the aid of an equivalent circuit. • Kelvin Force Probe microscopy method is employed to visualize the p- and n- regions in a single GaN nanorod. - Abstract: Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p–n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p–n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis

  9. Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene

    International Nuclear Information System (INIS)

    Ryu, Sung Ryong; Ram, S.D. Gopal; Lee, Seung Joo; Cho, Hak-dong; Lee, Sejoon; Kang, Tae Won; Kwon, Sangwoo; Yang, Woochul; Shin, Sunhye; Woo, Yongdeuk

    2015-01-01

    Highlights: • Uniaxial p–n junction diode in GaN nanorod is made by Hydride vapor phase epitaxy method. • The p–n junction diode property is clearly observed from the fabricated uniaxial p–n junction nanorod GaN nanorod. • Graphene is used as a current spreading layer to reduce the lateral resistance up to 700 times when compared with the commercial sapphire substrate, which is clearly explained with the aid of an equivalent circuit. • Kelvin Force Probe microscopy method is employed to visualize the p- and n- regions in a single GaN nanorod. - Abstract: Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p–n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p–n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis

  10. Controlled carrier screening in p-n NiO/GaN piezoelectric generators by an Al2O3 insertion layer

    Science.gov (United States)

    Johar, Muhammad Ali; Jeong, Dae Kyung; Afifi Hassan, Mostafa; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2017-12-01

    The performance of a piezoelectric generator (PG) depends significantly on the internal screening process inside the device. As piezoelectric charges appear on both ends of the piezoelectric crystal, internal screening starts to decrease the piezoelectric bias. Therefore, the piezoelectric energy generated by external stress is not fully utilized by external circuit, which is the most challenging aspect of high-efficiency PGs. In this work, the internal screening effect of a NiO/GaN p-n PG was analyzed and controlled with an Al2O3 insertion layer. Internal screening in the p-n diode PG was categorized into free-carrier screening in neutral regions and junction screening due to charge drift across the junction. It was observed that junction screening could be significantly suppressed by inserting an Al2O3 layer and that effect was dominant in a leaky diode PG. With this implementation, the piezoelectric bias of the NiO/GaN PG was improved by a factor of ~100 for high-leakage diodes and a factor of ~1.6 for low-leakage diodes. Consequently, NiO/Al2O3/GaN PGs under a stress of 5 MPa provided a piezoelectric bias of 12.1 V and a current density of 2.25 µA cm-2. The incorporation of a highly resistive Al2O3 layer between p-NiO and n-GaN layers in NiO/GaN heterojunctions provides an efficient means of improving the piezoelectric performance by controlling the internal screening of the piezoelectric field.

  11. GaN-based blue laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao; Yanashima, Katsunori; Funato, Kenji; Asatsuma, Tsunenori; Kobayashi, Toshimasa [CT Development Centre, CNC, Sony Corporation, Atsugi, Kanagawa (Japan); Tojyo, Tsuyoshi; Asano, Takeharu; Kijima, Satoru; Hino, Tomonori; Takeya, Motonobu; Uchida, Shiro; Ikeda, Masao [Sony Shiroishi Semiconductor Inc., Shiroishi, Miyagi (Japan); Tomiya, Shigetaka [Environment and Analyhsis Technology Department, Sony Corporation, Hodogaya, Yokohama (Japan)

    2001-08-13

    We report our recent progress on GaN-based high-power laser diodes (LDs), which will be applied as a light source in high-density optical storage systems. We have developed raised-pressure metal-organic chemical vapour deposition (RP-MOCVD), which can reduce the threading-dislocation density in the GaN layer to several times 10{sup 8} cm{sup -2}, and demonstrated continuous-wave (cw) operation of GaN-based LD grown by RP-MOCVD. Furthermore, we found that the epitaxial lateral overgrowth (ELO) technique is useful for further reducing threading-dislocation density to 10{sup 6} cm{sup -2} and reducing the roughness of the cleaved facet. By using this growth technique and optimizing device parameters, the lifetime of LDs was improved to more than 1000 hours under 30 mW cw operation at 60 deg. C. Our results proved that reducing both threading-dislocation density and consumption power is a valid approach to realizing a practical GaN-based LD. On the other hand, the practical GaN-based LD was obtained when threading-dislocation density in ELO-GaN was only reduced to 10{sup 6} cm{sup -2}, which is a relatively small reduction as compared with threading-dislocation density in GaAs- and InP-based LDs. We believe that the multiplication of non-radiative centres is very slow in GaN-based LDs, possibly due to the innate character of the GaN-based semiconductor itself. (author)

  12. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  13. Characteristics of Al/p-AgGaTe2 polycrystalline thin film Schottky barrier diode

    International Nuclear Information System (INIS)

    Patel, S.S.; Patel, B.H.; Patel, T.S.

    2008-01-01

    An Al/p-AgGaTe 2 polycrystalline thin film schottky barrier diode have been prepared by flash-evaporation of p-AgGaTe 2 onto a pre-deposited film of aluminium. The current-voltage, capacitance-voltage and photoresponse of the diode have been investigated. The important physical parameter such as barrier height of the fabricated diode was derived from these measurements. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Colloidal synthesis and photophysics of M{sub 3}Sb{sub 2}I{sub 9} (M=Cs and Rb) nanocrystals. Lead-free perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Jaya; Manna, Suman; Nag, Angshuman [Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (India); Mondal, Anirban; Adarsh, K.V. [Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal (India); Das, Shyamashis [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India)

    2017-11-06

    Herein we report the colloidal synthesis of Cs{sub 3}Sb{sub 2}I{sub 9} and Rb{sub 3}Sb{sub 2}I{sub 9} perovskite nanocrystals, and explore their potential for optoelectronic applications. Different morphologies, such as nanoplatelets and nanorods of Cs{sub 3}Sb{sub 2}I{sub 9}, and spherical Rb{sub 3}Sb{sub 2}I{sub 9} nanocrystals were prepared. All these samples show band-edge emissions in the yellow-red region. Exciton many-body interactions studied by femtosecond transient absorption spectroscopy of Cs{sub 3}Sb{sub 2}I{sub 9} nanorods reveals characteristic second-derivative-type spectral features, suggesting red-shifted excitons by as much as 79 meV. A high absorption cross-section of ca. 10{sup -15} cm{sup 2} was estimated. The results suggest that colloidal Cs{sub 3}Sb{sub 2}I{sub 9} and Rb{sub 3}Sb{sub 2}I{sub 9} nanocrystals are potential candidates for optical and optoelectronic applications in the visible region, though a better control of defect chemistry is required for efficient applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  16. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation.

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-14

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.

  17. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: Adsorption effects of water molecules onto nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Ando, Naohisa; Nishiyama, Akira; Horiuchi, Hiromi; Tani, Toshiro

    2007-01-01

    We report here the distinctive modifications of photoluminescence (PL) behaviors in single CdSe/ZnS/TOPO nanocrystals depending on their environments. Long-time traces of PL intensity from single nanocrystals have been obtained in both vacuum and a wet nitrogen atmosphere. While all of the nanocrystals in both environments exhibit PL blinking behaviors, i.e. on-off intermittency of PL intensity, as usual, some of the nanocrystals in the wet nitrogen atmosphere show significant increase in duration time of on-events. As for the duration time of blinking off-events, it is for the moment associated with the occasional events of carrier capturing at trap sites on or near the nanocrystal surfaces. We propose a model in which adsorbed water molecules at the trap sites on the nanocrystal surfaces transform them under light irradiation, which eventually decreases the occurrence of the trapping events due to their inactivation. It in turn increases the PL on-times. In addition to the drastic modification of the blinking profile, we also found that in the PL time traces some kinds of undulated behaviors, i.e. continuous and rather low frequency fluctuation of PL intensity, appear during each on-event in vacuum while they disappear totally in the wet nitrogen atmosphere. These results are also described on the basis of the inactivation model of the trap sites introduced above

  18. Steps towards a GaN nanowire based light emitting diode and its integration with Si-MOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, Friederich

    2012-06-22

    This work is concerned with the realization and investigation of a light emitting diode (LED) structure within single GaN nanowires (NWs) and its integration with Si technology. To this end first a general understanding of the GaN NW growth is given. This is followed by investigations of the influence which doping species, such as Mg and Si, have on the growth of the NWs. The experience gathered in these studies set the basis for the synthesis of nominal p-i-n and n-i-p junctions in GaN NWs. Investigations of these structures resulted in the technologically important insight, that p-type doping with Mg is achieved best if it is done in the later NW growth stage. This implies that it is beneficial for a NW LED to place the p-type segment on the NW top. Another important component of an LED is the active zone where electron-hole recombination takes place. In the case of planar GaN LEDs, this is usually achieved by alloying Ga and In to form InGaN. In order to be able to control the growth under a variety of conditions, we investigate the growth of InGaN in the form of extended segments on top of GaN NWs, as well as multi quantum wells (MQWs) in GaN NWs. All the knowledge gained during these preliminary studies is harnessed to reach the overall goal: The realization of a GaN NW LED. Such structures are fabricated, investigated and processed into working LEDs. Finally, a report on the efforts of integrating III-nitride NW LEDs and Si based metaloxide-semiconductor field effect transistor (MOSFET) technology is given. This demonstrates the feasibility of the monolithic integration of both devices on the same wafer at the same time.

  19. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    International Nuclear Information System (INIS)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-01-01

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing

  20. Transient current changes induced in pin-diodes by nanosecond electron pulses

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goldner, R.; Bos, J.; Mehnert, R.

    1984-01-01

    The electron pulse technique can be applied as a diagnostic method to measure charge carrier lifetimes, diffusion length or junction width in semiconductor p + -i-n + diodes. The described effect of the pulse length dependence on the electron energy might be of importance as an energy monitor for pulsed electron accelerators. (author)

  1. Improved light extraction efficiency of InGaN/GaN light-emitting diodes using dielectric coated nanopillars

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Ou, Haiyan

    Nanopillars have been fabricated on InGaN/GaN ligh t-emitting diodes using nanosphere lithography. With HCl treatment and SiN passivation a photoluminescence improvement by a factor of 7.8 was obtained compared to the untreated nanopillar structure.......Nanopillars have been fabricated on InGaN/GaN ligh t-emitting diodes using nanosphere lithography. With HCl treatment and SiN passivation a photoluminescence improvement by a factor of 7.8 was obtained compared to the untreated nanopillar structure....

  2. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM

    Science.gov (United States)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-01

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p+-Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  3. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM.

    Science.gov (United States)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-21

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p + -Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  4. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  5. Cerebral dynamics of N-isopropyl-(123I)p-iodoamphetamine

    International Nuclear Information System (INIS)

    Creutzig, H.; Schober, O.; Gielow, P.; Friedrich, R.; Becker, H.; Dietz, H.; Hundeshagen, H.

    1986-01-01

    Temporal changes in the distribution of N-isopropyl-(123I)p-iodoamphetamine (IMP) within the brain are measured with serial tomographic imaging. In the cerebellum there is a decrease in activity of 42% from the early [15-45 min postinjection (p.i.)] to the late (210-240 min p.i.) scan, while in the cortex the decrease is 18%, and in the basal ganglia there is no decrease within this time. In brain tumors there was no IMP uptake in the early as well as in the late scans, regardless of tumor type, perfusion rate, or blood-brain barrier dysfunction. In 11 of 43 patients with a cerebral infarction a real increase of 123I activity (mean +21%) was seen in the late images. This ''filling in'' phenomena might be useful in selecting patients for bypass surgery. In these patients the diaschisis cerebelli, seen in the early scans, disappeared in the late images. The regional distribution of IMP changes with time; spatial ratios might be blurred by temporal changes. High-flow areas such as visio-auditory centers can be delineated clearly after stimulation in fast early scans; in these areas the pharmacokinetics of 123I are different from other cortex regions. To get the full information from the IMP brain uptake, both spatial and temporal variation must be measured

  6. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  7. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....... is the tunnel (Esaki) diode, which provides a low-resistance connection between junctions. We demonstrate an InP-GaAs NW axial heterostructure with tunnel diode behavior. InP and GaAs can be readily n- and p-doped, respectively, and the heterointerface is expected to have an advantageous type II band alignment...

  8. Electronic and interface state density properties of Cu/n-Si MIS-type diode

    Energy Technology Data Exchange (ETDEWEB)

    Yakuphanoglu, Fahrettin [Physics Department, Firat University, Elazig 23169 (Turkey)]. E-mail: fyhanoglu@firat.edu.tr

    2007-05-01

    Electronic and interface-state density properties of the Cu/n-Si diode were investigated by current-voltage and capacitance-voltage (C-V) analyses. The electronic parameters such as barrier height, ideality factor and series resistance of the diode were determined by performing different plots. The barrier height, ideality factor and series resistance values of the diode were found to be 0.69 eV, 5.31 and 7.63 k{omega}, respectively. The obtained ideality factor confirms that the Cu/n-Si device has a metal-insulator-semiconductor (MIS) configuration. The conductance mechanism of the Cu/n-Si diode is in agreement with typical of hopping conduction in polycrystalline and amorphous materials. The interface state density of the diode was found to vary from 1.45x10{sup 13} (eV{sup -1} cm{sup 2}) at E {sub C}-0.45 eV to 0.88x10{sup 13} (eV{sup -1} cm{sup 2}) at E {sub C}-0.66 eV.

  9. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Chand, Subhash; Kumar, Rajender

    2014-01-01

    Highlights: • The Ni/n-ZnO/p-Si/Al heterojunction diodes are fabricated by pulsed laser deposition. • The band gap of the deposit ZnO films was found to be 3.43 eV. • Forward I–V data of Ni/n-ZnO/p-Si/Al hetrojunction are interpreted in terms of thermionic emission–diffusion mechanism. • The C–V characteristics of the Ni/n-ZnO/p-Si/Al hetrojunction diode are measured in the temperature range 80–300 K. • The barrier height of Ni/n-ZnO/p-Si/Al hetrojunction diode is also calculated from C–V measurements. - Abstract: The ZnO thin films are grown on the p-Si for the heterojunction fabrication by pulsed laser deposition method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) plane as preferred direction. High purity vacuum evaporated nickel and aluminum metals were used to make contacts to the n-ZnO and p-Si, respectively. The current–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al hetero structure measured over the temperature range 80–300 K have been studied on the basis of thermionic emission diffusion mechanism. The equivalent Schottky barrier height and diode ideality factor are determined by fitting of measured current–voltage data in to thermionic diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al heterojunction diode are also studied over wide temperature range. From the measured capacitance–voltage data the built in voltage and impurity concentration in n-type ZnO is estimated

  10. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    Science.gov (United States)

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  11. Fabrication and characterization of n-AlGaAs/ GaAs Schottky diode for rectennas device application

    International Nuclear Information System (INIS)

    Norfarariyanti Parimon; Abdul Manaf Hashim; Farahiyah Mustafa

    2009-01-01

    Full text: Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectennas device application. Rectennas is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current?voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectennas device application. (author)

  12. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  13. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    International Nuclear Information System (INIS)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul; Osman, Mohd Nizam

    2011-01-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  14. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools.

    Science.gov (United States)

    Glaria, Arnaud; Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Turrin, Cédric-Olivier; Chaudret, Bruno; Fau, Pierre

    2015-01-12

    The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6-9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface Cu(I) sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re-dissolution of Cu(II) species at the expense of the nanocrystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 1.0 MeV irradiation of OHMIC, MS, MIS contacts to InP

    International Nuclear Information System (INIS)

    Warren, C.E.; Wagner, B.F.; Anderson, W.A.

    1986-01-01

    The radiation effects of 1.0 MeV electrons with a dose of 10/sup 15/cm/sup -2/ to MS and MIS Schottky diodes on InP have been compared to the radiation effects of MIS diodes on GaAs and Si. The radiation effects to ohmic contacts were also investigated. The metal for the diodes on the InP was gold. Au/Ti/Al was used for the GaAs diodes and Cr for the silicon diodes. Oxide layers on InP were grown by anodization in 0.1 N KOH. Oxides to GaAs and Si were grown thermally. Ohmic contacts to InP were formed using AuGe/Ni and AuSn alloys, followed by annealing in N/sub 2//H/sub 2/ (85%/15%). Metal Semiconductor diodes on InP were found to be at least sensitive to the irradiation. The InP MS and MIS diodes showed only small changes in the current voltage (I-V) characteristic, whereas the GaAs and Si devices showed a decrease in reverse current after irradiation. The ohmic contact resistance was increased by a factor of 2 to 5 after irradiation

  16. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    Science.gov (United States)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  17. The design and manufacture of a notch structure for a planar InP Gunn diode

    International Nuclear Information System (INIS)

    Bai Yang; Jia Rui; Wu De-Qi; Jin Zhi; Liu Xin-Yu

    2013-01-01

    A planar InP-based Gunn diode with a notch doping structure is designed and fabricated for integration into millimeter-wave and terahertz integrated circuits. We design two kinds of InP-based Gunn diodes. One has a fixed diameter of cathode area, but has variable spacing between anode and cathode; the other has fixed spacing, but a varying diameter. The threshold voltage and saturated current exhibit their strong dependences on the spacing (10 μm–20 μm) and diameter (40 μm–60 μm) of the InP Gunn diode. The threshold voltage is approximately 4.5 V and the saturated current is in a range of 293 mA–397 mA. In this work, the diameter of the diode and the space between anode and cathode are optimized. The devices are fabricated using a wet etching technique and show excellent performances. The results strongly suggest that low-cost and reliable InP planar Gunn diodes can be used as single chip terahertz sources. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Emory Ming-Yue [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  19. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  20. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes

    Science.gov (United States)

    Xue, Shiwei; Xu, Jintong; Li, Xiangyang

    2015-04-01

    In this article, we introduced how to build a physical model of refer to the device structure and parameters. Simulations for solar-blind AlGaN based p-i-n photodiodes spectral characteristics were conducted in use of Silvaco TCAD, where device structure and parameters are comprehensively considered. In simulation, the effects of polarization, Urbach tail, mobility, saturated velocities and lifetime in AlGaN device was considered. Especially, we focused on how the concentration-dependent Shockley-Read-Hall (SRH) recombination model affects simulation results. By simulating, we analyzed the effects in spectral response caused by TAUN0 and TAUP0, and got the values of TAUN0 and TAUP0 which can bring a result coincides with test results. After that, we changed their values and made the simulation results especially the part under 255 nm performed better. In conclusion, the spectral response between 200 nm and 320 nm of solar-blind AlGaN based p-i-n photodiodes were simulated and compared with test results. We also found that TAUN0 and TAUP0 have a large impact on spectral response of AlGaN material.

  1. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    International Nuclear Information System (INIS)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk; Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee; Kim, Keun-Soo

    2015-01-01

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10 15 cm -3 , respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10 -6 mA/cm -2 at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  2. Tuning of optical and electrical properties of wide band gap Fe:SnO{sub 2}/Li:NiO p-n junctions using 80 MeV oxygen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V.; Joshi, U.S. [Gujarat University, Department of Physics, School of Sciences, Ahmedabad (India); Avasthi, D.K. [Inter University Accelerator Centre, New Delhi (India)

    2016-12-15

    Electrical and optical properties of pristine and swift heavy ion (SHI) irradiated p-n junction diode have been investigated for advanced electronics application. Fe:SnO{sub 2}/Li:NiO p-n junction was fabricated by using pulsed laser deposition on c-sapphire substrate. The optical band gaps of Fe:SnO{sub 2} and Li:NiO films were obtained to be 3.88 and 3.37 eV, respectively. The current-voltage characteristics of the oxide-based p-n junction showed a rectifying behaviour with turn-on voltage of 0.95 V. The oxide-based p-n junction diode was irradiated to 80 MeV O{sup +6} ions with 1 x 10{sup 12} ions/cm{sup 2} fluence. Decrease in grain size due to SHI irradiation is confirmed by the grazing angle X-ray diffraction and atomic force microscopy. In comparison with the pristine p-n junction diode, O{sup +6} ion irradiated p-n junction diode shows the increase of surface roughness and decrease of percentage transmittance in visible region. For irradiated p-n junction diode, current-voltage curve has still rectifying behaviour but exhibits lower turn-on voltage than that of virgin p-n junction diode. (orig.)

  3. AlGaN-Based Deep-Ultraviolet Light Emitting Diodes Fabricated on AlN/sapphire Template

    International Nuclear Information System (INIS)

    Li-Wen, Sang; Zhi-Xin, Qin; Hao, Fang; Yan-Zhao, Zhang; Tao, Li; Zheng-Yu, Xu; Zhi-Jian, Yang; Bo, Shen; Guo-Yi, Zhang; Shu-Ping, Li; Wei-Huang, Yang; Hang-Yang, Chen; Da-Yi, Liu; Jun-Yong, Kang

    2009-01-01

    We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AlN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317 nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail: Christoph.Reich@tu-berlin.de; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  5. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon

    KAUST Repository

    Guo, Wei; Banerjee, Animesh; Bhattacharya, Pallab K.; Ooi, Boon S.

    2011-01-01

    High density (? 1011 cm-2) GaN nanowires and InGaN/GaN disk-in-nanowire heterostructures have been grown on (001) silicon substrates by plasma-assisted molecular beam epitaxy. The nanowires exhibit excellent uniformity in length and diameter and a broad emission is obtained by incorporating InGaN disks of varying composition along the length of the nanowires. Monolithic lighting emitting diodes were fabricated with appropriate n- and p-doping of contact layers. White light emission with chromaticity coordinates of x=0.29 and y=0.37 and a correlated color temperature of 5500-6500 K at an injection current of 50 A/ cm2 is measured. The measured external quantum efficiency of the devices do not exhibit any rollover (droop) up to an injection current density of 400 A/ cm2. © 2011 American Institute of Physics.

  6. Environmental friendly InP/ZnS nanocrystals

    OpenAIRE

    Coşkun, Yasemin

    2012-01-01

    Ankara : The Department of Materials Science and Nanotechnology, Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 80-89. Semiconductor nanocrystals are nanometer scale fluorescent crystallites with tunable optical properties, which can be controlled by the material composition and particle size. They can be prepared using various synthesis techniques and find applications in many different areas ranging from...

  7. Cu-Doping Effects in CdI(2) Nanocrystals: The Role of Cu-Agglomerates.

    Science.gov (United States)

    Miah, M Idrish

    2008-11-22

    Cu-doping effects in CdI(2) nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG) as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI(2) crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  8. Cu-Doping Effects in CdI2Nanocrystals: The Role of Cu-Agglomerates

    Directory of Open Access Journals (Sweden)

    Miah M

    2008-01-01

    Full Text Available Abstract Cu-doping effects in CdI2nanocrystals are studied experimentally. We use the photostimulated second harmonic generation (PSSHG as a tool to investigate the effects. It is found that the PSSHG increases with increasing Cu content up to 0.6% and then decreases due to the formation of the Cu-agglomerates. The PSSHG for the crystal with Cu content higher than 1% reduces to that for the undoped CdI2crystal. The results suggest that a crucial role of the Cu-metallic agglomerates is involved in the processes as responsible for the observed effects.

  9. N-isopropyl-123I-p-iodoamphetamine uptake mechanism in the lung - is it dependent on pH, lipophilicity or pKa?

    International Nuclear Information System (INIS)

    Akber, S.F.

    1991-01-01

    The uptake and binding mechanism of biogenic amines in the lungs has been studied extensively with no conclusive results. The competition between N-isopropyl- 123 I-p-iodo amphetamines ( 123 I-IMP) and propranolol and 123 I-IMP and ketamine, in the lungs suggest that the pK a value of the biogenic amines has a significant role to play in the mechanism of uptake and retention of biogenic amines in the lungs. (orig.) [de

  10. Silicon P.I.N. Junctions used for studies of radiation damage; Etude de l'irradiation aux neutrons rapides du silicium au moyen de jonctions P.I.N

    Energy Technology Data Exchange (ETDEWEB)

    Lanore, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-06-01

    Irradiation of silicon P.I.N. junction has been studied primarily for the purpose of developing a radiation damage dosimeter, but also for the purpose of investigating silicon itself. It is known that the rate of recombination of electrons and holes is a linear function of defects introduced by neutron irradiation. Two methods have been used to measure that rate of recombination: forward characteristic measurements, recovery time measurements. In order to explain how these two parameters depend on recombination rate we have given a theory of the P.I.N. junction. We have also given an idea of the carrier lifetime dependence versus temperature. Annealing effects in the range of 70 to 700 K have also been studied, we found five annealing stages with corresponding activation energies. As an application for these studies, we developed a radiation damage dosimeter with which we made several experiments in facilities such as Naiade or Marias. (author) [French] L'irradiation de structures P.I.N. etait faite dans le but d'etudier principalement la mise au point d'un dosimetre a ''radiation damage'' et aussi pour etudier plus profondement le silicium lui-meme. On sait que le taux de recombinaison electrons-trous est une fonction lineaire du taux de defauts introduits par irradiation aux neutrons. Deux methodes ont ete utilisees pour atteindre ce taux de recombinaison: mesures de la caracteristique directe, mesures du temps de retournement. Pour expliquer de quelle facon ces parametres dependent du taux de recombinaison. Nous avons donne une theorie de la jonction P.I.N. Nous avons aussi donne l'allure des variations du temps de vie des porteurs en fonction de la temperature. Nous avons d'autre part effectue des recuits entre 70 et 700 K, domaine dans lequel nous avons trouve cinq etapes de ''guerison'' avec les energies d'activation correspondantes. En application de ces etudes nous avons mis ou point un dosimetre a ''radiation damage'' avec lequel nous avons effectue des

  11. Particle detectors based on InP Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2012-01-01

    Roč. 10, č. 7 (2012), C100051-C100055 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) OC10021; GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Particle detector * High purity InP layer * Schottky diode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  12. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  13. Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2013-04-01

    Full Text Available Incorporating Ag nanowires with graphene resulted in improved electrical conductivity and enhanced contact properties between graphene and p-GaN. The graphene/AgNWs hybrid films exhibited high transmittance and lower sheet resistance compared to bare graphene. The specific contact resistance between graphene and p-GaN reduced nearly an order of magnitude with the introduction of AgNWs. As a result, light emitting diodes based on the hybrid films showed 44% lower forward voltage and 2-fold higher light output power. The enhanced performance was attributed to the bridging by AgNWs of cracks, grain boundaries in graphene and the reduction of Schottky barrier height at graphene/ p-GaN interface.

  14. Light emitting diode based on n-Zn0.94M0.06O nanorods/p-GaN (M= Cd and Ni) heterojunction under forward and reverse bias

    International Nuclear Information System (INIS)

    Echresh, Ahmad; Oeurn Chey, Chan; Zargar Shoushtari, Morteza; Nur, Omer; Willander, Magnus

    2015-01-01

    In this study, we report on the improvement in the optoelectronic properties of n-ZnO nanorods/p-GaN heterojunction. This was achieved by doping the ZnO with cadmium (Cd) and nickel (Ni). The ZnO and Zn 0.94 M 0.06 O nanorods grown hydrothermally on the p-GaN substrate were used to fabricate the light emitting diodes (LEDs). Structural measurement revealed that nanorods with wurtzite structure having a preferential orientation along the (002) c-axis. The UV–vis spectra show that the optical band gap of Zn 0.94 M 0.06 O nanorods is decreased in comparison to ZnO nanorods. Electrical measurements of the fabricated LEDs show an obvious rectifying behaviour with low threshold voltage. Electroluminescence (EL) characteristics of LEDs operated at forward and reverse bias were investigated. The EL spectra under forward bias show that doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region while the blue peak originating from the p-GaN substrate remains almost unaffected. The effect of doping was to reduce the valence band offsets and consequently more hole injection has occurred leading to the observed enhancement of the broad band in the visible region. Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate. - Highlights: • The reduction of the optical band gap of the M-doped ZnO (M= Cd and Ni) nanorods results in reduction of the valence band offset of the n-Zn 0.94 M 0.06 O nanorods/p-GaN heterojunction LEDs. • Doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region under forward bias. • Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate

  15. Achieving Room Temperature Orange Lasing Using InGaP/InAlGaP Diode Laser

    KAUST Repository

    Al-Jabr, Ahmad

    2015-09-28

    We demonstrated the first orange laser diode at room temperature with a decent total output power of ∼46mW and lasing wavelength of 608nm, using a novel strain-induced quantum well intermixing in InGaP/InAlGaP red laser structure.

  16. {sup 60}Co {gamma} irradiation effects on the current-voltage (I-V) characteristics of Al/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey); Buelbuel, M.M. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)

    2006-12-01

    It is well known that the exposure of any semiconductor surfaces to the {sup 60}Co {gamma}-ray irradiation causes electrically active defects. To investigate the effect of {gamma}-ray irradiation dose on the electrical characteristics of metal-insulator-semiconductor (MIS) Schottky diodes, the fabricated devices were exposed to {gamma} radiation at a dose of 2.12 kGy/h. The total dose range was from 0 to 450 kGy at room temperature. The density of interface states N {sub ss} as a function of E {sub ss}-E {sub v}, the values of series resistance R {sub s} and the bias dependence of the effective barrier height {phi} {sub e} for each dose were obtained from the forward bias I-V characteristics. Experimental results show that the {gamma}-irradiation gives rise to an increase in the zero bias barrier height {phi} {sub BO}, as the ideality factor n, R {sub s} and N {sub ss} decreases with increasing radiation dose.

  17. Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode

    Science.gov (United States)

    Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M.

    2011-09-01

    Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) were fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50°C. Three different LEDs, with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods, were fabricated and studied. The current-voltage characteristics show good diode behavior with an ideality factor in the range of 2.1 to 2.27 for all three devices. The electroluminescence spectrum (EL) of the blended device has an emission range from 450 nm to 750 nm, due to the intermixing of the blue emission generated by poly(9,9-dioctylfluorene) denoted as PFO with orange-red emission produced by poly(2-methoxy-5(20-ethyl-hexyloxy)-1,4-phenylenevinylene) 1,4-phenylenevinylene) symbolized as MEH PPV combined with the deep-band emission (DBE) of the ZnO nanorods, i.e. it covers the whole visible region and is manifested as white light. The CIE color coordinates showed bluish, orange-red and white emission from the PFO, MEH PPV and blended LEDs with ZnO nanorods, respectively. These results indicate that the choice of the polymer with proper concentration is critical to the emitted color in ZnO nanorods/p-organic polymer LEDs and careful design should be considered to obtain intrinsic white light sources.

  18. Investigation of series resistance and surface states in Au/n - GaP structures

    International Nuclear Information System (INIS)

    Kiymaz, A.; Onal, B.; Ozer, M.; Acar, S.

    2009-01-01

    The variation in series resistance and surface state density of Au/n - GaP Schottky diodes have been systematically investigated at room temperature by using capacitance-voltage C-V and conductance-voltage G/w-V measurements techniques. The C-V and G/w-V characteristics of these devices were investigated by considering series resistance effects in a wide frequency range. It is shown that the capacitance of the Au/n - GaP Schottky diode decreases with increasing frequency. It is assumed that the surface states were responsible for this behaviour. The distribution profile of Rs-V gives a peak in the depletion region at low frequencies and disappears with increasing frequencies

  19. Temperature dependence and effects of series resistance on current and admittance measurements of Al/SnO2/p-Si MIS diode

    International Nuclear Information System (INIS)

    Altindal, S.; Tekeli, Z.; Karadeniz, S.; Sahingoez, R.

    2002-01-01

    Temperature dependency and the series resistance effect on I-V, C-V and G-V characteristics of Al/SnO 2 /p-Si MIS diode were investigated in the temperature range 150-350 K. The current-voltage (I-V) analysis in this temperature range gives the saturation current (10''-''9 - 10''-''5 A), the ideality factor (6-1.8), the barrier height Φ B (I-V) (0.3-0.65 eV) the density of interface states D it (8x10''1''3 - 1x10''1''3 eV''-''1cm''-''2) and the series resistance R s (500-100 Ω). The decreases with increasing temperature of density of interface states is the result of molecular restructuring and reordering at the metal-semiconductor interface. The value of series resistance 520 Ω was calculated from the admittance measurement at room temperature and enough high frequency (500 khz) when the diode is biased in strong accumulation region. The admittance frequency (C-V and G-V) measurement confirmed that the measured capacitance (C m ) and conductance (G m ) varies with applied voltage and frequency due to the presence of density of interface states in the MIS diode, interfacial insulator layer and enough high series resistance. Similar results have been observed on MIS type Schottky diodes

  20. Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Kai-Chiang Hsu

    2015-11-01

    Full Text Available This paper addressed the effect of post-annealed treatment on the electroluminescence (EL of an n-ZnO/p-GaN heterojunction light-emitting diode (LED. The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n-ZnO and p-GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n-ZnO and p-GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n-ZnO/p-GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively.

  1. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    Science.gov (United States)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  2. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    Science.gov (United States)

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  3. Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination.

    Science.gov (United States)

    Huang, Shouqiang; Li, Zhichun; Wang, Bo; Zhu, Nanwen; Zhang, Congyang; Kong, Long; Zhang, Qi; Shan, Aidang; Li, Liang

    2017-03-01

    Under illumination of light-emitting diode (LED) or sunlight, the green color of all-inorganic CsPbBr 3 perovskite nanocrystals (CPB-NCs) often quickly changes to yellow, followed by large photoluminescence (PL) loss. To figure out what is happening on CPB-NCs during the color change process, the morphology, structure, and PL evolutions are systematically investigated by varying the influence factors of illumination, moisture, oxygen, and temperature. We find that the yellow color is mainly originated from the large CPB crystals formed in the illumination process. With maximized isolation of oxygen for the sandwiched film or the uncovered film stored in nitrogen, the color change can be dramatically slowed down whether there is water vapor or not. Under dark condition, the PL emissions are not significantly influenced by the varied relative humidity (RH) levels and temperatures up to 60 °C. Under the precondition of oxygen or air, color change and PL loss become more obvious when increasing the illumination power or RH level, and the large-sized cubic CPB crystals are further evolved into the oval-shaped crystals. We confirm that oxygen is the crucial factor to drive the color change, which has the strong synergistic effect with the illumination and moisture for the degradation of the CPB film. Meanwhile, the surface decomposition and the increased charge trap states occurred in the formed large CPB crystals play important roles for the PL loss.

  4. Brain perfusion image using N-isopropyl-p-[123I] iodoamphetamine

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko

    1984-01-01

    In brain perfusion images using N-Isopropyl-p-[ 123 I] Iodoamphetamine and rotating gamma camera emission computed tomography, brain maps showing laterality indices (LI) were made for the purpose of detecting ineterhemispheric differences. Left (L) and right (R) leteral images were made by adding sagittal section images in each hemisphere, respectively. LI was calculated as follows. LI=100(1+(R-L)/(R+L)). The normal ranges (mean+-2 s.d.) of the indices determined by those obtained in five normal right-handed subjects were 103+-4 and 103+-10 for brain mean and each pixel, respectively. Out of 25 measurements in 22 righthanded patients with cerebrovascular accidents, brain mean LI beyond the normal limits and areas showing abnormal regional LI were observed in 5 (20%) and 21 (84%) measurements, respectively. On the other hand, X-ray CT showed low density areas in only 12 (48%). These brain maps were clinically useful for detecting and quantifying interhemispheric differences in brain perfusion images with N-Isopropyl-p-[ 123 I] Iodoamphetamine. (author)

  5. Dose rate and SDD dependence of commercially available diode detectors

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2004-01-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10x10 cm 2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38 900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39 060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38 900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38 990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21 870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21 870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17 870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21 870 cGy/s) for the p-type preirradiated Scanditronix EDP20 3G , and 0.998 (1490 cGy/s)-1.015 (38 880 cGy/s) for Scanditronix EDP10 3G diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  6. Barrier Height Variation in Ni-Based AlGaN/GaN Schottky Diodes

    NARCIS (Netherlands)

    Hajlasz, Marcin; Donkers, Johan J.T.M.; Pandey, Saurabh; Hurkx, Fred; Hueting, Raymond J.E.; Gravesteijn, Dirk J.

    2017-01-01

    In this paper, we have investigated Ni-based AlGaN/GaN Schottky diodes comprising capping layers with silicon-Technology-compatible metals such as TiN, TiW, TiWN, and combinations thereof. The observed change in Schottky barrier height of a Ni and Ni/TiW/TiWN/TiW contact can be explained by stress

  7. Detection mechanisms in silicon diodes used as α-particle and thermal neutron detectors

    International Nuclear Information System (INIS)

    Cerofolini, G.F.; Ferla, G.; Foglio Para, A.

    1981-01-01

    Some common silicon devices (diodes, RAMs etc.) can be used as α and thermal neutron detectors. An α resolution of approx. equal to 3% can be obtained utilizing p + /n or n + /p diodes with no external bias. Thermal neutrons are detected by means of the reaction 10 B(n,α) 7 Li on the 10 B present in the devices. Neutron efficiency has been substantially improved by implantation of 10 B ions in the p + region of the diodes. Experimental results allow us to clarify the carrier collection mechanisms throughout the device. Some current opinions in the field are contradicted. (orig.)

  8. High-power quantum-dot superluminescent diodes with p-doped active region

    NARCIS (Netherlands)

    Rossetti, M.; Li, L.; Fiore, A.; Occhi, L.; Velez, C.; Mikhrin, S.; Kovsh, A.

    2006-01-01

    We demonstrate the use of p-doping in the active region of quantum-dot superluminescent diodes. Modal gain measurements and light output-current characteristics prove that p-doping is beneficial for achieving higher gain, higher output power, and better temperature stability

  9. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.

    2016-12-29

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  10. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  11. Formation of the distributed NiSiGe nanocrystals nonvolatile memory formed by rapidly annealing in N2 and O2 ambient

    International Nuclear Information System (INIS)

    Hu, Chih-Wei; Chang, Ting-Chang; Tu, Chun-Hao; Chiang, Cheng-Neng; Lin, Chao-Cheng; Chen, Min-Chen; Chang, Chun-Yen; Sze, Simon M.; Tseng, Tseung-Yuen

    2010-01-01

    In this work, electrical characteristics of the Ge-incorporated Nickel silicide (NiSiGe) nanocrystals memory device formed by the rapidly thermal annealing in N 2 and O 2 ambient have been studied. The trapping layer was deposited by co-sputtering the NiSi 2 and Ge, simultaneously. Transmission electron microscope results indicate that the NiSiGe nanocrystals were formed obviously in both the samples. The memory devices show obvious charge-storage ability under capacitance-voltage measurement. However, it is found that the NiSiGe nanocrystals device formed by annealing in N 2 ambient has smaller memory window and better retention characteristics than in O 2 ambient. Then, related material analyses were used to confirm that the oxidized Ge elements affect the charge-storage sites and the electrical performance of the NCs memory.

  12. Triple-axis X-ray reciprocal space mapping of In{sub y}Ga{sub 1-y}As thermophotovoltaic diodes grown on (1 0 0) InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dashiell, M.W.; Ehsani, H.; Sander, P.C. [Lockheed Martin Corporation, Schenectady, NY 12301-1072 (United States); Newman, F.D. [Emcore Corporation, Albuquerque, NM 87123 (United States); Wang, C.A. [MIT Lincoln Laboratory, Lexington, MA 02420 (United States); Shellenbarger, Z.A. [Sarnoff Corporation, Princeton NJ, 08543-5300 (United States); Donetski, D.; Gu, N.; Anikeev, S. [Department of Electrical Engineering, State University of New York, Stony Brook, NY 11794-2350 (United States)

    2008-09-15

    Analysis of the composition, strain-relaxation, layer-tilt, and the crystalline quality of In{sub y}Ga{sub 1-y}As/InP{sub 1-x}As{sub x} thermophotovoltaic (TPV) diodes grown by metal-organic vapor phase epitaxy (MOVPE) is demonstrated using triple-axis X-ray reciprocal space mapping techniques. In{sub 0.53}Ga{sub 0.47}As (E{sub gap}=0.74 eV) n/p junction diodes are grown lattice matched (LM) to InP substrates and lattice-mismatched (LMM) In{sub 0.67}Ga{sub 0.33}As (E{sub gap}=0.6 eV) TPV diodes are grown on three-step InP{sub 1-x}As{sub x} (0P substrates. X-ray reciprocal space maps about the symmetric (4 0 0) and asymmetric (5 3 3) reciprocal lattice points (RELPs) determine the in-plane and out-of-plane lattice parameters and strain of the In{sub y}Ga{sub 1-y}As TPV active layer and underlying InP{sub 1-x}As{sub x} buffers. Triple-axis X-ray rocking curves about the LMM In{sub 0.67}Ga{sub 0.33}As RELP show an order of magnitude increase of its full-width at half-maximum (FWHM) compared to that from the LM In{sub 0.53}Ga{sub 0.47}As (250 vs. 30 arcsec). Despite the significant RELP broadening, the photovoltaic figure of merits show that the electronic quality of the LMM In{sub 0.67}Ga{sub 0.33}As approaches that of the LM diode material. This indicates that misfit-related crystalline imperfections are not dominating the photovoltaic response of the optimized LMM In{sub 0.67}Ga{sub 0.33}As material compared with the intrinsic recombination processes and/or recombination through native point defects, which would be present in both LMM and LM diode material. However, additional RELP broadening in non-optimized LMM In{sub 0.67}Ga{sub 0.33}As n/p junction diodes does correspond to significant degradation of TPV diode open-circuit voltage and minority carrier lifetime demonstrating that there is correlation between X-ray FWHM and the electronic performance of the LMM TPV diodes. (author)

  13. Field plate engineering for GaN-based Schottky barrier diodes

    International Nuclear Information System (INIS)

    Lei Yong; Shi Hongbiao; Lu Hai; Chen Dunjun; Zhang Rong; Zheng Youdou

    2013-01-01

    The practical design of GaN-based Schottky barrier diodes (SBDs) incorporating a field plate (FP) structure necessitates an understanding of their working mechanism and optimization criteria. In this work, the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters. By comparing three representative dielectric materials (SiO 2 , Si 3 N 4 and Al 2 O 3 ) selected for fabricating FPs, it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications. (semiconductor devices)

  14. High efficiency GaN-based LEDs using plasma selective treatment of p-GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Bae; Naoi, Yoshiki; Sakai, Shiro [Department of Electrical and Electronic Engineering, University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan); Takaki, Ryohei; Sato, Hisao [Nitride Semiconductor Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan)

    2003-11-01

    We have studied a new method of increasing the extraction efficiency of a GaN-based light-emitting diode (LED) using a plasma surface treatment. In this method, prior to the evaporation of a semitransparent p-metal, the surface of a p-GaN located beneath a p-pad is selectively exposed to a nitrogen plasma in a reactive ion etching (RIE) chamber. The electrical characteristics of the plasma treated p-GaN remarkably changes its resistivity into semi-insulator without any parasitic damage. Since the LEDs with a new method have no light absorption in a p-pad region, a higher optical power can be extracted compared to a conventional LEDs without plasma selective treatment on the p-GaN surface. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Läget i berggrummet : En kvalitativ undersökning av inverkande faktorer i arbetsmiljön på en byggarbetsplats i ett bergrum

    OpenAIRE

    Miladi, Lubna

    2014-01-01

    Strävan efter att minska risker för arbetsskador och uppnå en god arbetsmiljö är betydelsefull idag inte minst på byggarbetsplatser.   Syftet med examensarbetet var att, utifrån kartläggning av arbetsmiljön på en byggarbetsplats, belysa några faktorer som har inverkan på arbetsmiljön. Magisteruppsatsen har begränsats till att undersöka arbetsmiljön på en byggarbetsplats i ett bergrum. Några organisatoriska faktorer som säkerhetskultur, attityder, kunskap samt fysiska faktorer som belysning, b...

  16. Gamma-Ray Irradiation Effects on the Characteristics of New Material P Type 6H-SiC Ni-Schottky Diodes (Application For Nuclear Fuel Facilities)

    International Nuclear Information System (INIS)

    U-Sudjadi; T-Ohshima, N. Iwamoto; S-Hishiki; N-Iwamoto, K. Kawano

    2007-01-01

    Effects of gamma-ray irradiation on electrical characteristics of new material p type 6H-SiC Ni-Schottky diodes were investigated. Ni Schottky diodes fabricated on p type 6H-SiC epi-layer were irradiated with gamma-rays at RT. The electrical characteristics of the diodes were evaluated before and after irradiation. The value of the on-resistance does not change up to 1 MGy, and the value increases with increasing absorbed dose above 1 MGy. For n factor, no significant increase is observed below 500 kGy, however, the value increases above 500 kGy. Schottky Barrier Height (SBH) decreases with increasing absorbed dose. Leakage current tends to increase due to irradiation. (author)

  17. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw

    2014-05-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances.

  18. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Zeng, Jian-Jhou; Lin, Yow-Jon

    2014-01-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances

  19. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation

    International Nuclear Information System (INIS)

    Zhou Liang; Deng Jian; Zhao Yubao; Liu Wanbing; An Lin; Chen Fei

    2009-01-01

    N-I co-doped TiO 2 nanoparticles were prepared by hydrolysis method, using ammonia and iodic acid as the doping sources and Ti(OBu) 4 as the titanium source. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS). XRD spectra show that N-I-TiO 2 samples calcined at 673 K for 3 h are of anatase structure. XPS analysis of N-I-TiO 2 samples indicates that some N atoms replace O atoms in TiO 2 lattice, and I exist in I 7+ , I - and I 5+ chemical states in the samples. UV-vis DRS results reveal that N-I-TiO 2 had significant optical absorption in the region of 400-600 nm. The photocatalytic activity of catalysts was evaluated by monitoring the photocatalytic degradation of methyl orange (MO). Compared with P25 and mono-doped TiO 2 , N-I-TiO 2 powder shows higher photocatalytic activity under both visible-light (λ > 420 nm) and UV-vis light irradiation. Furthermore, N-I-TiO 2 also displays higher COD removal rate under UV-vis light irradiation.

  20. Planar InP-based Schottky barrier diodes for terahertz applications

    International Nuclear Information System (INIS)

    Zhou Jingtao; Yang Chengyue; Ge Ji; Jin Zhi

    2013-01-01

    Based on characteristics such as low barrier and high electron mobility of lattice matched In 0.53 Ga 0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω; and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits. (semiconductor devices)

  1. Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Nath, T. K.

    2018-04-01

    The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.

  2. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    Science.gov (United States)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  3. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    International Nuclear Information System (INIS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-01-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  4. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  5. Homojunction p-n photodiodes based on As-doped single ZnO nanowire

    International Nuclear Information System (INIS)

    Cho, H. D.; Zakirov, A. S.; Yuldashev, Sh. U.; Kang, T. W.; Ahn, C. W.; Yeo, Y. K.

    2013-01-01

    Photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in-situ arsenic doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased condition. Our results demonstrate that present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nano-scale electronic, optoelectronic, and medical devices

  6. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  7. Fluorescence Blinking and Photoactivation of All-Inorganic Perovskite Nanocrystals CsPbBr3 and CsPbBr2I.

    Science.gov (United States)

    Seth, Sudipta; Mondal, Navendu; Patra, Satyajit; Samanta, Anunay

    2016-01-21

    Study of the emission behavior of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I as a function of the excitation power employing fluorescence correlation spectroscopy and conventional techniques reveals fluorescence blinking in the microsecond time scale and photoinduced emission enhancement. The observation provides insight into the radiative and nonradiative deactivation pathways of these promising substances. Because both blinking and photoactivation processes are intimately linked to the charge separation efficiency and dynamics of the nanocrystals, these key findings are likely to be helpful in realizing the true potential of these substances in photovoltaic and optoelectronic applications.

  8. Evaluation of a silicon 5 MHz p–n diode actuator with a laterally vibrating extensional mode

    Science.gov (United States)

    Miyazaki, Fumito; Baba, Kazuki; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-05-01

    In this paper, we describe p–n diode actuators that are laterally driven by the force induced in a depletion layer. The previously reported p–n diode actuators have been vertically driven. Because the resonant frequency depends on the thickness of the vibrating plate, the integration of resonators with different frequencies on a chip has been difficult. The resonators in this work are driven laterally by using length-extensional vibration. We have developed a compact model based on an analytical expression, in which p–n diode actuators are driven by the forces induced by the spread of the depletion layer. The deflection generated by the p–n diode actuators was proportional to the ratio of the depletion layer width to the resonator thickness as well as the position of the p–n junction. Good agreement of experimental results with the theory was confirmed by comparing the measured values for silicon p–n diode rectangular-plate actuators fabricated using a silicon-on-insulator (SOI) substrate. The displacement amplitude of the actuators was proportional to the DC bias, while the resonant frequency was independent of the DC bias. The latter characteristic is very different from that of widely used electrostatic actuators. Although the amplitude of the actuator measured in this work was very small, it is expected that the amplitude will increase greatly by increasing the doping of the p–n diode actuators.

  9. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    Science.gov (United States)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  10. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Varaporn Buraphacheep Junyaprasert

    2015-02-01

    Full Text Available Nanocrystals, a carrier-free colloidal delivery system in nano-sized range, is an interesting approach for poorly soluble drugs. Nanocrystals provide special features including enhancement of saturation solubility, dissolution velocity and adhesiveness to surface/cell membranes. Several strategies are applied for nanocrystals production including precipitation, milling, high pressure homogenization and combination methods such as NanoEdge™, SmartCrystal and Precipitation-lyophilization-homogenization (PLH technology. For oral administration, many publications reported useful advantages of nanocrystals to improve in vivo performances i.e. pharmacokinetics, pharmacodynamics, safety and targeted delivery which were discussed in this review. Additionally, transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.

  11. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    NARCIS (Netherlands)

    Gomez, Leyre; Lin, Junhao; De Weerd, Chris; Poirier, Lucas; Boehme, Simon C.; Von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the

  12. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments

    KAUST Repository

    Wang, Hong

    2017-03-31

    Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macroscopic piece of HNDCM-Co/CoP was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline conditions (pH 14) was performed, and H was produced at a rate of 16 mL/min, demonstrating its potential as real-life energy conversion systems.

  13. Silicon P.I.N. Junctions used for studies of radiation damage

    International Nuclear Information System (INIS)

    Lanore, J.

    1964-06-01

    Irradiation of silicon P.I.N. junction has been studied primarily for the purpose of developing a radiation damage dosimeter, but also for the purpose of investigating silicon itself. It is known that the rate of recombination of electrons and holes is a linear function of defects introduced by neutron irradiation. Two methods have been used to measure that rate of recombination: forward characteristic measurements, recovery time measurements. In order to explain how these two parameters depend on recombination rate we have given a theory of the P.I.N. junction. We have also given an idea of the carrier lifetime dependence versus temperature. Annealing effects in the range of 70 to 700 K have also been studied, we found five annealing stages with corresponding activation energies. As an application for these studies, we developed a radiation damage dosimeter with which we made several experiments in facilities such as Naiade or Marias. (author) [fr

  14. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    KAUST Repository

    Li, Ming Yang; Shi, Yumeng; Cheng, Chia Chin; Lu, Li Syuan; Lin, Yung Chang; Tang, Hao-Ling; Tsai, Meng Lin; Chu, Chih Wei; Wei, Kung Hwa; He, Jr-Hau; Chang, Wen Hao; Suenaga, Kazu; Li, Lain-Jong

    2015-01-01

    . Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via

  15. Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires

    KAUST Repository

    Alfaraj, Nasir; Mitra, Somak; Wu, Feng; Ajia, Idris A.; Janjua, Bilal; Prabaswara, Aditya; Aljefri, Renad A.; Sun, Haiding; Ng, Tien Khee; Ooi, Boon S.; Roqan, Iman S.; Li, Xiaohang

    2017-01-01

    The photoinduced entropy of InGaN/GaN p-i-n nanowires was investigated using temperature-dependent (6–290 K) photoluminescence. We also analyzed the photocarrier dynamics in the InGaN active regions using time-resolved photoluminescence. An increasing trend in the amount of generated photoinduced entropy of the system above 250 K was observed, while we observed an oscillatory trend in the generated entropy of the system below 250 K that stabilizes between 200 and 250 K. Strong exciton localization in indium-rich clusters, carrier trapping by surface defect states, and thermodynamic entropy effects were examined and related to the photocarrier dynamics. We conjecture that the amount of generated photoinduced entropy of the system increases as more non-radiative channels become activated and more shallowly localized carriers settle into deeply localized states; thereby, additional degrees of uncertainty related to the energy of states involved in thermionic transitions are attained.

  16. Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires

    KAUST Repository

    Alfaraj, Nasir

    2017-04-17

    The photoinduced entropy of InGaN/GaN p-i-n nanowires was investigated using temperature-dependent (6–290 K) photoluminescence. We also analyzed the photocarrier dynamics in the InGaN active regions using time-resolved photoluminescence. An increasing trend in the amount of generated photoinduced entropy of the system above 250 K was observed, while we observed an oscillatory trend in the generated entropy of the system below 250 K that stabilizes between 200 and 250 K. Strong exciton localization in indium-rich clusters, carrier trapping by surface defect states, and thermodynamic entropy effects were examined and related to the photocarrier dynamics. We conjecture that the amount of generated photoinduced entropy of the system increases as more non-radiative channels become activated and more shallowly localized carriers settle into deeply localized states; thereby, additional degrees of uncertainty related to the energy of states involved in thermionic transitions are attained.

  17. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    In the scientific literature colloidal nanocrystals are presented as promising materials for multiple applications, in areas covering optoelectronics, photovoltaics, spintronics, catalysis, and bio-medicine. On the marked are, however, only a very limited number of examples found, indeed implementing colloidal nanocrystals. Thus the scope of this thesis was to modify nanocrystals and to tune their properties to fulfill specific demands. While some modifications could be achieved by post synthetic treatments, one key problem of colloidal nanocrystals, hampering there widespread application is the toxicity of their constituents. To develop nanocrystals from non-toxic materials has been a major goal of this thesis as well. Roughly, the results in this thesis could be subdivided into three parts: (i) the development of ion exchange methods to tailor the properties of metallic and metal-oxide based nanocrystal heterostructures, (ii), the synthesis of semiconductor nanocrystals from non-toxic materials, and (iii) the characterization of the nanocrystals by measurements of their morphology, chemical composition, magnetic-, optical-, and electronic properties. In detail, the thesis is subdivided into an introductory chapter, 4 chapters reporting on scientific results, a chapter reporting the used methods, and the conclusions. The 4 chapters devoted to the scientific results correspond to manuscripts, which are either currently in preparation, or have been published in highly ranked scientific journals such as NanoLetters (chapter 2), ACS Nano (chapter 4), or JACS (chapter 5). Thus, these chapters provide also an extra introduction and conclusion section, as well as separate reference lists. Chapter 2 describes a cation exchange process which is used to tune and improve the magnetic properties of different iron-oxide based colloidal nanocrystal-heterostructures. The superparamagnetic blocking temperature, magnetic remanence, and coercivity is tuned by replacing Fe2+ by Co2

  19. Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films

    International Nuclear Information System (INIS)

    Gao Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-01-01

    Multilayered Ge nanocrystals embedded in SiO x GeN y films have been fabricated on Si substrate by a (Ge + SiO 2 )/SiO x GeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 deg. C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1 , which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2 ) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction

  20. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes

    KAUST Repository

    Serna, Martha I.; Hasan, Syed M. N.; Nam, S.; El Bouanani, Lidia; Moreno, Salvador; Choi, Hyunjoo; Alshareef, Husam N.; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A.

    2018-01-01

    vapor deposition and molecular beam epitaxy. The 2D SnSe films exhibit a mobility of ≈4.0 cm V s, and are successfully used to demonstrate SnSe/p-Si heterojunction diodes. The diodes show I /I ratios of 10-10 with a turn on voltage of <0.5 V

  1. Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers

    International Nuclear Information System (INIS)

    Tang, N.Y.

    2009-01-01

    The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.

  2. Diodes of nanocrystalline SiC on n-/n+-type epitaxial crystalline 6H-SiC

    Science.gov (United States)

    Zheng, Junding; Wei, Wensheng; Zhang, Chunxi; He, Mingchang; Li, Chang

    2018-03-01

    The diodes of nanocrystalline SiC on epitaxial crystalline (n-/n+)6H-SiC wafers were investigated, where the (n+)6H-SiC layer was treated as cathode. For the first unit, a heavily boron doped SiC film as anode was directly deposited by plasma enhanced chemical vapor deposition method on the wafer. As to the second one, an intrinsic SiC film was fabricated to insert between the wafer and the SiC anode. The third one included the SiC anode, an intrinsic SiC layer and a lightly phosphorus doped SiC film besides the wafer. Nanocrystallization in the yielded films was illustrated by means of X-ray diffraction, transmission electronic microscope and Raman spectrum respectively. Current vs. voltage traces of the obtained devices were checked to show as rectifying behaviors of semiconductor diodes, the conduction mechanisms were studied. Reverse recovery current waveforms were detected to analyze the recovery performance. The nanocrystalline SiC films in base region of the fabricated diodes are demonstrated as local regions for lifetime control of minority carriers to improve the reverse recovery properties.

  3. Illumination dependence of I-V and C-V characterization of Au/InSb/InP(1 0 0) Schottky structure

    International Nuclear Information System (INIS)

    Akkal, B.; Benamara, Z.; Bouiadjra, N. Bachir; Tizi, S.; Gruzza, B.

    2006-01-01

    The effects of surface preparation and illumination on electric parameters of Au/InSb/InP(100) Schottky diode were investigated, in the later diode InSb forms a fine restructuration layer allowing to block In atoms migration to surface. In order to study the electric characteristics under illumination, we make use of an He-Ne laser of 1 mW power and 632.8 nm wavelength. The current-voltage I(V G ), the capacitance-voltage C(V G ) measurements were plotted and analysed. The saturation current I s , the serial resistance R s and the mean ideality factor n are, respectively, equal to 2.03 x 10 -5 A, 85 Ω, 1.7 under dark and to 3.97 x 10 -5 A, 67 Ω, 1.59 under illumination. The analysis of I(V G ) and C(V G ) characteristics allows us to determine the mean interfacial state density N ss and the transmission coefficient θ n equal, respectively, to 4.33 x 10 12 eV -1 cm -2 , 4.08 x 10 -3 under dark and 3.79 x 10 12 eV -1 cm -2 and 5.65 x 10 -3 under illumination. The deep discrete donor levels presence in the semiconductor bulk under dark and under illumination are responsible for the non-linearity of the C -2 (V G ) characteristic

  4. Ultraviolet Laser SQUID Microscope for GaN Blue Light Emitting Diode Testing

    International Nuclear Information System (INIS)

    Daibo, M; Kamiwano, D; Kurosawa, T; Yoshizawa, M; Tayama, N

    2006-01-01

    We carried out non-contacting measurements of photocurrent distributions in GaN blue light emitting diode (LED) chips using our newly developed ultraviolet (UV) laser SQUID microscope. The UV light generates the photocurrent, and then the photocurrent induces small magnetic fields around the chip. An off-axis arranged HTS-SQUID magnetometer is employed to detect a vector magnetic field whose typical amplitude is several hundred femto-tesla. Generally, it is difficult to obtain Ohmic contacts for p-type GaN because of the low hole concentration in the p-type epitaxial layer and the lack of any available metal with a higher work function compared with the p-type GaN. Therefore, a traditional probecontacted electrical test is difficult to conduct for wide band gap semiconductors without an adequately annealed electrode. Using the UV-laser SQUID microscope, the photocurrent can be measured without any electrical contact. We show the photocurrent vector map which was reconstructed from measured magnetic fields data. We also demonstrate how we found the position of a defect of the electrical short circuits in the LED chip

  5. Silicon P.I.N. Junctions used for studies of radiation damage; Etude de l'irradiation aux neutrons rapides du silicium au moyen de jonctions P.I.N

    Energy Technology Data Exchange (ETDEWEB)

    Lanore, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-06-01

    Irradiation of silicon P.I.N. junction has been studied primarily for the purpose of developing a radiation damage dosimeter, but also for the purpose of investigating silicon itself. It is known that the rate of recombination of electrons and holes is a linear function of defects introduced by neutron irradiation. Two methods have been used to measure that rate of recombination: forward characteristic measurements, recovery time measurements. In order to explain how these two parameters depend on recombination rate we have given a theory of the P.I.N. junction. We have also given an idea of the carrier lifetime dependence versus temperature. Annealing effects in the range of 70 to 700 K have also been studied, we found five annealing stages with corresponding activation energies. As an application for these studies, we developed a radiation damage dosimeter with which we made several experiments in facilities such as Naiade or Marias. (author) [French] L'irradiation de structures P.I.N. etait faite dans le but d'etudier principalement la mise au point d'un dosimetre a ''radiation damage'' et aussi pour etudier plus profondement le silicium lui-meme. On sait que le taux de recombinaison electrons-trous est une fonction lineaire du taux de defauts introduits par irradiation aux neutrons. Deux methodes ont ete utilisees pour atteindre ce taux de recombinaison: mesures de la caracteristique directe, mesures du temps de retournement. Pour expliquer de quelle facon ces parametres dependent du taux de recombinaison. Nous avons donne une theorie de la jonction P.I.N. Nous avons aussi donne l'allure des variations du temps de vie des porteurs en fonction de la temperature. Nous avons d'autre part effectue des recuits entre 70 et 700 K, domaine dans lequel nous avons trouve cinq etapes de ''guerison'' avec les energies d'activation correspondantes. En application de ces etudes nous avons mis ou point un

  6. Search for a pentaquark decaying to <i>pK>0S in <i>γN>

    Energy Technology Data Exchange (ETDEWEB)

    Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O' Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Pacetti, S.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D' Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Lopes Pegna, D.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Olatora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Givens, K. M.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.

    2006-08-01

    We present a search for a pentaquark decaying strongly to <i>pK>0S in <i>γN> collisions at a center-of-mass energy up to 25 GeV/c2. Finding no evidence for such a state in the mass range of 1470 MeV/c2 to 2200 MeV/c2, we set limits on the yield and on the cross section times branching ratio relative to Σ* (1385)± and K* (892) +.

  7. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency

    Science.gov (United States)

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-01

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  8. Light emitting diode based on n-Zn{sub 0.94}M{sub 0.06}O nanorods/p-GaN (M= Cd and Ni) heterojunction under forward and reverse bias

    Energy Technology Data Exchange (ETDEWEB)

    Echresh, Ahmad, E-mail: ahmadechresh@gmail.com [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University (Sweden); Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Oeurn Chey, Chan [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University (Sweden); Zargar Shoushtari, Morteza [Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nur, Omer; Willander, Magnus [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University (Sweden)

    2015-04-15

    In this study, we report on the improvement in the optoelectronic properties of n-ZnO nanorods/p-GaN heterojunction. This was achieved by doping the ZnO with cadmium (Cd) and nickel (Ni). The ZnO and Zn{sub 0.94}M{sub 0.06}O nanorods grown hydrothermally on the p-GaN substrate were used to fabricate the light emitting diodes (LEDs). Structural measurement revealed that nanorods with wurtzite structure having a preferential orientation along the (002) c-axis. The UV–vis spectra show that the optical band gap of Zn{sub 0.94}M{sub 0.06}O nanorods is decreased in comparison to ZnO nanorods. Electrical measurements of the fabricated LEDs show an obvious rectifying behaviour with low threshold voltage. Electroluminescence (EL) characteristics of LEDs operated at forward and reverse bias were investigated. The EL spectra under forward bias show that doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region while the blue peak originating from the p-GaN substrate remains almost unaffected. The effect of doping was to reduce the valence band offsets and consequently more hole injection has occurred leading to the observed enhancement of the broad band in the visible region. Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate. - Highlights: • The reduction of the optical band gap of the M-doped ZnO (M= Cd and Ni) nanorods results in reduction of the valence band offset of the n-Zn{sub 0.94}M{sub 0.06}O nanorods/p-GaN heterojunction LEDs. • Doping ZnO nanorods with Cd and Ni led to an intensity enhancement of the broad peak in the visible region under forward bias. • Under reverse bias all heterojunction LEDs show the blue light emission peak originating from the p-GaN substrate.

  9. Nanocrystal synthesis and thin film formation for earth abundant photovoltaics

    Science.gov (United States)

    Carter, Nathaniel J.

    Providing access to on-demand energy at the global scale is a grand challenge of our time. The fabrication of solar cells from nanocrystal inks comprising earth abundant elements represents a scalable and sustainable photovoltaic technology with the potential to meet the global demand for electricity. Solar cells with Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers are of particular interest due to the high absorption coefficient of CZTSSe, its band gap in the ideal range for efficient photovoltaic power conversion, and the relative abundance of its constituent elements in the earth's crust. Despite the promise of this material system, CZTSSe solar cell efficiencies reported throughout literature have failed to exceed 12.6%, principally due to the low open-circuit voltage (VOC) achieved in these devices compared to the absorber band gap. The work presented herein primarily aims to address the low VOC problem. First, the fundamental cause for such low VOC's is investigated. Interparticle compositional inhomogeneities identified in the synthesized CZTS nanocrystals and their effect on the absorber layer formation and device performance are characterized. Real-time energy-dispersive x-ray diffraction (EDXRD) elucidates the role of these inhomogeneities in the mechanism by which a film of CZTS nanocrystals converts into a dense absorber layer comprising micron-sized CZTSSe grains upon annealing in a selenium atmosphere (selenization). Additionally, a direct correlation between the nanocrystal inhomogeneities and the VOC in completed devices is observed. Detailed characterization of CZTSSe solar cells identifies electrical potential fluctuations in the CZTSSe absorber - due to spatial composition variations not unlike those observed in the nanocrystals - as a primary V OC inhibitor. Additional causes for low VOC's in CZTSSe solar cells proposed in the literature involve recombination at the interface between the CZTSSe absorber and: (1) the n-type, CdS buffer layer, or (2) the

  10. Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier

    International Nuclear Information System (INIS)

    Sirkeli, Vadim P; Al-Daffaie, Shihab; Oprea, Ion; Küppers, Franko; Hartnagel, Hans L; Yilmazoglu, Oktay; Ong, Duu Sheng

    2017-01-01

    Blue InGaN/GaN light-emitting diodes with undoped, heavily Si-doped, Si delta-doped, heavily Mg-doped, Mg delta-doped, and Mg–Si pin-doped GaN barrier are investigated numerically. The simulation results demonstrate that the Mg–Si pin-doping in the GaN barrier effectively reduces the polarization-induced electric field between the InGaN well and the GaN barrier in the multiple quantum well, suppresses the quantum-confined Stark effect, and enhances the hole injection and electron confinement in the active region. For this light-emitting diode (LED) device structure, we found that the turn-on voltage is 2.8 V, peak light emission is at 415.3 nm, and internal quantum efficiency is 85.9% at 100 A cm −2 . It is established that the LED device with Mg–Si pin-doping in the GaN barrier has significantly improved efficiency and optical output power performance, and lower efficiency droop up to 400 A cm −2 compared with LED device structures with undoped or Si(Mg)-doped GaN barrier. (paper)

  11. Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes

    International Nuclear Information System (INIS)

    Marona, L.; Suski, T.; Perlin, P.; Czernecki, R.; Leszczynski, M.; Bockowski, M.; Jakiela, R.; Najda, S. P.

    2011-01-01

    We performed a systematic secondary ions mass spectroscopy (SIMS) study of dopant impurities in life-time stressed InGaN laser devices in order to investigate the main degradation mechanism that is observed in nitride laser diodes. A continuous wave (cw) current density of 3 kA/cm 2 was applied to InGaN laser diodes over an extended period of time and we observed the characteristic square root degradation of optical power. We compared the SIMS profiles of Mg, H, and Si impurities in the aged devices and observe that the impurities are remarkably stable over 10 000 h of cw operation. Nor is there any SIMS evidence of p-contact metals penetrating into the semiconductor material. Thus our SIMS results are contrary to what one would expect for impurity diffusion causing the observed square root degradation characteristic.

  12. Labeling of - N-Isopropil - p - I-Anphetamine (IMP-131I) and its biological distribution in rats

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Goncalves, R.S.V.; Muramoto, E.

    1988-09-01

    The described labeling and purification preparation of N-Isopropil-p 131 I-anphetamine ( 131 I-IMP) represents a fast and efficient method to obtains a compound that fullfills all criterions of purity for its application 'IN VIVO'. The labeling yield was 68-78% and the radiochemical purity performed by paper chromatography and electrophorese was 97-99%. As demostrated in animal experiments, the cerebral affinity offers a possibility to study brain diseases in clinical studies when the product will be labelled with 123 I. (author) [pt

  13. A p-n heterojunction of CuI/TiO2 with enhanced photoelectrocatalytic activity for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Sun, Mingjuan; Hu, Jiayue; Zhai, Chunyang; Zhu, Mingshan; Pan, Jianguo

    2017-01-01

    Highlights: •A p-n heterojunction of CuI/TiO 2 is constructed. •CuI/TiO 2 is used as the support for depositing Pt nanoparticles. •Enhanced catalytic activity of MOR by using Pt-CuI/TiO 2 under light irradiation. •Improved charger separation contributes to enhanced photoelectrocatalytic activity. -- Abstract: In this paper, a p-n heterojunction including p-type CuI and n-type TiO 2 is first time constructed to be the support for the deposition of Pt. The as-prepared Pt-CuI/TiO 2 modified electrode is studied for the electrocatalytic oxidation of methanol both in dark and under light illumination. Compare to traditional electrocatalytic oxidation, the electrocatalytic activity of Pt-CuI/TiO 2 for methanol oxidation is improved with 4.0 times upon light illumination. Moreover, compare to bare CuI and TiO 2 upon light illumination, the heterostructure of CuI/TiO 2 displays 4.3 and 9.1 times enhanced electrocatalytic activity for methanol oxidation, respectively. The synergistic effects of photocatalysis and electrocatalysis as well as the effective charge transport in the p-n heterojunction of Pt-CuI/TiO 2 contribute such big enhancement. The present studies indicate that the constructing of p-n heterojunction provides more insights in the fields of photoelectrochemical and photo–assisted fuel cell system.

  14. InGaN/GaN light-emitting diode microwires of submillimeter length

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, W. V., E-mail: lundin.vpegroup@mail.ioffe.ru; Rodin, S. N.; Sakharov, A. V.; Lundina, E. Yu. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Usov, S. O. [Russian Academy of Sciences, Research and Engineering Center of Submicron Heterostructures for Microelectronics (Russian Federation); Zadiranov, Yu. M.; Troshkov, S. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Tsatsulnikov, A. F. [Russian Academy of Sciences, Research and Engineering Center of Submicron Heterostructures for Microelectronics (Russian Federation)

    2017-01-15

    Microcrystalline wire-like InGaN/GaN light-emitting diodes designed as core–shell structures 400–600 μm in length are grown by metal–organic vapor-phase epitaxy on sapphire and silicon substrates. The technology of the titanium-nanolayer-induced ultrafast growth of nanowire and microwire crystals is used. As a current is passed through the microcrystals, an electroluminescence signal is observed in the blue–green spectral region.

  15. Enriching Silver Nanocrystals with a Second Noble Metal.

    Science.gov (United States)

    Wu, Yiren; Sun, Xiaojun; Yang, Yin; Li, Jumei; Zhang, Yun; Qin, Dong

    2017-07-18

    Noble-metal nanocrystals have received considerable interests owing to their fascinating properties and promising applications in areas including plasmonics, catalysis, sensing, imaging, and medicine. As demonstrated by ample examples, the performance of nanocrystals in these and related applications can be augmented by switching from monometallic to bimetallic systems. The inclusion of a second metal can enhance the properties and greatly expand the application landscape by bringing in new capabilities. Seeded growth offers a powerful route to bimetallic nanocrystals. This approach is built upon the concept that preformed nanocrystals with uniform, well-controlled size, shape, and structure can serve as seeds to template and direct the deposition of metal atoms. Seeded growth is, however, limited by galvanic replacement when the deposited metal is less reactive than the seed. The involvement of galvanic replacement not only makes it difficult to control the outcome of seeded growth but also causes degradation to some properties. We have successfully addressed this issue by reducing the salt precursor(s) into atoms with essentially no galvanic replacement. In the absence of self-nucleation, the atoms are preferentially deposited onto the seeds to generate bimetallic nanocrystals with controlled structures. In this Account, we use Ag nanocubes as an example to demonstrate the fabrication of Ag@M and Ag@Ag-M (M = Au, Pd, or Pt) nanocubes with a core-frame or core-shell structure by controlling the deposition of M atoms. A typical synthesis involves the titration of M n+ (a precursor to M) ions into an aqueous suspension containing Ag nanocubes, ascorbic acid, and poly(vinylpyrrolidone) under ambient conditions. In one approach, aqueous sodium hydroxide is introduced to increase the initial pH of the reaction system. At pH = 11.9, ascorbic acid is dominated by ascorbate monoanion, a much stronger reductant, to suppress the galvanic replacement between M n+ and Ag. In

  16. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  17. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  18. Graphene as current spreading layer on AlGaInP light emitting diodes

    Science.gov (United States)

    Guo, Xia; Feng, Yajie; Liu, Qiaoli; Hu, Anqi; He, Xiaoying; Hu, Zonghai

    2018-05-01

    Due to high transmittance and high mobility, graphene is one of the promising candidates for a current spreading layer, which is crucial to light emitting diode (LED) performance. In this paper, improved AlGaInP LED performance was reported after graphene was applied on the GaP surface. Due to its lowered work function difference than with the GaN material, the electrical properties remain the same without additional voltage bias. The light output power is enhanced by about 40% under the current injection of 5 mA at room temperature, which was confirmed by the light emission profile analysis in this study. Such results indicate that raphene is a promising candidate as a current spreading layer under low current injection.

  19. Epitaxial Sb-doped SnO_2 and Sn-doped In_2O_3 transparent conducting oxide contacts on GaN-based light emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Min-Ying; Bierwagen, Oliver; Speck, James S.

    2016-01-01

    We demonstrate the growth of epitaxial (100)-oriented, rutile Sb-doped SnO_2 (ATO) and (111)-oriented, cubic Sn-doped In_2O_3 (ITO) transparent conducting oxide (TCO) contacts on top of an InGaN/GaN(0001) light emitting diode (LED) by plasma-assisted molecular beam epitaxy (PAMBE). Both oxides form rotational domains. The in-plane epitaxial alignment of the two ITO(111) rotational domains to the GaN(0001) was: GaN [21-10]|| ITO_D_o_m_a_i_n_1[‐ 211]|| ITO_D_o_m_a_i_n_2[‐ 1‐12]. A growth temperature as low as 600 °C was necessary to realize a low contact resistance between ATO and the top p-GaN layer of the LED but resulted in non-optimal resistivity (3.4 × 10"− "3 Ω cm) of the ATO. The current–voltage characteristics of a processed LED, however, were comparable to that of a reference LED with a standard electron-beam evaporated ITO top contact. At short wavelengths, the optical absorption of ATO was lower than that of ITO, which is beneficial even for blue LEDs. Higher PAMBE growth temperatures resulted in lower resistive ATO but higher contact resistance to the GaN, likely by the formation of an insulating Ga_2O_3 interface layer. The ITO contact grown by PAMBE at 600 °C showed extremely low resistivity (10"−"4 Ω cm) and high crystalline and morphological quality. These proof-of-principle results may lead to the development of epitaxial TCO contacts with low resistivity, well-defined interfaces to the p-GaN to help minimize contact losses, and enable further epitaxy on top of the TCO. - Highlights: • Plasma-assisted molecular beam epitaxy of SnO_2:Sb (ATO) and In_2O_3:Sn (ITO) contacts • Working light emitting diodes processed with the ATO contact on the top p-GaN layer • Low growth temperature ensures low contact resistance (limiting interface reaction). • ITO showed significantly better structural and transport properties than ATO. • ATO showed higher optical transmission at short wavelengths than ITO.

  20. Junction parameters and characterization of Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; El-Shazly, E.A.A. [Ain Shams University, Physics Department, Faculty of Education, Roxy, Cairo (Egypt); Ali, M.H. [Ain Shams University, Physics Department, Faculty of Science, Abassia, Cairo (Egypt); Zedan, I.T. [High Institute of Engineering and Technology, Basic Science Department, El-Arish, North Sinai (Egypt)

    2016-08-15

    The analysis of the electrical properties of Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction is examined. I-V characteristics show diode-like behavior. The series resistance is found to decrease with increasing the temperature in three different methods of calculations. The thermionic emission mechanism is found to be the operating mechanism at relatively low forward voltages (V < 0.25). While, at relatively high forward voltage, the space charge limited conduction is the operating mechanism. The rectification ratio, ideality factor, barrier height, total trap concentration and built-in voltage are determined. The capacitance-voltage (C-V) characteristics of Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction are also investigated. The I-V curve of the Au/n-Ge{sub 15}In{sub 5}Se{sub 80}/p-Si/Al heterojunction in the dark and after illumination is clarified. (orig.)

  1. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Liu Yebing; Hu Rui; Yang Yuqing; Wang Guanquan; Luo Shunzhong; Liu Ning

    2012-01-01

    An Au–Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p–n junction. The results show that the Schottky diode had a higher I sc and harder radiation tolerance but lower V oc than the p–n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. - Highlights: ► The Schottky diode was used as the converter of the betavoltaic battery. ► The radiation damage of converter was accelerated by using alpha particles. ► The Schottky diode has higher radiation resistance than that of the p–n junction. ► The Schottky diode could still be a promising converter of the betavoltaic battery.

  2. Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Moreno, Jorge; Navarrete-Astorga, Elena; Martin, Francisco [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Schrebler, Ricardo [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Ramos-Barrado, Jose R. [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Dalchiele, Enrique A., E-mail: dalchiel@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

    2012-12-15

    n-ZnO/p-poly(3,4-ethylenedioxythiophene) (PEDOT) semitransparent inorganic-organic hybrid vertical heterojunction thin film diodes have been fabricated with PEDOT and ZnO thin films grown by electrodeposition and radio-frequency magnetron-sputtering respectively, onto a tin doped indium oxide coated glass substrate. The diode exhibited an optical transmission of {approx} 40% to {approx} 50% in the visible region between 450 and 700 nm. The current-voltage (I-V) characteristics of the heterojunction show good rectifying diode characteristics, with a ratio of forward current to the reverse current as high as 35 in the range - 4 V to + 4 V. The I-V characteristic was examined in the framework of the thermionic emission model. The ideality factor and barrier height were obtained as 4.0 and 0.88 eV respectively. - Highlights: Black-Right-Pointing-Pointer Semitransparent inorganic-organic heterojunction thin film diodes investigated Black-Right-Pointing-Pointer n-ZnO/p-poly(3,4-ethylenedioxythipohene) used for the heterojunction Black-Right-Pointing-Pointer Diodes exhibited an optical transmission of {approx} 40%-{approx} 50% in the visible region Black-Right-Pointing-Pointer Heterojunction current-voltage features show good rectifying diode characteristics Black-Right-Pointing-Pointer A forward to reverse current ratio as high as 35 (- 4 V to + 4 V range) was attained.

  3. Protein Adsorption and Antibacterial Behavior for Hydroxyapatite Nanocrystals Prepared by Hydrothermal Method

    OpenAIRE

    笠原, 英充; 小形, 信男; 荻原, 隆

    2005-01-01

    Homogeneous hydroxyapatite nanocrystals which have aspect ratio with more than four were synthesized by hydrothermal method. X-ray fluorescence analysis revealed that the Ca/P ratio of hydroxyapatite nanocrystals was maintaining start composition. The protein adsorption properties and bacteria-resistant of hydroxyapatite nanocrystals were investigated. The protein adsorption properties of hydroxyapatite nanocrystals were improvement after the hydrothermal treatment. Bacteria-resistant behavio...

  4. Microwave assisted transformation of N,N-diphenylamine as precursors of organic light emitting diodes (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Jefri,; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id [Organic Chemistry Research Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    In this research, study on the transformation of N,N-diphenylamine (DPA) using iodine (I2) utilizing solid state Microwave Assisted Organic Synthesis (MAOS) method has been carried out. The reaction was performed by variations of three parameters namely the mole of reagents, the amount and type of solid support (alumina/Al2O3), and the reaction conditions. Experimental results showed that neutral-alumina was a better solid support than basic-alumina. The optimum temperature for the reaction was approximately at 125-133 °C with reaction time of 15 minutes and microwave reactor power at 500-600 W. The separation of the yellowish green product solution with preparative Thin Layer Chromatography (TLC) method using n-hexane:ethyl acetate = 4:1 (v/v) as eluent yielded two fractions (I and II) and both fractions can undergo fluorescence under 365 nm UV light. Based on the LC chromatogram with methanol:water = 95:5 (v/v) as eluent and its corresponding mass spectra (ESI+), fraction I contained three compounds, which were tetracarbazole A, triphenylamine, and impurities in the form of plasticizer such as bis(2-ethylhexyl) phthalate. Fraction II also contained three compounds, which were tetracarbazole C, tetraphenylhydrazine, and plasticizer such as bis(2-ethylhexyl) phthalate. Both FT-IR (KBr disks) and NMR (500 MHz, CDCl{sub 3}) spectra of fraction I and II confirmed the aromatic amine groups in those compounds. The observed fluorescence colors of fraction I and II were violet and violet-blue, respectively. Based on their structures and fluorescence characters, the compounds in fraction I and II have the potential to be used as Organic Light Emitting Diode (OLED) compound precursors.

  5. A High Power InGaN-Based Blue-Violet Laser Diode Array with a Broad-Area Stripe

    International Nuclear Information System (INIS)

    Chen Ping; Zhao De-Gang; Feng Mei-Xin; Jiang De-Sheng; Liu Zong-Shun; Yang Hui; Zhang Li-Qun; Li De-Yao; Liu Jian-Ping; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    An array of high power InGaN/GaN multi-quantum-well laser diodes with a broad waveguide is fabricated. The laser diode structure is grown on a GaN substrate by metal-organic chemical vapor deposition. The laser diode array consists of five emitter stripes which share common electrodes on one laser chip. The electrical and optical characteristics of the laser diode array are investigated under the pulse current injection with 10kHz frequency and 100 ns pulse width. The laser diode array emits at the wavelength of 409 nm, which is located in the blue-violet region, and the threshold current is 2.9 A. The maximum output light peak power is measured to be 7.5 W at the wavelength of 411.8 nm under the current of 25 A

  6. Electrical characterization of Au/quercetin/n-Si heterojunction diode and optical analysis of quercetin thin film

    International Nuclear Information System (INIS)

    Tombak, Ahmet; Özaydin, C.; Boğa, M.; Kiliçoğlu, T.

    2016-01-01

    Quercetin (3,5,7,3’,4’-pentahydroxyflavone, QE), one of the most widely distributed flavonoids in fruits and vegetables, has been reported to possess a wide variety of biological effects, including anti-oxidative, anti-inflammatory, anti-apoptosis, hepatoprotective, renoprotective and neuroprotective effects. In this study organic-inorganic junctions were fabricated by forming quercetin complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. Optical properties of quercetin thin film were studied with the help of spectrophotometer. The current-voltage (I-V) characteristic of Au/quercetin/n-Si heterojunction diode was investigated at room temperature in dark. Some basic parameters of the diode such as ideality factor, rectification ratio, barrier height, series resistance and shunt resistance were calculated using dark current-voltage measurement. It was also seen that the device had good sensitivity to the light under 40-100 mW/cm"2 illumination conditions.

  7. Electrical characterization of Au/quercetin/n-Si heterojunction diode and optical analysis of quercetin thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tombak, Ahmet, E-mail: tahmet@yahoo.com [Department of Physics, Faculty of Art& Science, Batman University, Batman 72000 (Turkey); Özaydin, C. [Department of Computer Engineering, Faculty of Engineering and Architecture, Batman University, Batman 72000 (Turkey); Boğa, M. [Faculty of Pharmacy, Pharmaceutical Technology Department, Dicle University, Diyarbakir 21280 (Turkey); Kiliçoğlu, T. [Department of Physics, Faculty of Science, Dicle University, Diyarbakir 21280 (Turkey)

    2016-03-25

    Quercetin (3,5,7,3’,4’-pentahydroxyflavone, QE), one of the most widely distributed flavonoids in fruits and vegetables, has been reported to possess a wide variety of biological effects, including anti-oxidative, anti-inflammatory, anti-apoptosis, hepatoprotective, renoprotective and neuroprotective effects. In this study organic-inorganic junctions were fabricated by forming quercetin complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. Optical properties of quercetin thin film were studied with the help of spectrophotometer. The current-voltage (I-V) characteristic of Au/quercetin/n-Si heterojunction diode was investigated at room temperature in dark. Some basic parameters of the diode such as ideality factor, rectification ratio, barrier height, series resistance and shunt resistance were calculated using dark current-voltage measurement. It was also seen that the device had good sensitivity to the light under 40-100 mW/cm{sup 2} illumination conditions.

  8. GaN-based superluminescent diodes with long lifetime

    Science.gov (United States)

    Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.

    2016-02-01

    We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.

  9. A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India); Jana, Sumanta [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Chattopadhyay, Dipankar [University of Calcutta, Department of Polymer Science and Technology (India); Mondal, Anup [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Seok, Sang Il [Korea Research Institute of Chemical Technology, KRICT-EPFL Global Research Laboratory, Division of Advanced Materials (Korea, Republic of); Bera, Pulakesh, E-mail: pbera.pbc.chem@gmail.com [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India)

    2016-10-15

    Hexagonal copper-deficient copper(I) sulfide (Cu{sub 2-x}S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa){sub 2}][CuCl{sub 2}], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN{sub 2}S{sub 2} chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu{sub 2-x}S (x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH{sub 2}SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of Cu{sup I}-complex to Cu{sub 2-x}S (x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu{sub 1.97}S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu{sub 1.8}S. The optical band gap values (2.25–2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity (~87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).Graphical abstractA pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: Synthesis, optical and photocatalytic activity.Gopinath Mondal, Ananyakumari Santra, Pradip Bera, Moumita Acharjya, Sumanta Jana, Dipankar Chattopadhyay, Anup Mondal, Sang Il Seok, Pulakesh Bera.

  10. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Identification of HNF4A Mutation p.T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-01-01

    Full Text Available Maturity-onset diabetes of the young (MODY is characterized by the onset of diabetes before the age of 25 years, positive family history, high genetic predisposition, monogenic mutations, and an autosomal dominant mode of inheritance. Here, we aimed to investigate the mutations and to characterize the phenotypes of a Han Chinese family with early-onset maternally inherited type 2 diabetes. Detailed clinical assessments and genetic screening for mutations in the HNF4α, GCK, HNF-1α, IPF-1, HNF1β, and NEUROD1 genes were carried out in this family. One HNF4A mutation (p.T130I and two HNF1A polymorphisms (p.I27L and p.S487N were identified. Mutation p.T130I was associated with both early-onset and late-onset diabetes and caused downregulated HNF4A expression, whereas HNF1A polymorphisms p.I27L and p.S487N were associated with the age of diagnosis of diabetes. We demonstrated that mutation p.T130I in HNF4A was pathogenic as were the predicted polymorphisms p.I27L and p.S487N in HNF1A by genetic and functional analysis. Our results show that mutations in HNF4A and HNF1A genes might account for this early-onset inherited type 2 diabetes.

  12. SPECTRAL CHARACTERISTICS OF MID-INFRARED LIGHT-EMITTING DIODES BASED ON InAs (Sb,P

    Directory of Open Access Journals (Sweden)

    N. K. Zhumashev

    2016-01-01

    Full Text Available Subject of Study. We consider spectral characteristics of mid-infrared light-emitting diodes with heterostructures based on InAs(Sb,P emitting at T=300 K in the wavelength range 3.4–4.1 micrometers. The aim of the study was to search for the ways of increasing the diode efficiency. Methods. The heterostructures were grown from metal-organic chemical compounds with the use of vapor-phase epitaxial technique. The spectra were recorded under pulse excitation with the use of computer-controlled installation employing MDR-23 grating monochromator and a lock-in amplifier. InSb photodiode was used as a detector. Comparative study of electroluminescence spectra of the diodes was carried out at the temperatures equal to 300 K and 77 K. We compared the obtained data with the calculation results of the band diagrams of the heterostructures. Main Results. As a result of comparative study of the electroluminescence spectra of the diodes recorded at 300 K and 77 K we have established that increasing of their efficiency is hindered by substantial influence of Auger recombination. For the first time at 77 К we have observed the effect of stimulated emission from InAsSb active layer in light-emitting structures made of InAs/InAsSb/InAsSbP. For heterostructures with quantum wells InAs/(InAs/InAsSb/InAsSbP we have found out that at 77 К the carrier recombination occurs outside quantum wells, which points out to the insufficient carrier localization in the active layer. Thus, we have shown that the efficiency of mid-infrared light-emitting diodes based on InAs(Sb,P can be increased via suppression of Auger-recombination and improvement of carrier localization in the active region. Practical Relevance. The results of the study can be used for development of heterostructures for mid-infrared light-emitting diodes.

  13. Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Tondini, S. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena (Italy); Pucker, G. [Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento (Italy); Pavesi, L. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy)

    2016-09-07

    The role of the inversion layer on injection and recombination phenomena in light emitting diodes (LEDs) is here studied on a multilayer (ML) structure of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2}. Two Si-NC LEDs, which are similar for the active material but different in the fabrication process, elucidate the role of the non-radiative recombination rates at the ML/substrate interface. By studying current- and capacitance-voltage characteristics as well as electroluminescence spectra and time-resolved electroluminescence under pulsed and alternating bias pumping scheme in both the devices, we are able to ascribe the different experimental results to an efficient or inefficient minority carrier (electron) supply by the p-type substrate in the metal oxide semiconductor LEDs.

  14. Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures

    International Nuclear Information System (INIS)

    Das, Subhashis; Majumdar, Shubhankar; Kumar, Rahul; Ghosh, Saptarsi; Biswas, Dhrubes

    2016-01-01

    An AlGaN/GaN heterostructure based metal–semiconductor–metal symmetrically bi-directional Schottky diode sensor structure has been employed to investigate acetone sensing and to analyze thermodynamics of acetone adsorption at low temperatures. The AlGaN/GaN heterostructure has been grown by plasma-assisted molecular beam epitaxy on Si (111). Schottky diode parameters at different temperatures and acetone concentrations have been extracted from I–V characteristics. Sensitivity and change in Schottky barrier height have been studied. Optimum operating temperature has been established. Coverage of acetone adsorption sites at the AlGaN surface and the effective equilibrium rate constant of acetone adsorption have been explored to determine the endothermic nature of acetone adsorption enthalpy.

  15. Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes

    KAUST Repository

    Shen, Chao

    2017-11-30

    The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.

  16. Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Ooi, Boon S.

    2017-01-01

    The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.

  17. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films

    Science.gov (United States)

    2013-01-01

    In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999

  18. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    KAUST Repository

    Kang, Chun Hong

    2016-08-23

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  19. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    KAUST Repository

    Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif

    2016-01-01

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  20. Astrophysical s-factor measurements for {sup 1}20Te(p,{gamma}){sup 1}21I and {sup 1}20Te(p,n){sup 1}20I reactions; {sup 1}20Te(p,{gamma}){sup 1}21I ve {sup 1}20Te(p,n){sup 1}20I reaksiyonlarinin astrofiziksel s-factor oelcuemleri

    Energy Technology Data Exchange (ETDEWEB)

    Gueray, R T; Oezkan, N; Yalcin, C [Kocaeli University, Kocaeli (Turkey); Goerres, J; DeBoer, R; Palumbo, A; Tan, W P; Wiescher, M [University of Notre Dame, (United States); Fueloep, Zs; Somorjai, E [Institute of Nuclear Research ATOMKI (Hungary); Lee, H Y [Argonne National Laboratory (United States)

    2009-07-01

    Astrophysical S-factors for the {sup 1}20Te(p,{gamma}){sup 1}21I and {sup 1}20Te(p,n){sup 1}20I reactions have been measured in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. Experimental data have been compared with the Hauser-Fesbach statistical model calculations obtained with the model codes NON-SMOKER and TALYS. The discrepancies between the experimental results and calculations can mainly be attributed to the optical model potentials used in the codes.

  1. N.G. Basov and early works on semiconductor lasers at P.N. Lebedev Physics Institute

    International Nuclear Information System (INIS)

    Eliseev, P G

    2012-01-01

    A survey is presented of works on creation and investigation of semiconductor lasers during 1957 – 1977 at the P.N. Lebedev Physics Institute. Many of these works were initiated by N.G. Basov, starting from pre-laser time, when N.G. Basov and his coworkers formulated principal conditions of creation of lasers on interband transitions in semiconductors. Main directions of further works were diode lasers based on various materials and structures, their characteristics of output power, high-speed operation and reliability. (special issue devoted to the 90th anniversary of n.g. basov)

  2. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang

    2014-01-01

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm −1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  3. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  4. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    Directory of Open Access Journals (Sweden)

    Fengbing Wu

    2012-01-01

    Full Text Available We have investigated the feasibility of employing quantum dot (QD phosphor-based light-emitting diodes (LEDs in aviation applications that request Night Vision Imaging Systems (NVIS compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nanocrystal QDs can be tailored by varying the nanocrystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  5. N-isopropyl-p-[I123] iodoamphetamine single photon emission computed tomography (I123-IMP SPECT) and child neurology

    International Nuclear Information System (INIS)

    Tada, Hiroshi; Morooka, Keiichi; Arimoto, Kiyoshi; Matsuo, Takiko; Takagi, Kazue; Yanagawa, Etsuko

    1992-01-01

    We studied the clinical usefulness of I 123 -IMP SPECT in 50 pediatric patients with CNS disorders, which were categorized into the convulsive disorder group (n=20), the cerebrovascular disorder group (n=10), the acute encephalopathy or CNS infection group (n=10), the metabolic or degenerative disorder group (n=6), the congenital abnormality group (n=2) and the migraine group (n=2). The findings obtained were compared with those of cranial CT. I 123 -IMP SPECT revealed abnormal findings in 45 out of the 50 patients (90%), although cranial CT showed abnormal findings in only 24 patients (48%). This difference was statistically significant (p 123 -IMP SPECT showed focal abnormalities in 26 patients (93%). Moreover in many patients with focal neurological abnormalities, we found focal abnormalities of I 123 -IMP SPECT related with neurological abnormalities of the patients. From these findings, we think I 123 -IMP SPECT might be superior to CT scanning in examining a localized lesion. It was found that in many patients with focal abnormalities in CT scanning, I 123 -IMP SPECT showed larger abnormalities in CT scanning. By using I 123 -IMP SPECT we might be able to study the blood perfusional state surrounding the abnormal area shown by CT. In 3 patients with acute cerebrovascular disorders, I 123 -IMP SPECT revealed abnormal findings 3 to 11 days earlier than cranial CT. I 123 -IMP SPECT might be useful for early recognition of the pathological state. From these experiences, we concluded that I 123 -IMP SPECT was useful for studying the pathophysiology of CNS disorders in children. (author)

  6. Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon

    Directory of Open Access Journals (Sweden)

    Nazek El-Atab

    2013-10-01

    Full Text Available A thin-film ZnO(n/Si(p+ heterojunction diode is demonstrated. The thin film ZnO layer is deposited by Atomic Layer Deposition (ALD at different temperatures on a p-type silicon substrate. Atomic force microscopy (AFM AC-in-Air method in addition to conductive AFM (CAFM were used for the characterization of ZnO layer and to measure the current-voltage characteristics. Forward and reverse bias n-p diode behavior with good rectification properties is achieved. The diode with ZnO grown at 80°C exhibited the highest on/off ratio with a turn-on voltage (VON ∼3.5 V. The measured breakdown voltage (VBR and electric field (EBR for this diode are 5.4 V and 3.86 MV/cm, respectively.

  7. Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs

    Science.gov (United States)

    Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo

    2018-03-01

    The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.

  8. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode

    Science.gov (United States)

    Löbl, Matthias C.; Söllner, Immo; Javadi, Alisa; Pregnolato, Tommaso; Schott, Rüdiger; Midolo, Leonardo; Kuhlmann, Andreas V.; Stobbe, Søren; Wieck, Andreas D.; Lodahl, Peter; Ludwig, Arne; Warburton, Richard J.

    2017-10-01

    We demonstrate full charge control, narrow optical linewidths, and optical spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5 -nm -thin diode structure. The quantum dots are just 88 nm from the top GaAs surface. We design and realize a p -i -n -i -n diode that allows single-electron charging of the quantum dots at close-to-zero applied bias. In operation, the current flow through the device is extremely small resulting in low noise. In resonance fluorescence, we measure optical linewidths below 2 μ eV , just a factor of 2 above the transform limit. Clear optical spin pumping is observed in a magnetic field of 0.5 T in the Faraday geometry. We present this design as ideal for securing the advantages of self-assembled quantum dots—highly coherent single-photon generation, ultrafast optical spin manipulation—in the thin diodes required in quantum nanophotonics and nanophononics applications.

  9. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II.

    Science.gov (United States)

    Jin, Ersuo; Guo, Jiaqi; Yang, Fang; Zhu, Yangyang; Song, Junlong; Jin, Yongcan; Rojas, Orlando J

    2016-06-05

    Polymorphic and morphological transformations of cellulosic materials are strongly associated to their properties and applications, especially in the case of emerging nanocelluloses. Related changes that take place upon treatment of cellulose nanocrystals (CNC) in alkaline conditions are studied here by XRD, TEM, AFM, and other techniques. The results indicate polymorphic transformation of CNC proceeds gradually in a certain range of alkali concentrations, i.e. from about 8% to 12.5% NaOH. In such transition alkali concentration, cellulose I and II allomorphs coexists. Such value and range of the transition concentration is strongly interdependent with the crystallite size of CNCs. In addition, it is distinctively lower than that for macroscopic fibers (12-15% NaOH). Transmission electron microscopy and particle sizing reveals that after mercerization CNCs tend to associate. Furthermore, TEMPO-oxidized mercerized CNC reveals the morphology of individual nanocrystal of the cellulose II type, which is composed of some interconnected granular structures. Overall, this work reveals how the polymorphism and morphology of individual CNC change in alkali conditions and sheds light onto the polymorphic transition from cellulose I to II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode

    Science.gov (United States)

    2012-01-30

    drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor

  11. Mis-diode as a low-energy X- and γ-ray spectrometer

    International Nuclear Information System (INIS)

    Konova, A.

    1980-01-01

    Considered are main peculiarities of apparata called MIS-diods having metal-thin isolating semiconductor structure and used as detectors of low-energy gamma and X-ray radiation. Discussed are advantages of tunnel MIS-diods based on non-primitive carriers. Presented are results of experimental measurements carried out using system of metal-silion oxide-silicon with the oxide layer width of 10-25 A (silicon with acceptor concentration of 10 19 m -3 ). Data presented show that MIS-diods can be considered as diods with p-n - transition in which n + - region is an inversion layer near the semiconductor surface, and further a leant region is situated. When voltage is applied only the depth of the leant region changes. In case of high quality diods the leakage currents are very small. Results of the investigation performed show that MIS-diods with oxide film wiolth of 10-22 A (the film covering p-silicon with high specific resistance) can be used as spectrometers of low-energy photons having particularly high energetic solution at room temperature. An advantage of new diods is the reverse current significantly lower in comparison with that of usual detectors with the Schottky barrier

  12. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    Science.gov (United States)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  13. Minority-carrier transport in InGaAsSb thermophotovoltaic diodes

    International Nuclear Information System (INIS)

    Charache, G.; Martinelli, R.U.; Garbuzov, D.Z.; Lee, H.; Morris, N.; Odubanjo, T.; Connolly, J.C.

    1997-05-01

    Uncoated InGaAsSb/GaSb thermophotovoltaic (TPV) diodes with 0.56 eV (2.2 microm) bandgaps exhibit external quantum efficiencies of 59% at 2 microm. The devices have electron diffusion lengths as long as 29 microm in 8-microm-wide p-InGaAsSb layers and hole diffusion lengths of 3 microm in 6-microm-wide n-InGaAsSb layers. The electron and hole diffusion lengths appear to increase with increasing p- and n-layer widths. At 632.8 nm the internal quantum efficiencies of diodes with 1- to 8-microm-wide p-layers are above 89% and are independent of the p-layer width, indicating long electron diffusion lengths. InGaAsSb has, therefore, excellent minority carrier transport properties that are well suited to efficient TPV diode operation. The structures were grown by molecular-beam epitaxy

  14. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  15. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  16. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  17. Metabolic lung scanning with N-isopropyl-I-123-p-iodoamphetamine

    International Nuclear Information System (INIS)

    Touya, J.; Akber, S.F.; Rashimian, J.; Bennett, L.R.

    1982-01-01

    The mechanisms of uptake of N-Isopropyl-I-123-p-Iodoamphetamine (IMP) in the lung was studied in dogs. It has been concluded that this amine is taken in low specificity - high capacity endothelial receptors. Competitive effect of propranolol guanethidine, amphetamine and ketanine for the binding sites of IMP in the pulmonary endothelial cells was observed. These results show that IMP can be an agent for nonparticulate lung perfusion scans as well as for metabolic lung scans

  18. Impact of interlayer processing conditions on the performance of GaN light-emitting diode with specific NiOx/graphene electrode.

    Science.gov (United States)

    Chandramohan, S; Kang, Ji Hye; Ryu, Beo Deul; Yang, Jong Han; Kim, Seongjun; Kim, Hynsoo; Park, Jong Bae; Kim, Taek Yong; Cho, Byung Jin; Suh, Eun-Kyung; Hong, Chang-Hee

    2013-02-01

    This paper reports on the evaluation of the impact of introducing interlayers and postmetallization annealing on the graphene/p-GaN ohmic contact formation and performance of associated devices. Current-voltage characteristics of the graphene/p-GaN contacts with ultrathin Au, Ni, and NiO(x) interlayers were studied using transmission line model with circular contact geometry. Direct graphene/p-GaN interface was identified to be highly rectifying and postmetallization annealing improved the contact characteristics as a result of improved adhesion between the graphene and the p-GaN. Ohmic contact formation was realized when interlayer is introduced between the graphene and p-GaN followed by postmetallization annealing. Temperature-dependent I-V measurements revealed that the current transport was modified from thermionic field emission for the direct graphene/p-GaN contact to tunneling for the graphene/metal/p-GaN contacts. The tunneling mechanism results from the interfacial reactions that occur between the metal and p-GaN during the postmetallization annealing. InGaN/GaN light-emitting diodes with NiO(x)/graphene current spreading electrode offered a forward voltage of 3.16 V comparable to that of its Ni/Au counterpart, but ended up with relatively low light output power. X-ray photoelectron spectroscopy provided evidence for the occurrence of phase transformation in the graphene-encased NiO(x) during the postmetallization annealing. The observed low light output is therefore correlated to the phase change induced transmittance loss in the NiO(x)/graphene electrode. These findings provide new insights into the behavior of different interlayers under processing conditions that will be useful for the future development of opto-electronic devices with graphene-based electrodes.

  19. Nanofibrous p-n Junction and Its Rectifying Characteristics

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2013-01-01

    Full Text Available Randomly oriented tin oxide (SnO2 nanofibers and poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate/polyvinylpyrrolidone (PEDOT:PSS/PVP nanofibers were prepared by a two-step electrospinning technique to form a layered fibrous mat. The current-voltage measurement revealed that the fibrous mat had an obvious diode-rectifying characteristic. The thickness of the nanofiber layers was found to have a considerable influence on the device resistance and rectifying performance. Such an interesting rectifying property was attributed to the formation of a p-n junction between the fibrous SnO2 and PEDOT:PSS/PVP layers. This is the first report that a rectifying junction can be formed between two layers of electrospun nanofiber mats, and the resulting nanofibrous diode rectifier may find applications in sensors, energy harvest, and electronic textiles.

  20. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.

    Science.gov (United States)

    Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad

    2017-11-21

    Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow

  1. N-isopropyl- sup 123 I-p-iodoamphetamine uptake mechanism in the lung - is it dependent on pH, lipophilicity or pK sub a

    Energy Technology Data Exchange (ETDEWEB)

    Akber, S.F. (Texas Medical School, Houston, TX (United States). Dept. of Radiology)

    1991-12-01

    The uptake and binding mechanism of biogenic amines in the lungs has been studied extensively with no conclusive results. The competition between N-isopropyl-{sup 123}I-p-iodo amphetamines ({sup 123}I-IMP) and propranolol and {sup 123}I-IMP and ketamine, in the lungs suggest that the pK{sub a} value of the biogenic amines has a significant role to play in the mechanism of uptake and retention of biogenic amines in the lungs. (orig.).

  2. Vertical transport in isotype InAlN/GaN dipole induced diodes grown by molecular beam epitaxy

    Science.gov (United States)

    Fireman, M. N.; Li, Haoran; Keller, Stacia; Mishra, Umesh K.; Speck, James S.

    2017-05-01

    InAlN dipole diodes were developed and fabricated on both (0001) Ga-Face and (" separators="| 000 1 ¯) N-face oriented GaN on sapphire templates by molecular beam epitaxy. The orientation and direction of the InAlN polarization dipole are functions of the substrate orientation and composition, respectively. Special consideration was taken to minimize growth differences and impurity uptake during growth on these orientations of opposite polarity. Comparison of devices on similarly grown structures with In compositions in excess of 50% reveals that dipole diodes shows poorer forward bias performance and exhibited an increase in reverse bias leakage, regardless of orientation. Similarly, (0001) Ga-face oriented InAlN at a lowered 40% In composition had poor device characteristics, namely, the absence of expected exponential turn on in forward bias. By contrast, at In compositions close to 40%, (" separators="| 000 1 ¯) N-face oriented InAlN devices had excellent performance, with over five orders of magnitude of rectification and extracted barrier heights of 0.53- 0.62 eV; these values are in close agreement with simulation. Extracted ideality factors ranging from 1.08 to 1.38 on these devices are further evidence of their optimal performance. Further discussion focuses on the growth and orientation conditions that may lead to this discrepancy yet emphasizes that with proper design and growth strategy, the rectifying dipole diodes can be achieved with InAlN nitride dipole layers.

  3. Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag14+ ions

    International Nuclear Information System (INIS)

    Kumar, Ashish; Kumar, Tanuj; Kanjilal, D.; Hähnel, A.; Singh, R.

    2014-01-01

    Ni/GaN Schottky barrier diodes were irradiated with 200 MeV Ag ions up to fluence of 1 × 10 11 ions/cm 2 at the substrate temperature of 80 K. Post-irradiation current-voltage measurements showed that the ideality factor, n increased and the reverse leakage current, I R decreased with increase in fluence. But Schottky barrier height, ϕ b increased only marginally with increase in ion fluence. In situ resistivity measurements showed orders of magnitude increase in resistivity of GaN epitaxial film with irradiation fluence. Cross-sectional transmission electron microscopy images revealed the presence of defect clusters in bulk GaN after irradiation

  4. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid Reinforced with Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lim Sze Lim

    2017-11-01

    Full Text Available pH-sensitive poly(acrylic acid (PAA hydrogel reinforced with cellulose nanocrystals (CNC was prepared. Acrylic acid (AA was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.

  5. Reactions of R(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)]. A general and efficient entry to phosphanylphosphinidene complexes of platinum. Syntheses and structures of [(eta(2)-P=(i)Pr(2))Pt(p-Tol(3)P)(2)], [(eta(2)-P=(t)Bu(2))Pt(p-Tol(3)P)(2)], [{eta(2)-P=(N(i)Pr(2))(2)}Pt(p-Tol(3)P)(2)] and [{(Et(2)PhP)(2)Pt}(2)P(2)].

    Science.gov (United States)

    Domańska-Babul, Wioleta; Chojnacki, Jaroslaw; Matern, Eberhard; Pikies, Jerzy

    2009-01-07

    The reactions of lithium derivatives of diphosphanes R(2)P-P(SiMe(3))Li (R = (t)Bu, (i)Pr, Et(2)N and (i)Pr(2)N) with [(R'(3)P)(2)PtCl(2)] (R'(3)P = Et(3)P, Et(2)PhP, EtPh(2)P and p-Tol(3)P) proceed in a facile manner to afford side-on bonded phosphanylphosphinidene complexes of platinum [(eta(2)-P=R(2))Pt(PR'(3))(2)]. The related reactions of Ph(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)] did not yield [(eta(2)-P=PPh(2))Pt(PR'(3))(2)] and resulted mainly in the formation of [{(R'(3)P)(2)Pt}(2)P(2)], Ph(2)P-PLi-PPh(2), (Me(3)Si)(2)PLi and (Me(3)Si)(3)P. Crystallographic data are reported for the compounds [(eta(2)-P=R(2))Pt(p-Tol(3)P)(2)] (R = (t)Bu, (i)Pr, ((i)Pr(2)N)(2)P) and for [{(Et(2)PhP)(2)Pt}(2)P(2)].

  6. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Science.gov (United States)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  7. P.I.X.S.C.A.N.: a micro-CT scanner for small animal based on hybrid pixel detectors

    International Nuclear Information System (INIS)

    Khoury, R.

    2008-03-01

    Since more than a dozen years, efforts were led in the field of X-ray tomography for small animals, principally for the improvement of spatial resolution and the diminution of the absorbed dose. The C.P.P.M. developed the micro-CT P.I.X.S.C.A.N. based on the hybrid pixel detector X.P.A.D.2. In this context, my thesis work consists in studying the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 and the contribution of the hybrid pixels in the imaging of small animals. A fast analytical simulation, FastSimu, was developed. An extrapolation of the performance of the demonstrator P.I.X.S.C.A.N, as well as the validation of the results obtained with the measured data, were led by means of the analytical simulator FastSimu. The demonstrator P.I.X.S.C.A.N./X.P.A.D.2 allowed to obtain reconstructed images with a rather good quality for a relatively weak absorbed dose. Its spatial resolution is degraded by the high number of defective pixels of the detector X.P.A.D.2. Beyond this study, a new version of the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 is under construction. This latter, characterized by two and a half times smaller pixels and about no defective pixels will bring a considerable improvement on spatial resolution. (author)

  8. Energy dependence of commercially available diode detectors for in-vivo dosimetry

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2007-01-01

    The energy dependence of commercially available diode detectors was measured for nominal accelerating potential ranging between Co-60 and 17 MV. The measurements were performed in a liquid water phantom at 5 cm depth for 10x10 cm 2 collimator setting and source-to-detector distance of 100 cm. The response (nC/Gy) was normalized to Co-60 beam after corrections for the dose rate and temperature dependences for each diode. The energy dependence, calculated by taking the percent difference between the maximum and minimum sensitivity normalized to Co-60 beam, varied by 39% for the n-type Isorad Red, 26% for the n-type Isorad Electron, 19% for the QED Red (p-type), 15% for the QED Electron (p-type), 11% for the QED Blue (p-type), and 6% for the EDP10 diode for nominal accelerating potential between Co-60 and 17 MV. It varied by 34% for the Isorad-3 Gold 1 and 2, 35% for the Veridose Green, 15% for the Veridose Yellow, 9% for the Veridose Electron, 21% for the n-type QED Gold, 24% for the n-type QED Red, 3% for the EDP2 3G , 2% for the PFD (photon field detector), 7% for the EDP10 3G , and 16% for the EDP20 3G for nominal accelerating potential between Co-60 and 15 MV. The magnitude of the energy dependence is verified by Monte Carlo simulation. We concluded that the energy dependence does not depend on whether the diode is n- or p-type but rather depends mainly on the material around the die such as the buildup and the geometry of the buildup material. As a result, the value of the energy dependence can vary for each individual diode depending on the actual geometry and should be used with caution

  9. Stability studies of CdSe nanocrystals in an aqueous environment

    DEFF Research Database (Denmark)

    Xi, Lifei; Lek, Jun Yan; Liang, Yen Nan

    2011-01-01

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH − ) while photo......-generated holes oxidize CdSe to Cd2 + and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments...

  10. Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes

    International Nuclear Information System (INIS)

    Taşçıoğlu, İlke; Farooq, W.A.; Turan, Raşit; Altındal, Şemsettin; Yakuphanoglu, Fahrettin

    2014-01-01

    Highlights: • The undoped and Mn doped ZnO films were deposited on p-Si substrates by sol–gel method. • The effect of Mn incorporation into ZnO on the electrical properties of ZnO/p-Si diodes were investigated. • The leakage current decreases and the rectification ratio increases with Mn doping. • The D it value was lowered by Mn dopant. -- Abstract: MnZnO films were grown onto p-Si substrate by sol–gel spin coating method. The electrical properties of the diodes were investigated at room temperature via the current–voltage (I–V), capacitance–voltage–frequency (C–V–f), and conductance—voltage–frequency (G–V–f) methods by considering the effect of the interface trap density (D it ) and series resistance (R s ) of the diodes. The rectifying ratio (RR) values of undoped and Mn-doped ZnO/p-Si diodes (at ±4 V) were found to be 275 and 2031, respectively. Mn doping decreases leakage current and increases shunt resistance (R sh ). Also, the reasons of discrepancies in barrier height values determined from different methods were discussed. The C–V and G–V measurements were performed at various frequencies. We observe additional contribution to the capacitance at low frequencies due to interface traps which can follow the ac test signal easily. The density of interface traps (D it ) determined from Hill–Coleman method was also presented for making comparison. The D it values vary from 9.24 × 10 11 to 1.67 × 10 13 eV −1 cm −2 and 2.06 × 10 11 to 2.54 × 10 12 eV −1 cm −2 for undoped and Mn-doped ZnO/p-Si diodes, respectively

  11. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai

    2018-02-23

    Although ligands of long carbon chains are very crucial to form stable colloidal perovskite nanocrystals (NCs), they create a severe barrier for efficient charge injection or extraction in quantum-dot-based optoelectronics, such as light emitting diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium acetate and cesium chloride), which replace the organic ligand and still protect the nanocrystals from dissolution. The successful removal of hydrophobic long ligands was evidenced by Fourier transform infrared spectroscopy, ζ potential analysis, and thermogravimetric analysis. Unlike conventional perovskite NCs that are extremely susceptible to polar solvents, the ligand-free CsPbBr NCs show robust resistance to polar solvents. Our ligand-free procedure opens many possibilities not only from a material hybridization perspective but also in optimizing charge injection and extraction in semiconductor quantum-dot-based optoelectronics applications.

  12. Influence of irradiation on defects creation in pin diode structure

    International Nuclear Information System (INIS)

    Sopko, V.; Dammer, J.; Sopko, B.; Chren, D.

    2012-01-01

    In this paper the manufacture of type S1 PIN diodes and radiation defect induce by fast neutrons were studied. A shift from VV"- to VV (neutral) is observed in neutron irradiated diodes. From the results obtained, an explanation that clearly offers itself is that the nature of the defects produced by irradiation of material exhibiting N type conductivity is different from those for type P material. Given that the experiments were conducted with the same material, i.e., the dopant present in the material remained unchanged, it can be stated that simply by changing the type of conductivity with increasing dose, a different kind of defects is produced, having different activation energies in the forbidden band. All these results are consistent with the ongoing RD 50 experiments at CERN.

  13. Ion channelling analysis of pre-amorphised silicon diodes using a nuclear microprobe

    International Nuclear Information System (INIS)

    Thornton, J.; Paus, K.C.

    1988-01-01

    Aligned and random ion channelling analysis was performed on p + n diode structures in silicon, with the Surrey nuclear microprobe. Three different types of diode were investigated, each pre-amorphised by a different ion (Si + , Ge + or Sn + ) before the p + region was formed by BF 2 + implantation. The ion channelling measurements are presented and compared with previously published electrical measurements on these diodes. Relatively large residual disorder and junction leakage currents were found for the Si + pre-amorphised diodes; however, all the diodes were leaky. The results are consistent with dislocation loops within the depletion regions of the diodes causing both the residual disorder and the large leakage currents. Cross-sectional transmission electron microscopy studies support this model. (author)

  14. Growth and characterization of p-Cu2O/n-ZnO nanorod heterojunctions prepared by a two-step potentiostatic method

    International Nuclear Information System (INIS)

    Jeong, Yoon Suk; Kim, Hyunghoon; Lee, Ho Seong

    2013-01-01

    Highlights: •p-Cu 2 O/n-ZnO heterostructures were grown by a two-step potentiostatic method. •The high-quality p-Cu 2 O/n-ZnO nanorod heterojunctions were obtained only at relatively high temperatures of 90 and 100 °C. •p-Cu 2 O/n-ZnO heterojunctions exhibited a well-defined p–n diode characteristic. -- Abstract: p-Cu 2 O/n-ZnO nanorod heterojunctions were fabricated by a two-step process. The process was performed with potentiostatic deposition of n-ZnO nanorods on conductive indium-tin-oxide (ITO) glasses followed by potentiostatic deposition of p-Cu 2 O to form p-Cu 2 O/n-ZnO nanorod heterojunctions. The deposition condition required to form the cuprous oxide layer affected significantly the formation and microstructure of the p-Cu 2 O/n-ZnO nanorod heterojunctions. In particular, the high-quality p-Cu 2 O/n-ZnO nanorod heterojunctions were obtained only at relatively high temperatures of 90 and 100 °C. The p-Cu 2 O/n-ZnO nanorod heterojunctions exhibited a well-defined p–n diode characteristic with an ideality factor of about 4.3

  15. High speed visible light communication using blue GaN laser diodes

    Science.gov (United States)

    Watson, S.; Viola, S.; Giuliano, G.; Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Watson, M. A.; White, H.; Rowe, D.; Laycock, L.; Kelly, A. E.

    2016-10-01

    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications.

  16. A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz Substrate

    KAUST Repository

    Prabaswara, Aditya

    2017-05-08

    The first InGaN/GaN nanowires-based yellow (λ = 590 nm) light-emitting diodes on scalable quartz substrates are demonstrated, by utilizing a thin Ti/TiN interlayer to achieve simultaneous substrate conductivity and transparency.

  17. A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz Substrate

    KAUST Repository

    Prabaswara, Aditya; Ng, Tien Khee; Zhao, Chao; Janjua, Bilal; Alyamani, Ahmed; El-desouki, Munir; Ooi, Boon S.

    2017-01-01

    The first InGaN/GaN nanowires-based yellow (λ = 590 nm) light-emitting diodes on scalable quartz substrates are demonstrated, by utilizing a thin Ti/TiN interlayer to achieve simultaneous substrate conductivity and transparency.

  18. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    Keleti, J.; Toeroek, T.; Lukacs, J.; Molnar, I.

    1978-01-01

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  19. Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine

    KAUST Repository

    Kim, Inho; Haverinen, Hanna M.; Li, Jian; Jabbour, Ghassan E.

    2010-01-01

    We demonstrate an enhancement in the power conversion efficiency (PCE) of p-i-n type organic solar cells consisting of zinc phthalocyanine (ZnPc) and fullerene (C60) using a p-layer of palladium phthalocyanine (PdPc). Solar cells employing three

  20. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.