WorldWideScience

Sample records for nanocomposite mechanical property

  1. Mechanical Properties of Polymer Nano-composites

    Science.gov (United States)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  2. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites

    Directory of Open Access Journals (Sweden)

    Tai Jin-hua

    2012-12-01

    Full Text Available Multi-walled carbon nanotubes (MWNTs were incorporated into a linear low-density polyethylene (LLDPE matrix through using screw extrusion and injection technique. The effect of different weight percent loadings of MWNTs on the morphology, mechanical, and thermal of LLDPE/MWNTs nanocomposite had been investigated. It was found that, at low concentration of MWNTs, it could uniformly disperse into a linear low-density polyethylene matrix and provide LLDPE/MWNTs nanocomposites much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for LLDPE/MWNTs nanocomposites increased with increasing MWNTs content.

  3. On the mechanical properties of selenite glass nanocomposites

    Science.gov (United States)

    Bar, Arun Kr.; Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    In this paper the room temperature micro-hardness of selenite glass-nanocomposites has been measured using a Vickers and Knoop micro hardness tester where the applied load varies from 0.01N to 0.98 N. A significant indentation size effect was observed for each sample at relatively low indentation test loads. The classical Meyer's law and the proportional specimen resistance model were used to analyze the micro-hardness behavior. It was found that the selenite glass-nanocomposite becomes harder with increasing CuI composition and the work hardening coefficient and mechanical properties like Young modulus, E, were also calculated. Our results open the way for the preparation, application and investigation of significant mechanical properties of new type of glass-nanocomposites.

  4. Microstructure and mechanical properties of neoprene montmorillonite nanocomposites

    Science.gov (United States)

    Yeh, Meng-Heng; Hwang, Weng-Sing; Cheng, Lin-Ri

    2007-03-01

    To investigate the microstructure and mechanical properties of neoprene-montmorillonite nanocomposite, three modified montmorillonite are used. An X-ray diffractometer is used to measure the corresponding change in d-spacing. Scanning electron microscopy is employed to investigate the morphology of the various composites. Transmission electron microscopy is employed to investigate the composite of montmorillonite and neoprene. The results indicate that the addition of montmorillonite enhances the mechanical properties of neoprene significantly.

  5. Mechanical and Electrical Properties of Aluminum/Epoxy Nanocomposites

    Science.gov (United States)

    Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zhang, Yating; Zhou, Anning

    2016-11-01

    Surface-modified self-passivated aluminum (Al) nanoparticles were used for reinforcing epoxy (EP) resin, and the curing behavior, mechanical and electrical properties of the Al/EP nanocomposites were investigated. The incorporation of Al nanoparticles into EP significantly decreases the cure reaction enthalpy of the nancomposites, and the apparent activation energy of Al/EP systems is 64.96 kJ/mol. The coefficient of thermal expansion of the nanocomposites decreases with increasing the Al loading due to the strong interaction between the Al and the EP matrix. The storage modulus of the nanocomposites increases continuously with Al content, whereas, the glass transition temperature declines slightly. With increasing the Al content, the tensile modulus, flexural modulus and compressive modulus of the nanocomposites increase continuously compared with the neat one. The mechanical properties are improved by Al nanoparticles at low Al contents. The best overall dielectric and electrical performance are achieved about at 1 wt.% of Al concentration. The enhanced dielectric breakdown strength is mainly related to the insulating alumina shell on the surface of core Al and the strong interfacial interactions.

  6. Mechanical properties of ceramic-polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Nano crystalline powders of Barium Sodium Niobate (BNN with the composition Ba3–2x Na4+x R Nb10 O30 with (R stands for rare earth = 0, x = 0 have been prepared by conventional ceramic technique. Barium Sodium Niobate can form a wide range of solid solutions, incorporating rare earth and alkali, alkaline earth elements with different compositions. The powder belonged to tungsten bronze type structure with tetragonal symmetry and lattice constants a = b = 1.2421 nm and c = 0.3903 nm. XRD (X-ray Diffraction SEM (Scanning Electron Microscope and AFM (Atomic Force Microscope studies revealed that the particle size is in the nanometer range. Composites are prepared by mixing powders of BNN with polystyrene at different volume fractions of the BNN. Melt mixing technique is carried out in a Brabender Plasticoder at a rotor speed of 60 rpm (rotations per minute for composite preparation. Mechanical properties such as stress-strain behavior, Young’s modulus, tensile strength, strain at break etc. are evaluated. Addition of filler enhances the mechanical properties of the polymer such as Young’s modulus and tensile strength. The composites showed the trend of perfect adhesion between the filler and the polymer. The filler particles are distributed relatively uniform fashion in all composites and the particles are almost spherical in shape with irregular boundaries. To explore more carefully the degree of interfacial adhesion between the two phases, the results are analyzed by using models featuring adhesion parameter. The experimental results are compared with theoretical predictions.

  7. Structures and Mechanical Properties of PVC/Na+- Montmorillonite Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly (vinyl chloride)/Na+-montmorillonite (PVC/MMT) nanocomposites with different MMT contents were prepared via melt blending. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) were used to characterize the structures. Effects of MMT content on the mechanical properties were also studied. It is found that PVC molecular chains can intercalate into the gallery of MMT layers during melt blending process, the stiffness and toughness of the composites are improved simultaneously within 0.5~7wt% MMT content, and the transparency and mechanical properties decrease as MMT content further increases.

  8. Mechanical properties of polypropylene/calcium carbonate nanocomposites

    Directory of Open Access Journals (Sweden)

    Daniel Eiras

    2009-01-01

    Full Text Available The aim of this work was to study the influence of calcium carbonate nanoparticles in both tensile and impact mechanical properties of a polypropylene homopolymer. Four compositions of PP/CaCO3 nanocomposites were prepared in a co-rotational twin screw extruder machine with calcium carbonate content of 3, 5, 7 and 10 wt. (% The tests included SEM analyzes together with EDS analyzer and FTIR spectroscopy for calcium carbonate, tensile and impact tests for PP and the nanocomposites. The results showed an increase in PP elastic modulus and a little increase in yield stress. Brittle-to-ductile transition temperature was reduced and the impact resistance increased with the addition of nanoparticles. From the stress-strain curves we determined the occurrence of debonding process before yielding leading to stress softening. Debonding stress was determined from stress-strain curves corresponding to stress in 1% strain. We concluded that the tensile properties depend on the surface contact area of nanoparticles and on their dispersion. Finally we believe that the toughening was due to the formation of diffuse shear because of debonding process.

  9. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  10. Mechanical and Corrosion Properties of Magnesium-Bioceramic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kowalski K.

    2016-09-01

    Full Text Available Magnesium alloys have recently attracted much attention as a new generation of biodegradable metallic materials. In this work, Mg1Mn1Zn0.3Zr-bioceramic nanocomposites and their scaffolds were synthesized using a combination of mechanical alloying and a space-holder sintering process. The phase and microstructure analysis was carried out using X-ray diffraction, scanning electron microscopy and the properties were measured using hardness and corrosion testing equipment. Nanostructured Mg-bioceramic composites with a grain sizes below 73 nm were synthesized. The Vickers hardnesses for the bulk nanostructured Mg-based composites are two times greater than that of pure microcrystalline Mg metal (50 HV0.3. Produced Mg-based bionanomaterials can be applied in medicine.

  11. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Silverio, Hudson Alves; Flauzino Neto, Wilson Pires; Silva, Ingrid Souza Vieira da; Rosa, Joyce Rover; Pasquini, Daniel, E-mail: pasquini@iqufu.ufu.br, E-mail: danielpasquini2005@yahoo.com.br [Universidade de Uberlandia (USU), MG (Brazil). Instituto de Quimica; Assuncao, Rosana Maria Nascimento de [Universidade de Uberlandia (USU), Ituiutaba, MG (brazil). Fac. de Ciencias Integradas do Pontal; Barud, Hernane da Silva; Ribeiro, Sidney Jose Lima [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2014-11-15

    In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH{sub 30}) on the mechanical, thermal, and barrier properties of methylcellulose (MC) nanocomposites were evaluated. MC/WSH{sub 30} nanocomposite films with different filler levels (2, 4, 6, 8, and 10%) were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH{sub 30}, formation of a continuous network of WSH{sub 30} linked by hydrogen interactions and a close association between filler and matrix. (author)

  12. Polymer nanocomposites with enhanced thermal and mechanical properties

    Science.gov (United States)

    Si, Mayu

    Flame-retardant Elvacite acrylic resin/Cloisite 6A nanocomposites were prepared via direct melt intercalation. Transmission electron microscopy (TEM) micrographs showed that the high degree of exfoliation occurred, which resulted in a large improvement in thermal stability and UV absorption properties without sacrificing optical clarity. Cone calorimetry tests clearly showed that the heat release rate was far lower and more gradual in the nanocomposites than in pure resins. Additionally, Fourier transform infrared (FTIR) spectroscopy results indicated that the introduction of clay did not change the chemical structure of acrylic resins.

  13. A hybrid approach to simulating mechanical properties of polymer nanocomposites.

    Science.gov (United States)

    Mccarron, Andy P; Raj, Sharad; Hyers, Robert; Kim, Moon K

    2009-12-01

    Empirical studies indicate that a polymer reinforced with nanoscale particles could enhance its mechanical properties such as stiffness and toughness. To give insight into how and why this nanoparticle reinforcement is effective, it is necessary to develop computational models that can accurately simulate the effects of nanoparticles on the fracture characteristics of polymer composites. Furthermore, a hybrid model that can account for both continuum and non-continuum effects will hasten the development of not only new hierarchical composite materials but also new theories to explain their behavior. This paper presents a hybrid modeling scheme for simulating fracture of polymer nanocomposites by utilizing an atomistic modeling approach called Elastic Network Model (ENM) in conjunction with a traditional Finite Element Analysis (FEA). The novelty of this hybrid ENM-FEA approach lies in its ability to model less interesting outer domains with FEA while still accounting for areas of interest such as crack tip reion and the interface between a nanoparticle and the polymer matrix at atomic scale with ENM. Various simulation conditions have been tested to determine the feasibility of the proposed hybrid model. For instance, an iterative result from a uniaxial loading with isotropic properties in an ENM-FEA model shows accuracy and convergence to the analytic solution.

  14. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    Science.gov (United States)

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  15. Structural Evolution and Mechanical Properties of PMR-15/Layered Silicate Nanocomposites

    Science.gov (United States)

    Campbell, Sandi (Technical Monitor); Dean, Derrick; Abdalla, Mohamed; Green, Keith; Small, Sharee

    2003-01-01

    In the first year of this research, we successfully synthesized and characterized Polymer/ Layered Silicate nanocomposite using the polyimide PMR-15 as the polymer and several layered silicate nanoparticles. We have scaled up the process to allow fabrication of monoliths using these nanocomposites. The morphology of these systems was found to evolve during processing to an exfoliated structure for one system and intercalated for the rest. Correlation with Transmission Electron Microscopy studies is underway. Dynamic mechanical analysis (DMA) results showed a significant increase in the thermomechanical properties (E' and E'') of 2.5 wt.% clay loaded nanocomposites in comparison to the neat polyimide. Increasing the clay loading to 5 wt.% decreased these properties. Higher glass transition temperatures were observed for 2.5 wt.% nanocomposites compared to the neat polyimide. A lower coefficient of thermal expansion was observed only for the PGV/PMR-15 nanocomposite. An improvement in the flexural properties (modulus, strength and elongation) was observed for the 2.5 wt.% nanocomposite but not for the 5 wt.% nanocomposites. The improved barrier properties polymer/ silicate nanocomposites suggest that moisture uptake should be decreased for PMR-15 nanocomposites. The results of some recent experiments to examine delineate the ability of the silicate nanoparticles in improving the hydrolytic degradation of PMR-15 will be discussed.

  16. Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites

    Science.gov (United States)

    Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.

    2017-03-01

    The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.

  17. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    B. Akbari

    2012-01-01

    Full Text Available Polypropylene/montmorillonite nanocomposite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nanocomposite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD and transmission optical microscopy (TOM techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nanocomposite.

  18. Studies on Mechanical, Thermal, and Morphological Properties of Glass Fibre Reinforced Polyoxymethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    K. Mohan Babu

    2014-01-01

    Full Text Available Polyoxymethylene is a material which has excellent mechanical properties similar to Nylon-6 filled with 30% GF. 75% POM and 25% glass fibre (POMGF were blended with nanoclay to increase the tensile and flexural properties. Samples were extruded in twin screw extruder to blend POMGF and (1%, 3%, and 5% Cloisite 25A nanoclay and specimens were prepared by injection moulding process. The tensile properties, flexural properties, impact strength, and hardness were investigated for the nanocomposites. The fibre pull-outs, fibre matrix adhesion, and cracks in composites were investigated by using scanning electron microscopy. 1% POMGF nanocomposite has low water absorption property. Addition of nanoclay improves the mechanical properties and thermal properties marginally. Improper blending of glass fibre and nanoclay gives low tensile strength and impact strength. SEM image shows the mixing of glass fibre and nanoclay among which 1% POMGF nanocomposite shows better properties compared to others. The thermal stability decreased marginally only with the addition of nanoclay.

  19. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding

    DEFF Research Database (Denmark)

    Madaleno, Liliana Andreia Oliveira; Schjødt-Thomsen, Jan; Pinto, José Cruz

    2010-01-01

    and solution blending + melt compounding The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all...... of the PVC/MMT nanocomposites Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC....../MMT nanocomposites prepared by solution blending Vicar tests revealed a significant decrease in Vicar softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC The mechanical properties of the PVC/MMT nanocomposites were, in general, greatly improved...

  20. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites

    Science.gov (United States)

    Yadav, Santosh Kumar; Cho, Jae Whan

    2013-02-01

    In the evolution of high performance graphene-based polymer nanocomposites, homogeneous dispersion of graphene nanoplatelets in the polymer matrix and exact interface control are difficult to achieve due to the potent interlayer cohesive energy and surface inactiveness of the nanocomposites. Herein, we present an effective way to fabricate high performance polyurethane (PU) nanocomposites via the incorporation of functionalized graphene nanoplatelets (f-GNP) during in situ polymerization. The f-GNP/PU nanocomposites exhibited a significant improvement in terms of their mechanical, thermal, and shape recovery properties. The modulus of the f-GNP/PU nanocomposites at 2 wt% graphene nanoplatelets loading is ten times greater than that of the pure PU sample. The breaking stress and shape recovery showed a highly improving trend with increasing wt% of f-GNP. An unprecedented enhancement of thermal stability at 30 °C compared to the pure PU is also found at 2 wt% loading of f-GNP via in situ polymerization.

  1. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L.G. [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S.A.; Oviedo, M.A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  2. Effect of glycerol on mechanical and physical properties of silver-chitosan nanocomposite films

    Science.gov (United States)

    Susilowati, E.; Kartini, I.; Santosa, S. J.; Triyono

    2016-02-01

    The effect of using glycerol as plasticizer on mechanical and physical properties of silver-chitosan nanocomposite films have been studied. The nanocomposite films were prepared via three steps consisting of silver-chitosan colloidal nanocomposites preparation, adding of glycerol to colloids and silver-chitosan nanocomposites films formation. During the first step, silver ions were reduced by glucose and accelerated by sodium hydroxide (NaOH). Chitosan of 1% (v/v) act as stabilizing agent. Glycerol with volume variation of 0.2, 0.4, 0.6, 8 and 1.0 mL was added colloidal nanocomposites of 60 mL on the second step. On the third step, colloidal nanocomposites were cast on the polypropylene plate and dried at room temperature. The as-prepared films were then neutralized by NaOH and rinsed with distilled water until the filtrate reached the pH of 7. The colloidal nanocomposites were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The film were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The mechanical properties, swelling capacity, water vapor permeability (WVP) of the films were also studied. The results indicated that the addition of different amounts of glycerol on colloidal nanocomposites effects on mechanical and physical properties of the resulted nanocomposite films. The elongation and tensile strength were gradually increased as the glycerol amount. Meanwhile, the swelling capacity, WVP, and crystallinity of the film also showed enhancement at increasing glycerol amount. However, the thermal stability decreased.

  3. Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Melis, C.; Colombo, L. [Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Ghisleri, C.; Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2015-03-23

    We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Young's modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio of metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.

  4. Understanding mechanical properties of polymer nanocomposites with molecular dynamics simulations

    Science.gov (United States)

    Sen, Suchira

    Equilibrium Molecular Dynamics (MD) simulations are used extensively to study various aspects of polymer nanocomposite (PNC) behavior in the melt state---the key focus is on understanding mechanisms of mechanical reinforcement. Mechanical reinforcement of the nanocomposite is believed to be caused by the formation of a network-like structure---a result of polymer chains bridging particles to introduce network elasticity. In contrast, in traditional composites, where the particle size range is hundreds of microns and high loadings of particle are used, the dominant mechanism is the formation of a percolated filler structure. The difference in mechanism with varying particle sizes, at similar particle loading, arises from the polymer-particle interfacial area available, which increases dramatically as the particle size decreases. Our interest in this work is to find (a) the kind of polymer-particle interactions necessary to facilitate the formation of a polymer network in a nanocomposite, and (b) the reinforcing characteristics of such a polymer network. We find that very strong polymer-particle binding is necessary to create a reinforcing network. The strength of the binding has to be enough to immobilize polymer on the particle surface for timescales comparable and larger than the terminal relaxation time of the stress of the neat melt. The second finding, which is a direct outcome of very strong binding, is that the method of preparation plays a critical role in determining the reinforcement of the final product. The starting conformations of the polymer chains determine the quality of the network. The strong binding traps the polymer on the particle surface which gets rearranged to a limited extent, within stress relaxation times. Significant aging effects are seen in system relaxation; the inherent non-equilibrium consequences of such strong binding. The effect of the polymer immobilization slows down other relaxation processes. The diffusivity of all chains is

  5. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  6. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites

    NARCIS (Netherlands)

    Xu, Bin; Huang, W.M.; Pei, Y.T.; Chen, Zhenguo; Kraft, A.; Reuben, R.; Hosson, J.Th.M. De; Fu, Y.Q.

    Nanocomposites based on attapulgite clay and shape-memory polyurethane were fabricated by mechanical mixing. The mechanical properties of samples were evaluated using a micro-indentation tester. The untreated commercial attapulgite clay resulted in a significant decrease in glass transition

  7. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites

    NARCIS (Netherlands)

    Xu, Bin; Huang, W.M.; Pei, Y.T.; Chen, Zhenguo; Kraft, A.; Reuben, R.; Hosson, J.Th.M. De; Fu, Y.Q.

    2009-01-01

    Nanocomposites based on attapulgite clay and shape-memory polyurethane were fabricated by mechanical mixing. The mechanical properties of samples were evaluated using a micro-indentation tester. The untreated commercial attapulgite clay resulted in a significant decrease in glass transition temperat

  8. Development of nanocomposites from polymer blends: Effect of organoclay on the morphology and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mélo, Tomás J.A., E-mail: tomas@dema.ufcg.edu.br; Araújo, Edcleide M., E-mail: edcleide@dema.ufcg.edu.br; Brito, Gustavo F., E-mail: gustavo_brito_@hotmail.com; Agrawal, Pankaj, E-mail: pankaj@ig.com.br

    2014-12-05

    Highlights: • We investigated the effect the clay content on the properties of PLA/EMA-GMA blend. • The impact strength of the blend increased with the addition of 2.5 (wt%) of clay. • The presence of the clay decreased the EMA-GMA domains size. • The nanocomposite with the lowest clay content presented better clay dispersion. - Abstract: In this work the effect of 2.5% and 5% (wt) of organoclay on the mechanical properties and morphology of PLA/EMA-GMA blend was investigated. The nanocomposites were prepared by extrusion followed by injection molding and characterized by X-ray diffraction (XRD), mechanical properties and Scanning Electron Microscopy (SEM). The results showed that better impact strength was achieved when 2.5% (wt) of clay was added to the PLA/EMA–GMA blend. XRD results indicated that this nanocomposite presented a partially exfoliated structure.

  9. Viscoelastic and Mechanical Properties of Thermoset PMR-type Polyimide-Clay Nanocomposites

    Science.gov (United States)

    Abdalla, Mohamed O.; Dean, Derrick; Campbell, Sandi

    2002-01-01

    High temperature thermoset polyimide-clay nanocomposites were prepared by blending 2.5 and 5 wt% of an unmodified Na(+-) montmorillonite (PGV) and two organically modified FGV (PGVCl0COOH, PGVC12) with a methanol solution of PMR-15 precursor. The methanol facilitated the dispersal of the unmodified clay. Dynamic mechanical analysis results showed a significant increase in the thermomechanical properties (E' and E") of 2.5 wt% clay loaded nanocomposites in comparison with the neat polyimide. Higher glass transition temperatures were observed for 2.5 wt% nanocomposites compared to the neat polyimide. Flexural properties measurements for the 2.5 wt% nanocomposites showed a significant improvement in the modulus and strength, with no loss in elongation. This trend was not observed for the 5 wt% nanocomposites. An improvement in the CTE was observed for the PGV/PMR-15 nanocomposites, while a decrease was observed for the organically modified samples. This was attributed to potential variations in the interface caused by modifier degradation.

  10. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    Science.gov (United States)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  11. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental resu

  12. Properties and Semicrystalline Structure Evolution of Polypropylene/Montmorillonite Nanocomposites under Mechanical Load

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Zeinolebadi, Ahmad; Ganjaee Sari, Morteza;

    2012-01-01

    Small-angle X-ray scattering (SAXS) monitors tensile and load-cycling tests of metallocene isotactic polypropylene (PP), a blend of PP and montmorillonite (MMT), and two block copolymer compatibilized PP/MMT nanocomposites. Mechanical properties of the materials are similar, but the semicrystalline...

  13. Effect of sintering on mechanical and electrical properties of carbon nanotube based silver nanocomposites

    Science.gov (United States)

    Pal, H.; Sharma, V.

    2015-03-01

    Nanocrystalline (single and multiwall) carbon nanotube reinforced silver nanocomposites are successfully synthesized by a modified molecular level mixing method. These materials are subsequently sintered up to 800 °C in inert atmosphere for 12 h. To elucidate the effect of sintering, micro-structural, mechanical and electrical properties of fabricated nanocomposites are evaluated before and after sintering. Scanning and transmission electron microscopic characterization have revealed that the carbon nanotubes are embedded, anchored and homogenously dispersed in silver matrix. Measured hardness and Young's modulus of fabricated nanocomposites are increased by 20-30 % after sintering. The carbon nanotube reinforcement has also improved electrical conductivity of low conducting nano-silver matrix before sintering. However, negative reinforcement effect is observed in high conducting bulk silver matrix after sintering. Comparatively improved mechanical and electrical properties of single wall carbon nanotube reinforced nanocomposites than multiwall nanotube reinforced nanocomposite are observed, which are correlated with high aspect ratio and larger effective contact surface area of single wall carbon nanotubes.

  14. Mechanical properties of IIR/OMMT nanocomposites via melt-compounding and solution process.

    Science.gov (United States)

    Mang, Jiyoung; Han, Mijeong

    2010-01-01

    Isobutylene-isoprene rubber (IIR)/organically modified montmorillonite (OMMT) nanocomposites were prepared by both melt-compounding and solution process. Organic modifiers were synthesized by the reaction of allyl bromide and alkyl amines to modify sodium montmorillonite (Na+ -MMT). After modification of Na+ -MMT with organic modifiers, the changes of d-spacing of OMMT were studied by X-ray diffraction (XRD). XRD patterns revealed that the d-spacing of Na+ -MMT increase from 1.1 nm for Na+ -MMT to 2.18 nm for the OMMT, indicating intercalation of organic modifier into the interlayers of montmorillonites. Mechanical properties of IIR/OMMT nanocomposites were studied by means of tensile measurements. Tensile strengths of IIR/OMMT nanocomposites prepared from melt-compounding and solution process were higher than those of IIR/Na+ -MMT nanocomposites and pristine IIR. When the solution process was used, IIR/OMMT nanocomposites provided further improvement in mechanical properties, as compared to those prepared from melt-compounding, indicating the better interaction between IIR and OMMT.

  15. Mechanical, morphological and rheological properties of polyamide 6/organo-montmorillonite nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Polyamide (PA6 nanocomposites containing 4wt% organo-montmorillonite (OMMT were melt-compounded followed by injection molding. The mechanical properties of the PA6/OMMT nanocomposites were studied through tensile and flexural tests. The rheological behaviour of the nanocomposites was determined by plate/plate rheological measurements. Attempts were made to trace the rheological parameters that reliably reflect the observed changes in the clay dispersion. X-ray diffraction (XRD and atomic force microscopy (AFM were used to characterize the exfoliation and dispersion of the OMMT in the PA6 matrix. The thermal properties of PA6/OMMT nanocomposite were characterized by Dynamic Mechanical Thermal Analysis (DMTA. The tensile modulus and strength of the PA6 was increased in the presence of OMMT. The flexural strength of PA6/OMMT was approximately doubled compared to the tensile strength value. The significant enhancement of both tensile and flexural strength was attributed to the delaminated clay formation. XRD and AFM results revealed the formation of PA6 nanocomposites as the OMMT was successfully exfoliated.

  16. Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites

    Science.gov (United States)

    Ferreira, Filipe V.; Francisco, Wesley; Menezes, Beatriz R. C.; Brito, Felipe S.; Coutinho, André S.; Cividanes, Luciana S.; Coutinho, Aparecido R.; Thim, Gilmar P.

    2016-12-01

    The effect of carbon nanotube treatment on the mechanical property of polyethylene/carbon nanotube composite (HDPE/CNT) was investigated. CNTs were initially treated with HCl and then with H2SO4/HNO3. Nanocomposites reinforced with untreated and treated CNTs were prepared by a mechanical mixture of the molten polymer. The results demonstrated a correlation among the surface treatment, dispersion and mechanical properties of HDPE/CNT composites. Raman spectroscopy and TGA analysis showed that both acid treatments removed efficiently amorphous carbon and residual metal catalysts of CNTs. However, these treatments not only removed impurities, they also decreased the crystallinity degree of CNTs due to the addition of oxygenated functional groups to the CNTs walls, as observed by XPS analysis. SEM micrographs revealed that the functional groups improved the CNTs dispersion in the polymeric matrix, resulting in an improvement of the mechanical properties of nanocomposites.

  17. Mechanism of Exfoliation and Prediction of Materials Properties of Clay-Polymer Nanocomposites from Multiscale Modeling.

    Science.gov (United States)

    Suter, James L; Groen, Derek; Coveney, Peter V

    2015-12-09

    We describe the mechanism that leads to full exfoliation and dispersion of organophilic clays when mixed with molten hydrophilic polymers. This process is of fundamental importance for the production of clay-polymer nanocomposites with enhanced materials properties. The chemically specific nature of our multiscale approach allows us to probe how chemistry, in combination with processing conditions, produces such materials properties at the mesoscale and beyond. In general agreement with experimental observations, we find that a higher grafting density of charged quaternary ammonium surfactant ions promotes exfoliation, by a mechanism whereby the clay sheets slide transversally over one another. We can determine the elastic properties of these nanocomposites; exfoliated and partially exfoliated morphologies lead to substantial enhancement of the Young's modulus, as found experimentally.

  18. Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Arno Kraft

    2010-04-01

    Full Text Available Shape memory nanocomposites of polyurethane (PU-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

  19. Thermal, Mechanical, and Electrical Properties of Graphene Nanoplatelet/Graphene Oxide/ Polyurethane Hybrid Nanocomposite.

    Science.gov (United States)

    Pokharel, Pashupati; Lee, Sang Hyub; Lee, Dai Soo

    2015-01-01

    Hybrid nanocomposites of polyurethane (PU) were prepared by in-situ polymerization of 4,4'- diphenyl methane diisocyanate (MDI) with mixture of graphene oxide (GO) and graphene nanoplatelet (GNP) dispersed in a poly(tetramethylene ether glycol) (PTMEG). Effects of the fillers, GO and GNP, on the thermal, mechanical, and electrical properties of the nanocomposites of PU were investigated. Sonication of the hybrid of GNP and GO with PTMEG enabled effective dispersion of the fillers in the solution than the sonication of GNP alone. The addition of PTMEG in the solution prevented the GNPs from the restacking during the drying process. It was observed that the electrical conductivity and mechanical property of the nanocomposites based on the hybrid of GO and GNP were superior to the nanocomposite based on GNP alone at the same loading of the filler. At the loading of the 3 wt% hybrid filler in PU, we observed the improvement of Young's modulus -200% and the surface resistivity of 10(9.5) ohm/sq without sacrificing the elongation at break.

  20. Mechanical and Thermal Properties of Poly(urethane urea Nanocomposites Prepared with Diamine-Modified Laponite

    Directory of Open Access Journals (Sweden)

    Joe-Lahai Sormana

    2008-01-01

    Full Text Available Nanocomposites based on segmented poly(urethane urea were prepared by reacting a poly(diisocyanate with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea, all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite.

  1. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites

    Science.gov (United States)

    Hamim, Salah U.; Singh, Raman P.

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface. PMID:27379285

  2. Effect of Nanofiller Characteristics on Nanocomposite Properties

    Science.gov (United States)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  3. The influence of interlayer interactions on the mechanical properties of polymeric nanocomposites

    Directory of Open Access Journals (Sweden)

    Jabbarzadeh Mehrdad

    2015-01-01

    Full Text Available In this paper the influence of types of interlayer interactions on the elastic modules of multilayer graphene sheets (GS and nanocomposites is studied. The modeling and investigation of mechanical properties of graphite layers are performed using molecular mechanics (MM method. Initially, due to improving the model and decreasing the amount of computations, three types of elements such as beam, linear spring and nonlinear spring are used. To continue, the mechanical properties of multilayers and nanocomposites are compared using three types of interlayer interactions. Initially, nonlinear spring defined by Leonard Jones potential is used to define interlayer interactions (ordinary case. To continue, linear spring with certain stiffness, to obtain an equal linear spring and also to investigate the ultimate capacity of interlayer interactions in the force translation, by increasing the stiffness of linear springs, is employed (chemical change. Then once by omitting all Van der Waals interactions and defects creation in graphite layers, they are devoted to create covalent interlayer interactions (using Morse potential and another time, Van der Waals and covalent interlayer interactions are created spontaneously to study the properties of multilayers and nanocomposites (functionalization. The results are compared with other available literatures in this case to validate the modeling.

  4. Carbon nanotubes dispersed polymer nanocomposites: mechanical, electrical, thermal properties and surface morphology

    Indian Academy of Sciences (India)

    Nitin Sankar; Mamilla Nagarjun Reddy; R Krishna Prasad

    2016-02-01

    The various properties and surface morphology of the carbon nanotubes (CNTs) dispersed polydimethyl siloxane (PDMS) matrix were studied to determine their usefulness in various applications. The tensile strength, Young's modulus and electrical breakdown strength of CNT/polymer composites were 0.35MPa, 1.2MPa and 8.1 kV, respectively. The thermal conductivity and dielectric constant for the material having 4.28 wt% CNT were 0.225 W m−1 K−1 and 2.329, respectively. The CNT/polymer composites are promising functional composites with improved mechanical and electrical properties. The scanning electron microscope analysis of surface morphology of PDMS/CNT composite showed that the rough surface texture on nanocomposite has large surface area with circular pores. The Fourier transform infrared spectroscopy showed the functional groups present in polymer nanocomposite.

  5. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  6. Mechanical and barrier properties of guar gum based nano-composite films.

    Science.gov (United States)

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2015-06-25

    Guar gum based nano-composite films were prepared using organically modified (cloisite 20A) and unmodified (nanofil 116) nanoclays. Effect of nanoclay incorporation on mechanical strength, water vapor barrier property, chromatic characteristics and opacity of films was evaluated. Nano-composites were characterized using X-ray scattering, FTIR and scanning electron microscopy. A nanoclay concentration dependent increase in mechanical strength and reduction in water vapor transmission rate was observed. Films containing nanofil 116 (2.5% w/w guar gum) and closite 20A (10% w/w guar gum) demonstrated a 102% and 41% higher tensile strength, respectively, as compared to the control. Lower tensile strength of cloisite 20A films as compared to nanofil 116 films was due to its incompatibility with guar gum. X-ray scattering analysis revealed that interstitial spacing between nanofil 116 and cloisite 20A sheets increased due to intercalation by guar gum polymer. This resulted in improved mechanical and barrier properties of nano-composites compared to control.

  7. Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective

    Science.gov (United States)

    Chen, Hao; Ojijo, Vincent; Cele, Hastings; Joubert, Trudi; Suprakas, Sinha Ray; Land, Kevin

    2014-06-01

    SU-8/Clay nanocomposite is considered as a candidate material for microcantilever sensor fabrication. Organically modified montmorillonite clay nanoparticles are dispersed in the universally used negative photoresist polymer SU-8, for a low cost material, which is also biocompatible. If varying the clay loading of the composite material yields a variation of the Young's modulus, the tailored material stiffness presents an opportunity for fabrication of microcantilevers with tunable sensor sensitivity. With this microcantilever application perspective, mechanical and thermal properties of the material were investigated. SU-8/Clay nanocomposite samples were prepared with clay loadings from 1wt% - 10wt%. Tensile test results show a general trend of increase in composite modulus with an increase in the clay loading up to 7wt%, followed by a small drop at 10wt%. The composite material indeed yields moderate variation of the Young's modulus. It was also found that the thermal degradation peak of the material occurred at 300°C, which is beyond the operating temperature of typical microcantilever sensor applications. The fabrication of a custom designed microcantilever array chip with the SU-8/Clay nanocomposite material was achieved in a class 100 cleanroom, using spin-coating and photolithography microfabrication techniques. The optimization of the process for fabricating microcantilever with the SU-8/Clay nanocomposite material is discussed in this paper. The results of this research are promising for cheaper mass production of low cost disposable, yet sensitive, microcantilever sensor elements, including biosensor applications.

  8. Effect of Discontinuous Ultrasonic Treatment on Mechanical Properties and Microstructure of Cast Al413-SiCnp Nanocomposites

    Directory of Open Access Journals (Sweden)

    M.R. Dehnavi

    2015-05-01

    Full Text Available Effects of discontinuous ultrasonic treatment on the microstructure, nanoparticle distribution, and mechanical properties of cast Al413-SiCnp nanocomposites were studied. The results showed that discontinuous ultrasonic treatment was more effective in improving the mechanical properties of the cast nanocomposites than the equally timed continuous treatment. The yield and ultimate tensile strengths of Al413-2%SiCnp nanocomposites discontinuously treated for two 20 minute periods increased by about 126% and 100% compared to those of the monolithic sample, respectively. These improvements were about 107% and 94% for the nanocomposites continuously treated for a single 40 minute period. The improvement in the mechanical properties was associated with severe refinement of the microstructure, removal of the remaining gas layers on the particles surfaces, more effective fragmentation of the remaining agglomerates as well as improved wettability and distribution of the reinforcing particles during the first stage of solidification.

  9. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes.

    Science.gov (United States)

    Niazi, Muhammad Bilal Khan; Jahan, Zaib; Berg, Sigrun Sofie; Gregersen, Øyvind Weiby

    2017-12-01

    Cellulose nanofibrils (CNF) have strong reinforcing properties when incorporated in a compatible polymer matrix. This work reports the effect of the addition of phosphorylated nanocellulose (PCNF) on the mechanical, thermal and swelling properties of poly(vinyl alcohol) (PVA) nanocomposite membranes. The incorporation of nanocellulose in PVA reduced the crystallinity at 0%RH. However, when the films were exposed to higher humidities the crystallinity increased. No apparent trend is observed for mechanical properties for dry membranes (0% RH). However, at 93% RH the elastic modulus increased strongly from 0.12MPa to 0.82MPa when adding 6% PCNF. At higher humidities, the moisture uptake has large influence on storage modulus, tan δ and tensile properties. Membranes containing 1% PCNF absorbed most moisture. Swelling, thermal and mechanical properties indicate a good potential for applying of PVA/phosphorylated nanocellulose composite membranes for CO2 separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Degradation of Mechanical Properties in Halloysite Nanoclay-Polyester Nanocomposites Exposed in Seawater Environment

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2016-01-01

    Full Text Available Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nanocomposites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nanoclay-polyester nanocomposites. Results confirmed that the addition of halloysite nanoclay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nanoclay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease. Young’s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease. The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease. The impact toughness dropped from 0.71 kJ/m2 to 0.48 kJ/m2 (32% decrease. Interestingly, the fracture toughness KIC increased with the addition of halloysite nanoclay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nanoclay-matrix interface influenced by seawater absorption and agglomeration of halloysite nanoclay.

  11. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    Science.gov (United States)

    Songtipya, Ponusa

    's characteristics to the thermo-mechanical properties of their nanocomposites was systematically explored. The appropriate compatibilizer, based on HDPE-g-MA, was identified from achieving the best mechanical performance, i.e., maximizing the tensile modulus improvement without sacrificing the polymer ductility, which was found to be achieved where the smallest crystallinity change occured. It was revealed that lower-than-the matrix molecular weight HDPE-g-MA better enhanced the tensile properties across three HDPEs, compared to that of high viscosity HDPE-g-MA, while the flexural properties were not markedly affected by this parameter, but rather were mostly determined by the amount of clay nanofiller. Finally, polymer/layered double hydroxide (LDH, positively-charged layered clays, also termed as 'anionic' clays referring to their anion exchange capacity) were characterized as potential fillers for a variety of polymer matrices. The main focus in this part of the research was on the morphology and dispersion of the LDH as it related to their composition and their organic modification in relation to the nature of various polymers. Exemplary polymer matrices that span the range from non-polar to polar interactions---including Polypropylene (PP), polyethylenes (PE, and PE-copolymers), polymethyl-methacrylate (PMMA), polystyrene (PS)---were explored. It was observed that the LDH composition, organic modification, and polymer types were the parameters which controlled the LDH structure and dispersion, albeit in a rather involved fashion.

  12. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo; Choi, Hyun Muk [Kyonggi University, Suwon (Korea, Republic of)

    2016-01-15

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  13. Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging.

    Science.gov (United States)

    Nassar, Mona A; Youssef, Ahmed M

    2012-06-05

    Polymer nanocomposites and paper constitute a new class of packaging materials. In this study silver nanoparticles were prepared by novel method as antibacterial additive, where, synthetic takes place with aid of a novel, non-toxic, and eco-friendly biological materials namely rice straw (RS) powder. The prepared Ag nanoparticle was examined by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and UV-spectroscopy. The silver nanoparticles were then embedded into commercial polystyrene solution. The recycled carton paper was coated by the polystyrene nanocomposites containing different concentration of silver nanoparticles, namely 2, 4, 6 and 8% based on polystyrene. The prepared recycled carton sheets were characterized by scanning electron microscope (SEM). The mechanical properties, water vapor permeability and antibacterial effect of recycled carton sheets were also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Crystallization and mechanical properties of biodegradable poly(p-dioxanone)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method

    Indian Academy of Sciences (India)

    Zhecun Wang; Chengdong Xiong; Qing Li

    2015-10-01

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the PPDO matrix. Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the nanocomposites were studied in detail. It shows that the overall crystallization rates are faster in the nanocomposites than in neat PPDO and increase with the increase in ome-POSS loadings; however, X-ray diffraction patterns, POM and the Avrami exponent suggest that the crystal structure and the crystallization mechanism do not change despite the presence of ome-POSS. The mechanical property of PPDO/ome-POSS nanocomposites was enhanced with respect to neat PPDO.

  15. Sintering behavior, microstructure and mechanical properties of vacuum sintered SiC/spinel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoqiang, E-mail: lguoqi1@lsu.edu [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States); Tavangarian, Fariborz [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2014-12-05

    Highlights: • Bulk SiC/spinel nanocomposite was synthesized from talc, aluminum and graphite powders. • Sintering behavior and mechanical properties of SiC/spinel nanocomposite was studied. • The obtained bulk SiC/spinel nanocomposite had a mean crystallite size of about 34 nm. - Abstract: A mixture of SiC and spinel (MgAl{sub 2}O{sub 4}) nanopowder was prepared through the ball milling of talc, aluminum and graphite powder. The powder was uniaxially pressed into the form of pellets and the prepared specimens were annealed at various temperatures for different holding times. The prepared samples were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), nanoindentation test, cold crushing strength (CCS) test and Archimedes principle test. The obtained results showed that the hardness, CCS and bulk density did not follow the same trend at different temperatures due to the interaction among various parameters. The detailed investigation of microstructure, phase changes and experimental conditions revealed the mechanisms behind these behaviors. The best sample obtained after annealing at 1200 °C for 1 h in vacuum had the mean hardness of 1.6 GPa and the mean CCS of 118 MPa.

  16. Effect of organically modified clay on mechanical properties, cytotoxicity and bactericidal properties of poly(ɛ-caprolactone) nanocomposites

    Science.gov (United States)

    Kumar, Sachin; Mishra, Anupam; Chatterjee, Kaushik

    2014-12-01

    The objective of this study was to evaluate the use of organically-modified clay nanoparticles in poly(ɛ-caprolactone) (PCL) for developing biodegradable composites. PCL nanocomposites reinforced with two different types of organically-modified clay (Cloisite 30B, C30B and Cloisite 93A, C93A) were prepared by melt-mixing. Morphology of PCL/clay nanocomposites characterized by scanning electron microscopy indicated good dispersion of nanoclay in the PCL matrix. Reinforcement of nanoclay in PCL enhanced mechanical properties without affecting thermal and degradation properties of PCL. Cytocompatibility of PCL/clay nanocomposites was studied using both osteoblasts and endothelial cells in vitro. Both composites (PCL/C30B and PCL/C93A) were cytotoxic with high toxicity observed for C30B even at low content of 1 wt %. The cytotoxicity was found to arise due to leachables from PCL/clay composites. Electrical conductivity measurements of aqueous media confirmed leaching of cationic surfactant from the PCL/clay composites PCL matrix. Both composites were found to be bactericidal but C30B was more effective than C93A. Taken together, it was observed that organically-modified nanoclay as fillers in PCL improves mechanical properties and imparts bactericidal properties but with increased risk of toxicity. These PCL/clay composites may be useful as stronger packaging material with antibacterial properties but are not suited as biomedical implants or for food packaging applications.

  17. Mechanism of Enhanced Dielectric Properties of SiC/Ni Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan; KANG Yu-Qing; FANG Xiao-Yong; YUAN Jie; SHI Xiao-Ling; SONG Wei-Li; CAO Mao-Sheng

    2008-01-01

    Dielectric properties of SiC/Ni nanocomposites prepared by a simple and facile electroless plating approach at X band are investigated.Compared to the original SiC nanoparticles (SiCp),the real part of the permittivity,ε',and the dielectric loss tangent tan δe of SiC/Ni nanocomposites are clearly enhanced by about 31% and 33%,respectively.The effective equations for complex permittivity of SiC/Ni nanocomposites are proposed.We also calculate ε' and tan δe of SiC/Ni nanocomposites and the calculated results are well consistent with the measured data.

  18. Microstructure and mechanical properties of nanocomposite coatings deposited by cathodic arc evaporation

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2010-09-01

    Full Text Available Purpose: The main aim of the this research was the investigation of the structure and the mechanical properties of the nanocomposite TiAlSiN, CrAlSiN, AlTiCrN coatings deposited by cathodic arc evaporation method onto hot work tool steel substrate.Design/methodology/approach: The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Tests of the coatings’ adhesion to the substrate material were made using the scratch test.Findings: It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 11-25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-section morphology as well as good adhesion to the substrate. The critical load LC2 lies within the range of 46-54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa.Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the nanocomposite coatings make them suitable in industrial applications.Originality/value: The investigation results will provide useful information to applying the nanocomposite coatings for the improvement of mechanical properties of the hot work tool steels.

  19. Mechanical Properties of Carbon Nanotube/Polyurethane Nanocomposites via PPG Dispersion with MWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Won; Kim, Jong Seok [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-12-15

    In order to improve the dispersity of nanofiller, polyurethane (PU) nanocomposites were manufactured via poly(propylene gylcol) (PPG) dispersion with MWCNTs prepared by using a ball mill shaker. MWCNTs could be functionalized by treating with the hydrogen peroxide (H{sub 2}O{sub 2}). Tensile strengths and elongations at break of PU/H{sub 2}O{sub 2} treated MWCNTs nanocomposites were enhanced compared to those of the PU/pristine MWCNTs nanocomposites. The good dispersion of MWCNTs shown in SEM images was obtained by the functionalization of MWCNTs surface. PU/carbon black (CB) composites showed no significant change in the tensile properties. The tensile properties of PU nanocomposites containing pristine MWCNTs or H{sub 2}O{sub 2} treated MWCNTs were enhanced with increasing dispersion time. As a result, it was certified that the enhanced dispersity of nanofiller brought the improvement of the tensile properties of the MWCNTs based PU nanocomposites.

  20. A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties

    Institute of Scientific and Technical Information of China (English)

    Zhi-Qiang Duan; Yi-Tao Liu; Xu-Ming Xie; Xiong-Ying Ye

    2013-01-01

    A simple and green method is developed to prepare hexagonal boron nitride (h-BN)/poly(vinyl alcohol) (PVA) nanocomposites by using water as a common solvent of h-BN nanosheets and PVA.The obtained hBN/PVA nanocomposites are highly transparent,and have significantly improved mechanical and thermal properties.They may outperform nano-clay and nano-alumina/PVA nanocomposites as flexible optoelectronic devices,optical windows and heat-releasing materials operated in oxidative or corrosive environment.

  1. Mechanical and thermomechanical properties of polycarbonate-based polyurethane-silica nanocomposites

    Directory of Open Access Journals (Sweden)

    Rafał Poręba

    2011-09-01

    Full Text Available In this work aliphatic polycarbonate-based polyurethane-silica nanocomposites were synthesized and characterized. The influence of the type and of the concentration of nanofiller differing in average particle size (7 nm for Aerosil 380 and 40 nm for Nanosilica 999 on mechanical and thermomechanical properties was investigated. DMTA measurements showed that Nanosilica 999, irrespective of its concentration, slightly increased the value of the storage shear modulus G’ but Aerosil 380 brings about a nearly opposite effect, the shear modulus in the rubber region decreases with increasing filler content. Very high elongations at break ranging from 800% to more than 1000%, as well as high tensile strengths illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 0.5 wt.% of Nanosilica 999.

  2. Improvements of Thermal, Mechanical, and Water-Resistance Properties of Polybenzoxazine/Boron Carbide Nanocomposites

    Science.gov (United States)

    Ramdani, Noureddine; Derradji, Mehdi; Wang, Jun; Mokhnache, El-Oualid; Liu, Wen-Bin

    2016-09-01

    Novel kinds of nanocomposites based on bisphenol A-aniline based polybenzoxazine matrix P(BA-a) and 0 wt.%-20 wt.% boron carbide (B4C) nanoparticles were produced and their properties were evaluated in terms of the nano-B4C content. The thermal conductivity of the P(BA-a) matrix was improved approximately three times from 0.18 W/m K to 0.86 W/m K at 20 wt.% nano-B4C loading, while its coefficient of thermal expansion (CTE) was deceased by 47% with the same nanofiller content. The microhardness properties were significantly improved by adding the B4C nanoparticles. At 20 wt.% of nano-B4C content, dynamic mechanical analysis (DMA) revealed a marked increase in the storage modulus and the glass transition temperature ( T g) of the nanocomposites, reaching 3.9 GPa and 204°C, respectively. Hot water uptake tests showed that the water-resistance of the polybenzoxazine matrix was increased by filling with nano-B4C nano-filler. The morphological analysis reflected that the improvements obtained in the mechanical and thermal properties are related to the uniform dispersion of the nano-B4C particles and their strong adhesion to the P(BA-a) matrix.

  3. Phase Transition and Mechanical Properties of PS/PVC/CdS Polymeric Nanocomposites

    Science.gov (United States)

    Mathur, Vishal; Dixit, Manasvi; Saxena, N. S.; Sharma, Kananbala

    2010-06-01

    The present study reports the phase transition temperature and mechanical properties of CdS dispersed PS-PVC nanocomposite through Dynamic Mechanical Analyzer (DMA). Thick films of polymeric nanocomposites have been synthesized by dispersing nano-filler particles of CdS in PS/PVC binary blend matrix. The surface morphology of PS/PVC blend samples has been characterized by Scanning Electron Microscopy (SEM) while the nanostructure of the CdS filler in PS/PVC/CdS composite has been ascertained through small angle X-ray Diffraction (XRD) technique. The phase transition temperature study of PS/PVC polymeric blends reveals that glass transition temperature, Tg, of the PS phase shifts towards lower temperature with the increase in PVC content in the blend whereas for CdS embedded polymeric phases of blends i.e. for PS/PVC/CdS samples, an increase in respective Tg values have been observed. This is suggestive to the fact that phase transition temperature and mechanical properties have been significantly influenced through the dispersion of CdS nano-filler particles in the studied polymeric blend series.

  4. Effects of antistatic agent on the mechanical, morphological and antistatic properties of polypropylene/organo-montmorillonite nanocomposites

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Polypropylene (PP and PP/organo-montmorillonite (OMMT compounds containing antistatic agent (3, 6 and 9 wt% were prepared using co-rotating twin screw extruder followed by injection molding. PP/OMMT composites were prepared by mixing of PP, OMMT and maleated PP (PPgMAH. The mechanical properties of PP blends and PP/OMMT nanocomposites were studied by tensile and impact tests. The effect of antistatic agent (AA on the surface resistivity of PP and PP/OMMT nanocomposites were studied. The morphological properties of PP blends and PP/OMMT nanocomposites were characterized by using field emission scanning electron microscopy (FESEM. The intercalation of OMMT silicates layer in PP nanocomposites was characterized using X-ray diffraction (XRD. The impact strength of PP blends and PP/OMMT nanocomposites did not vary significantly by the addition of antistatic agent. The tensile modulus and tensile strength of PP/OMMT nanocomposites were slightly decreased with the increasing loading of antistatic agents. From FESEM analysis, the dispersion of antistatic agent in the PP matrix can be revealed. In addition, the surface resistivity of PP/OMMT compound was affected by the loading of antistatic agent. XRD results indicated the formation of intercalated nanocomposites for PP/OMMT/AA.

  5. Influence of carbon nanotube (CNT) on the mechanical properties of LLDPE/CNT nanocomposite fibers

    KAUST Repository

    Mezghani, Khaled

    2011-12-01

    The present study shows the effect of adding CNT to linear low-density polyethylene (LLDPE) to produce LLDPE/CNT nanocomposite fibers. The LLDPE/CNT fibers were produced by melt extrusion process using a twin-screw extruder, in a controlled temperature from 160 °C to 275 °C. Further, melt extrusion process was followed by drawing of fibers at the room temperature. Three different weight percentages, 0.08, 0.3 and 1 wt.% of CNT were studied for producing nanocomposite fibers. The addition of 1 wt.% CNT in the LLDPE fiber has increased the tensile strength by 38% (350 MPa). The addition of 0.08 and 0.3 wt.% CNT in the fiber matrix has improved the ductility by 87% and 122%, respectively. Similarly, improvement in the toughness was observed by 63% and 105% for LLDPE fibers with 0.08 wt.% and 0.3 wt.% CNT respectively. The increase in the mechanical properties of the composite fibers was attributed to the alignment and distribution of CNT in the LLDPE matrix. The dispersion of CNT in the polymeric matrix has been revealed by SEM. The study shows that the small addition of CNT when properly mixed and aligned will increase the mechanical properties of pristine polymer fibers. © 2011 Elsevier B.V. All rights reserved.

  6. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Science.gov (United States)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  7. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Denise Ester O. [Polymer Research Laboratory, Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101 Philippines (Philippines); Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines (Philippines); Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T. [Polymer Research Laboratory, Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101 Philippines (Philippines)

    2016-05-18

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  8. Effect of nano SiO2 particles on the morphology and mechanical properties of POSS nanocomposite dental resins

    Science.gov (United States)

    Liu, Yizhi; Sun, Yi; Zeng, Fanlin; Xie, Weili; Liu, Yang; Geng, Lin

    2014-12-01

    Nanocomposite dental resins composed of polyhedral oligomeric silsesquioxane nanocomposite matrix and 0, 0.5,1, 1.5 and 2 wt% nano SiO2 as filler were prepared by light curing method. The nanocomposite resins were characterized by performing compressive, three-point flexure, nanoindentation and nanoscratch testings as well as optical microscopy and scanning electron microscope analysis. The effects of different nano SiO2 contents were studied on compressive strength, flexural strength, hardness and resistance of composite resin. From the mechanical results, it was found that nano SiO2 effectively enhanced the mechanical properties of the composite resins at low content. With the increase of the nano SiO2 content, the mechanical properties decreased. It was attributed to the content of nano SiO2 and dispersion of nanoparticles in matrix.

  9. Effect of nano SiO{sub 2} particles on the morphology and mechanical properties of POSS nanocomposite dental resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhi; Sun, Yi, E-mail: sunyi@hit.edu.cn; Zeng, Fanlin [Harbin Institute of Technology, Department of Astronautic Science and Mechanics (China); Xie, Weili, E-mail: xwl811@126.com [Harbin Medical University, Department of Stomatology (China); Liu, Yang [Harbin Stomatology Hospital (China); Geng, Lin [Harbin Institute of Technology, School of Materials Science and Engineering (China)

    2014-12-15

    Nanocomposite dental resins composed of polyhedral oligomeric silsesquioxane nanocomposite matrix and 0, 0.5,1, 1.5 and 2 wt% nano SiO{sub 2} as filler were prepared by light curing method. The nanocomposite resins were characterized by performing compressive, three-point flexure, nanoindentation and nanoscratch testings as well as optical microscopy and scanning electron microscope analysis. The effects of different nano SiO{sub 2} contents were studied on compressive strength, flexural strength, hardness and resistance of composite resin. From the mechanical results, it was found that nano SiO{sub 2} effectively enhanced the mechanical properties of the composite resins at low content. With the increase of the nano SiO{sub 2} content, the mechanical properties decreased. It was attributed to the content of nano SiO{sub 2} and dispersion of nanoparticles in matrix.

  10. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol functional group to enhance their dispersion in SBR matrix. Surface functionalization of the CNTs was carried out using acid treatment and FTIR technique was utilized so as to ascertain the presence of phenol functional group. This was followed with the dispersion of the functionalized CNTs into a polymer solution and a subsequent evaporation of the solvent. This study has demonstrated the inherent capability of CNTs as reinforcing filler as demonstrated by the substantial improvement in Young\\'s Modulus, tensile strength and energy of absorption of the nanocomposites. The tensile strength increased from 0.17 MPa (SBR) to 0.48 MPa while the Young\\'s Modulus increased from 0.25 MPa to 0.83 MPa when 10wt% functionalized CNTs was added. With the addition of 1wt% reinforcement-a peak value of 4.1 KJ energy absorption was obtained. The homogenous dispersion of CNT-Phenol is thought to be responsible for the considerable enhancement in the reported properties. Copyright © Taylor & Francis Group, LLC.

  11. Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ross Pablo

    2017-03-01

    Full Text Available Micro and nanocomposites of hydroxyl terminated polybutadiene (HTPB-based polyurethanes (NPU were obtained using five mineral fillers and Cloisite 20A nanoclay, respectively. Samples were prepared by the reaction of HTPB polyol and toluene diisocyanate (TDI, and the chain was further extended with glyceryl monoricinoleate to produce the final elastomeric polyurethanes. Mechanical and thermal properties were studied, showing that mineral fillers (20%w/w significantly increased tensile strength, in particular nanoclay (at 5% w/w. When nanoclay-polymer dispersion was modified with a silane and hydantoin-bond promoter, elongation at break was significantly increased with respect to NPU with C20A. Thermal properties measured by differential scanning calorimetry (DSC were not significantly affected in any case. The molecular structure of prepared micro and nanocomposites was confirmed by Fourier transform infrared (FTIR spectroscopy and Raman spectroscopy. Interaction of fillers with polymer chains is discussed, considering the role of silanes in compatibilization of hydrophilic mineral fillers and hydrophobic polymer. The functionalization of nanoclay with HMDS silane was confirmed using FTIR. Microstructure of NPU with C20A nanoclay was confirmed by Atomic Force Microscopy (AFM.

  12. Polymer Nanocomposites Made with Unmodified Graphite or Carbon Nanotubes: Role of Dispersion in Optimizing Mechanical and Thermal Properties and Electrical Conductivity

    Science.gov (United States)

    Masuda, Junichi; Wakabayashi, Katsuyuki; Brunner, Philip; Pierre, Cynthia; Torkelson, John

    2009-03-01

    Polymer nanocomposites made with carbon-based nanofiller have the potential to achieve unprecedented, multifunctional property enhancements in comparison with other nanocomposite systems. Here, we describe research in which we prepare nanocomposites with polymers that are not amenable to solution-based processing, such as polypropylene and poly(ethylene terephthalate). Solid-state shear pulverization is used singly or in conjunction with melt processing to obtain well-dispersed polymer/graphite and polymer/carbon nanotube nanocomposites. We report record improvements in properties of unoriented films of polypropylene nanocomposites, including Young's modulus, crystallization rate, and thermal degradation temperature. We also characterize electrical conductivity of such nanocomposites and note that the dispersion characteristics necessary to achieve maximum mechanical and thermal properties differ from those needed to maximize electrical conductivity. The potential of and challenges with using unmodified graphite as a filler in polymer nanocomposites will be discussed.

  13. Preparation of UV-protective kefiran/nano-ZnO nanocomposites: physical and mechanical properties.

    Science.gov (United States)

    Shahabi-Ghahfarrokhi, Iman; Khodaiyan, Faramarz; Mousavi, Mohammad; Yousefi, Hossein

    2015-01-01

    In this study, we investigated the effect of ZnO nanoparticles (ZN) as a UV-protective agent of kefiran biopolymers. Our results showed that with increasing ZN content, the tensile strength, elongation at break, and tensile energy to break the kefiran film and nanocomposites also increased. Kefiran nanocomposites with a ZN content higher than 2% produced a UV-protective film with good visual properties, low sensibility to water, and low water-vapor permeability. The thermal properties of all specimens, analyzed by DSC, showed that the ZN content had a negative effect on Tg and a positive effect on nanocomposites' melting point. TEM, SEM micrography and XRD spectrum analysis confirmed the hypothesis that ZNs act like a ball bearing, making movement of kefiran chains easier and increasing elongation at break, while simultaneously decreasing the Tg of kefiran nanocomposites.

  14. A Linear Relationship between the Mechanical, Thermal and Gas Barrier Properties of MAPE Modified Rubber Toughened Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nur Ayuni jamal

    2010-11-01

    Full Text Available Composites based on high density polyethylene (HDPE, ethylene propylene diene monomer (EPDM and organophilic montmorillonite (OMMT clays were prepared by melt compounding followed by compression molding. The addition of clay as well as compatibilizer agent (maleic anhydride polyethylene (MAPE considerably improved the tensile properties of nanocomposites systems. The largest improvement in mechanical and thermal properties occurred at clay loading levels of 4% (2-8 wt % with MAPE system. Interestingly, the increased in tensile properties also resulted in improve in thermal and barrier properties. Differential scanning calorimeter analysis (DSC revealed that the barrier property of nanocomposite was influenced by the crystalline percentage of nanocomposite. Along with crystalline percentage, the crystallization temperature, Tc and melting temperature, Tm were also improved with OMMT and MAPE agent. The d-spacings of the clay in nanocomposites were monitored using x-ray diffraction (XRD and the extent of delamination was examined by transmission electron microscope (TEM. The wide angle of XRD patterns showed the increased interplanar spacing, d of clay layers, indicating enhanced compatibility between polymer matrix and OMMT with the aid of MAPE agent. TEM photomicrographs illustrated the mixed intercalated and partial exfoliated structures of the nanocomposites with OMMT and MAPE agent.

  15. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    Science.gov (United States)

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix.

  16. Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Meng, W. J.; Tittsworth, R. C.; Rehn, L. E.; Materials Science Division; Louisana State Univ.

    2000-12-01

    Using the techniques of reactive magnetron sputter deposition and inductively coupled plasma (ICP) assisted hybrid physical vapor deposition (PVD)/chemical vapor deposition (CVD), we have synthesized a wide variety of metal-free amorphous hydrocarbon (a-C:H) and Ti-containing hydrocarbon (Ti-C:H) coatings. Coating elastic modulus and hardness have been measured by the technique of instrumented nanoindentation and related to Ti and hydrogen compositions. We show that both metal and hydrogen compositions significantly influence the mechanical properties of Ti-C:H coatings. The microstructure of Ti-C:H coatings is further characterized by transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. XANES spectroscopy and high-resolution TEM examination of Ti-C:H specimens shows that the dissolution limit of Ti atoms in an a-C:H matrix is between 0.9 and 2.5 at.%. Beyond the Ti dissolution limit, precipitation of nanocrystalline B1-TiC cluster occurs and Ti-C:H coatings are in fact TiC/a-C:H thin film nanocomposites. Measurements of the average Ti bonding environment in TiC/a-C:H nanocomposites by EXAFS spectroscopy are consistent with a microstructure in which bulk-like B1-TiC clusters are embedded in an a-C:H matrix.

  17. Effects of Size and Surfaee Modification of Multi-walled Carbon Nanotubes on Mechanical Properties of Polyurethane-based Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fang; HUANGJin; ZHANG Hao; SU Zhongmin; ZHANG Qiaoxin

    2012-01-01

    Polyurethanes/multi-walled carbon nanotube (PU/CNT) composites were prepared with a help of ultrasonically dispersing CNT in the traditional procedure of synthesizing polyurethane.In this case,the various loading levels,sizes and surface-modified groups were considered to regulate the mechanical performances of the PU/CNT nanocomposites.Moreover,the structure and mechanical properties of all the PU/CNT nanocomposites were investigated by attenuated total reflection-Fourier transform infrared spectroscopy,dynamic mechanical analysis,scanning electron microscope,transmission electron microscope,and tensile testing.The experimental results showed that a moderate loading-level of 0.1 wt% and a diameter of 10-15 nm for CNT could produce the maximum tensile strength and elongation while it was worth noting that the surface carboxylation of CNT could further enhance the tensile strength and elongation of the PU/CNT nanocomposites.

  18. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  19. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Muhsan, Ali Samer, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Ahmad, Faiz, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt, E-mail: puteris@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS (UTP) (Malaysia); Mohamed, Norani M., E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia); Raza, M. Rafi, E-mail: rafirazamalik@gmail.com [Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor (Malaysia)

    2014-10-24

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050°C for 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.

  20. Synthesis and hydrogen storage properties of mechanically ball-milled SiC/MgH{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, H., E-mail: hi-khm@yamaguchi-u.ac.j [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Nakatomi, S.; Hashimoto, Y.; Kitazawa, I.; Sakata, Y. [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Mae, H.; Fujimoto, M. [Yamaguchi Prefectural Industrial Technology Institute, 4-1-1 Asutopia, Ube 755-0195 (Japan)

    2009-11-20

    The hydrogen storage characteristics of SiC/MgH{sub 2} nanocomposites which are prepared by mechanical ball milling of MgH{sub 2} and SiC with cyclohexane have been studied. MgH{sub 2} as a starting material exhibited a desorption peak of hydrogen at 705 K in thermal desorption spectrometry (TDS), while the ball-milled SiC/MgH{sub 2} nanocomposites showed much lower desorption temperatures near 437 K. The hydrogen storage properties of SiC/MgH{sub 2} were significantly improved as a result of nanocomposite formation. In addition, the nanocomposites were characterized by X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimeter (DSC) and pressure-composition isotherm (PCT) measurements. For the SiC/MgH{sub 2} nanocomposites, the reversibility of hydrogen absorption/desorption was observed, but heating above 573 K led to the irreversible breakdown of nanocomposites into MgH{sub 2} and SiC.

  1. Effects of Treated Nano-Lanthanum Oxide on the Mechanical and Tribological Properties of PTFE Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Wang Huaiyuan; Feng Xin; Shi Yijun; Lu Xiaohua

    2007-01-01

    The surface of nano-La2O3 was modified. Effects of various amount of treated nano-La2O3 on the mechanical and tribological properties of PTFE were investigated. Mechanisms that contribute to the properties of PTFE composites are also studied. Results indicate that treated nano-La2O3 can increase the mechanical and tribological properties of PTFE simultaneously. With 1wt.% of treated nano-La2O33, the rigidity, tensile strength, notched impact and wear resistance of PTFE nanocomposites were increased by 25.1%,14.1%,20.3% and 36.7% respectively over pure PTFE. The degradation temperature of PTFE was improved by 14℃ by adding only 5% nano-La2O3. The wear resistance reached the highest value when the composite contained 10% treated nano-La2O3, which is about 110 times higher than pure PTFE. Furthermore, treated nano-La2O3 strengthened the bonding between the transfer film and the counterpart surface. A coherent and smooth transfer film on the counterpart surface of PTFE composites can be observed, while pure PTFE can not do.

  2. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Silvestre

    2015-01-01

    Full Text Available Due to their prominent properties (mechanical, stiffness, strength, thermal stability, ceramic composite materials (CMC have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMCs can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMCs are now changing from classical reinforcement (e.g., microscale fibres to new types of reinforcement at nanoscale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMCs: Ceramics Nanocomposites (CNCs.

  3. Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites

    Science.gov (United States)

    Nasser, Ali; Kassem, Mohamed A.; Elsayed, Ayman; Gepreel, Mohamed A.; Moniem, Ahmed A.

    2016-11-01

    WC-W2C/ZrO2 nanocomposites were synthesized by pressure-less sintering (PS) and spark plasma sintering (SPS) of tungsten carbide/yttria-stabilized tetragonal zirconia, WC/TZ-3Y. Prior to sintering, WC/TZ-3Y powders were totally ball-milled for 20 and 120 h to obtain targeted nano (N) and nano-nano (N-N) structures, indicated by transmission electron microscopy and powder x-ray diffraction (PXRD). The milled powders were processed via PS at temperatures of 1773 and 1973 K for 70 min and SPS at 1773 K for 10 min. PXRD as well as SEM-EDS indicated the formation of WC-W2C/ZrO2 composites after sintering. The mechanical properties were characterized via Vicker microhardness and nanoindentation techniques indicating enhancements for sufficiently consolidated composites with high W2C content. The effects of reducing particle sizes on phase transformation, microstructure and mechanical properties are reported. In general, the composites based on the N structure showed higher microhardness than those for N-N structure, except for the samples PS-sintered at 1773 K. For instance, after SPS at 1773 K, the N structure showed a microhardness of 18.24 GPa. Nanoindentation measurements revealed that nanoscale hardness up to 22.33 and 25.34 GPa and modulus of elasticity up to 340 and 560 GPa can be obtained for WC-W2C/ZrO2 nanocomposites synthesized by the low-cost PS at 1973 K and by SPS at 1773 K, respectively.

  4. Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites

    Science.gov (United States)

    Nasser, Ali; Kassem, Mohamed A.; Elsayed, Ayman; Gepreel, Mohamed A.; Moniem, Ahmed A.

    2016-09-01

    WC-W2C/ZrO2 nanocomposites were synthesized by pressure-less sintering (PS) and spark plasma sintering (SPS) of tungsten carbide/yttria-stabilized tetragonal zirconia, WC/TZ-3Y. Prior to sintering, WC/TZ-3Y powders were totally ball-milled for 20 and 120 h to obtain targeted nano (N) and nano-nano (N-N) structures, indicated by transmission electron microscopy and powder x-ray diffraction (PXRD). The milled powders were processed via PS at temperatures of 1773 and 1973 K for 70 min and SPS at 1773 K for 10 min. PXRD as well as SEM-EDS indicated the formation of WC-W2C/ZrO2 composites after sintering. The mechanical properties were characterized via Vicker microhardness and nanoindentation techniques indicating enhancements for sufficiently consolidated composites with high W2C content. The effects of reducing particle sizes on phase transformation, microstructure and mechanical properties are reported. In general, the composites based on the N structure showed higher microhardness than those for N-N structure, except for the samples PS-sintered at 1773 K. For instance, after SPS at 1773 K, the N structure showed a microhardness of 18.24 GPa. Nanoindentation measurements revealed that nanoscale hardness up to 22.33 and 25.34 GPa and modulus of elasticity up to 340 and 560 GPa can be obtained for WC-W2C/ZrO2 nanocomposites synthesized by the low-cost PS at 1973 K and by SPS at 1773 K, respectively.

  5. Synthesis and Characterization of Novel Polycarbonate Based Polyurethane/Polymer Wrapped Hydroxyapatite Nanocomposites: Mechanical Properties, Osteoconductivity and Biocompatibility.

    Science.gov (United States)

    Selvakumar, M; Jaganathan, Saravana Kumar; Nando, Golok B; Chattopadhyay, Santanu

    2015-02-01

    The present investigation reports the preparation of two types of 2D rod-like nano-hydroxyapatite (nHA) (unmodified and Polypropylene glycol (PPG) wrapped) of varying high-aspect ratios, by modified co-precipitation methods, without any templates. These nHA were successfully introduced into novel synthesized Thermoplastic Polyurethane (TPU) matrices based on polycarbonate soft segments, by both in-situ and ex-situ techniques. Physico-mechanical properties of the in-situ prepared TPU/nHA nanocomposites were found to be superior compared to the ex-situ counterparts, and pristine nHA reinforced TPU. Improved biocompatibility of the prepared nanocomposites was confirmed by MTT assays using osteoblast-like MG63 cells. Cell proliferation was evident over an extended period. Osteoconductivity of the nanocomposites was observed by successful formation of an apatite layer on the surface of the samples, after immersion into simulated body fluid (SBF). Prothrombin time (PT) and activated partial thromboplastin time (APTT), as calculated from coagulation assays, displayed an increase in the clotting time, particularly for the PPG-wrapped nHA nanocomposites, prepared through the in-situ technique. Only 0.3% of hemolysis was observed for the in-situ prepared nanocomposites, which establishes the antithrombotic property of the material. The key parameters for enhancing the technical properties and biocompatibility of the nanocomposites are: the interfacial adhesion parameter (B(σy)), the polymer-filler affinity, the aspect ratio of filler and non-covalent modifications, and the state of dispersion. Thus, the novel TPU/polymer wrapped nHA nanocomposites have great potential for biomedical applications, in particular for vascular prostheses, cardiovascular implants, scaffolds, and soft and hard tissues implants.

  6. Study of mechanical properties of films of nanocomposites LLDPE/bentonite; Estudo das propriedades mecanicas de filmes de nanocompositos PEBDL/bentonita

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Eduardo M.; Carvalho, Laura H.; Canedo, Eduardo L.; Coutinho, Maria G.F.; Costa, Raquel B., E-mail: laura@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materias, Universidade Federal de Campina Grande (UAEMa/UFCG) Campina Grande, PB (Brazil); Araujo, Arthur R.A. [Felinto Industria e Comercio Ltda., Campina Grande, PB (Brazil)

    2011-07-01

    Mechanical properties of LLDPE/bentonite clay were determined as a function of clay content (1 and 2% w/w), purification and organophilization. Raw materials were characterized by FTIR and XRD. Nanocomposites were obtained as flat films and characterized by XRD and mechanical properties. Results indicate that best overall mechanical properties were displayed by systems containing purified clay and that they tended to decrease with increasing clay content. Organofilization was effective and only intercalated nanocomposites were obtained. (author)

  7. Calcium silicate nanowires - An effective alternative for improving mechanical properties of chitosan-hydroxyethyl methacrylate (HEMA) copolymer nanocomposites.

    Science.gov (United States)

    Bari, Sarang S; Mishra, Satyendra

    2017-08-01

    Nanowires of calcium silicate were successfully synthesized by ultrasonic irradiation process and incorporated into chitosan and hydroxyetheyl methacrylate (HEMA) copolymer matrix by solution blending for efficacious preparation of biodegradable nanocomposites. Remarkable improvement in mechanical properties of the nanocomposites was noticed after micro-tensile analysis. Enlarged surface area and higher aspect ratio of CaSiO3 nanowires were the key factors responsible for such improvement. This was supported by EDS and XRD analysis in terms of proper distribution of nanofiller through the copolymer matrix and corresponding rise in percentage crystallanity respectively. Contact angle and biodegradation studies further clarified that nano-CaSiO3 did not affect the hydrophilicity and general degradation route of chitosan copolymer respectively. This renders the nano-CaSiO3 as an ideal substitute for preparing high performance nanocomposites to be applicable for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Optical properties of polymer nanocomposites

    Indian Academy of Sciences (India)

    S Srivastava; M Haridas; J K Basu

    2008-06-01

    Nanomaterials have emerged as an area of interest motivated by potential applications of these materials in light emitting diodes, solar cells, polarizers, light – stable colour filters, optical sensors, optical data communication and optical data storage. Nanomaterials are of particular interest as they combine the properties of two or more different materials with the possibility of possessing novel mechanical, electronic or chemical behaviour. Understanding and tuning such effects could lead to hybrid devices based on these nanocomposites with improved optical properties. We have prepared polymer nanocomposites of well-defined compositions and studied the optical properties of powders and their thin films. UV-vis absorption spectroscopy on nanocomposite powders and spectroscopic ellipsometry measurements on thin films was used to study the effect of interfacial morphology, interparticle spacing and finite size effects on optical properties of nanocomposites. Systematic shift in the imaginary part of the dielectric function can be seen with variation in size and fraction of the gold nanoparticle. The thickness of the film also plays a significant role in the tunability of the optical spectra.

  9. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties.

    Science.gov (United States)

    Hesaraki, Saeed; Ebadzadeh, Touraj; Ahmadzadeh-Asl, Shaghayegh

    2010-07-01

    In this study, bioceramic nanocomposites were synthesized by sintering compacted bodies of hydroxyapatite (HA) mixed with 5 or 15 wt% nanosilicon carbide at 1,100 or 1,200 degrees C in a reducing atmosphere. Pure hydroxyapatite was also prepared for comparison. Phase compositions, structural and physical properties of the composites were studied using appropriate techniques. Some in vitro biological properties of the composites were also investigated by using newrat calvaria osteoblastic cells. X-ray diffraction analysis indicated that tricalcium phosphate (TCP) comprising negligible alpha-TCP and considerable beta-TCP were formed in composites during sintering meanwhile hydroxyapatite and silicon carbide (SiC) were also existed in the composition. Based on the results, that composite made of 5 wt% nanosilicon carbide exhibited higher bending strength, fracture toughness and bulk density than pure HA and composite with 15 wt% silicon carbide. The scanning electron microscopy coupled with energy dispersive X-ray analysis revealed that the addition of nanosilicon carbide suppressed the grain growth and yielded a feature of island-type clusters consisting of blistered calcium phosphate (HA and TCP) and SiC grains. Also, in this study, better proliferation rate and alkaline phosphatase activity were observed for the osteoblastic cells seeded on top of the composites compared to pure HA. Overall, the results indicated that the composite of 95 wt% hydroxyapatite and 5 wt% SiC exhibited better mechanical and biological properties than pure HA and further addition of SiC failed strength and toughness.

  10. Preparation and Mechanical Properties of Solid-phase Grafting Nanocomposites of PVC/Graft Copolymers/MMT

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dunbai; CAI Changgen; JIA Demin

    2006-01-01

    In order to improve the mechanical properties of PVC, by solid-phase grafting reaction, grafting on and nano-modifying the PVC process synchronously, acrylic monomers not only graft on PVC, but also are intercalated into the layers of MMT in the heating process. Blending PVC and the MMT-PVC grafting copolymers, we can get nanocomposites of PVC/ grafters/ MMT, and the mechanical performance of the material is improved.

  11. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.

    Science.gov (United States)

    Li, Kai; Huang, Junchao; Gao, Huichang; Zhong, Yi; Cao, Xiaodong; Chen, Yun; Zhang, Lina; Cai, Jie

    2016-04-11

    Incorporation of nanofillers into aliphatic polyesters is a convenient approach to create new nanomaterials with significantly reinforced mechanical properties compared to the neat polymers or conventional composites. Nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solutions can act as alternative reinforcement nanomaterials for polymers with improved mechanical properties. We report a simple and versatile process for the fabrication of NCG/poly(L-lactide-co-caprolactone) (NCG/P(LLA-co-CL) nanocomposites through in situ ring-opening polymerization of L-lactide (LLA) and ε-caprolactone (ε-CL) monomers in the NCG. The volume fraction of the NCG in the nanocomposites was tunable and ranged from 4.5% to 37%. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) results indicated that P(LLA-co-CL) were synthesized within the NCG and partially grafted onto the surface of the cellulose nanofibrils. The glass-transition temperature (Tg) of the NCG/P(LLA-co-CL) nanocomposites could be altered by varying the molar ratio of LLA/ε-CL and was affected by the volume fraction of NCG. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images confirmed that the interconnected nanofibrillar cellulose network structure of the NCG was finely distributed and preserved in the P(LLA-co-CL) matrix after polymerization. The dynamic mechanical analysis (DMA) results showed remarkable reinforcement of the tensile storage modulus (E') of the P(LLA-co-CL) nanocomposites in the presence of NCG, especially above the Tg of the P(LLA-co-CL). The modified percolation model agreed well with the mechanical properties of the NCG/P(LLA-co-CL) nanocomposites. The introduction of NCG into the P(LLA-co-CL) matrix improved the mechanical properties and thermal stability of the NCG/P(LLA-co-CL) nanocomposites. Moreover, the NCG/P(LLA-co-CL) nanocomposites have tunable biodegradability and biocompatibility and

  12. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  13. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  14. Preparation and Mechanical Properties of Layered Double Hydrotalcides/ /Polystyrene Nanocomposites Prepared by an in-situ Bubble Stretching Method

    Directory of Open Access Journals (Sweden)

    Xiu-ting ZHENG

    2014-12-01

    Full Text Available Layered double hydrotalcides/polystyrene (LDHs/PS nanocomposites were produced by an in-situ bubble stretching (ISBS method and simple shear method; the effect of LHDs content on the dispersion and the mechanical properties of nanocomposites was studied. The field emission scanning electron microscopy (FE-SEM images indicated that the ISBS method leads to a high degree of dispersion of LDHs nanoparticles in PS matrix. Furthermore, it did not form a significant re-aggregation after defoaming by means of twin-screw extruder. Compared with the simple shear method, the un-notched impact strength and tensile strength of nanocomposites prepared by ISBS method were higher at the same amount of LDHs. The un-notched impact strength of the nanocomposites prepared by ISBS method reached a maximum value at the LDHs mass fraction of 5 % , the strength increased is 57.29 % greater than that of pure PS. The enhanced mechanical properties attributed to the effective dispersion of nanoscale LDHs by ISBS method. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6197

  15. Thermal, mechanical and electrical properties of polyanaline based ceramic nano-composites

    Science.gov (United States)

    Sohail, M.; Khan, M. S.; Khattak, N. S.

    2016-08-01

    Micro/nanohybrid materials have vast applications due to their great potentialities in the field of nanoscience and nanotechnology. Herein we report an investigation on the fabrication and physicochemical characterization of ceramic (Fe0.01La0.01Al0.5Zn0.98O) and hybrid ceramic-polyaniline nano-composits. Ceramic nano-particles were prepared by sol-gel technique while optimizing the molar ratios of the constituent's metal nitrates. The prepared inorganic particles were then embedded in the polymer matrix via one-pot blending method. The prepared ceramic particles and their composites with polyaniline were analysed under FT- IR, SEM and TGA. The presence of some chemical species was observed at the interface of the compositing materials. TGA analysis showed the thermal stability of the composite material. Frequency dependent dielectric properties were analysed and it was found that conducting polyaniline has an additional effect on the electrical behaviour of the composite. Rheology study showed enhanced mechanical properties of composite material as compared to their constituting counterparts.

  16. Characterization of Mechanical Properties: Low-Density Polyethylene Nanocomposite Using Nanoalumina Particle as Filler

    Directory of Open Access Journals (Sweden)

    Ching Yern Chee

    2012-01-01

    Full Text Available Nanocomposites based on low-density polyethylene (LDPE, containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with silane which acts as coupling agent. The effects of alumina additions to the structure and morphology of LDPE matrix were characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM, respectively. The mechanical behaviour of nanoalumina-reinforced LDPE composite was studied using tensile tests, flexural tests, and impact tests. The interfacial adhesion between nano alumina particle and LDPE matrix was investigated. The result showed that the reinforcement performance of nano alumina to LDPE matrix was attributed to the interfacial adhesion between nanoparticle and polymer matrix. The addition of 1 wt% nano alumina has successfully enhanced the mechanical properties of LDPE material.

  17. Durability of LDPE Nanocomposites with Clay, Silica, and Zinc Oxide—Part I: Mechanical Properties of the Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Halim Hamid Redhwi

    2013-01-01

    Full Text Available Three types of LDPE-based nanocomposites with montmorillonite clay, silica, and zinc oxide were prepared by melt blending the nanofiller with the resin. As a prelude to studying their durability, the extent of reinforcement of the LDPE matrix by the nanofillers was investigated using mechanical, thermal, and microscopic studies of the composites. No significant chemical modification of the polyethylene matrix was observed as a result of the processing of the composite compound. While reinforcement was obtained in all cases, the efficiency of reinforcement appears to be qualitatively influenced by surface functionalization, filler interactions, and the extent of dispersion of the filler in the matrix as well as the specific surface area of the nanoparticle fillers.

  18. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    Energy Technology Data Exchange (ETDEWEB)

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  19. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    Science.gov (United States)

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  20. Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真

    2003-01-01

    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.

  1. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Lakshmi; Mohanty, Smita [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Nayak, Sanjay K., E-mail: drsknayak@gmail.com [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Ali, Anwar [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India)

    2011-05-15

    Research highlights: {yields} The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. {yields} The effect of various modified nanoclays on the properties of base matrix has been investigated. {yields} It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T{sub g} of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  2. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  3. Adsorption of ionic liquid onto halloysite nanotubes: Thermal and mechanical properties of heterophasic PE-PP copolymer nanocomposites

    Science.gov (United States)

    Bischoff, E.; Simon, D. A.; Liberman, S. A.; Mauler, R. S.

    2016-03-01

    The surface adsorption of inorganic clays with ionic liquids has attracted much attention due to improve the interaction of hydrophilic clay with the hydrophobic polymers. However, successful organic adsorption strongly depends on the characteristics of ionic liquid (anion, chain size and concentration), and the reaction conditions (as polarity of solvent). In this study, such factors were analyzed and correlated with morphology, thermal and mechanical properties of the nanocomposites. The heterophasic ethylene-propylene copolymer nanocomposites were prepared by melt intercalation method in a twin screw co-rotating extruder. The halloysite nanotubes (HNT) was used as filler - natural and modified with different ionic liquids. The results showed that a better distribution and dispersion of the nanoparticles was achieved in the samples with modified HNT (m-HNT) and was more significant when the ionic liquid adsorption was conducted in a less polar solvent. The thermal stability of the nanocomposites with m- HNT was higher compared to the neat CP. Additionally, the better balance in the mechanical properties was obtained by the use of the more hydrophobic ionic liquid and higher concentration with improve of 27% in the Young Modulus without loss in the impact properties at room temperature. These superior behaviors of ionic liquid adsorption products exhibit properties suitable for many industrial applications.

  4. Mechanical and thermal properties of polypropylene and layered double hydroxides nanocomposites; Propriedades mecanicas e termicas de nanocompositos de polipropileno e hidroxidos duplos lamelares

    Energy Technology Data Exchange (ETDEWEB)

    Duarte de Farias, A.M.; Fraga, M.A.; Oliveira, R.B.; Oliveira, M.G., E-mail: marcia.oliveira@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The recent interest in polymer nanocomposites involving layered double hydroxides (LDH) is due to improved thermal stability, flame resistance, mechanical and barrier properties. The LDHs are structurally described as the stacking of layers with positively charged hydrated anions intercalated between these lamellae. In this paper, polypropylene nanocomposites with Mg / Al-HDL unmodified and modified with sodium dodecyl sulfate (DS) were prepared in the internal mixing chamber equipped with roller rotors and heated to 190 deg C. The nanocomposites were injected molded and then morphology, mechanical and thermal properties were evaluated by X-ray diffraction, tensile tests and DSC, respectively. The results revealed that both LDH and LDH-DS reached a good degree of dispersion in the PP matrix, resulting in increased stiffness, but reduced capacity for deformation and toughness of nanocomposites. The crystallinity of the nanocomposites was higher compared to the PP matrix. (author)

  5. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties.

    Science.gov (United States)

    Kashiwazaki, Haruhiko; Kishiya, Yusuke; Matsuda, Atsushi; Yamaguchi, Keisuke; Iizuka, Tadashi; Tanaka, Junzo; Inoue, Nobuo

    2009-01-01

    We fabricated novel chitosan/hydroxyapatite (HAp) nanocomposites with porous structure by the co-precipitation and porogen leaching method. SEM observation confirmed that the porous chitosan/HAp nanocomposites with 60.6% and 87.1% porosity showed the interconnective pores with pore diameters in the range of 100-200 mum. The composites were found to be mechanically flexible and could be easily formed into any desired shape. The mechanical strength was enhanced by the heat treatment with saturated steam, which was ascribed to the formation of hydrogen bonds between chitosan molecules. The composites subcutaneously implanted in the backs of SD rats for 3 weeks caused little inflammation, and new blood vessel growth and giant cells were found around the composite accompanied with roughening of the surface due to degradation, showing good biocompatibility and biodegradation.

  6. Mechanical and Gas Barrier Properties of Nylon 6/Clay Nanocomposite Blown Films

    Directory of Open Access Journals (Sweden)

    Anongnat Somwangthanaroj

    2012-04-01

    Full Text Available Nylon 6/clay nanocomposite films were prepared by melt mixing nylon 6 with organoclay using a twin screw extruder attached to a blown film die. The type of surfactant used in the pretreatment of organoclay was expected to affect the degree of clay dispersion, which would in turn affect the degree of crystallinity, crystalline phase and bulk properties of the polymer composite. Two different surfactants used to treat the surface of montmorillonite clay were trimethyl tallow quaternary ammonium chloride (M3T, a single-chain surfactant and dimethyl bis (hydrogenated-tallow ammonium chloride (M2(HT2, a double-chain surfactant. The addition of the resulting organoclay into nylon 6 was found to enhance the formation of γ-phase and increase the degree of crystallinity and crystallization temperature of the nylon 6. In fact nanocomposite films containing the single-chain surfactant showed a higher degree of clay dispersion in nylon 6 matrix, up to 148% higher stiffness and up to 100% lower oxygen permeability than those films containing the corresponding double-chain surfactant at the same inorganic loadings investigated. As expected, the nanocomposite films exhibited 58% higher stiffness in the machine direction than the transverse direction.

  7. Graphene Nanoplatelets as Novel Reinforcement Filler in Poly(lactic acid/Epoxidized Palm Oil Green Nanocomposites: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    V. S. Giita Silverajah

    2012-08-01

    Full Text Available Graphene nanoplatelet (xGnP was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid (PLA/epoxidized palm oil (EPO blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets ( < 1 wt%.

  8. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding.

    Science.gov (United States)

    Compton, Owen C; Cranford, Steven W; Putz, Karl W; An, Zhi; Brinson, L Catherine; Buehler, Markus J; Nguyen, SonBinh T

    2012-03-27

    The mechanical properties of pristine graphene oxide paper and paper-like films of polyvinyl alcohol (PVA)-graphene oxide nanocomposite are investigated in a joint experimental-theoretical and computational study. In combination, these studies reveal a delicate relationship between the stiffness of these papers and the water content in their lamellar structures. ReaxFF-based molecular dynamics (MD) simulations elucidate the role of water molecules in modifying the mechanical properties of both pristine and nanocomposite graphene oxide papers, as bridge-forming water molecules between adjacent layers in the paper structure enhance stress transfer by means of a cooperative hydrogen-bonding network. For graphene oxide paper at an optimal concentration of ~5 wt % water, the degree of cooperative hydrogen bonding within the network comprising adjacent nanosheets and water molecules was found to optimally enhance the modulus of the paper without saturating the gallery space. Introducing PVA chains into the gallery space further enhances the cooperativity of this hydrogen-bonding network, in a manner similar to that found in natural biomaterials, resulting in increased stiffness of the composite. No optimal water concentration could be found for the PVA-graphene oxide nanocomposite papers, as dehydration of these structures continually enhances stiffness until a final water content of ~7 wt % (additional water cannot be removed from the system even after 12 h of annealing).

  9. Impact of controlled particle size nanofillers on the mechanical properties of segmented polyurethane nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Finnigan, Bradley; Casey, Phil; Cookson, David; Halley, Peter; Jack, Kevin; Truss, Rowan; Martin, Darren (Queensland); (UC)

    2008-04-02

    The impact of average layered silicate particle size on the mechanical properties of thermoplastic polyurethane (TPU) nanocomposites has been investigated. At fixed addition levels (3 wt% organosilicate), an increase in average particle size resulted in an increase in stiffness. Negligible stiffening was observed for the smallest particles (30 nm) due to reduced long-range intercalation and molecular confinement, as well as ineffective stress transfer from matrix to filler. At low strain ({le}100%), an increase in filler particle size was associated with an increase in the rate of stress relaxation, tensile hysteresis, and permanent set. At high strain (1200%), two coexisting relaxation processes were observed. The rate of the slower (long-term) relaxation process, which is believed to primarily involve the hard segment rich structures, decreased on addition of particles with an average diameter of 200 nm or less. At high strain the tensile hysteresis was less sensitive to particle size, however the addition of particles with an average size of 200 nm or more caused a significant increase in permanent set. This was attributed to slippage of temporary bonds at the polymer-filler interface, and to the formation of voids at the sites of unaligned tactoids. Relative to the host TPU, the addition of particles with an average size of 30 nm caused a reduction in permanent set. This is a significant result because the addition of fillers to elastomers has long been associated with an increase in hysteresis and permanent set. At high strain, well dispersed and aligned layered silicates with relatively small interparticle distances and favourable surface interactions are capable of imparting a resistance to molecular slippage throughout the TPU matrix.

  10. Inorganic fullerene-like IF-WS{sub 2}/PVB nanocomposites of improved thermo-mechanical and tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Simić, Danica [Military Technical Institute, Ratka Resanovića 1, 11132 Belgrade (Serbia); Stojanović, Dušica B., E-mail: duca@tmf.bg.ac.rs [University of Belgrade, Faculty of Technology and Metallurgy, 11120 Belgrade (Serbia); Kojović, Aleksandar [University of Belgrade, Faculty of Technology and Metallurgy, 11120 Belgrade (Serbia); Dimić, Mirjana; Totovski, Ljubica [Military Technical Institute, Ratka Resanovića 1, 11132 Belgrade (Serbia); Uskoković, Petar S.; Aleksić, Radoslav [University of Belgrade, Faculty of Technology and Metallurgy, 11120 Belgrade (Serbia)

    2016-12-01

    The subject of this research is to explore the possibility of preparation of nanocomposite material of improved thermo-mechanical and tribological properties, using inorganic fullerene-like tungsten disulfide nanostructures (IF-WS{sub 2}) as reinforcement in poly(vinyl butyral) (PVB). This paper also reports investigation of the effects of using different solvents in preparation of PVB/IF-WS{sub 2} nanocomposite on the thermo-mechanical behavior of the resulting material. PVB was dissolved in ethanol, isopropanol, n-butanol and ethyl acetate. IF-WS{sub 2} nanoparticles were added to these PVB solutions and dispersed by different deagglomeration techniques. Samples were dried and thin films were obtained. Their microstructure and the quality of IF-WS{sub 2} dispersion and deagglomeration in PVB matrix was analyzed by scanning electron microscope (SEM). The reinforcing effect of IF-WS{sub 2} is examined by determining hardness, reduced modulus of elasticity and coefficient of friction, by nanoindentation and nanoscratch test, in terms of the different solvents applied in preparation of the samples, mode of stirring and different contents of IF-WS{sub 2}. The glass transition temperature (T{sub g}) was determined for the prepared samples using differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMA). Storage modulus and mechanical loss factor were observed in a defined temperature range using DMA. - Highlights: • Poly(vinyl butyral)/tungsten disulfide nanocomposites were examined. • Different solvents and deagglomeration methods affect the properties of composites. • Nanoindentation and scratch test, PSD, SEM, DSC and DMTA were analyzed. • Thermo-mechanical and antifriction properties of composite material are improved.

  11. The Influence of Irradiation and Accelerated Aging on the Mechanical and Tribological Properties of the Graphene Oxide/Ultra-High-Molecular-Weight Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guodong Huang

    2016-01-01

    Full Text Available Graphene oxide/ultra-high-molecular-weight polyethylene (GO/UHMWPE nanocomposite is a potential and promising candidate for artificial joint applications. However, after irradiation and accelerated aging, the mechanical and tribological behaviors of the nanocomposites are still unclear and require further investigation. GO/UHMWPE nanocomposites were successfully fabricated using ultrasonication dispersion, ball-milling, and hot-pressing process. Then, the nanocomposites were irradiated by gamma ray at doses of 100 kGy. Finally, GO/UHMWPE nanocomposites underwent accelerated aging at 80°C for 21 days in air. The mechanical and tribological properties of GO/UHMWPE nanocomposites have been evaluated after irradiation and accelerated aging. The results indicated that the incorporation of GO could enhance the mechanical, wear, and antiscratch properties of UHMWPE. After irradiation, these properties could be further enhanced, compared to unirradiated ones. After accelerated aging, however, these properties have been significantly reduced when compared to unirradiated ones. Moreover, GO and irradiation can synergistically enhance these properties.

  12. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties.

    Science.gov (United States)

    De Silva, R T; Mantilaka, M M M G P G; Ratnayake, S P; Amaratunga, G A J; de Silva, K M Nalin

    2017-02-10

    Chitosan nanocomposite thin films were fabricated by incorporating MgO nanoparticles to significantly improve its physical properties for potential packaging applications. A novel in-situ method was developed to synthesise spherical shaped MgO nanoparticles by heat-treating magnesium carbonate/poly(methyl methacrylate) (PMMA) composite precursor. Optimum mechanical properties of chitosan composites were yielded at 5 (w/w%) of MgO concentration, where tensile stress and elastic modulus significantly improved by 86% and 38%, respectively, compared to those of pure chitosan films. These improvements are due to the interaction of hydroxyl and amine groups of chitosan with MgO as confirmed by FTIR spectroscopy. Fracture surface morphology indicated the interplay between MgO dispersion and aggregation on the mechanical properties at different MgO concentrations. Furthermore, the chitosan/MgO nanocomposites displayed remarkable thermal stability, flame retardant properties (satisfied V0 rating according to the UL-94 standards), UV shielding and moisture barrier properties, which could certainly add value to the packaging material.

  13. Natural Fiber-Reinforced Hybrid Polymer Nanocomposites: Effect of Fiber Mixing and Nanoclay on Physical, Mechanical, and Biodegradable Properties

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-01-01

    Full Text Available Combining two kinds of fibers is a potential way to improve the essential properties of natural fiber-reinforced hybrid polymer composites. Biocomposites produced from natural resources are experiencing an increase in interest due to their high demand in the market for manufacturing, in addition to environmental and sustainability issues. In this study, natural fiber-reinforced hybrid polymer nanocomposites were prepared from coir fiber, wood fiber, polypropylene, and montmorillonite nanoclay using a hot press technique. The effects of fiber mixing and montmorillonite on their physico-mechanical and biodegradable properties were subsequently investigated. Before being used, both the wood and the coir fibers were alkali-treated to reduce their hydrophilicity. The mechanical properties of the fabricated composites were measured using a universal tensile testing machine and found to be enhanced after fiber mixing and nanoclay incorporation. Fourier transform infrared spectra indicated that the characteristic peaks of the composites shifted after fiber mixing. A new peak around 470 cm-1 was observed in the case of the nanocomposites, which confirmed the interaction between the fiber, polymer, and montmorillonite (MMT. Scanning electron microscopic analysis revealed that MMT strongly improved the adhesion and compatibility between the fiber and polymer matrix. The combining of fibers improved the biodegradability and water absorption properties, while MMT addition had the reverse effect on the same properties of the composites.

  14. Hydrogenated polyisoprene-silica nanoparticles and their applications for nanocomposites with enhanced mechanical properties and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Kongsinlark, Anong [Faculty of Science, Chulalongkorn University, Program in Petrochemistry and Polymer Science (Thailand); Rempel, Garry L., E-mail: grempel@uwaterloo.ca [University of Waterloo, Department of Chemical Engineering (Canada); Prasassarakich, Pattarapan, E-mail: ppattara@chula.ac.th [Faculty of Science, Chulalongkorn University, Department of Chemical Technology (Thailand)

    2013-05-15

    Hydrogenated polyisoprene (HPIP)-SiO{sub 2} nanocomposites were synthesized via differential microemulsiion polymerization followed by diimide hydrogenation. First, the isoprene monomer was polymerized on the silane treated nanosilica by differential microemulsion polymerization to obtain polyisoprene (PIP)-SiO{sub 2} nanoparticles with a particle size of 43 nm. PIP-SiO{sub 2} latex was subsequently hydrogenated at the carbon-carbon double bonds by diimide reduction in the presence of hydrazine and hydrogen peroxide with boric acid as promotor to provide HPIP-SiO{sub 2} nanocomposites. Core-shell morphology consisting of silica as the nano-core encapsulated by HPIP as the nano-shell was formed. The highest hydrogenation degree of 98 % was achieved at a ratio of hydrogen peroxide to hydrazine of 1.5:1. The nanosized HPIP-SiO{sub 2} at 98 % hydrogenation showed a maximum degradation temperature of 521 Degree-Sign C resulting in excellent thermal stability, compared with unfilled PIP (387 Degree-Sign C). A new nanocomposite of HPIP-SiO{sub 2} could be used as a novel nanofiller in natural rubber. Consequently, HPIP-SiO{sub 2}/NR composites had improved mechanical properties and exhibited a good retention of tensile strength after thermal aging and good resistance toward ozone exposure.

  15. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate/Layered Double Hydroxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yen Leng Pak

    2013-01-01

    Full Text Available Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate/layered double hydroxide (PHB/PBAT/LDH were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was increased from 8.77 to 24.94 Å after the modification. Intercalated nanocomposites were formed due to the presence of diffraction peak in XRD diffractograms. The infrared spectrum of stearate-Zn3Al LDH exhibited the existence of stearate anions in the synthesized Zn3Al LDH. Mechanical properties with 2 wt% stearate-Zn3Al LDH loading nanocomposites showed 56 wt% improvements in elongation at break compared to those of the blend.

  16. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (<100 nm) and zinc oxide (ZnO) (<50 and <100 nm)] through solvent casting method. Incorporation of Ag-Cu alloy into the PLA/PEG matrix increased the glass transition temperature (Tg) significantly. The crystallinity of the nanocomposites (NCs) was significantly influenced by NP incorporation as evidenced from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The PLA nanocomposite reinforced with NPs exhibited much higher tensile strength than that of PLA/PEG blend. Melt rheology of NCs exhibited a shear-thinning behavior. The mechanical property drastically reduced with a loading of NPs, which is associated with degradation of PLA. SEM micrographs exhibited that both Ag-Cu alloy and ZnO NPs were dispersed well in the PLA film matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using different diisocyanates: relation between mechanical and thermal properties

    Science.gov (United States)

    Bocchio, Javier; Wittemberg, Víctor; Quagliano, Javier

    2017-05-01

    Polyurethanes (PUs) and polyurethane nanocomposites (PUNC) with bentonite nanoclay were prepared by the reaction of toluene-2,4-diisocyanate (TDI), dimeryl diisocyanate (DDI) and isophorone diisocyanate (IPDI) with two different polymers: hydroxyl terminated polybutadiene (HTPB) and polytetramethylene ether glycol (PTMEG), and the chains were further extended with 1,4-butanediol (1,4-BDO) to get final PUs and PUNCs. PUNCs were prepared by dispersing within the polymers a commercial and a synthesized bentonite nanoclay by mechanical dispersion. Mechanical properties showed that the addition of a small amount of nanoclay resulted in a significant increase in tensile strength and reduction in elongation at break (maximum increase of 2.3 and 5-times reduction, respectively, for a HTPB-TDI-BDO PUNCs). Thermal analysis revealed that the addition of nanoclays improved the thermal stability and increased decomposition temperature of PUNCs. We concluded that there is a positive correlation between mechanical and thermal properties as a result of nanoclay addition.

  18. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    Science.gov (United States)

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.

    Science.gov (United States)

    Lu, Yuan; Cueva, Mario Calderón; Lara-Curzio, Edgar; Ozcan, Soydan

    2015-10-20

    One of the main factors responsible for the mechanical and physical properties of nanocomposites is the effectiveness of the interfacial region to transfer loads and mechanical vibrations between the nano-reinforcements and the matrix. Surface functionalization has been the preferred approach to engineer the interfaces in polymer nanocomposites in order to maximize their potential in structural and functional applications. In this study, amine-functionalized cellulose nanofibrils (mCNF-G1) were synthesized via silylation of the hydroxyl groups on the CNF surface using 3-aminopropyltrimethoxysilane (APTMS). To further increase the amine density (mCNF-G2), dendritic polyamidoamine (PAMAM) was grafted onto mCNF-G1 by the Michael addition of methacrylate onto mCNF-G1, followed by the transamidation of the ester groups of methacrylate using ethylenediamine. Compared to native CNF-reinforced, poly(l-lactide) (PLLA) nanocomposites, amine-functionalized CNF exhibited significantly improved dispersion and interfacial properties within the PLLA matrix due to the grafting of PLLA chains via aminolysis. It is also a more effective nucleating agent, with 15% mCNF-G1 leading to a crystallinity of 32.5%, compared to 0.1 and 8.7% for neat PLLA and native CNF-reinforced composites. We have demonstrated that APTMS-functionalized CNF (mCNF-G1) significantly improved the tensile strength compared to native CNF, with 10% mCNF-G1 being the most effective (i.e., >100% increase in tensile strength). However, we also found that excessive amines on the CNF surface (i.e., mCNF-G2) resulted in decreased tensile strength and modulus due to PLLA degradation via aminolysis. These results demonstrate the potential of optimized amine-functionalized CNF for future renewable material applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mechanical and Thermal Properties of Poly(urethane urea) Nanocomposites Prepared with Diamine-Modified Laponite

    OpenAIRE

    2008-01-01

    Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading ...

  1. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    Science.gov (United States)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  2. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadnezhad, Gholamhossein, E-mail: mohammadnezhad@cc.iut.ac.ir; Dinari, Mohammad, E-mail: dinari@cc.iut.ac.ir; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-15

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  3. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

    Science.gov (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A

    2014-10-08

    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  4. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    Science.gov (United States)

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions.

  5. Structure–property relationship of specialty elastomer–clay nanocomposites

    Indian Academy of Sciences (India)

    Anirban Ganguly; Madhuchhanda Maiti; Anil K Bhowmick

    2008-06-01

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray diffraction and physico-mechanical properties. Due to polarity match, hydrophilic unmodified montmorillonite clay showed enhanced properties in resulting fluoroelastomer nanocomposites, while hydrophobic organo-clay showed best results in SEBS nanocomposites.

  6. Preparation, characterization and mechanical properties of k-Carrageenan/SiO$_2$ nanocomposite films for antimicrobial food packaging

    Indian Academy of Sciences (India)

    R VENKATESAN; N RAJESWARI; T THENDRAL THIYAGU

    2017-06-01

    Kappa-Carrageenan (KCG) films have been formulated as a packaging material. This study has been conducted to investigate the effect of incorporating SiO$_2$ nanoparticles inside the KCG matrix, with the aim of enhancing the mechanical and antimicrobial properties of KCG for reinforcement purposes. Films were prepared by solution casting technique with 1.0, 3.0 and 5.0 wt% of SiO$_2$ nano-filler content taking neat KCG as the reference for the study. Structural characterizations of the prepared nanocomposite films were carried out by Fourier transform infrared, scanning electron microscope (SEM) andtransmission electron microscope (TEM) techniques. SEM and TEM showed homogeneous dispersion of SiO$_2$ nanoparticles in the KCG matrix. The tensile strength increased significantly by introducing the SiO$_2$ nanoparticles into the KCG matrix, in which KCG/SiO$_2$ films have greater tensile strength (53.9 MPa) when compared to the KCG polymer (46.8 MPa). The moisture uptake (MU) of nanocomposites decreased when SiO2 was introduced into the polymer matrix. The barrier property of the prepared KCG-based nanocomposite films decreased oxygen transmission rate with loading of different wt%of SiO$_2$. SiO$_2$ nanoparticle-loaded films produced higher zones of inhibition against Staphylococcus aureus and Escherichia coli strains compared to polymer film. This study was intended to find the applications for KCG films containing SiO$_2$ nanoparticles to enhance the shelf-life of foods in the form of biodegradable wrapper.

  7. Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    NARCIS (Netherlands)

    Xu, Bin; Fu, Yong Qing; Huang, Wei Min; Pei, Yu Tao; Chen, Zhenguo; Hosson, Jeff T.M. De; Kraft, Arno; Reuben, R.L.

    2010-01-01

    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay-polymer i

  8. Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites

    Science.gov (United States)

    Flyagina, Irina S.; Mahdi, E. M.; Titov, Kirill; Tan, Jin-Chong

    2017-08-01

    Mixed-matrix membranes are contemporary nanocomposite materials with many potential applications, from liquid and gas separations to chemical sensors and biomedicine. We report fabrication of a metal-organic framework (MOF)-based nanocomposite, combining polyvinylidene difluoride (PVDF) polymer as the matrix and ZIF-90 nanocrystals of up to 30 wt. % filler content. The focus is to establish the processing—microstructure—mechanical property relationships. We reveal the importance for quantifying salient effects of the filler contents: (i) tensile strength degrades beyond 10 wt. % and (ii) mechanical toughness declines due to membrane embrittlement. These are vital mechanical aspects but widely overlooked in the emergent field of MOF membranes and composites.

  9. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    Science.gov (United States)

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  10. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    Science.gov (United States)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  11. OPTIMIZATION OF PROCESS PARAMETERS FOR ENHANCED MECHANICAL PROPERTIES OF POLYPROPYLENE TERNARY NANOCOMPOSITES

    Directory of Open Access Journals (Sweden)

    Oladipupo Olaosebikan Ogunleye

    2015-02-01

    Full Text Available Preparation of Polypropylene ternary nanocomposites (PPTN was accomplished by blending multiwall carbon nanotube (MWCNT in polypropylene/clay binary system using a melt intercalation method. The effects of MWCNT loadings (A, melting temperature (B and mixing speed (C were investigated and optimized using central composite design. The analysis of the fitted cubic model clearly indicated that A and B were the main factors influencing the tensile properties at a fixed value of C. However, the analysis of variance showed that the interactions between the process parameters, such as; AB, AC, AB2, A2B and ABC, were highly significant on both tensile strength and Young’s modulus enhancement, while no interaction is significant in all models considered for elongation. The established optimal conditions gave 0.17%, 165 °C, and 120 rpm for A, B and C, respectively. These conditions yielded a percentage increase of 57 and 63% for tensile strength and Young’s modulus respectively compared to the virgin Polypropylene used.

  12. Microstructure and Mechanical Properties of Mg/2 wt.%SiCp Nanocomposite Fabricated by ARB Process

    National Research Council Canada - National Science Library

    Lv, Zheng; Ren, Xueping; Wang, Wenjing; Gao, Xiaodan; Li, Wenjie

    2016-01-01

    ...), X-ray diffractometer (XRD), and transmission electron microscope (TEM) were applied. After fourteen ARB cycles, the nanocomposite showed a homogeneous distribution of reinforcements and a significant reduction in average matrix grain size...

  13. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    Science.gov (United States)

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  14. Mechanical and thermal properties and morphological studies of 10 MeV electron beam irradiated LDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.

    2013-02-01

    In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.

  15. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites.

    Science.gov (United States)

    Skorski, Matthew; Esenther, Jake; Ahmed, Zeeshan; Miller, Abigail E; Hartings, Matthew R

    To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1%, 5%, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young's modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures.

  16. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites

    Science.gov (United States)

    Skorski, Matthew; Esenther, Jake; Ahmed, Zeeshan; Miller, Abigail E.

    2016-01-01

    To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1%, 5%, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young’s modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures. PMID:27375367

  17. Structure-Property Relationship of Thermoset Nanocomposites

    NARCIS (Netherlands)

    Faraz, M.I.

    2013-01-01

    In this thesis we report the synthesis, characterization and thermo-mechanical properties of a high-temperature resistant themoset nanocomposite system based on an aero-space-grade Bismaleimide resin. Various processing techniques with various fillers are used. The emphasis is on establishing the re

  18. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.

    Science.gov (United States)

    Dehaghani, Majid Taghian; Ahmadian, Mehdi

    2016-04-01

    Porous nano-composites were successfully prepared on addition of 58S bioactive glass to Co-base alloy with porosities of 37.2-58.8% by the combination of milling, space-holder and powder metallurgy techniques. The results of X-ray diffraction analysis showed that induced strain during milling of the Co-base alloy powder and also isothermal heat treatment during sintering process led to HCP↔FCC phase transformation which affected mechanical properties of the samples during compression test. Field emission scanning electron microscopy images showed that despite the remaining 58S powder in nanometer size in the composite, there were micro-particles due to sintering at high temperature which led to two different apatite morphologies after immersion in simulated body fluid. Calculated elastic modulus and 0.2% proof strength from stress-strain curves of compression tests were in the range of 2.2-8.3GPa and 34-198MPa, respectively. In particular, the mechanical properties of sample with 37.2% were found to be similar to those of human cortical bone. Apatite formation which was identified by scanning electron microscopy (SEM), pH meter and Fourier-transform infrared spectroscopy (FTIR) analysis showed that it could successfully convert bioinert Co-base alloy to bioactive type by adding 58S bioglass nano-particles. SEM images of cell cultured on the porous nano-composite with 37.2% porosity showed that cells properly grew on the surface and inside the micro and macro-pores.

  19. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available Multi-wall carbon nanotubes (MWNTs filled polypropylene (PP nanocomposites were prepared through diluting a PP/MWNT masterbatch in a PP matrix by melt compounding with a twin screw extruder. Polypropylene grafted maleic anhydride (PP-g-MA was used to promote the carbon nanotubes dispersion. The effect of PP-g-MA addition on the rheological, mechanical and morphological properties of the nanocomposites was assessed for different MWNTs loadings. Scanning electron microscopy (SEM has shown that nanotubes are distributed reasonably uniformly. A better dispersion and good adhesion between the nanotubes and the PP matrix is caused by wrapping of PP-g-MA on MWNTs. When PP-g-MA is added, dynamic moduli and viscosity further increases compared to PP/MWNT nanocomposites. The rheological percolation threshold drops significantly. Tensile and flexural moduli and Charpy impact resistance of the nanocomposites also increases by the addition of PP-g-MA. The present study confirms that PP-g-MA is efficient to promote the dispersion of MWNTs in PP matrix and serves as an adhesive to increase their interfacial strength, hence greatly improving the rheological percolation threshold and mechanical properties of PP/MWNT nanocomposites.

  20. Morphology, Mechanical and Thermal Properties of PBT-TiO2 Polymer Nanocomposite

    OpenAIRE

    Metanawin Tanapak; Jamjumrus Anusorn; Metanawin Siripan

    2015-01-01

    This research aims to study the effects of the TiO2 in PBT composite fibers on the thermal properties, mechanical properties and photocatalytic properties of the polymer composite. The results showed that the tensile strength of the TiO2/PBT fibers decreased with increasing in the content of TiO2 in polymer matrix. The content of TiO2 in composite fibers did not affect the thermal properties of the fibers but the %crystalline of the composite fibers were increased with content of TiO2 in the ...

  1. Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties

    Directory of Open Access Journals (Sweden)

    Marcos Nunes dos Santos

    2013-04-01

    Full Text Available In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (% MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.

  2. PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties

    Science.gov (United States)

    Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.

  3. Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites

    Directory of Open Access Journals (Sweden)

    Kornaus Kamil

    2016-06-01

    Full Text Available Previous studies concerning pure tungsten carbide polycrystalline materials revealed that nanolayers of graphite located between WC grains improve its thermal properties. What is more, pressure-induced orientation of graphene nano platelets (GNP in hot pressed silicon nitride-graphene composites results in anisotropy of thermal conductivity. Aim of this study was to investigate if addition of GNP to WC will improve its thermal properties. For this purpose, tungsten carbide with 0.5–6 wt.% of GNP(12-additive underwent hot pressing. The microstructure observations performed by SEM microscopy. The anisotropy was determined via ultrasonic measurements. The following mechanical properties were evaluated: Vickers hardness, bending strength, fracture toughness KIc. The influence of GNP(12 addition on oxidation resistance and thermal conductivity was examined. It was possible to manufacture hot-pressed WC-graphene composites with oriented GNP(12 particles, however, the addition of graphene decreased both thermal and mechanical properties of the material.

  4. Influence of deposition parameters on the structure and mechanical properties of nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y. T.; De Hosson, J. Th. M.

    2006-01-01

    Nanocomposite coatings based on TiC nanoparticles embedded in an amorphous hydrocarbon (a-C:H) matrix are deposited via reactive closed field unbalanced magnetron sputtering, employing Ti targets and acetylene gas as material precursors. The composition of the coatings is varied by changing the acet

  5. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    Science.gov (United States)

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan.

  6. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heidari, Fatemeh [Department of Materials Science and Engineering, School of Engineering, Yasouj University, Yasuj 75918-74934 (Iran, Islamic Republic of); Razavi, Mehdi [BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Brunel Institute for Bioengineering, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Bahrololoom, Mohammad E. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bazargan-Lari, Reza [Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht (Iran, Islamic Republic of); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Kotturi, Hari [Department of Biology, University of Central Oklahoma, Edmond, OK 73034 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe{sub 3}O{sub 4}) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. - Highlights: • Chitosan (CS)/magnetite composite presented the maximum bending strength. • Adding hydroxyapatite and magnetite to the CS enhances its mechanical properties. • Magnetic does not have reverse effect on the cyto-compatibility of samples.

  7. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hou

    2011-04-01

    Full Text Available Partially aligned polyacrylonitrile (PAN-based nanofibers were electrospun from PAN and PAN/single-walled carbon nanotubes (SWNTs in a solution of dimethylformamide (DMF to make the nanofiber composites. The as-spun nanofibers were then hot-stretched in the oven to enhance its orientation and crystallinity. With the introduction of SWNTs and by the hot-stretched process, the mechanical properties will be enhanced correspondingly. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray scattering (XRD, differential scanning calorimetry (DSC, and the tensile test were used to characterize the microstructure and performances of the nanofibers. The orientation and crystallinity of the as-spun and hot-stretched nanofibers confirmed by X-ray have increased. Differential scanning calorimetry showed that the glass transition temperature of PAN increased about 3 °C by an addition of 0.75 wt% SWNTs indicating a strong interfacial interaction between PAN and SWNTs. The tensile strength and the modulus of the nanofibers increased revealing significant load transfer across the nanotube-matrix interface. For PAN nanofibers, the improved fiber alignment, orientation and crystallinity resulted in enhanced mechanical properties, such as the tensile strength and modulus of the nanofibers. It was concluded that the hot-stretched nanofiber and the PAN/SWNTs nanofibers can be used as a potential precursor to produce high-performance nanocomposites.

  8. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    Science.gov (United States)

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  9. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties

    OpenAIRE

    Ehsan Naderi Kalali; Xin Wanga; De-Yi Wang

    2015-01-01

    Functionalized layered double hydroxides (LDHs) based on a multi-modifier system composed of hydroxypropyl-sulfobutyl-beta-cyclodextrin sodium (sCD), dodecylbenzenesulfonate (DBS) and taurine (T) have been designed and fabricated in this paper, aiming at developing high performance fire retardant epoxy nanocomposites. In this multi-modifier system, sCD was utilized to improve the char yield, DBS was used to enlarge the inter-layer distance of LDH and T was used to enhance the interaction betw...

  10. Mechanical properties and microstructural evolution of alumina-zirconia nanocomposites by microwave sintering

    OpenAIRE

    Benavente Martínez, Rut; Salvador Moya, Mª Dolores; Penaranda-Foix, Felipe L.; Pallone, Eliria; Borrell Tomás, María Amparo

    2014-01-01

    Microwave sintering has emerged in recent years as a novel method for sintering a variety of materials that have shown significant advantages against conventional sintering procedures. This work involved an investigation of microwave hybrid fast firing of alumina–zirconia nanocomposites using commercial alumina powder and monoclinic nanometric zirconia. The suspensions were prepared separately in order to obtain 5, 10 and 15 vol% of ZrO2 in the alumina matrix. The samples were sinter...

  11. Thermal and mechanical properties of reduced graphene oxide/polyurethane nanocomposite.

    Science.gov (United States)

    Pokharel, Pashupati; Lee, Dai Soo

    2014-08-01

    Reduced graphene oxide (RGO) based polyurethane (PU) nanocomposites have been successfully prepared without using solvent by in-situ polymerization. RGO was derived from microwave (MW) irradiation of graphite oxide (GO) powder prepared by a modified Hummer's method. A minimum amount of poly(tetramethylene glycol) (PTMEG) was added during the dispersion of RGO in a solvent to stabilize the graphene sheets and to prevent RGO from the restacking after the removal of the solvent. After the reaction of RGO with 4,4'-diphenylmethane diisocyanate (MDI), we obtained the concentrate of RGO in MDI with a minimum amount of PTMEG. Our method facilitated the fine dispersion of RGO in PU elastomers and improved the interfacial strength between RGO and PU. With the incorporation of 2.0 wt% of RGO, the tensile strength and Young's modulus of the PU nanocomposites increased by 30% and 50%, respectively without sacrificing the elongation at break. It was found that the crystalline portion of hard segments of the PU was lowered by the RGO in the nanocomposites.

  12. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  13. Morphology, Mechanical and Thermal Properties of PBT-TiO2 Polymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Metanawin Tanapak

    2015-01-01

    Full Text Available This research aims to study the effects of the TiO2 in PBT composite fibers on the thermal properties, mechanical properties and photocatalytic properties of the polymer composite. The results showed that the tensile strength of the TiO2/PBT fibers decreased with increasing in the content of TiO2 in polymer matrix. The content of TiO2 in composite fibers did not affect the thermal properties of the fibers but the %crystalline of the composite fibers were increased with content of TiO2 in the composite fibers. The SEM images demonstrated that the TiO2 were well dispersed in the composite fibers. Moreover, some aggregation of the TiO2 in the composite fibers was found at high content of TiO2. The photocatalytic characteristic of the composite fiber was studied thought out self-cleaning properties. The presents of the content of TiO2 in the PBT fibers significantly showed the improving of the self-cleaning properties under UV-A radiation. The TiO2/PBT fibers in the presents of TiO2 10wt% showed the best results of self-cleaning under 168 hours of UV radiation.

  14. Mechanical Properties and Morphology of the Clay/Waterborne Polyurethane Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongcheng; WANG Junwei; ZHAO Yuhua; KANG maoqing; WANG Xinkui

    2006-01-01

    Stable clay/waterborne polyurethane nanocompostie dispersions were synthesized by sulfonated poly ( butylene adipate ) diol , 4,4-diphenylmethane diisocyanate , dimethyl propionic acid, 1,4-butanediol, triethyl anine and clay-water dispersion through a route named prepolymer acetone mixing progress. The reinforced mechanical properties and thermal resistance of films casting from it were examined by dynamic mechanical analyses (DMA), thermogravimetric analyses (TGA) and tensile tests. Furthermore, the morphology of these nanocompostie films and dispersions were observed by transmission electron microscopy (TEM), scanning electron microscopy( SEM), wide-angle X-ray diffraction analyses( WXRD ). The experimental results reveal that the clay could be predominantly dispersed in the pristine polymer forming nanocomposties, and evidendy enhanced the tensile properties and modulus of it. Additionally, the best-reinforced effect could occur when the clay content was near 1 wt% .

  15. An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites

    OpenAIRE

    Silvestre, J.; Silvestre, N; de Brito, J.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMCs have been greatly improved in the last decade. CMCs are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxid...

  16. Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties.

    Science.gov (United States)

    Jose, Josmin P; Thomas, Sabu

    2014-07-28

    Herein, investigation on XLPE-Al2O3-clay ternary hybrid systems of Al2O3 and clay in 1 : 1 and 2 : 1 ratios, binary systems of XLPE-clay and XLPE-Al2O3 nanocomposites, with special reference to the hybrid filler effect and the superior microstructural development in ternary systems is conducted. The ternary hybrid composite of Al2O3 and clay in a 1 : 1 ratio exhibits the highest tensile strength (100% increase) and Young's modulus (208% increase), followed by the Al2O3 : clay = 2 : 1 system. The interaction between alumina and clay altered the composite morphology, filler dispersion and gave rise to a unique filler architecture leading to a substantial boost up in mechanics compared to predictions based on the idealized filler morphology. Experimentally observed much higher mechanics compared to theoretical predictions confirmed that the dramatic improvement in mechanics is the outcome of the positive hybrid effect and a second factor of synergism, i.e. filler-filler networks. Morphological control of the hybrid filler network is realized by adjusting the ratio between different fillers. For the Al2O3 : clay = 2 : 1 system, the microstructural limitation of dispersion due to the steric effect of alumina clusters shifts the properties to the negative hybrid effect region.

  17. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2016-08-01

    Full Text Available By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties.

  18. Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal.

    Science.gov (United States)

    Lin, Song; Huang, Jin; Chang, Peter R; Wei, Siwen; Xu, Yixiang; Zhang, Qiaoxin

    2013-06-05

    New nanocomposites consisting of a castor oil-based polyurethane matrix filled with acetylated cellulose nanocrystals (ACNs) were developed. The ACN exhibited improved dispersion in tetrahydrofuran as a blending medium, and reduced polarity as compared with unmodified cellulose nanocrystals, resulting in a high loading level of 25 wt% in the nanocomposite. As the ACN loading-level increased from 0% to 25%, the tensile strength and Young's modulus of the nanocomposites increased from 2.79 MPa to 10.41 MPa and from 0.98 MPa to 42.61 MPa, respectively. When the ACN loading-level was 10 wt%, the breaking elongation of the nanocomposites reached the maximum value of more than twice that of the polyurethane. The enhanced mechanical performance was primarily attributed to the formation of a three-dimensional ACN network and strong interfacial interactions between filler and matrix. This work produced new polyurethane-based nanocomposites containing modified cellulose nanocrystal with a high biomass content. Its high performance could contribute to potential applications. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Science.gov (United States)

    Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn

    2013-01-01

    The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457

  20. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kevin Magniez

    2013-08-01

    Full Text Available The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

  1. Microstructure and mechanical properties of ZrO2 (Y2O3)-Al2O3 nanocomposites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Shufeng Li; Hiroshi Izui; Michiharu Okano; Weihua Zhang; Taku Watanabe

    2012-01-01

    Zirconia (yttria)-alumina ceramic nanocomposites were fabricated from different powders by spark plasma sintering (SPS).One powder was a commercially available nanocomposite powder TZP-3Y2OA,consisting of 3 mol% yttria-stabilized zirconia (3-YSZ) reinforced with 20 wt% alumina,and the other,used as a comparison,was a conventional mechanically mixed powder 3YSZ-20A,a blend made of 3 mol% yttria-stabilized zirconia powder ZrO2 (3Y) and 20 wt% α-alumina powder.The effect of the sintering temperature on the densification,the sintering behavior,the mechanical properties and the microstructure of the composites was investigated.The results showed that the density increased with increasing sintering temperature,and thus,the mechanical properties were strengthened because of the increased densification.The nanocomposite powder TZP-3Y20A was easily sintered,and good mechanical properties were achieved as compared with the powder from the conventional mechanically mixed method,the maximum flexural strength and fracture toughness of which were 967 MPa and 5.27 MPa m1/2,respectively.

  2. Surface, thermal, and mechanical properties of composites and nanocomposites of polyurethane/PTFE nanoparticles

    Science.gov (United States)

    Anbinder, P. S.; Peruzzo, P. J.; de Siervo, A.; Amalvy, J. I.

    2014-08-01

    Films from blends of polyurethane and nano-polytetrafluoroethylene aqueous dispersions (PU/nanoPTFE) were prepared, and the effect of the addition of different amounts of PTFE nanoparticles (50 nm) was studied. The changes in the superficial properties of the films were studied by means of XPS, ATR/FTIR, and contact angle measurements. SEM and TEM results are also included. The contact angle values confirm the surface hydrophobicity of composite films. Even though nanoparticles are present in the bulk, higher concentrations of particles appear at the surface in samples with lower nanoPTFE content (up to 10 wt%), as revealed by XPS. Higher amounts of nanoPTFE particles cause aggregation. The mechanical and thermal properties of composites are also discussed.

  3. Mechanical and rheological properties of nanocomposites of polyamide 6 with national organoclay; Propriedades mecanicas e reologicas de nanocompositos de poliamida 6 com argila organofilica nacional

    Energy Technology Data Exchange (ETDEWEB)

    Paz, Rene Anisio da; Leite, Amanda Melissa Damiao; Araujo, Edcleide Maria; Melo, Tomas Jeferson Alves de, E-mail: rene@cct.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Pessan, Luiz Antonio; Passador, Fabio Roberto [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2013-07-01

    Nanocomposites of polyamide 6 with organoclay were prepared by melt intercalation and their rheological and mechanical properties were studied. The clay was treated with the quaternary ammonium salt (Cetremide) and characterized by Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed the incorporation of salt in the clay and its organophilization. A master was prepared with PA6/clay (1:1) by weight and this was added to the pure polyamide 6 to reach the nominal proportion of 3% of clay, using a co-rotational twin screw extruder. The samples were molded by injection and characterized by: capillary rheometry, XRD, TEM and mechanical testing (tensile and impact). The results of capillary rheometry showed that the presence of organoclay in the PA6 increased the viscosity of the systems. With XRD and TEM, it was verified that all systems presented predominantly exfoliated structure. The tensile properties of the nanocomposites were better than those of pure polyamide 6. (author)

  4. The optical and mechanical properties of PVA-Ag nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, A.G.; Attia, W.; Abd El-Kader, K.M., E-mail: kamalmarei@yahoo.com

    2014-03-25

    Highlights: • We prepared PVA -Ag composite films which used in different filed of applications. • The XRD results showed Ag nanoparticles entering the polymer PVA matrix. • Optical band gap as a result of doping has been found to be reduced significantly. • Young's modulus increases while the strain decreases due to increasing Ag content. -- Abstract: Poly (vinyl alcohol) (PVA) loaded silver (Ag) nanoparticles were successfully prepared by chemical reduction methods. The synthesized nanoparticles are characterized using UV–visible spectrophotometer, X-ray diffractometer (XRD) and Transmission electron microscope (TEM). The contents of the inorganic phase in the nanocomposites were determined by using atomic absorption spectroscopy (AA) for silver, and were found to be 0.2, 0.4, 0.8 and 1.5 wt.%. Optical absorption studies in the wavelength range 190–900 nm showed additional peak at 420 nm for differently doped films, in addition to the peak at 200 nm for undoped PVA film. There is observable change in the absorbed intensity at 420 nm with filling levels. This is due to the link between the Ag metal ion and the polymer OH- groups. The indirect energy gaps were calculated. It was found that Young’s modulus and the strength at the break increase, while the energy gaps and the strain decrease as the concentration of Ag content is increased. The XRD results showed that the Ag nanoparticles entering the polymer PVA matrix and the crystallinity was strongly influenced by the amount of Ag nanoparticles. The electron diffraction image for the highest concentration sample shows the crystalline nature of the silver metal nanoparticles. TEM of the nanocomposite films revealed the presence of Ag particles with average diameter of 12 nm.

  5. Probing the role of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) -coated multiwalled carbon nanotubes in the thermal and mechanical properties of polycarbonate nanocomposites

    KAUST Repository

    Zhou, Jian

    2014-03-05

    The role played by multiwalled carbon nanotubes (MWCNTs) coated with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) in the thermal and mechanical properties of polycarbonate (PC) nanocomposites was analyzed. We used differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) to demonstrate that the glass transition temperature of polycarbonate nanocomposites decreased whereas the storage modulus of the samples increased by including PEDOT/PSS-coated MWCNTs. These results indicated that PEDOT/PSS acts as an antiplasticizer. We attributed the enhancement of the storage modulus to the strong hydrogen bonding between PSS and the PC matrix and the reduction of the free volume in the PC matrix due to the shrinkage of PEDOT/PSS upon heating. We also investigated changes in the thermal conductivity and thermal degradation behavior of the nanocomposites. The results indicated that PEDOT/PSS did not play a significant role in improving the thermal conductivity and thermal stability of PC nanocomposites. The relative improvements in the conductivity and thermal stability of the samples that contained PEDOT/PSS were attributed to the better dispersion of the MWCNTs in the PC matrix. © 2014 American Chemical Society.

  6. Ethylene-Octene Copolymers/Organoclay Nanocomposites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Alice Tesarikova

    2016-01-01

    Full Text Available Two ethylene-octene copolymers with 17 and 45 wt.% of octene (EOC-17 and EOC-45 were compared in nanocomposites with Cloisite 93A. EOC-45 nanocomposites have a higher elongation at break. Dynamical mechanical analysis (DMA showed a decrease of tan⁡δ with frequency for EOC-17 nanocomposites, but decrease is followed by an increase for EOC-45 nanocomposites; DMA showed also increased modulus for all nanocomposites compared to pure copolymers over a wide temperature range. Barrier properties were improved about 100% by addition of organoclay; they were better for EOC-17 nanocomposites due to higher crystallinity. X-ray diffraction (XRD together with transmission electron microscopy (TEM showed some intercalation for EOC-17 but much better dispersion for EOC-45 nanocomposites. Differential scanning calorimetry (DSC showed increased crystallization temperature Tc for EOC-17 nanocomposite (aggregates acted as nucleation agents but decrease Tc for EOC-45 nanocomposite together with greatly influenced melting peak. Accelerated UV aging showed smaller C=O peak for EOC-45 nanocomposites.

  7. Effect of milling parameters on sinterability, mechanical and electrical properties of Cu-4 wt.% ZrO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohammed A., E-mail: mtahanrc@gmail.com [Solid-State Physics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt); Nassar, Amira H. [Solid-State Physics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt); Zawrah, M.F. [Ceramics Department, National Research Centre, El-Buhooth St., 12622, Dokki, Cairo (Egypt)

    2016-09-15

    Mechanical alloying was used to produce Cu matrix nanocomposite reinforced by 4 wt.% ZrO{sub 2} nanoparticles with different milling time up to 16 h and ball-to-powder ratios (BPRs) up to 40:1. The milled nanocomposite powders were investigated by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). To study the sinterability, the milled powders were cold pressed and sintered at 800 °C for 1 h in argon atmosphere. In order to investigate the relative density and microstructures of the sintered nanocomposites, scanning electron microscopy (SEM) as well as energy dispersive spectrometer (EDS) were employed. The electrical and mechanical properties of the sintered nanocomposites were also examined. The results revealed that a uniform distribution of ZrO{sub 2} reinforcement in Cu matrix was successfully obtained and the agglomeration, crystal and particle sizes were decreased after either milling times and/or BPRs. The results also pointed out that the relative density, microhardness, compressive strength and electrical conductivity of the sintered nanocomposite samples were increased with the increasing of milling time and/or BPRs while apparent porosity was decreased. The maximum values of microhardness, compressive strength and electrical conductivity were 872 MPa, 304 MPa and 45.9% IACS, respectively for the milled sample for 16 h and BRP 40:1. - Highlights: • Cu-4 wt.% ZrO{sub 2} nanoparticles with different parameter by mechanical alloying. • The increased milling times and/or BPRs led to a decrease in the particle size. • Microhardness is increased with increasing ball-to-powder weight ratios. • Compressive strength is increased with increasing milling time. • Electrical conductivity of the samples was increasing with increase milling time.

  8. Mechanical and Thermal Characterization of Silica Nanocomposites

    Science.gov (United States)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  9. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, M. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Arias-Duran, A. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Ramos, J.A.; Mondragon, I. [Dep. Ingenieria Quimica y M. Ambiente. Esc. Politecnica. UPV/EHU, Pza. Europa 1, Donostia-San Sebastian 20018 (Spain); Candal, R. [INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Escuela de Ciencia y Tecnologia-UNSAM, San Martin, Prov. De Buenos Aires (Argentina); Goyanes, S. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Dep. Materiales, Comision Nacional de Energia Atomica (CNEA-CAC), Avda Gral Paz 1499, B1650KNA San Martin (Argentina)

    2012-08-15

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4 Multiplication-Sign 10{sup -5} Sm{sup -1}. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  10. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.

    Science.gov (United States)

    De France, Kevin J; Chan, Katelyn J W; Cranston, Emily D; Hoare, Todd

    2016-02-08

    While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs into hydrazone cross-linked POEGMA hydrogels, macroscopic properties including gelation rate, swelling kinetics, mechanical properties, and hydrogel stability can be readily tailored. Strong adsorption of aldehyde- and hydrazide-modified POEGMA precursor polymers onto the surface of CNCs promotes uniform dispersion of CNCs within the hydrogel, imparts physical cross-links throughout the network, and significantly improves mechanical strength overall, as demonstrated by quartz crystal microbalance gravimetry and rheometry. When POEGMA hydrogels containing mixtures of long and short ethylene oxide side chain precursor polymers were prepared, transmission electron microscopy reveals that phase segregation occurs with CNCs hypothesized to preferentially locate within the stronger adsorbing short side chain polymer domains. Incorporating as little as 5 wt % CNCs results in dramatic enhancements in mechanical properties (up to 35-fold increases in storage modulus) coupled with faster gelation rates, decreased swelling ratios, and increased stability versus hydrolysis. Furthermore, cell viability can be maintained within 3D culture using these hydrogels independent of the CNC content. These properties collectively make POEGMA-CNC nanocomposite hydrogels of potential interest for various biomedical applications including tissue engineering scaffolds for stiffer tissues or platforms for cell growth.

  11. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  12. Microstructure and Mechanical Properties of CNTs/A356 Nanocomposites Fabricated by High-Intensity Ultrasonic Processing

    Science.gov (United States)

    Yan, Hong; Huang, Zhi-Xiang; Qiu, Hong-Xu

    2017-02-01

    Carbon nanotube (CNT)-reinforced A356 alloy nanocomposites were successfully fabricated by introducing a method of CNT predispersion and high-intensity ultrasonic treatment. The scanning electron microscope and energy-dispersive spectrometer results showed that high-intensity ultrasonic treatment was able to disperse the CNTs into the melt. When the ultrasonic power was less than 2.1 kW, the microhardness and tensile properties (ultimate tensile strength (UTS), yield strength (YS), and elongation) of the nanocomposites improved as the ultrasonic power increased. Further, the microhardness, UTS, and YS improved as the CNT content increased while elongation decreased. The microhardness, UTS, and YS of the 0.8 wt pct CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing at an ultrasonic power of 2.1 kW were increased, respectively, by 27.8, 17, and 29.2 pct compared to the A356 alloy without CNT addition, and the ductility remained. The fracture analysis confirmed that CNTs were homogeneously distributed in the matrix, and strong interfacial bonding formed between CNTs and the matrix. Also, transmission electron microscope results confirmed that CNTs were stale embedded in the matrix and the formation of brittle Al4C3 was suppressed.

  13. Mechanical, barrier and antimicrobial properties of biodegradable poly(e-caprolactone) nanocomposites

    CSIR Research Space (South Africa)

    Makhado, E

    2015-05-01

    Full Text Available platelets with strong antimicrobial properties and incorporated them into a biodegradable poly(e-caprolactone) (PCL) matrix using the melt-blending technique. Structural analysis of the composites using X-ray diffraction and transmission electron microscopy...

  14. An insight into the mechanism of charge transfer properties of hybrid organic (MEH-PPV): Inorganic (TiO2) nanocomposites

    Science.gov (United States)

    Mittal, Tanu; Tiwari, Sangeeta; Mehta, Aarti; Sharma, Shailesh N.

    2016-04-01

    Now a days, inorganic nanoparticles are gaining importance and are potential candidate in different organic electronic device application like (LEDs, PVs) due to their novel properties and confinement in Nano-dimensions. cm 2] In the present work, we have compared the properties of titanium di oxide (TiO2) nanoparticles (NPs) synthesized by using two different chemical routes aqueous and ethanol respectively. These synthesized TiO2 nanoparticles have been characterized by X-ray diffraction spectroscopy (XRD) for phase confirmation. It was observed that synthesized nanoparticles are in anatase phase for both preparation routes. Morphological information was collected by scanning electron microscopy (SEM) which confirms that particles are almost spherical in shape and distributed uniformly which is further ensured by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was also used for further confirmation of size distribution of as-synthesized nanoparticles. Optical properties were also investigated by photoluminescence and UV-Vis spectroscopy and calculated bandgap was found to be in the range of 3.3-3.5eV for TiO2 (aq/eth) nanoparticles. The increase in bandgap values with respect to bulk (3.2 eV) confirms that as- synthesized nanoparticles are confined in nanodimensions. As synthesized nanoparticles were interacted with MEHPPV polymer (donor) matrix to make their respective MEHPPV: TiO2 nanocomposites and to confirm the charge transfer mechanism from polymer to nanoparticles. It can be observed from photoluminescence (PL) quenching experiments that continuous quenching obtained for respective nanocomposites confirms better charge transfer from polymer to inorganic TiO2 nanoparticles respectively. Because of, better quenching and simultaneously enhanced charge transfer of respective nanocomposites, ensures that these nanocomposites are greatly applicable for photovoltaics (PVs) especially in Hybrid Solar cells (HSCs).

  15. Effects of Organomontmorillonite Content on Morphology and Mechanical and Thermal Properties of Poly(2,6-dimethyl-1,4-phenylene oxide/Polyamide-66 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kunxiao Yang

    2016-01-01

    Full Text Available The nanocomposites consisting of polymer matrix and nanofiller have attracted great attention because of the improved physical properties. In this paper, organomontmorillonite (OMMT was introduced into poly(2,6-dimethyl-1,4-phenylene oxide grafted maleic anhydride (PPO-g-MA compatibilized poly(2,6-dimethyl-1,4-phenylene oxide/polyamide-66 (PPO/PA66 blends by melt extrusion. The morphology of PPO/PA66 nanocomposites with different amounts of OMMT was investigated using transmission electron microscopy (TEM, wide-angle X-ray diffraction (WAXD, and scanning electron microscopy (SEM. The OMMT platelets exhibited an exfoliated structure in the PA66 matrix and an intercalated structure on the surface of PPO domains at low OMMT loading (2 phr. However, the exfoliated platelets in matrix were found to transform into intercalated stacks by adding 6 phr of OMMT. The mechanical properties and thermal stability were significantly improved with the coexistence of exfoliated and intercalated OMMT at low OMMT loading (2–4 phr. The exfoliated OMMT platelets imposed a confinement effect on the macromolecular chains and thereby increased the storage modulus and complex viscosity of nanocomposites.

  16. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2011-09-01

    In this work, multiwall carbon nanotubes (CNT) were functionalized by acid treatment and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Polystyrene/CNT composites of both the untreated and acid treated carbon nanotubes were prepared by thermal bulk polymerization without any initiator at different loadings of CNT. The tensile tests showed that the addition of 0.5 wt.% of acid treated CNT results in 22% increase in Young\\'s modulus. The DSC measurements showed a decrease in glass transition temperature (Tg) of PS in the composites. The rheological studies at 190 °C showed that the addition of untreated CNT increases the viscoelastic behavior of the PS matrix, while the acid treated CNT acts as plasticizer. Thermogravimetric analysis indicated that the incorporation of CNT into PS enhanced the thermal properties of the matrix polymer. © 2011 Elsevier Ltd. All rights reserved.

  17. Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti Si N coatings

    Science.gov (United States)

    Zhang, C. H.; Lu, X. C.; Wang, H.; Luo, J. B.; Shen, Y. G.; Li, K. Y.

    2006-07-01

    Ti-Si-N coatings with different silicon contents (0-12 at.%) were deposited onto Si(1 0 0) wafer, AISI M42 high speed steel, and stainless steel plate, respectively. These coatings were characterized and analyzed by using a variety of analytical techniques, such as XRD, AES, SEM, XPS, nanoindentation measurements, Rockwell C-type indentation tester, and scratch tester. The results revealed that the hardness was strongly correlated to the amount of silicon addition into a growing TiN film. The maximum hardness of 47.1 GPa was achieved as the Si content was 8.6 at.%. In the mechanical and oxidation resistance measurements, the Ti-Si-N coatings showed three distinct behaviors. (i) The coatings with Si contents of no more than 8.6 at.% performed good adhesion strength quality onto the HSS substrates. (ii) The fracture toughness of the coatings decreased with the increase in Si content. (iii) The Ti-Si-N coating with 8.6 at.% Si showed the excellent oxidation resistance behavior. The cutting performance under using coolant conditions was also evaluated by a conventional drilling machine. The drills with Ti-Si-N coatings performed much better than the drills with TiN coating and the uncoated drills.

  18. Electromagnetic absorption properties of graphene/Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yujin, E-mail: chenyujin@hrbeu.edu.cn [Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, College of Science, Harbin Engineering University, Harbin 150001 (China); Lei, Zhenyu; Wu, Hongyu [Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, College of Science, Harbin Engineering University, Harbin 150001 (China); Zhu, Chunling [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Gao, Peng, E-mail: gaopeng@hrbeu.edu.cn [College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ouyang, Qiuyun; Qi, Li-Hong [Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, College of Science, Harbin Engineering University, Harbin 150001 (China); Qin, Wei, E-mail: qinwei@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-09-01

    Graphical abstract: - Highlights: • Graphene/Fe nanocomposites were prepared by a facile and green method. • 10 nm Fe nanoparticles were uniformly dispersed over the surface of the graphene sheets. • The nanocomposites exhibited strong electromagnetic wave absorption properties. - Abstract: Graphene (G)/Fe nanocomposites with ferromagnetic properties at room temperature were fabricated by a facile and green method. Transmission electron microscope (TEM) and atomic force microscopy (AFM) amylases reveal that the α-Fe nanoparticles with a diameter of only about 10 nm were uniformly dispersed over the surface of the graphene sheets. Compared with other magnetic materials and the graphene, the nanocomposites exhibited significantly enhanced electromagnetic absorption properties. The maximum reflection loss to electromagnetic wave was up to −31.5 dB at a frequency of 14.2 GHz for G/Fe nanocomposites with a thickness of 2.5 mm. Importantly, the addition of the nanocomposites is only about 20 wt.% in the matrix. The enhanced mechanism is discussed and it is related to high surface areas of G/Fe nanocomposites, interfacial polarizations between graphene and iron, synergetic effect and efficient dispersity of magnetic NPs.

  19. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC

    Institute of Scientific and Technical Information of China (English)

    Mudassir Hasan; Moonyong Lee

    2014-01-01

    Thin films of poly vinyl chloride (PVC)/multiwalled carbon nanotubes (MWCNT) and PVC/graphene (GN) nanocomposites were prepared by mixing in the presence of different quantities of nanoparticles. Film casting was performed using tetrahydrofuran as a solvent. The as-prepared PVC/MWCNT and PVC/GN nanocomposites were characterized by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and diffused reflectance spectroscopy. Only the PVC/GN nanocomposite films were evaluated further for detailed mechanical analysis because of the poor dispersion of MWCNTs in PVC. The PVC/GN nanocomposite films were thermo-mechanically more stable than the PVC films. These nanocomposites have potential as a replacement material for PVC and PVC/MWCNT owing to their better dispersion and high stability.

  20. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC

    Directory of Open Access Journals (Sweden)

    Mudassir Hasan

    2014-12-01

    Full Text Available Thin films of poly vinyl chloride (PVC/multiwalled carbon nanotubes (MWCNT and PVC/graphene (GN nanocomposites were prepared by mixing in the presence of different quantities of nanoparticles. Film casting was performed using tetrahydrofuran as a solvent. The as-prepared PVC/MWCNT and PVC/GN nanocomposites were characterized by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and diffused reflectance spectroscopy. Only the PVC/GN nanocomposite films were evaluated further for detailed mechanical analysis because of the poor dispersion of MWCNTs in PVC. The PVC/GN nanocomposite films were thermo-mechanically more stable than the PVC films. These nanocomposites have potential as a replacement material for PVC and PVC/MWCNT owing to their better dispersion and high stability.

  1. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  2. Effect of Acid- and Ultraviolet/Ozonolysis-Treated MWCNTs on the Electrical and Mechanical Properties of Epoxy Nanocomposites as Bipolar Plate Applications

    Directory of Open Access Journals (Sweden)

    Nishata Royan Rajendran Royan

    2013-01-01

    Full Text Available Carbon nanotubes (CNTs have a huge potential as conductive fillers in conductive polymer composites (CPCs, particularly for bipolar plate applications. These composites are prepared using singlefiller and multifiller reinforced multiwalled carbon nanotubes (MWCNTs that have undergone a chemical functionalization process. The electrical conductivity and mechanical properties of these composites are determined and compared between the different functionalization processes. The results show that UV/O3-treated functionalization is capable of introducing carboxylic functional groups on CNTs. Acid-treated CNT composites give low electrical conductivity, compared with UV/O3-treated and As-produced CNTs. The in- and through-plane electrical conductivities and flexural strength of multifiller EP/G/MWCNTs (As-produced and UV/O3-treated achieved the US Department of Energy targets. Acid-treated CNT composites affect the electrical conductivity and mechanical properties of the nanocomposites. These data indicate that the nanocomposites developed in this work may be alternative attributers of bipolar plate requirements.

  3. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  4. Dielectric Properties of Compatibilised EPDM/Silicone rubber Nanocomposites

    Directory of Open Access Journals (Sweden)

    Vijayalekshmi Vijayakumar

    2017-06-01

    Full Text Available EPDM/Silicone rubber nanocomposites are prepared by incorporating various phr of organically modified montmorillonite (OMMT nanoclay onto compatibilised and uncompatibilised EPDM/Silicone rubber blends using two roll mill. Compatibilisation of EPDM and Silicone rubber blend is achieved through insitu grafting of silane onto EPDM during mixing of rubbers. Effect of OMMT content and compatibilisation of blend system on electrical, mechanical and thermal properties of the nanocomposites are investigated. The results obtained for various properties indicate that the compatibilised EPDM/Silicone rubber nanocomposites have improved dielectric, mechanical and thermal properties compared to that of uncompatibilised blend nanocomposites. It is observed that, the addition of OMMT upto 5 phr onto both compatibilised and uncompatibilised blends of EPDM/Silicone offers significant improvement in the above mentioned properties. Increasing content of OMMT onto the blends cause marked enhancement in thermal stability of the nanocomposties. Transmission electron micrographs shows the compatibility between EPDM and silicone rubbers in the blend and the exfoliation of OMMT layers in the matrix phase. The present work reveals that the compatibilised EPDM/ Silicone/ OMMT nanocomposite can be a better candidate for high voltage electrical insulation due to its enhanced dielectric, mechanical and themal characteristics.

  5. Microstructural and mechanical characterization of Al–Zn–Si nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    García-Villarreal, S. [Centro de Investigación en Materiales Avanzados S.C. Monterrey, 66600, Alianza Nte. 202, Parque PIIT, Apodaca, N.L. (Mexico); Chávez-Valdez, A. [Katcon Institute for Innovation and Technology KIIT, 66629, Alianza Sur 200, Apodaca, N.L. (Mexico); Moreno, K.J. [Instituto Tecnológico de Celaya, Apartado Postal 57, 38010 Celaya, Guanajuato (Mexico); Leyva, C.; Aguilar-Martínez, J.A. [Centro de Investigación en Materiales Avanzados S.C. Monterrey, 66600, Alianza Nte. 202, Parque PIIT, Apodaca, N.L. (Mexico); Hurtado, A. [Centro de Investigación en Materiales Avanzados S.C., 31109, Miguel de Cervantes 120, Chih., Chih. (Mexico); Arizmendi-Morquecho, A., E-mail: ana.arizmendi@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C. Monterrey, 66600, Alianza Nte. 202, Parque PIIT, Apodaca, N.L. (Mexico)

    2013-09-15

    In this paper the addition of silicon nanoparticles into Al–Zn alloys to form metallic matrix nanocomposites by mechanical alloying process was investigated. The influence of various process parameters such as milling time and Si concentration in the Al–Zn matrix has an interesting effect on the microstructure and mechanical properties of the synthesized nanocomposites. The microstructural characterization of the nanocomposites was evaluated by transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM–EDXS) and the mechanical properties were measured by nanoindentation and micro-hardness tests. The results showed that during mechanical milling Si is added to the Al–Zn matrix achieving a uniform and homogeneous dispersion. After solidification, it forms small particles of AlZnSi with blocky morphology in interdendritic regions. The nanoindentation profiles showed that the elastic modulus and hardness properties increase with increasing milling time. However, a high concentration of Si (> 1.2 wt.%) results in a saturation of Si in the Al–Zn matrix, which adversely affects the mechanical properties. Thus, it is important to tune the milling time and concentration of Si added to the Al–Zn alloys to control the growth of brittle phases that result in reduction of the mechanical properties of the material. - Highlights: • A novel technique for addition of Si nanocomposites into Al–Zn liquid alloy is reported. • Good dispersion and homogeneity of Si in the Al–Zn matrix are obtained. • Increasing Si content above 1.2 wt.% decreases the mechanical properties of Al–Zn alloy. • The saturation point of Si in 1.2 wt.% differs from Galvalume® composition. • The Al–Zn–1.5Si alloy with addition of nanocomposite shows 5.7 GPa of hardness.

  6. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael

    2009-05-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  7. Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications.

    Science.gov (United States)

    Victor, Sunita Prem; Muthu, Jayabalan

    2014-06-01

    We report the synthesis of mechanically favorable, bioactive, and biodegradable copolymer nanocomposites for potential bone applications. The nanocomposites consist of in situ polymerized biodegradable copolyester with hydroxyapatite (HA). Biodegradable copolyesters comprise carboxy terminated poly(propylene fumarate) (CT-PPF) and poly(trimethylol propane fumarate co mannitol sebacate) (TF-Co-MS). Raman spectral imaging clearly reveals a uniform homogenous distribution of HA in the copolymer matrix. The mechanical studies reveal that improved mechanical properties formed when crosslinked with methyl methacrylate (MMA) when compared to N-vinyl pyrrolidone (NVP). The SEM micrographs of the copolymer nanocomposites reveal a serrated structure reflecting higher mechanical strength, good dispersion, and good interfacial bonding of HA in the polymer matrix. In vitro degradation of the copolymer crosslinked with MMA is relatively more than that of NVP and the degradation decreases with an increase in the amount of the HA filler. The mechanically favorable and degradable MMA based nanocomposites also have favorable bioactivity, blood compatibility, cytocompatibility and cell adhesion. The present nanocomposite is a more promising material for orthopedic applications.

  8. To Evaluate the Application of Alkoxide Sol-Gel Method in Fabrication of 3YSZ-MWCNTs Nanocomposites, in an Attempt to Improve Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Ali Ahmadi

    2014-01-01

    Full Text Available In the present research work, fabrication of YSZ-CNTs composite system through alkoxide sol-gel processing was evaluated, in an attempt to improve its mechanical properties. Nanocomposites containing 0.5–2 wt% MWCNTs were then fabricated through the hydrolysis and condensation processing of the solution mixtures containing alkoxide and inorganic precursors along with the functionalized CNTs under basic condition and its final sintering by the SPS technique at 1400°C. Results showed the formation of a nanocomposite powder based on pure 3YSZ matrix, with well dispersion of CNTs and its good adhesion to the matrix particles in composite containing 0.5 wt% CNTs. The fracture toughness of sintered samples showed around 24% increase for the composite containing 0.5 wt% CNTs. The fracture toughness, hardness, and density decreased due to the agglomeration of CNTs over 0.5 wt%. Toughening mechanisms including pullout and crack bridging were observed on the polished and fractured surfaces.

  9. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Md Saiful Islam

    2013-01-01

    Full Text Available Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  10. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC

    OpenAIRE

    Mudassir Hasan; Moonyong Lee

    2014-01-01

    Thin films of poly vinyl chloride (PVC)/multiwalled carbon nanotubes (MWCNT) and PVC/graphene (GN) nanocomposites were prepared by mixing in the presence of different quantities of nanoparticles. Film casting was performed using tetrahydrofuran as a solvent. The as-prepared PVC/MWCNT and PVC/GN nanocomposites were characterized by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and...

  11. Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques

    Directory of Open Access Journals (Sweden)

    Abou Bakr Elshalakany

    2014-01-01

    Full Text Available A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM and scanning electron microscopy (SEM equipped with an energy dispersive X-ray analysis (EDX. This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt% of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.

  12. Polypropylene/elastomers/organophilic bentonite nanocomposites. Influence of elastomer content on morphology and mechanical properties; Nanocompositos polipropileno/elastomero/bentonita organofilica. Influencia do teor de elastomero na morfologia e propriedades mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, K.R.M.; Braga, C.R.C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Andrade, D.L.A.C.S.; Carvalho, L.H.; Silva, S.M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    In this study, the effect of the elastomer terpolymer ethylene-propylene-diene (EPDM) content on the morphology and mechanical properties of polypropylene PP/EPDM/organophilic bentonite nanocomposite was evaluated. The bentonite, supplied by Bentonit Uniao Nordeste, was purified and organically modified with cetyl trimethyl quaternary ammonium (cetremide) before the incorporation in PP/EPDM blend. The blends with various amounts of EPDM (10, 20, 30 and 40 wt%) and 1 phr of organoclay were prepared by melt-blending at 180 deg C and 50 rpm for 15 min with an internal mixer (Haake). The blends were characterized by X-ray diffraction and mechanical properties (tensile strength). According to the results, we concluded that the content of EPDM affected the morphology and mechanical properties of nanocomposites resulting in improvement in mechanical and morphological properties when a content of 30 wt% of EPDM was used. (author)

  13. Relationship between dispersibility of ZrO2 nanoparticles in Ni-ZrO2 electroplated nanocomposite coatings and mechanical properties of nanocomposite coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; HOU Feng-yan; GUO He-tong

    2004-01-01

    Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.

  14. MECHANICAL BEHAVIOUR OF THERMOPLASTIC STARCH/MONTMORILLONITE/ALUMINA TRIHYDRATE NANOCOMPOSITES

    Directory of Open Access Journals (Sweden)

    FIRNAAZ AHAMED

    2016-09-01

    Full Text Available Thermoplastic starch (TPS is a biodegradable biopolymer that has exhibited great prospects to replace conventional synthetic polymers in commercial applications. However, one of the most critical limitations of TPS is the lack of crucial mechanical properties. This study proposes the novel combination of cassava starch, montmorillonite nanoclay (MMT and alumina trihydrate (ATH in the form of a nanocomposite which is expected to demonstrate improved mechanical properties. The nanocomposites were processed through melt-extrusion in twin-screw extruder where loadings of MMT and ATH were varied between 1 to 6 wt% and 26 to 37 wt%, respectively. The mechanical properties were evaluated through tensile testing according to ASTM D882. The fractured surfaces of the specimens were evaluated using scanning electron microscopy (SEM to further validate the mechanical properties of the nanocomposites. The melt viscosity and processability of the nanocomposites were also evaluated through melt flow index (MFI testing according to ASTM D1238. Presence of MMT and ATH in TPS demonstrated increase in Young’s modulus, maximum tensile stress and decrease in elongation at break up to 57.6 MPa, 5.1 MPa and 39.2%, respectively. In the presence of ATH, increase in loading of MMT continued to improve Young’s modulus and maximum tensile stress while declining elongation at break. Without ATH, MMT was only capable of improving mechanical strength up to a loading of 3 wt% where adverse effects were observed when the loading was further increased to 6 wt%. Increase in loadings of both MMT and ATH, simultaneously were found to depreciate the MFI and thus, the processability of the nanocomposites.

  15. Preparation and fluorescence properties of 6-carboxyfluorescein/hydrotalcite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunfang, E-mail: lichunfang@mail.ipc.ac.cn [State Key Laboratory Base of Eco-chemical Engineering, Lab of Colloid and Functional Nanostructures, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Qi, Yanhai; Li, Qianru [State Key Laboratory Base of Eco-chemical Engineering, Lab of Colloid and Functional Nanostructures, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Li, Dongxiang, E-mail: lidx@iccas.ac.cn [State Key Laboratory Base of Eco-chemical Engineering, Lab of Colloid and Functional Nanostructures, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Hou, Wanguo, E-mail: wghou@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)

    2014-03-15

    The nanocomposites of fluorescent dye/hydrotalcite-like compounds (HTlc) synthesized by intercalation and/or surface adsorption methods have exhibited specific photophysical and photochemical property. In this work, 6-carboxyfluorescein (6CF)/HTlc nanocomposites were synthesized by ammonia coprecipitation and reconstruction-induced surface adsorption methods, and they were characterized by powder X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Thermogravimetric differential thermal measurements (TG-DTA) and fluorescence spectra. The results demonstrate that the dye molecules are primarily adsorbed on HTlc surface. The fluorescence emission of 6CF/Mg–Al HTlc composites is related with 6CF dosage due to the self-quenching mechanism. The 6CF/Zn–Al HTlc nanocomposite reconstructed at high temperature have much strong luminescence than that reconstructed at room temperature and the 6CF/Mg–Al HTlc nanocomposites. -- Highlights: • Fluorescent 6-carboxyfluorescein/HTlc nanocomposites were synthesized. • Fluorescent dye molecules are primarily adsorbed on HTlc surface. • Nanocomposite luminescence is related with the cluster structure of fluorescent dyes.

  16. Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings

    Science.gov (United States)

    Feng, Changjie; Hu, Shuilian; Jiang, Yuanfei; Wu, Namei; Li, Mingsheng; Xin, Li; Zhu, Shenglong; Wang, Fuhui

    2014-11-01

    TiAlN/Si3N4-Cu nanocomposite coatings of various Si content (0-5.09 at.%) were deposited on AISI-304 stainless steel by DC reactive magnetron sputtering technique. The chemical composition, microstructure, mechanical and tribological properties of these coatings were systematically investigated by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation tester, a home-made indentation system, a scratch tester and a wear tester. Results indicated that with increasing Si content in these coatings, a reduction of grain size and surface roughness, a transformation of the (1 1 1) preferred orientation was detected by XRD and FESEM. Furthermore the hardness of these coatings increase from 9.672 GPa to 18.628 GPa, and the elastic modulus reveal the rising trend that increase from 224.654 GPa to 251.933 GPa. However, the elastic modulus of TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content dropped rapidly and changed to about 180.775 GPa. The H3/E2 ratio is proportional to the film resistance to plastic deformation. The H3/E2 ratio of the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content possess of the maximum of 0.11 GPa, and the indentation test indicate that few and fine cracks were observed from its indentation morphologies. The growth pattern of cracks is mainly bending growing. The present results show that the best toughness is obtained for TiAlN/Si3N4-Cu nanocomposite coating containing 3.39 at.% Si content. In addition, the TiAlN/Si3N4-Cu coating containing 3.39 at.% Si content also has good adhesion property and superior wear resistance, and the wear mechanism is mainly adhesion wear.

  17. Permeation properties of polymer/clay nanocomposites

    Science.gov (United States)

    Kalendova, A.; Merinska, D.; Gerard, J. F.

    2012-07-01

    The important characteristics of polymer/clay nanocomposites are stability, barrier properties and in the case of polyvinyl chloride also plasticizer migration into other materials. Therefore, the permeation properties of polymer/clay nanocomposites are discussed in this paper. The attention was focused to the polyethylene (PE) and polyvinyl chloride (PVC). Natural type of montmorillonite MMTNa+ and modified types of montmorillonite from Southern Clay Products were used as the inorganic phase. As the compounding machine, one screw Buss KO-kneader was employed. The principal aim is to fully exfoliate the clay into polymer matrix and enhanced the permeation properties. Prepared samples were tested for O2 and CO2 permeability. Polymer/clay nanocomposite structure was determined on the base of X-ray diffraction and electron microscopy (TEM).

  18. Properties and applications of polymer nanocomposites clay and carbon based polymer nanocomposites

    CERN Document Server

    Prasad Sahoo, Bibhu

    2017-01-01

    The aim of the present edited book is to furnish scientific information about manufacturing, properties, and application of clay and carbon based polymer nanocomposites. It can be used as handbook for undergraduate and post graduate courses (for example material science and engineering, polymer science and engineering, rubber technology, manufacturing engineering, etc.) as well as as reference book for research fellows and professionals. Polymer nanocomposites have received outstanding importance in the present decade because of their broad range of high-performance applications in various areas of engineering and technology due to their special material properties. A great interest is dedicated to nanofiller based polymeric materials, which exhibit excellent enhancement in macroscopic material properties (mechanical, thermal, dynamic mechanical, electrical and many more) at very low filler contents and can therefore be used for the development of next-generation composite materials.

  19. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G VEENA; N M RENUKAPPA; KUNIGAL N SHIVAKUMAR; S SEETHARAMU

    2016-04-01

    This paper presents the development of epoxy-silica nanocomposites and characterized for dielectric properties. The effect of nanosilica loading (0–20 wt%), frequency, temperature and sea water aging on these properties was studied. Transmission electron microscopy (TEM) analysis of the samples showed an excellent dispersion. However, at higher silica loading TEM showed inter-contactity of the particles. The dielectric constant (υ') increased with silica loading and reached an optimum at about 10 wt%. The υ' of the nanocomposites showed linear decrease with frequency whereas AC conductivity (σac) increases. The σac and υ' increased marginally with temperature and sea water aging.

  20. Mechanical, thermal and decomposition behavior of poly(epsilon-caprolactone) nanocomposites with clay-supported carbon nanotube hybrids

    NARCIS (Netherlands)

    Terzopoulou, Zoe; Bikiaris, Dimitrios N.; Triantafyllidis, Konstantinos S.; Potsi, Georgia; Gournis, Dimitrios; Papageorgiou, George Z.; Rudolf, Petra

    2016-01-01

    Poly(epsilon-caprolactone) (PCL) nanocomposites with hybrid clay-supported carbon nanotubes (Clay-CNT) in concentrations 0.5, 1.0 and 2.5 wt% were prepared by melt mixing. Mechanical, structural and thermal properties of the nanocomposites were studied. All nanocomposites exhibited similar stress-st

  1. Mechanical, thermal and decomposition behavior of poly(epsilon-caprolactone) nanocomposites with clay-supported carbon nanotube hybrids

    NARCIS (Netherlands)

    Terzopoulou, Zoe; Bikiaris, Dimitrios N.; Triantafyllidis, Konstantinos S.; Potsi, Georgia; Gournis, Dimitrios; Papageorgiou, George Z.; Rudolf, Petra

    2016-01-01

    Poly(epsilon-caprolactone) (PCL) nanocomposites with hybrid clay-supported carbon nanotubes (Clay-CNT) in concentrations 0.5, 1.0 and 2.5 wt% were prepared by melt mixing. Mechanical, structural and thermal properties of the nanocomposites were studied. All nanocomposites exhibited similar

  2. Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties

    NARCIS (Netherlands)

    Kostina, Nina Yu.; Sharifi, Shahriar; Pereira, Andres de los Santos; Michalek, Jiri; Grijpma, Dirk W.; Rodriguez-Emmenegger, Cesar

    2013-01-01

    Novel antifouling highly wettable hydrogels with superior mechanical and self-healing properties are presented. Hydrogels were prepared by UV-initiated copolymerisation of non-fouling zwitterionic carboxybetaine methacrylamide (CBMAA-3) and 2-hydroxyethyl methacrylate (HEMA) in the presence of unifo

  3. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  4. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  5. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites

    KAUST Repository

    Zubair, Mukarram

    2014-08-04

    The effect of modified graphene (MG) and microwave irradiation on the interaction between graphene (G) and poly(styrene-co-methyl meth acrylate) [P(S-co-MMA)] polymer matrix has been studied in this article. Modification of graphene was performed using nitric acid. P(S-co-MMA) polymer was blended via melt blending with pristine and MG. The resultant nanocomposites were irradiated under microwave at three different time intervals (5, 10, and 20 min). Compared to pristine graphene, MG showed improved interaction with P(S-co-MMA) polymer (P) after melt mixing and microwave irradiation. The mechanism of improved dispersion and interaction of modified graphene with P(S-co-MMA) polymer matrix during melt mixing and microwave irradiation is due to the presence of oxygen functionalities on the surface of MG as confirmed from Fourier transform infrared spectroscopy. The formation of defects on modified graphene and free radicals on P(S-co-MMA) polymer chains after irradiation as explained by Raman spectroscopy and X-Ray diffraction studies. The nanocomposites with 0.1 wt% G and MG have shown a 26% and 38% increase in storage modulus. After irradiation (10 min), the storage modulus further improved to 11.9% and 27.6% of nanocomposites. The glass transition temperature of nanocomposites also improved considerably after melt mixing and microwave irradiation (but only for polymer MG nanocomposite). However, at higher irradiation time (20 min), degradation of polymer nanocomposites occurred. State of creation of crosslink network after 10 min of irradiation and degradation after 20 min of irradiation of nanocomposites was confirmed from SEM studies. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  7. Effects of Thickness and Amount of Carbon Nanofiber Coated Carbon Fiber on Improving the Mechanical Properties of Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ferial Ghaemi

    2016-01-01

    Full Text Available In the current study, carbon nanofibers (CNFs were grown on a carbon fiber (CF surface by using the chemical vapor deposition method (CVD and the influences of some parameters of the CVD method on improving the mechanical properties of a polypropylene (PP composite were investigated. To obtain an optimum surface area, thickness, and yield of the CNFs, the parameters of the chemical vapor deposition (CVD method, such as catalyst concentration, reaction temperature, reaction time, and hydrocarbon flow rate, were optimized. It was observed that the optimal surface area, thickness, and yield of the CNFs caused more adhesion of the fibers with the PP matrix, which enhanced the composite properties. Besides this, the effectiveness of reinforcement of fillers was fitted with a mathematical model obtaining good agreement between the experimental result and the theoretical prediction. By applying scanning electronic microscope (SEM, transmission electron microscope (TEM, and Raman spectroscopy, the surface morphology and structural information of the resultant CF-CNF were analyzed. Additionally, SEM images and a mechanical test of the composite with a proper layer of CNFs on the CF revealed not only a compactness effect but also the thickness and surface area roles of the CNF layers in improving the mechanical properties of the composites.

  8. Effects of Si content on microstructure and mechanical properties of TiAlN/Si{sub 3}N{sub 4}-Cu nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Changjie; Hu, Shuilian [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Jiang, Yuanfei, E-mail: jyf88889@126.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Wu, Namei [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Li, Mingsheng [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013 (China); Xin, Li; Zhu, Shenglong; Wang, Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 110016 (China)

    2014-11-30

    Highlights: • The grain size and surface roughness decreased with the increase of Si content. • The microhardness of these coatings increased with the increasing content of Si. • The ratio H{sup 3}/E{sup 2} of TiAlN/Si3N4-Cu coating of 3.39 at.% Si reached the maximum value of 0.11 GPa. • Indentation morphology of TiAlN/Si3N4-Cu coating contained 3.39 at.% Si has fewer cracks. • TiAlN/Si3N4-Cu coating contained 3.39 at.% Si has good adhesion property and wear resistance. - Abstract: TiAlN/Si{sub 3}N{sub 4}-Cu nanocomposite coatings of various Si content (0–5.09 at.%) were deposited on AISI-304 stainless steel by DC reactive magnetron sputtering technique. The chemical composition, microstructure, mechanical and tribological properties of these coatings were systematically investigated by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation tester, a home-made indentation system, a scratch tester and a wear tester. Results indicated that with increasing Si content in these coatings, a reduction of grain size and surface roughness, a transformation of the (1 1 1) preferred orientation was detected by XRD and FESEM. Furthermore the hardness of these coatings increase from 9.672 GPa to 18.628 GPa, and the elastic modulus reveal the rising trend that increase from 224.654 GPa to 251.933 GPa. However, the elastic modulus of TiAlN/Si{sub 3}N{sub 4}-Cu coating containing 3.39 at.% Si content dropped rapidly and changed to about 180.775 GPa. The H{sup 3}/E{sup 2} ratio is proportional to the film resistance to plastic deformation. The H{sup 3}/E{sup 2} ratio of the TiAlN/Si{sub 3}N{sub 4}-Cu coating containing 3.39 at.% Si content possess of the maximum of 0.11 GPa, and the indentation test indicate that few and fine cracks were observed from its indentation morphologies. The growth pattern of cracks is mainly bending growing. The present results show that the best toughness is obtained for TiAlN/Si{sub 3}N{sub 4

  9. Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from Aloe vera Rind

    Directory of Open Access Journals (Sweden)

    Adel Ramezani Kakroodi

    2014-01-01

    Full Text Available This work was devoted to reinforcement of polyvinyl alcohol (PVA using cellulose nanofibers from Aloe vera rind. Nanofibers were isolated from Aloe vera rind in the form of an aqueous suspension using chemimechanical technique. Mechanical characterizations showed that incorporation of even small amounts of nanofibers (as low as 2% by weight had significant effects on both the modulus and strength of PVA. Tensile modulus and strength of PVA increased, 32 and 63%, respectively, after adding 2% of cellulose nanofiber from Aloe vera rind. Samples with higher concentrations of nanofibers also showed improved mechanical properties due to a high level of interfacial adhesion and also dispersion of fibers. The results showed that inclusion of nanofibers decreased deformability of PVA significantly. Dynamic mechanical analysis revealed that, at elevated temperatures, improvement of mechanical properties due to the presence of nanofibers was even more noticeable. Addition of nanofibers resulted in increased thermal stability of PVA in thermogravimetric analysis due to the reduction in mobility of matrix molecules. Morphological observations showed no signs of agglomeration of fibers even in composites with high cellulose nanofiber contents. Inclusion of nanofibers was shown to increase the density of composites.

  10. Tribological properties of nanosized calcium carbonate filled polyamide 66 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, Kaito [Department of Mechanical Engineering, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 Japan (Japan); Nishitani, Yosuke [Department of Mechanical Engineering, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015 Japan (Japan); Kitano, Takeshi [Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. 275, Zlin, 767 72 Czech Republic (Czech Republic); Eguchi, Kenichiro [Shiraishi Central Laboratories, 4-78 Motohama,Amagasaki,Hyogo,660-0085 Japan (Japan)

    2016-03-09

    For the purpose of developing high performance tribomaterials for mechanical sliding parts such as gears, bearings and so on, nanosized calcium carbonate (nano-CaCO{sub 3}) filled polyamide 66 (PA66) nanocomposites were investigated. The nano-CaCO{sub 3} was a kind of precipitated (colloid typed) CaCO{sub 3}, and its average particle size was 40, 80 and 150 nm. Surface treatment was performed by fatty acid on the nano-CaCO{sub 3} and its volume fraction in the nanocomposite was varied from 1 to 20vol.%. These nanocomposites were melt-mixed by a twin screw extruder and injection-molded. Tribological properties were measured by two types of sliding wear testers such as ring-on-plate type and ball-on-plate type one under dry condition. The counterface, worn surface and wear debris were observed by digital microscope and scanning electron microscope. It was found that the nano-CaCO{sub 3} has a good effect on the tribological properties, although the effect on the frictional coefficient and specific wear rate is differed by the volume fraction and the type of sliding wear modes. This is attributed to the change of wear mechanisms, which is the change of form of the transfer films on the counterface and the size of wear debris. It follows from these results that PA66/nano-CaCO{sub 3} nanocomposites may be possible to be the high performance tribomaterials.

  11. Morphological and Thermal Properties of Cellulose Nanofibrils Reinforced Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deniz Aydemir

    2015-04-01

    Full Text Available Epoxy resins have gained attention as important adhesives because they are structurally stable, inert to most chemicals, and highly resistant to oxidation. Different particles can be added to adhesives to improve their properties. In this study, cellulose nanofibrils (CNFs, which have superior mechanical properties, were used as the reinforcing agent. Cellulose nanofi brils were added to epoxy in quantities of 1 %, 2 % and 3 % by weight to prepare nanocomposites. Morphological characterization of the composites was done with scanning electron microscopy (SEM. Thermal properties of the nanocomposites were investigated with Thermogravimetric Analyzer (TGA/DTG and Differential Scanning Calorimeter (DSC. SEM images showed that the cellulose nanofibrils were dispersed partially homogenous throughout the epoxy matrix for 1 % CNF. However, it was observed that the cellulose nanofibrils were aggregated (especially for 2 and 3 % CNFs in some parts of the SEM images, and the ratios of the aggregated parts increased as the loading rate of the cellulose nanofi brils increased. The TGA curve showed that DTG and decomposition temperature of pure epoxy was higher than that of the nanocomposites. The DSC curve showed that the glass transition temperature (Tg value of pure epoxy was found to be similar with Tg of the nanocomposites.

  12. Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature.

    Science.gov (United States)

    Arab, Behrouz; Shokuhfar, Ali

    2013-11-01

    Urea-formaldehyde polymers, which are utilized in the adhesives industry, have recently been shown to be suitable materials for synthesizing micro/nanocapsules for use in self-healing (nano)composites. In this study, molecular dynamics was employed to simulate the process in which urea and formaldehyde are cross-linked via methylene and ether cross linkers, and to study the structure and mechanical/thermal properties of simulated poly(urea-formaldehyde)s (PUFs). The elastic stiffness constants of the simulated materials were calculated using the constant-strain (static) method. A temperature cycle was applied to the cross-linked PUFs, and the glass transition behavior of each material was investigated through the mean squared displacement (MSD) and temperature evolution of the energy and the specific volume of the polymer. The simulation results confirmed that there was considerable improvement in the properties of the poly(UF) materials upon cross linking. The radial distribution function was also used to study the local structures of the polymers, and this revealed that increasing the temperature and cross linking density results in a significant drop in hydrogen bonding intensity in the cross-linked PUF systems.

  13. Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties

    Directory of Open Access Journals (Sweden)

    Sevan Davtyan

    2009-12-01

    Full Text Available High temperature superconducting (SC nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.

  14. Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Essam Moustafa

    2017-09-01

    Full Text Available In the present work, an aluminum metal matrix reinforced with (Al2O3 nanoparticles was fabricated as a surface composite sheet using friction stir processing (FSP. The effects of processing parameters on mechanical properties, hardness, and microstructure grain were investigated. The results revealed that multi-pass FSP causes a homogeneous distribution and good dispersion of Al2O3 in the metal matrix, and consequently an increase in the hardness of the matrix composites. A finer grain is observed in the microstructure examination in specimens subjected to second and third passes of FSP. The improvement in the grain refinement is 80% compared to base metal. The processing parameters, particularly rotational tool speed and pass number in FSP, have a major effect on strength properties and surface hardness. The ultimate tensile strength (UTS and the average hardness are improved by 25% and 46%, respectively, due to presence of reinforcement Al2O3 nanoparticles.

  15. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

    Science.gov (United States)

    Chen, Qiyi; Mangadlao, Joey Dacula; Wallat, Jaqueline; De Leon, Al; Pokorski, Jonathan K; Advincula, Rigoberto C

    2017-02-01

    Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

  16. Structure-property relationships in graphene/polymer nanocomposites

    Science.gov (United States)

    Iqbal, Muhammad Z.

    Graphene's unique combination of excellent electrical, thermal, and mechanical properties can provide multi-functional reinforcement for polymer nanocomposites. However, poor dispersion of graphene in non-polar polyolefins limits its applications as a universal filler. Thus, the overall goal of this thesis was to improve graphene's dispersion in graphene/polyolefin nanocomposites and develop processing-structure-property relationships. A new polymer matrix was synthesized by blending polyethylene (PE) with oxidized polyethylene (OPE). Inclusion of OPE in PE produced miscible blends, but the miscibility decreased with increasing OPE loading. Meanwhile, the Young's modulus of blends increased with increasing OPE concentration, attributed to decreased long period order in PE and increased crystallinity. In addition, the miscibility of OPE in PE substantially reduced the viscosity of blends. Using thermally reduced graphene (TRG) produced by simultaneous thermal exfoliation and reduction of graphite oxide, electrically conductive nanocomposites were manufactured by incorporating TRG in PE/OPE blends via solution blending. The rheological and electrical percolations decreased substantially to 0.3 and 0.13 vol% of TRG in PE/OPE/TRG nanocomposites compared to 1.0 and 0.3 vol% in PE/TRG nanocomposites. Improved dispersion of TRG in blends was attributed to increased TRG/polymer interactions, leading to high aspect ratio of the dispersed TRG. A universal Brownian dispersion mechanism for graphene was concluded similar to that of carbon nanotubes, following the Doi-Edwards theory. Furthermore, the improved dispersion of TRG correlated with the formation of surface fractals in PE/OPE/TRG nanocomposites, whereas the poor dispersion of TRG in PE led to the formation of only mass fractals. Moreover, graphene and carbon black (CB) were combined as a synergic filler for manufacturing electrically conductive PE nanocomposites. Smaller fractals were observed at lower CB

  17. CNTs/TiC Reinforced Titanium Matrix Nanocomposites via Powder Metallurgy and Its Microstructural and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Katsuyoshi Kondoh

    2008-01-01

    Full Text Available By using pure titanium powder coated with unbundled multiwall carbon nanotubes (MWCNTs via wet process, powder metallurgy (P/M titanium matrix composite (TMC reinforced with the CNTs was prepared by spark plasma sintering (SPS and subsequently hot extrusion process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in situ formed titanium carbide (TiC compounds during sintering was investigated by optical and scanning electron microscopy (SEM equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.

  18. Synthesis and characterization of phenol/formaldehyde nanocomposites: Studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology and thermal stability

    Directory of Open Access Journals (Sweden)

    Walaa S.E. Solyman

    2017-01-01

    Full Text Available In this work, phenol/formaldehyde nanocomposites were synthesized using reactive rubber nanoparticles (RRNP and cloisite30B nanoclay with different percentages and were fully investigated. A little amount of these nanomaterials enhanced the mechanical properties of the produced composites. This enhancement is attributed to the interaction of these nanomaterials with the bakelite matrix. In bakelite/RRNP, the mechanical properties enhancement is due to the chemical connection of RRNP to the bakelite matrix while in bakelite/Cloisite30B, this enhancement is due to polar/polar interaction. It was observed that the composites exhibited an intercalated disordered structure by means of Xray diffraction (XRD and transmission electronic microscopy. The crosslinking density of the bakelite network was greatly influenced by the presence and type of nanomaterial that was added to the resin. The thermal stability was investigated with TGA/DSC which proved that these nanocomposite are (10–20% more thermally stable than neat Bakelite resin.

  19. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites

    Indian Academy of Sciences (India)

    Smrutisikha Bal

    2010-02-01

    Carbon nanotube based epoxy composites have been fabricated at room temperature and refrigeration process using sonication principle. Flexural moduli, electrical conductivity, glass transition temperature of epoxy resin as well as nanocomposite samples have been determined. Distribution behaviour of carbon nanotubes in the epoxy matrix was examined through scanning electron microscopy. Composite samples showed better properties than resin samples due to strengthening effect of the filled nanotubes. Refrigerated nanocomposites obtained increasing mechanical property because of better dispersion due to low temperature settlement of polymers. Improvement of electrical conductivity was due to the fact that aggregated phases form a conductive three-dimensional network throughout the whole sample. The increasing glass transition temperature was indicative of restricting movement of polymer chains that ascribe strong interaction presented between carbon nanotubes and epoxy chains that was again supplemented by Raman study and SEM.

  20. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  1. PHYSICAL PROPERTIES OF NANOCOMPOSITES IN RELATION TO THEIR ADVANTAGES

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2016-03-01

    Full Text Available Extensive studies have been undertaken to improve dental composites with advances in filler compositions and resin chemistry. The unique nature of the filler particles of nanocomposites provides mechanical strength and wear resistance similar to hybrid composites, and superior polish and gloss retention similar to micro fill composites. The polymerization shrinkage in composites depends on the chemistry of the organic matrix. The flexural strength depends on the filler content and the filler chemistry. The nanometric particles and nanoclusters in the nanocomposites improve mechanical properties such as compressive strength, flexural strengths, and wear resistance of several nanocomposites were as good as those of universal hybrid composites. They provide high esthetics, hence they can provide optimal optical characteristics since the size of the nanometric particle is below the wavelength of light. This is relevant because the size is not measurable by the refractive index that can result in formulations having a broad spectrum of shade and opacity. Nanocomposite denture teeth comprises of polymethylmethacrylate, and uniformly dispersed nano - sized filler particles. Their advantages are: - highly polishable, stain and impact resistant material; - lively surface structure; - superior surface hardness and wear resistance.

  2. Structure and property of Cu-based thermosensitive nanocomposite

    Institute of Scientific and Technical Information of China (English)

    LOU Bai-yang; XU Bin; MA Xiao-chun; LI Le-guo

    2006-01-01

    The Cu-based thermosensitive nanocomposites are made by high energy ball milling. The microstructures and properties of Cu-based thermosensitive nanocomposites are studied by transmission electron microscopy(TEM) and themosensitivity test. The effects of milling time on the microstructures and the thermosensitivity of Cu-based nanocomposite material are researched. The results show that the Cu-based nanocomposite can be made by high energy ball milling. As the milling time increases, the copper particle size decreases in the nanocomposite, then the thermoexpansivity of nanocomposite increases. The nanocomposite is of best thermoexpansivity when the milling time is up to 100 h. At 35-45 ℃, the nanocomposite shows good thermosensitivity.

  3. Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Noohom, Wadcharawadee; Jack, Kevin S; Martin, Darren; Trau, Matt, E-mail: k.jack@uq.edu.a [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland 4072 (Australia)

    2009-02-15

    Nano-sized hydroxyapatite (HA) particles stabilized using poly(acrylic acid) (PAA) as a dispersing agent, and sonic energy to further increase dispersion, were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) using a precipitation/gelation method to produce HA/PHBV nanocomposites with up to 16% by weight of HA content. The level of HA nanoparticle dispersion was monitored in the precursor dispersions prior to composite production and in the nanocomposites by a range of techniques including visual observation, turbidity measurements and electron microscopy, and the roles of the dispersing agent and the sonic energy in controlling the dispersion of HA particles in both the precursor dispersions and the final composites as well as their effects on the compressive strength and Young's modulus were investigated. It was found that HA suspensions treated with both PAA and sonic energy possessed significantly better colloidal stability compared to untreated suspensions or suspensions treated with either PAA or sonic energy. This, in turn, resulted in better dispersion of HA nanoparticles in the composites and higher compressive moduli as a function of the particle loading. This enhancement in stiffness of the composites was attributed primarily to the increased surface area of the HA filler in the more highly dispersed samples, but also to an observed increase in the crystalline content achievable after annealing of the samples. It is proposed that this increase in crystallinity is due to the more highly dispersed particles acting as nucleation sites for the crystallization of the PHBV at the particle interface, which, in turn, leads to enhancement of the bonding between the matrix and filler.

  4. SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF ORGANOCLAY-MODIFIED POLYSULFONE/EPOXY INTERPENETRATING POLYMER NETWORK NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    R.Rajasekaran; C.Karikalchozhan; M.Alagar

    2008-01-01

    Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polysulfone and epoxy resin (PSF/EP) using diaminodiphenylmethane (DDM) as curing agent.The mechanical properties like tensile strength,tensile modulus,flexural strength,flexural modulus and impact properties of the nanocomposites were studied as per ASTM standards.Differential scanning calorimetry (DSC) analysis,dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) analysis showed that PSF was compatible with EP,and the glass transition temperature (Tg) of the oM-PSF/EP nanocomposites decreased with increasing the oMMT content.Water absorption tests showed that the PSF/EP interpenetrating networks and oMMT had synergistic effects on improvement in the water resistance of the oM-PSF/EP nanocomposites.

  5. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, M., E-mail: m.bahrami@ma.iut.ac.ir; Fathi, M.H.; Ahmadian, M.

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co–Cr–Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co–Cr–Mo alloy to bioactive type by adding 10, 15, and 20 wt.% HA which have lower modulus elasticity and higher microhardness. - Graphical abstract: The present investigation has been based on the production of composite materials based on Co–Cr–Mo alloy with different amounts of hydroxyapatite nanobioceramic powder using the powder metallurgy route. Mechanical and biological properties of the composites were investigated. A significant increase in microhardness and decrease in modulus elasticity of the sintered composites were observed. - Highlights: • Co-base alloy/hydroxyapatite composites were prepared by powder metallurgy. • Composite microhardness is improved in comparison with Co-base alloy. • Modulus elasticity decrease by about 53–63% in comparison with Co-base alloy. • Apatite nucleus is formed on the surface of composites after soaking test. • Bioinert Co–Cr–Mo alloy is successfully converted to a bioactive type.

  6. Poly(butylene terephthalate)/montmorillonite nanocomposites: Effect of montmorillonite on the morphology, crystalline structure, isothermal crystallization kinetics and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kalkar, Arun K., E-mail: drarunkalkar@gmail.com; Deshpande, Vineeta D.; Vatsaraj, Bhakti S.

    2013-09-20

    Graphical abstract: - Highlights: • Effect of amount of clay content, its dispersion on crystalline structure of PBT. • Regime break temperature shifts to lower temperature for PCN4 up to 197 °C. • Tensile modulus enhanced up to 95% for PCN3 compared to PBT. - Abstract: Nanocomposites (PCNs), based on poly(butylene terephthalte) (PBT) and organoclay (Cloisite-15A) MMT were prepared by melt intercalation compounding process. The nanoscale dispersion and the microcrystal structure studied qualitatively using; X-ray diffraction (XRD) and electron microscopy (SEM, TEM and AFM). The XRD results indicated that the crystal size is highly dependent on the crystallization temperature. The isothermal crystallization kinetics of PBT in PCNs analysis indicated that the overall crystallization of PBT involved heterogeneous nucleated three-dimensional spherical primary crystallization growth process. The crystallization rate, however, is dependent on the PCN-composition, crystallization temperature and the dispersion state of clay in PCNs. Further analysis, based on Hoffman-Lauritzen theory revealed that the neat PBT and PBT in PCNs crystallization follow regime-II kinetics for temperature 195 °C–205 °C and enters the regime-III kinetics in lower T{sub c} range, 185 °C–195 °C. The improvement in mechanical properties is highly dependent on the level of clay exfoliation in PBT matrix.

  7. Dynamic mechanical behavior magnetorheological nanocomposites containing CNTs: A review

    Science.gov (United States)

    Ismail, Rozaina; Ibrahim, Azmi; Hamid, Hanizah Ab.; Mahmood, Mohamad Rusop; Adnan, Azlan

    2016-07-01

    Carbon nanotubes (CNTs) based polymer composites have variety of engineering applications due to their excellent mechanical, electrical, chemical, magnetic, etc. properties. This paper is an attempt to present a coherent yet concise review of as many of these publications as possible on the mechanical aspect of the Magnetorheological Elastomer (MRE) composites with the addition of multi-walled carbon nanotubes (CNTs). The dynamic mechanical response of the MR nanocomposites to applied magnetic fields has been investigated through dynamic mechanical analysis. It is found that a small amount of carbon nanotubes can effectively improve the mechanical performance of conventional MR elastomers. In summary, multi-walled carbon nanotubes reinforced magnetorheological composite has been developed to take advantage of both the smart MR technology and outstanding properties of carbon nanotubes. Furthermore review is also carried out on the capability of carbon nanotubes to impart the stiffness and damping performance encountered with the properties of CNT based Natural Rubber.

  8. Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, H.C.; Chang, S.C.; Liao, M.W. [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The TiN-related hard coatings encounter poor high-temperature oxidation resistance problem. Black-Right-Pointing-Pointer The transition metal-Si-N nanocomposites have used for enhancing hard coating applications. Black-Right-Pointing-Pointer The effect of process parameters on Ti-Si-N microstructure and property was studied. Black-Right-Pointing-Pointer The orientation model for texture development of TiSiN is used for deeper discussing. Black-Right-Pointing-Pointer Both Ti-Si-N microstructure and texture are crucial factors for hardness enhancement. - Abstract: Nanocomposite Ti-Si-N thin films (nc-TiN/a-SiN{sub x} or nc-TiN/a-TiSi{sub x}N{sub y}) were deposited on Si(1 0 0) substrates from pure Ti and Si targets by magnetron reactive co-sputtering with a negative bias of -150 V. The effects of N{sub 2} flow ratio (FN{sub 2}% = FN{sub 2}/(FAr + FN{sub 2}) Multiplication-Sign 100%) and Ti power on the evolution of enhanced crystallinity and mechanical properties of Ti-Si-N have been investigated. The crystallinity, morphology, microstructure, elemental composition and mechanical properties of films were characterized by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy, energy dispersive spectroscopy and nanoindentation, respectively. When both Ti and Si target powers were fixed at 100 W, the GIXRD pattern of Ti-Si-N at 3 FN{sub 2}% exhibited a broad peak corresponding to quasi-amorphous microstructure with nanocrystalline grains embedded in an amorphous matrix. Then Ti-Si-N films showed high amount of crystallization with multiple diffraction peaks at 5 FN{sub 2}%, but the reduced peak intensity formed at 7 FN{sub 2}% and even to be amorphous films without any peak at high 10-20 FN{sub 2}%. The measured mean hardnesses of Ti-Si-N films formed at 3, 5, 7, 10 and 20 FN{sub 2}% were 18.1, 21.5, 20.4, 17.8 and 15.7 GPa, respectively. Based on the high-hardness Ti-Si-N at constant 5 FN{sub 2}%, changing Ti

  9. Role of Interphase in the Mechanical Behavior of Silica/Epoxy Resin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yi Hua

    2015-06-01

    Full Text Available A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness of nanocomposites was much lower, which was in good agreement with the documented experimental observations. This work could shed some light on the design and manufacturing of resin nanocomposites.

  10. Densification and mechanical properties of mullite–SiC nanocomposites synthesized through sol–gel coated precursors

    Indian Academy of Sciences (India)

    K G K Warrier; G M Anil Kumar; S Ananthakumar

    2001-04-01

    Mullite–SiC nanocomposites are synthesized by introducing surface modified sol–gel mullite coated SiC particles in the matrix and densification and associated microstructural features of such precursor are reported. Nanosize SiC (average size 180 nm) surface was first provided with a mullite precursor coating which was characterized by the X-ray analysis and TEM. An average coating thickness of 120 nm was obtained on the SiC particles. The green compacts obtained by cold isostatic pressing were sintered in the range 1500–1700°C under pressureless sintering in the N2 atmosphere. The percentage of the theoretical sintered density decreases with increase in SiC content. A maximum sintered density of 97% was achieved for mullite–5 vol.% SiC. The fractograph of the sintered composite showed a highly dense, fine grained microstructure with the SiC particles uniformly distributed along the grains as well as at the grain boundaries inside the mullite. The Vicker’s microhardness of mullite–5 vol.% SiC composite was measured as 1320 kg/mm2 under an applied indentation load of 500 . This value gradually decreased with an increase in SiC content.

  11. Analysis of sulphone based organic-inorganic hybrid epoxy nanocomposites for advanced engineering applications-Study of the mechanical, thermomechanical, XRD, EDS and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shree Meenakshi, K., E-mail: shreemeenakshik@gmail.com [Department of Chemistry, Anna University, Chennai 25 (India); Pradeep Jaya Sudhan, E.; Menon, Prathibha G. [Department of Chemistry, Anna University, Chennai 25 (India)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer Novel sulphone based tetraglycidyl epoxy nanocomposites were developed for aerospace applications. Black-Right-Pointing-Pointer Nano-reinforcements were incorporated and curing was done. Black-Right-Pointing-Pointer Excellent results were obtained in the mechanical studies. The nanocomposites developed were flame retardant and hydrophobic. - Abstract: A study was made in the present investigation on sulphone containing tetraglycidyl epoxy nanocomposites to find its suitability for use in high performance applications. The synthesis and characterization of the sulphone tetraglycidyl epoxy resin denoted as 'B' was done as reported in our previous study. Nanoclay and POSS-amine nano-reinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resin. Curing was done with diaminodiphenylmethane (DDM) and bis(3-aminophenyl) phenylphosphine oxide (BAPPO) curing agents denoted as X and Y respectively. In our current research, we continue this research and study the mechanical, thermo-mechanical, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), viscosity, epoxy equivalent weight (EEW) and gel permeation chromatography (GPC) studies.

  12. Mechanical Properties And Microstructure Of AlN/SiCN Nanocomposite Coatings Prepared By R.F.-Reactive Sputtering Method

    Directory of Open Access Journals (Sweden)

    Nakafushi Y.

    2015-06-01

    Full Text Available FIn this work, AlN/SiCN composite coatings were deposited by r.f.-reactive sputtering method using a facing target-type sputtering (FTS apparatus with composite targets consisting of Al plate and SiC chips in a gaseous mixture of Ar and N2, and investigated their mechanical properties and microstructure. The indentation hardness (HIT of AlN/SiCN coatings prepared from composite targets consisting of 8 ~32 chips of SiC and Al plate showed the maximum value of about 29~32 GPa at a proper nitrogen gas flow rate. X-ray diffraction (XRD patterns for the AlN/SiCN composite coatings indicated the presence of the only peeks of hexagonal (B4 structured AlN phase. AlN coatings clarified the columnar structure of the cross sectional view TEM observation. On the other hand, microstructure of AlN/SiCN composite coatings changed from columnar to equiaxed structure with increasing SiCN content. HR-TEM observation clarified that the composite coatings consisted of very fine equiaxial grains of B4 structured AlN phase and amorphous phase.

  13. Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films

    Institute of Scientific and Technical Information of China (English)

    Ali Badawi; N. Al-Hosiny

    2015-01-01

    Dynamic mechanical properties of nanocomposite films with different ratios of single walled carbon nan-otubes/polymethyl methacrylate (SWCNTs/PMMA) are studied. Nanocomposite films of different ratios (0, 0.5, 1.0, and 2.0 weight percent (wt%)) of SWCNTs/PMMA are fabricated by using a casting technique. The morphological and struc-tural properties of both SWCNT powder and SWCNTs/PMMA nanocomposite films are investigated by using a high resolution transmission electron microscope and x-ray diffractometer respectively. The mechanical properties including the storage modulus, loss modulus, loss factor (tanδ) and stiffness of the nanocomposite film as a function of tempera-ture are recorded by using a dynamic mechanical analyzer at a frequency of 1 Hz. Compared with pure PMMA film, the nanocomposite films with different ratios of SWCNTs/PMMA are observed to have enhanced storage moduli, loss moduli and high stiffness, each of which is a function of temperature. The intensity of the tanδ peak for pure PMMA film is larger than those of the nanocomposite films. The glass transition temperature (Tg) of SWCNTs/PMMA nanocomposite film shifts towards the higher temperature side with respect to pure PMMA film from 91.2 ◦C to 99.5 ◦C as the ratio of SWCNTs/PMMA increases from 0 to 2.0 wt%.

  14. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    Science.gov (United States)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  15. Polymer based nanocomposites with tailorable optical properties

    Science.gov (United States)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  16. Metal-Polymer Nanocomposites: (Co-Evaporation/(CoSputtering Approaches and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Vanna Torrisi

    2015-07-01

    Full Text Available In this review, we discuss the basic concepts related to (co-evaporation and (cosputtering based fabrication methods and the electrical properties of polymer-metal nanocomposite films. Within the organic-inorganic hybrid nanocomposites research framework, the field related to metal-polymer nanocomposites is attracting much interest. In fact, it is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. The metal-polymer nanocomposites research field is, now, a wide, complex, and important part of the nanotechnology revolution. So, with this review we aim, starting from the discussion of specific cases, to focus our attention on the basic microscopic mechanisms and processes and the general concepts suitable for the interpretation of material properties and structure–property correlations. The review aims, in addition, to provide a comprehensive schematization of the main technological applications currently in development worldwide.

  17. Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites

    Directory of Open Access Journals (Sweden)

    Weihua Xu

    2013-01-01

    Full Text Available Graphene oxide (GO has shown great potential to be used as fillers to develop polymer nanocomposites for important applications due to their special 2D geometrical structure as well as their outstanding mechanical, thermal, and electrical properties. In this work, GO was incorporated into phenol formaldehyde (PF resin by in situ polymerization. The morphologies and structures of GO sheets were characterized by FTIR, XRD, and AFM methods. The structure and properties of the GO/PF nanocomposites were characterized using FTIR, XRD, DSC, and TGA methods. Effects of GO content, reactive conditions, and blending methods on the structure and properties of GO/PF nanocomposites were studied. It was found that due to the well dispersion of GO sheets in polymer matrix and the strong interfacial interaction between the GO sheets and PF matrix, the thermal stability and thermal mechanical properties of the GO/PF nanocomposites were greatly enhanced.

  18. Assessment of morphology and property of graphene oxide-hydroxypropylmethylcellulose nanocomposite films.

    Science.gov (United States)

    Ghosh, Tapas Kumar; Gope, Shirshendu; Mondal, Dibyendu; Bhowmik, Biplab; Mollick, Md Masud Rahaman; Maity, Dipanwita; Roy, Indranil; Sarkar, Gunjan; Sadhukhan, Sourav; Rana, Dipak; Chakraborty, Mukut; Chattopadhyay, Dipankar

    2014-05-01

    Graphene oxide (GO) was synthesized by Hummer's method and characterized by using Fourier transform infrared spectroscopy and Raman spectroscopy. The as synthesized GO was used to make GO/hydroxypropylmethylcellulose (HPMC) nanocomposite films by the solution mixing method using different concentrations of GO. The nanocomposite films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermo-gravimetric analysis. Mechanical properties, water absorption property and water vapor transmission rate were also measured. XRD analysis showed the formation of exfoliated HPMC/GO nanocomposites films. The FESEM results revealed high interfacial adhesion between the GO and HPMC matrix. The tensile strength and Young's modulus of the nanocomposite films containing the highest weight percentage of GO increased sharply. The thermal stability of HPMC/GO nanocomposites was slightly better than pure HPMC. The water absorption and water vapor transmission rate of HPMC film was reduced with the addition of up to 1 wt% GO.

  19. Study of annealing and orientation effects on physical properties of PLA based nanocomposite films

    OpenAIRE

    Cammarano, Sara

    2010-01-01

    PLA-sepiolite and PLA-halloysite nanocomposites prepared by melt blending were systematically characterized in terms of mechanical, thermal and barrier properties. Annealing and unidirectional stretching techniques were used with the aim to improve matrix performances of nanocomposite based films; a preliminary study on the production of PLA-halloysite composites via film blowing has been also considered. Addition of unmodified clays did not significantly alter PLA properties mainly b...

  20. Process, Structure, and Properties of Electrospun Carbon Nanotube-Reinforced Nanocomposite Yarns

    Directory of Open Access Journals (Sweden)

    Nasir M. Uddin

    2009-01-01

    Full Text Available Carbon nanotubes (CNTs are dispersed into polyacrylonitrile polymer solution and then assembled into continuous nanocomposite yarns through the drum-tape co-electrospinning process to facilitate the translation of CNT properties to higher order structures. We explore the dispersion of CNTs in a polymer matrix, the process of obtaining continuous yarn through electrospinning, and the surface morphology and mechanical properties of the nanocomposite yarn.

  1. Nanocomposite biofilms obtained from Whitemouth croaker (Micropogonias furnieri) protein isolate and Montmorillonite: evaluation of the physical, mechanical and barrier properties; Biofilmes nanocompositos obtidos de isolado proteico de corvina (Micropogonias furnieri) e Montmorilonita: avaliacao das propriedades fisicas, meanicas e de barreira

    Energy Technology Data Exchange (ETDEWEB)

    Cortez-Vega, William Renzo, E-mail: williamvega@ufgd.edu.br [Universidade Federal da Grande Dourados (UFGD), MS (Brazil). Fac. de Engenharia; Bagatini, Daniela Cardozo; Souza, Juliana Tais Andreghetto de; Prentice, Carlos, E-mail: danielabagatini@hotmail.com, E-mail: ju.andreghetto@hotmail.com, E-mail: dqmprent@furg.b [Universidade Federal do Rio Grande (FURG), RS (Brazil). Escola de Quimica e Alimentos

    2013-06-15

    The objective of this study was to evaluate the properties of nanocomposite biofilms based on Whitemouth croaker (Micropogonias furnieri) protein isolate with organophilic clays. Initially the croaker protein isolate (CPI) was obtained using the pH shifting process from by-products of croaker industrialization. A Box and Behnken experimental design was used to develop the films, with three levels of CPI (2, 3.5 and 5 g.100 g{sup -1} solution), montmorillonite MMT clay (0.3, 0.5 and 0.7 g.100 g{sup -1} solution) and glycerol (25, 30 and 35 g.100g{sup -1} CPI). The polymeric films were produced by the 'casting technique'. The tensile strength values ranged from 7.2 to 10.7 MPa and the elongation values from 39.6 to 45.8 %. The water vapor permeability (WVP) values ranged from 3.2 to 5.5 (g.mm.m{sup -2}.d{sup -1}) and the CPI had an average protein content of 97.87 % protein (d. b.). It was concluded that the nanocomposite films produced from CPI with MMT were promising from the standpoint of their mechanical properties, visual appearance and easy handling, as well as for their low water vapor permeability and low water solubility. With respect to their mechanical properties, the concentrations of CPI and MMT were the main factors influencing the development of the nanocomposite films. The results obtained from the experimental design indicated that 3.5 g of CPI.100 g{sup -1}solution, 0.5 g of MMT.100 g{sup -1} solution and 30 g of glycerol.100 g{sup -1} CPI would be the ideal parameters for the development of nanocomposite films by 'casting'. (author)

  2. Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites.

    Science.gov (United States)

    Rana, Sravendra; Karak, Niranjan; Cho, Jae Whan; Kim, Young Ho

    2008-12-10

    Hyperbranched polyurethane (HBPU) nanocomposites with multi-walled carbon nanotubes (MWNTs) were prepared by in situ polymerization on the basis of poly(ε-caprolactone)diol as the soft segment, 4,4'-methylene bis(phenylisocyanate) as the hard segment, and castor oil as the multifunctional group for the hyperbranched structure. A dominant improvement in the dispersion of MWNTs in the HBPU matrix was found, and good solubility of HBPU-MWNT nanocomposites in organic solvents was shown. Due to the well-dispersed MWNTs, the nanocomposites resulted in achieving excellent shape memory properties as well as enhanced mechanical properties compared to pure HBPU.

  3. Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels.

    Science.gov (United States)

    Li, Changpeng; Mu, Changdao; Lin, Wei; Ngai, To

    2015-08-26

    In recent years, inorganic nanoparticles such as Laponite have frequently been incorporated into polymer matrixes to obtain nanocomposite hydrogels with hierarchical structures, ultrastrong tensibilities, and high transparencies. Despite their unique physical and chemical properties, only a few reports have evaluated Laponite-based nanocomposite hydrogels for biomedical applications. This article presents the synthesis and characterization of a novel, hemocompatible nanocomposite hydrogels by in situ polymerization of acrylamide (AAm) in a mixed suspension containing Laponite and gelatin. The compatibility, structure, thermal stability, and mechanical properties of the resulting NC gels with varied gel compositions were investigated. Our results show that the prepared nanocomposite hydrogels exhibit good thermal stability and mechanical properties. The introduction of a biocompatible polymer, gelatin, into the polymer matrix did not change the transparency and homogeneity of the resulting nanocomposite hydrogels, but it significantly decreased the hydrogel's pH-responsive properties. More importantly, gelatins that were incorporated into the PAAm network resisted nonspecific protein adsorption, improved the degree of hemolysis, and eventually prolonged the clotting time, indicating that the in vitro hemocompatibility of the resulting nanocomposite hydrogels had been substantially enhanced. Therefore, these nanocomposite hydrogels provide opportunities for potential use in various biomedical applications.

  4. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties.

  5. Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    P. Noorunnisa Khanam

    2016-01-01

    Full Text Available The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm. These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN. The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.

  6. Multi-scale effects on deformation mechanisms of polymer nanocomposites: Experimental characterisation and numerical study

    Science.gov (United States)

    Dong, Yu

    In order to make much stiffer, light weight and high performance material products, polymer nanocomposites play an emerging role in the material innovation. Unlike other thermoplastics, polymer nanocomposites are fabricated by introducing a small amount of solid nano-scale fillers (normally less than 5 wt%) such as nanoclay, carbon nanotubes or nanofibres into a plastic resin to dramatically enhance its stiffness, strength and thermal properties. The difference between nanocomposites and conventional fibre composites is that the added fillers are extremely small, only one-millionth of a millimetre thick, and provide a much larger interface area per unit volume for greatly improving the interfacial bonding effect between nanofillers and the polymer matrix. More importantly, polypropylene (PP)/clay nanocomposites have quite a high potential to form such innovative materials and replace the conventional plastics in many automotive and packaging applications. Nevertheless, the growth of PP/clay nanocomposites faces an obstacle of hydrophobic polymer's low interactions with hydrophilic clay. Maleic anhydride (MA) grafted PP (MAPP), commonly used as a compatibiliser, has been proven to facilitate a good clay dispersion within the PP matrix through its functionalised MA groups. But despite the great attention from the manufacturers and researchers in recent years, commercial PP/clay nanocomposites with reliable material properties are still limited in availability. The major problem stems from the complex influences of the material selection and processing methods. The present work developed a comprehensive approach from the material formulation and processing, experimental characterisation to the numerical modelling of PP/clay nanocomposites based on the finite element analysis (FEA) of micro/nanostructures. Initially, effects of the material selection including the clay type and content, MAPP content and PP matrix viscosity were investigated for the mechanical property

  7. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications.

    Science.gov (United States)

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2015-01-01

    An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites.

  8. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4% SiC nanocomposites for thermo-electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Suhrit, E-mail: suhritmula@gmail.com [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States); Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769008, Orissa (India); Sahani, Pankajini [Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769008, Orissa (India); Pratihar, S.K. [Department of Ceramic Engineering, National Institute of Technology, Rourkela 769008, Orissa (India); Mal, Siddhartha; Koch, Carl C. [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States)

    2011-05-25

    Highlights: {yields} Ball-milled Cu-Cr and Cu-Cr-SiC nanopowders successfully consolidated by microwave sintering. {yields} Addition of nanosize SiC in Cu-Cr leads to enhanced sintered density, wear and hardness. {yields} A good combination of wear resistance, hardness and electrical conductivity resulted in Cu{sub 94}Cr{sub 6}-4% SiC. {yields} Microwave suscepting SiC particles played a pivotal role in good densification retaining matrix grains <200 nm. - Abstract: The present work investigates the feasibility of microwave sintering to produce bulk metal-based nanocomposites having blend composition of Cu{sub 99}Cr{sub 1}, Cu{sub 94}Cr{sub 6}, Cu{sub 99}Cr{sub 1}-4 wt.% SiC and Cu{sub 94}Cr{sub 6}-4 wt.% SiC (average particle size {approx}30 nm). The 50 h ball-milled samples were uniaxially pressed, and then pellets were sintered at 800 deg. C, 900 deg. C and 1000 deg. C for a constant soaking period of 30 min by microwave sintering technique. Microstructural characterization was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sintered compacts resulted a highly densified compacts ({approx}95% relative density) while retaining ultra-fine grains (100-200 nm) in the matrix. The mechanical properties, namely, hardness and wear resistance, and electrical conductivity of the sintered specimens were also evaluated. The best combination of mechanical properties (e.g. hardness {approx}2.4 GPa) and electrical conductivity (60.3% of IACS) were obtained for Cu{sub 94}Cr{sub 6}-4 wt.% SiC sintered at 900 deg. C. This is possibly due to presence of ultra-fine grains in the bulk samples, good densification and proper bonding between particles. The results were analyzed in the light of interactions of microwaves between metallic matrix and microwave susceptive SiC particulates.

  9. Analysis of the Mechanisms Determining the Thermal and Electrical Properties of Epoxy Nanocomposites for High Voltage Applications

    NARCIS (Netherlands)

    Tsekmes, I.A.

    2016-01-01

    The addition of microsized fillers to polymers, in order to tailor their properties, has been extensively used in many industrial applications since the 1960s. The same approach applies to the field of electrical insulation. Epoxy resin is a widely used polymer in the electrical power sector, but it

  10. Analysis of the Mechanisms Determining the Thermal and Electrical Properties of Epoxy Nanocomposites for High Voltage Applications

    NARCIS (Netherlands)

    Tsekmes, I.A.

    2016-01-01

    The addition of microsized fillers to polymers, in order to tailor their properties, has been extensively used in many industrial applications since the 1960s. The same approach applies to the field of electrical insulation. Epoxy resin is a widely used polymer in the electrical power sector, but it

  11. Surface modification of Fe{sub 2}O{sub 3} nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe{sub 2}O{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Palimi, M.J. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M., E-mail: rostami-m@icrc.ac.ir [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Mahdavian, M.; Ramezanzadeh, B. [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Surface treatment of Fe{sub 2}O{sub 3} with amino propyl tri methoxy silane. • The surface chemistry pigments were affected by the chemical treatment. • Surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. • The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles. - Abstract: Fe{sub 2}O{sub 3} nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles.

  12. Conduction Mechanisms in Polypyrrole-Copper Nanocomposites

    Directory of Open Access Journals (Sweden)

    K. Praveenkumar

    2015-06-01

    Full Text Available By mixing independently synthesized polypyrole and copper nanoparticles in different proportions, nanocomposites were prepared. Bulk and surface structures were probed by X-ray diffraction and Scanning electron microscopes. DC resistivity with temperature as a variable of all the composites has been investigated. Conductivity has been calculated using resistivity and found it to be of the order 10 – 4 (Ω – 1m – 1, which is greater by one order of magnitude than that reported for polypyrole nanoparticles. Temperature behaviour of conductivity in all the samples revealed semiconducting nature. By applying Mott’s theory of small polaron hopping, activation energy for conductivity at high temperature has been determined. Activation energy is found to be increasing with increase in copper content in the composites. Using data deviated from small polaron model, the density of states at Fermi level is calculated by employing the theory of variable range hopping of polarons due to Mott. It is for the first time that PPy-Cu nanocomposites have been probed for structural and temperature dependence of conductivity and conduction mechanisms operated in these composites in different temperature regions have been understood.

  13. Sulfonated Styrene-(ethylene-co-butylene-styrene/Montmorillonite Clay Nanocomposites: Synthesis, Morphology, and Properties

    Directory of Open Access Journals (Sweden)

    Ganguly Anirban

    2007-01-01

    Full Text Available AbstractSulfonated styrene-(ethylene-butylene-styrene triblock copolymer (SSEBS was synthesized by reaction of acetyl sulfate with SEBS. SSESB-clay nanocomposites were then prepared from hydrophilic Na-montmorillonite (MT and organically (quaternary amine modified hydrophobic nanoclay (OMT at very low loading. SEBS did not show improvement in properties with MT-based nanocomposites. On sulfonation (3 and 6 weight% of SEBS, hydrophilic MT clay-based nanocomposites exhibited better mechanical, dynamic mechanical, and thermal properties, and also controlled water–methanol mixture uptake and permeation and AC resistance. Microstructure determined by X-ray diffraction, atomic force microscopy, and transmission electron microscopy due to better dispersion of MT nanoclay particles and interaction of MT with SSEBS matrix was responsible for this effect. The resulting nanocomposites have potential as proton transfer membranes for Fuel Cell applications.

  14. INVESTIGATION ON THE MECHANICAL AND MORPHOLOGICAL PROPERTIES OF FOAMED NANOCOMPOSITES BASED ON WOOD FLOUR/PVC/MULTI-WALLED CARBON NANOTUBE

    Directory of Open Access Journals (Sweden)

    Afshin Tavassoli Farsheh

    2011-02-01

    Full Text Available Recently, the use of nanoparticles in Wood Plastic Composites (WPCs has been considered by researchers. In this study, Multi-Walled Carbon Nanotubes (MWCNTs were compounded with PVC, wood-flour, and foaming agent in an internal mixer. The wood flour amount was constant at 40 phr. For CNT and chemical foaming agent , different levels of 0, 1, 2 phr and 0, 3, 6 phr were considered respectively. The samples were foamed via batch process using a compression molding machine at 180°C. Morphology, density, water absorption, thickness swelling, and tensile properties of foamed composites were evaluated as a function of CNT and chemical foaming agent contents. The experimental results indicated that in the presence of CNT, cell density increased and cell size decreased. Density of the foamed composites was not affected by chemical foaming agent contents. Water absorption and thickness swelling of samples were decreased as compared with wood plastic composite without CNTs. Also, the maximum tensile strength and modulus were increased by up to 20% and 23% respectively

  15. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  16. MORPHOLOGY,INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    贾德民

    2009-01-01

    A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix ...

  17. Properties of Wood/Montmorillonite Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LV Wenhua; ZHAO Guangjie

    2006-01-01

    With montmorillonite (MMT) organically modified as organophilic-MMT (OMMT) and water-soluble phenol formaldehyde resin (PF) as intermediate, the nanocomposites of Chinese fir (Cunninghamia lanceolata) wood and MMT, i.e. WMNC, were prepared via nano intercalation compounding, some properties of WMNC were analyzed. Results show that, compared with Chinese fir wood and its PF-impreg, WMNC has lower humidity and water absorption, better dimension stability, higher longitudinal compressive strength, abrasive resistance, fire-resistance, and water-leaching resistance with a very low mass ratio about 3% of MMT. The nano intercalation compounding of wood and exfoliated MMT nanolamellae is very promising. More studies should be carried out to fully reveal the nanosize effects and the special properties of WMNC.

  18. Magnetic properties of Fe1-xMnx/Fe nanocomposites

    DEFF Research Database (Denmark)

    Anhøj, Thomas Aarøe; Jacobsen, Claus Schelde; Mørup, Steen

    2004-01-01

    We have prepared nanocomposites of mixtures of ferromagnetic alpha-Fe and antiferromagnetic gamma-Fe50Mn50 nanoparticles, and studied their magnetic and structural properties by magnetization measurements, Mössbauer spectroscopy, and x-ray diffraction. A sample consisting of a 1:1 mixture...... of the two materials showed enhanced coercivity, but almost negligible exchange bias at room temperature after field cooling from 520 K. However, samples with higher content of gamma-Fe50Mn50 showed significant exchange bias. The mechanisms for exchange bias and enhanced coercivity in the system...

  19. A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites: Electrical and thermo-mechanical properties

    Directory of Open Access Journals (Sweden)

    B. B. Khatua

    2013-06-01

    Full Text Available In this work, polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites were prepared by simple melt mixing at a temperature (~350°C well above the processing temperature of PC, followed by compression molding, that exhibited percolation threshold as low as of 0.11 wt% and high electrical conductivity of 1.38x10–3 S•cm–1 at only 0.5 wt% MWCNT loading. Due to the lower interfacial energy between MWCNT and PC, the carbon nanotubes are excellently dispersed and formed continuous conductive network structure throughout the host polymer. AC electrical conductivity and dielectric permittivity of PC/MWCNT nanocomposites were characterized in a broad frequency range, 101–107 Hz. Low percolation threshold (pc of 0.11 wt% and the critical exponent (t of ~3.38 was resulted from scaling law equation. The linear plot of logσDC vs. p–1/3 supported the presence of tunneling conduction among MWCNTs. The thermal property and storage modulus of PC were increased with the incorporation of little amount of MWCNTs. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM confirmed the homogeneous dispersion and distribution of MWCNTs throughout the matrix phase.

  20. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  1. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Jamillah Amer [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Prajitno, Djoko Hadi [Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy, Bandung 40132 (Indonesia); Saidin, Syafiqah [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Nur, Hadi, E-mail: hadi@kimia.fs.utm.my [Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Department of Physics, Institut Sains dan Teknologi Nasional, Jl. Moh. Kahfi II, Jagakarsa, Jakarta Selatan 12640 (Indonesia); Hermawan, Hendra, E-mail: hendra.hermawan@gmn.ulaval.ca [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Québec City G1V 0A6 (Canada)

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO{sub 4}{sup 2−} ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite.

  2. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites

    Science.gov (United States)

    Palimi, M. J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.

    2014-11-01

    Fe2O3 nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles.

  3. Synergistic effects of alkylated graphene oxide on the properties of polypropylene-based carbon nanocomposites.

    Science.gov (United States)

    Yun, Young Soo; Pyo, Hye-Ri; Lee, Jae Yun; Chin, In-Joo; Jin, Hyoung-Joon

    2013-10-01

    Polypropylene (PP)/carbon black (CB)-alkylated graphene oxide (AGO) hybrid nanocomposites were prepared via solution process and the synergistic effects of AGO on the properties of the PP/CB nanocomposites were investigated. AGO at a content of only 0.2 wt% formed an overlapped network structure in the PP matrix and affected the electrical, thermal and mechanical properties of the PP/CB nanocomposites. Specifically, PP/CB (5 wt%)-AGO (0.2 wt%) nanocomposites exhibited an electrical percolation threshold at lower CB contents than the PP/CB nanocomposites did, and the sheet resistance was decreased to 2.3 x 10(7) omega/sq. The thermal degradation temperature and recrystallization temperature of the PP/CB (10 wt%) nanocomposites were increased by 11.3 and 1.6 degrees C, respectively, by the addition of 0.2 wt% AGO. In addition, the Young's modulus of the PP/CB (10 wt%) nanocomposite was increased from 438.1 to 540.1 MPa.

  4. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  5. Influence of Processing Conditions on the Mechanical Behavior of MWCNT Reinforced Thermoplastic Nanocomposites

    DEFF Research Database (Denmark)

    Doagou Rad, Saeed; Islam, Aminul; Jensen, Jakob Søndergaard

    2017-01-01

    The influence of the processing conditions and MWCNT content on the mechanical properties of PA6,6-based nanocomposites areinvestigated. In addition to the composition of the composites, the impact of manufacturing conditions such as dilution mechanism, twin-screwextruder mixing specifications...

  6. Reinforcement and degradation mechanisms in polymer/inorganic nanocomposites

    Science.gov (United States)

    Bogdanova, Irina Rifkatovna

    This project accomplished the following goals: preparation of polymer/alumina nanocomposites using a single-screw extrusion approach, a systematic investigation of interfacial interactions, the mechanisms for reinforcement, and the thermal degradation and flame retardant mechanisms in polymer nanocomposites. In this work it was found that the stereochemistry of polymer macromolecules and the shapes of nanoparticles are extremely important in determining the interfacial interactions between them. Understanding of the nature of these interactions can result in a comprehensive understanding of reinforcement mechanisms in polymer nanocomposites. It was found that aromatic polymers such as polycarbonate and polystyrene have stronger interfacial interactions with needle or whisker-shaped nanoparticles than with spherical-shaped nanoparticles, while linear aliphatic polymers such as polymethylmethacrylate showed strong interactions with spherical nanoparticles. Other factors affecting the strength of interfacial interactions such as size, surface modification and concentration of nanoparticles were also studied. The thermal stability of polymer nanocomposites was studied to unravel the thermal degradation mechanisms. It was found that the chemical nature of nanoparticles plays a significant role in the thermal decomposition of polymer nanocomposites. For instance, SEM studies of polymer nanocomposites chars revealed that alumina nanoparticles moved to the surface of nanocomposites, while silica nanoparticles stayed in the body of the material, which enhances char formation. The mechanisms for the flammability in polymer/alumina nanocomposites were found to depend on the viscosity of the melt flow of nanocomposites. FT-IR, MS, and surface free energy characterization for modified alumina surfaces were done. The compatibility of polymer molecules and nanoparticles was studied on the basis of surface free energy. It was shown that modification of the alumina surface with

  7. Clay-polymer Nanocomposites:Preparation, Properties, Future Applications and New Synthesis Approach of EPDM/clay Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    S. J. AHMADI; HUANG Yu-dong黄玉东; LI Wei李伟

    2004-01-01

    The synthtic routes, materials properties and future applications of clay-polymer nanocomposites are reviewed. Nannocomposites are composite materials.that contain particles in the size rang 1-100 nm. The particles generally have a high aspect ratio and a layered structure that maximizes bonding between the polymer and particle. Adding a small quantity of these additives (0.5% ~ 5% ) can increase many of the properties of polymer materials, such as tensile characteristics, heat distortion temperature, scratch resistance, gas permeability resistance, and flame retardancy. This new type of materials may be prepared via various synthetic routes comprising exfoliation adsorption, in-situ intercalative polymerization and melt intercalation. In this paper we report the new method for preparation EPDM-clay nanocomposites. The EPDM-clay nanocomposites were prepared by using two different approaches (direct and indirect). It is found that there is no difference between both methods but the direct method is easier, its cost is lower and industrially more practical. X-ray diffraction (XRD)and transmission electron microscopy (TEM) results showed a exfoliation structure. The mechanical properties of these nanocomposites significantly improved.

  8. Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites

    Directory of Open Access Journals (Sweden)

    Creusa Iara Ferreira

    2013-01-01

    Full Text Available The viscoelastic, mechanical and morphological properties of polypropylene/exfoliated graphite nanocomposites with different contents of nanofiller were investigated. According to transmission electron microscopy results, the nanofiller particles were homogeneously dispersed in the matrix. The rheological properties indicated that incorporation of graphite improved the matrix stiffness and had a reinforcing effect. Exfoliated graphite had a weak interaction with the polypropylene. The behavior of the nanocomposites was similar to that of polypropylene in terms of the interfacial detachment inferred from the transmission electron microscopy images and of their G' (storage and G'' (loss moduli, and viscosity. The mechanical properties of the nanocomposites compared to the matrix improved significantly for the flexural and storage moduli with little loss of impact strength.

  9. Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Creusa Iara; Oliveira, Ricardo Vinicius Bof de; Mauler, Raquel Santos, E-mail: raquel.mauler@ufrgs.br [Universidade Federal do Rio Grande do Sul (PGCIMAT/IQ/UFRGS), Porto Alegre, RS (Brazil); Bianchi, Otavio [Universidade de Caxias do Sul (PGMAT/CCET/UCS), RS (Brazil); Oviedo, Mauro Alfredo Soto [Braskem S/A, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The viscoelastic, mechanical and morphological properties of polypropylene/exfoliated graphite nanocomposites with different contents of nanofiller were investigated. According to transmission electron microscopy results, the nanofiller particles were homogeneously dispersed in the matrix. The rheological properties indicated that incorporation of graphite improved the matrix stiffness and had a reinforcing effect. Exfoliated graphite had a weak interaction with the polypropylene. The behavior of the nanocomposites was similar to that of polypropylene in terms of the interfacial detachment inferred from the transmission electron microscopy images and of their G' (storage) and G' (loss) moduli, and viscosity. The mechanical properties of the nanocomposites compared to the matrix improved significantly for the flexural and storage moduli with little loss of impact strength. (author)

  10. Novel Mechanically Stable, Heat Resistant and Nonflammable Functionalized Polystyrene/Expanded Graphite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kausar A.

    2014-12-01

    Full Text Available This study examined effect of inclusion of expanded graphite (Exp-G on morphology, thermal, mechanical and flame retardant properties of PS, nitro-substituted polystyrene (N-PS and amino-functional polystyrene (A-PS. FESEM showed exfoliated sheet morphology due to intercalation of N-PS and A-PS in expanded galleries. Tensile strength of A-PS materials (31.5-56.9 MPa was higher than PS and N-PS. 10 % weight loss of A-PS nanocomposites (482-518 °C was higher relative to pristine polymer and other nanocomposites. Cone calorimetry results revealed that there was lowering in PHHR of A-PS nanocomposites with 0.5 wt.% filler (428 kW/m2, while PS nanocomposites showed PHHR of 443 kW/m2.

  11. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  12. Preparation and Properties of Phenolic Resin/Montmorillonite Intercalation Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    YU Jian-ying; WEI Lian-qi; CAO Xian-kun

    2003-01-01

    Phenolic resin/ montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation. Properties and structure of the composites were investigated by using XRD , TG and test of softening point. It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites. Compared with phenolic resin, the intercalation nanocomposites have better heat-resistance, higher decomposition temperatures and less thermal weight-loss. However , these two intercalation methods have different effects on the softening point of the intercalation nanocomposites . Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites, while melt intercalation signifwantly increases the softening point of the intercalation nanocomposites ,probably due to the chemical actions happening in the process of melt intercalation.

  13. Preparation and Properties of Cellulose Laurate (CL/Starch Nanocrystals Acetate (SNA Bio-nanocomposites

    Directory of Open Access Journals (Sweden)

    Feng-Yuan Huang

    2015-07-01

    Full Text Available In the present paper, a series of totally novel bio-nanocomposite films from cellulose laurate (CL and starch nanocrystals acetate (SNA were fabricated, and the properties of nanocomposite films were investigated in detail. SNA was obtained by modifying starch nanocrystals (SNs produced by sulfuric acid hydrolysis of corn starch with acetic anhydride. The favorable dispersity of SNA in chloroform made it ready to convert into nanocomposite films with CL via casting/evaporation method. The transmittance, thermal behavior, mechanical properties, barrier properties and hydrophobicity of CL/SNA nanocomposite films were investigated with UV-vis spectrophotometer, simultaneous thermal analyzer (STA, universal tensile tester/dynamic thermomechanical analysis (DMA, water vapor permeation meter/oxygen permeability tester, and contact angle tester, respectively. The transmittance of nanocomposite films decreased with the increase of SNA content. Thermogravimetric analysis (TGA results showed that the introduction of SNA into CL matrix did not severely decrease the thermal behavior of CL/SNA nanocomposites. Moreover, non-linear and linear mechanical analysis reflected the enhancement of SNA. At lower contents of SNA (<5.0 wt%, the values of Young’s modulus, tensile strength and the elongation at break of nanocomposite films were comparable with those of neat CL. However, with the increase of SNA, the Young’s modulus and tensile strength were improved significantly and were accompanied by the decreased elongation at break. The water vapor permeability (WVP and oxygen permeability (PO2 of CL/SNA nanocomposite films were significantly improved by the addition of SNA.

  14. Effects of the deep rolling process on the surface roughness and properties of an Al-3vol%SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion

    Science.gov (United States)

    Sattari, Sajjad; Atrian, Amir

    2017-07-01

    Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%SiC nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating SiC nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.

  15. Study on Preparation and Properties of La2O3/MC Nylon Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano-La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6%, 12.7% and 16.3% higher respectively than those of MC nylon.

  16. 聚合物基有机-无机纳米复合材料的制备、性能及应用%Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真

    2003-01-01

    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mecha-nisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites arediscussed,and their potential applications are evaluated.

  17. Elucidation of structure-to-property relationships of piezoresistive polymer-carbon nanotube nanocomposites

    Science.gov (United States)

    Fang, Weiqing; Leung, Siu N.

    2015-07-01

    Polymeric nanocomposites (PNC) filled with carbon nanotubes (CNTs) possess superior multifunctionality, including electrical, thermal, and mechanical properties, making them an emerging family of advanced and multifunctional materials. In recent years, flexible polymer/CNT nanocomposites are increasingly being considered as promising alternatives to conventional smart materials. Their piezoresistive behaviours have led to many potential applications in strain sensing. Despite extensive experimental and theoretical research, the underlying mechanisms for polymer/CNT nanocomposites' piezoresistive behaviours have yet been elucidated. This paper reports comprehensive investigations on the mechanisms and the structure-to-property relationships of these piezoresistive nanocomposites. Quantitative analyses revealed that piezoresistivity of polymer/CNT nanocomposites is predominantly governed by the three mechanisms related to the strain-induced morphological evolution of the CNT network embedded in the polymer matrix. Furthermore, both CNT content and CNT alignment are key structural parameters that affect the contribution of different mechanisms on PNCs' piezoresistivity and the sensitivity of flexible PNCs as strain sensors. For PNC filled with high content of randomly dispersed CNTs, the piezoresistivity was predominantly caused by the breakage of a complex conductive network into two or more simpler conductive paths. For PNC filled with low content of highly aligned CNTs, the piezoresistivity was mainly contributed by the complete disruption of originally interconnected CNTs in electrically conductive pathways.

  18. Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al{sub 2}O{sub 3} nanocomposite fabricated via friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Ashjari, M., E-mail: Mhd_Ashjari@yahoo.com; Mostafapour Asl, A.; Rouhi, S.

    2015-10-01

    Friction stir processing, a lately devised grain refining and also microstructure homogenizing technique, has extensively been used on aluminum alloys. Significance of limiting the grain growth during the process, has made lots of researchers make endeavor to keep, as one of the ways of controlling grain growth, the process temperature low; one way of doing so, is performing the friction stir process under water, which keeps the peak temperature low and increases the cooling rate as well. In the present work, research has been done to make known the effects of doing submerged friction stir processing on mechanical properties of AA5083/Al{sub 2}O{sub 3p} composite. The process was completed on each sample without changing the rotation and traverse speed of the tool. The pin of the tool was a threaded cylindrical one. Tensile and micro-hardness tests were used to evaluate the effect of the process on these properties of the samples. Also to study the microstructure of the samples, optical microscopy (OM) and scanning electron microscopy (SEM) micrographs were used. The results show that, underwater friction stir process is capable of producing defect-free AA5083/Al{sub 2}O{sub 3p} nanocomposite. Analyzing the properties of the processed samples showed that, by significantly reducing the grain size, water environment has positive impact on the mechanical properties of the alloy; And that, Hall–Petch effect is more powerful than Orowan mechanism in enhancing the mechanical properties of the samples.

  19. Effects of concentration of maleic anhydride of compatibilizer on morphology and mechanical properties of PA6/AES blend-based nanocomposites; Efeito da concentracao do grupo anidrido maleico do compatibilizante na morfologia e propriedades mecanicas de nanocompositos de blendas PA6/AES

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.D. de; Castro, L.D.C.; Jung, M.K.; Pessan, L.A., E-mail: amandaoliveira82@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The effects of functionality and concentration of the maleic anhydride (MA) group of the copolymer methyl methacrylate-maleic anhydride (MMA-MA) on the morphology and mechanical properties of nanocomposites based on polyamide 6 (PA6)/acrylonitrile-EPDM-styrene (AES) were studied. The nanocomposites were prepared in a twin screw extruder and characterized by transmission electron microscopy (MET), wide angle X-ray diffraction (WAXD) and tensile and impact tests. The impact strength results showed that the addition of 5wt% of MMA-MA with 1.4wt% of MA is sufficient to increase the toughness of the nanocomposites. A significant increase of elastic modulus was observed for the nanocomposites with respect to the pure blend (PA6/AES). TEM micrographs showed that the clay layers exhibited exfoliated structure and are preferably located in the matrix phase. (author)

  20. Natural Rubber Nanocomposite with Human-Tissue-Like Mechanical Characteristic

    Science.gov (United States)

    Murniati, Riri; Novita, Nanda; Sutisna; Wibowo, Edy; Iskandar, Ferry; Abdullah, Mikrajuddin

    2017-07-01

    The blends of synthetic rubber and natural rubber with nanosilica were prepared using a blending technique in presence of different filler volume fraction. The effect of filler on morphological and mechanical characteristics was studied. Utilization of human cadaver in means of medical study has been commonly used primarily as tools of medical teaching and training such as surgery. Nonetheless, human cadaver brought inevitable problems. So it is necessary to find a substitute material that can be used to replace cadavers. In orthopaedics, the materials that resemble in mechanical properties to biological tissues are elastomers such as natural rubber (latex) and synthetic rubber (polyurethanes, silicones). This substitution material needs to consider the potential of Indonesia to help the development of the nation. Indonesia is the second largest country producer of natural rubber in the world. This paper aims to contribute to adjusting the mechanical properties of tissue-mimicking materials (TMMs) to the recommended range of biological tissue value and thus allow the development of phantoms with greater stability and similarity to human tissues. Repeatability for the phantom fabrication process was also explored. Characteristics were then compared to the control and mechanical characteristics of different human body part tissue. Nanosilica is the best filler to produce the best nanocomposite similarities with human tissue. We produced composites that approaching the properties of human internal tissues.

  1. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salih, A. M. [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia and Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum 1111 (Sudan); Ahmad, Mansor Bin; Ibrahim, Nor Azowa [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor (Malaysia); Dahlan, Khairul Zaman Hj Mohd [Polycomposite Sdn Bhd, No.75-2, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor (Malaysia); Tajau, Rida [Radiation Processing Technology Division, Nuclear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Mahmood, Mohd Hilmi [No. 107, Jalan 2, Taman Kajang Baru, Sg Jelok, 43000 Kajang, Selangor (Malaysia); Yunus, Wan Md. Zin Wan [Department of Chemistry, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000, Sungai Besi Camp, Kuala Lumpur (Malaysia)

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  2. ENHANCED MECHANICAL PROPERTIES OF POLYPROPYLENE/SILICA NANOCOMPOSITES WITH SURFACE MODIFICATION OF NANO-SILICA VIA IN SITU COPOLYMERIZATION OF METHYL METHACRYLATE AND BUTYL ACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Jing-zhi Zheng; Xing-ping Zhou; Ji-ru Ying; Xiao-lin Xie

    2009-01-01

    Nano-sized silica particles were modified with methacryloxy-propyltrimethoxysilane(MPS)followed by in situ copolymerization of methyl methacrylate(MMA)and butyl acrylate(BA).These modified nanoparticles were compounded with polypropylene(PP)to prepare PP/silica nanocomposites.PMMA grafted on nano-silica enhances the dispersion of the nanoparticles and interfacial adhesion,decreases the size of PP spherulites in nanocomposites and leads to increasing the Young's modulus and toughness of PP/silica nanocomposites at the same time.PBA grafted on nano-silica further improves the dispersion and the interfacial interaction,decreases the size of PP spherulites in PP/silica nanocomposite and leads to further toughening the PP/silica nanocomposite.But,its low modulus decreases the modulus of the PP/silica nanocomposite.The nanocomposites with PP and nano-silica particles modified by P(MMA-co-BA)have balanced stiffness and toughness due to the moderate modulus and solubility parameter of P(MMA-co-BA).

  3. Processing-structure-properties relationships in PLA nanocomposite films

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  4. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  5. Mechanical properties of polymeric composites with carbon dioxide particles

    Science.gov (United States)

    Moskalyuk, O. A.; Samsonov, A. M.; Semenova, I. V.; Smirnova, V. E.; Yudin, V. E.

    2017-02-01

    Nanocomposites consisting of a polymethylmethacrylate or polystyrene matrix with embedded silicon dioxide nanoparticles surface-modified by silazanes have been prepared by melting technology. The influence of particles on viscoelastic properties of the nanocomposites has been studied using dynamic mechanical analysis. It has been revealed that the addition of 20 wt % of SiO2 raises the flexural modulus of the nanocomposites by 30%.

  6. Study on the mechanical properties of a HMS-PP nanocomposite with a Brazilian bentonite; Estudo das propriedades mecanicas de um nanocomposito de HMS-PP com uma bentonita brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Fermino, D.M.; Parra, D.F.; Lugao, A.B.; Oliani, W.L., E-mail: mfermino@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Valenzuela-Diaz, F.R. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    This work concerns to the study of the mechanical behavior of the nanocomposite HMSPP - Polypropylene High Melt Strength (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba (PB), known as 'Chocolate' in concentrations of 5 and 10% by weight, comparison of to one American Clay, cloisite 20A nanocomposite was done. Agent compatibilizer polypropylene-graft, known as maleic anhydride (PP-g-AM) was addict 3% concentration thought technique melt intercalation using a twin-screw extruder and the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The morphology of the nanocomposites was studied by the technique of Scanning Electron Microscopy (SEM), while the organophilic bentonite and nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). (author)

  7. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating

    DEFF Research Database (Denmark)

    Torabinejad, V.; Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2017-01-01

    A sulfate-based electrolyte was used for synthesis of multilayer (ML) and monolithic Ni-Fe-Al2O3 coatings. The ML electrodeposits were achieved by consecutive alteration of duty cycle of pulsed current between two values of 20% and 90%. The influences of the ML microstructure on mechanical...... properties and wear resistance of composite coatings were studied. The shear punch testing method was employed to evaluate the room temperature mechanical properties. It was shown that increasing the pulse frequency and decreasing the pulse duty cycle improved the mechanical properties of monolithic coatings...

  8. Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding

    Energy Technology Data Exchange (ETDEWEB)

    Barick, A.K., E-mail: akbarick@gmail.com [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Tripathy, D.K., E-mail: dkt@rtc.iitkgp.ernet.in [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal (India)

    2010-01-15

    Thermoplastic polyurethane (TPU) nanocomposites based on organically modified layered silicate (OMLS) were prepared by melt intercalation process followed by compression molding. Different percentage of organoclays was incorporated into the TPU matrix in order to examine the influence of the nanoscaled fillers on nanostructure morphology and material properties. The microscopic morphology of the nanocomposites was evaluated by wide angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The observation revealed that both nanoclay-polymer interactions and shear stress developed during melt mixing are responsible for the effectively organoclay dispersion in TPU matrix resulting intercalated/exfoliated morphology. Thermal stability of the nanocomposites measured by thermogravimetric analysis (TGA) was improved significantly with the addition of nanoclay. The differential scanning calorimetry (DSC) analysis reveals that melting point of the nanocomposites increased with incorporation of nanoclay. The dynamic mechanical properties of the TPU nanocomposites were analyzed using a dynamic mechanical thermal analyzer (DMTA), which indicates that the storage modulus (E'), loss modulus (E''), and glass transition temperature (T{sub g}) are significantly increased with increasing nanoclay content.

  9. Preparation and properties of poly(vinylidene fluoride nanocomposites blended with graphene oxide coated silica hybrids

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-04-01

    Full Text Available Graphene oxide coated silica hybirds (SiO2-GO were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride (PVDF by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM, polarized optical microscopy (POM and Fourier transform infrared spectroscopy (FTIR. The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement.

  10. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    Science.gov (United States)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  11. Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites

    KAUST Repository

    Schmidt, Daniel F.

    2010-01-12

    We report the first in-depth comparison of the mechanical properties and equilibrium solvent uptake of a range of polysiloxane nanocomposites based on treated and untreated montmorillonite and fumed silica nanofillers. We demonstrate the ability of equilibrium solvent uptake data (and, thus, overall physical and chemical cross-link density) to serve as a proxy for modulus (combining rubber elasticity and Flory-Rehner theory), hardness (via the theory of Boussinesq), and elongation at break, despite the nonideal nature of these networks. In contrast, we find that tensile and tear strength are not well-correlated with solvent uptake. Interfacial strength seems to dominate equilibrium solvent uptake and the mechanical properties it predicts. In the montmorillonite systems in particular, this results in the surprising consequence that equilibrium solvent uptake and mechanical properties are independent of dispersion state. We conclude that edge interactions play a more significant role than degree of exfoliation, a result unique in the field of polymer nanocomposites. This demonstrates that even a combination of polymer/nanofiller compatibility and thermodynamically stable nanofiller dispersion levels may not give rise to reinforcement. These findings provide an important caveat when attempting to connect structure and properties in polymer nanocomposites, and useful guidance in the design of optimized polymer/layered silicate nanocomposites in particular. © 2009 American Chemical Society.

  12. Effect of sintering temperature and time on the mechanical properties of Co–Cr–Mo/58S bioglass porous nano-composite

    Indian Academy of Sciences (India)

    Majid Taghian Dehaghani; Mehdi Ahmadian

    2015-09-01

    In the present study, Co–Cr–Mo/58S bioglass porous nano-composite samples were successfully produced using 30 wt% carbonate hydrogen ammonium and polyvinyl alcohol solution as space holder and binder, respectively. The cold compacted samples were heated at 175°C for 2 h and then were heated to sinter at 1100, 1150, 1200 and 1250°C for 3, 6, 9 and 12 h. True porosity of samples was measured and the samples were characterized using the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM) and compressive test. Although the results of compression test for samples sintered at 1200 and 1250°C showed that the shape of stress–strain curves were similar to each other, compacted powders sintered at 1100 and 1150°C exhibited some fluctuations. Moreover, the compressive strength increased by decreasing the true porosity, indicating the role of high temperature on the sintering process. In addition, volume diffusion was predominant mechanism for these samples at sintering temperature of 1250°C. SEM images of the porous sample sintered at 1250°C for 3 h showed an appropriate range of pore sizes and interconnectivity. The XRD results showed that there are no contaminations and new phase is detectable in the sintered porous samples.

  13. EFFECT OF MONTMORILLONITE ADDITION ON MECHANICAL CHARACTERIZATIONS OF POLYIMIDE NANOCOMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Wang Xishu; Zhang Yihe; Fu Shaoyun; Feng Xiqiao

    2005-01-01

    Tensile deformation and fracture characteristics of polyimide/montmorillonite nanocomposite films are investigated to enhance the particular mechanical properties and understand the effective factors in dominating the mechanical properties of nanocomposites, such as the nanolayer, matrix and nanolayer/matrix interface. How to contribute to the mechanical properties of nanocomposite film is a very complex problem. In this paper, these factors are analyzed based on the addition amount and fracture mechanics. The results indicate that the specimen at 20 wt% MMT breaks prematurely with a fracture strength (σb=78 MPa) much lower than that (σb = 128 MPa) at the 1wt% MMT. However, the Young's modulus (3.2 GPa) of the former is higher than that (1.9 GPa) of the latter. Fractography also indicates that the brittle cracking formed in high content addition is the main cause of failure but microscopically ductile fracture morphology still exists locally. And for the trace element addition, the smaller threading slipping veins are evenly distributed on the entire fracture section of these films. Therefore, these characteristics would presumably be associated with both the concentration effects of size of nanocomposite sheets and the increasing deformation harmony in nanolayers.

  14. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  15. MORPHOLOGICAL AND MECHANICAL PROPERTIES OF POLYURETHANE/MONTMORILLONITE NANOCOMPOSITES BY IN SITU POLYMERIZATION%原位聚合法制备聚氨酯/蒙脱土复合材料研究

    Institute of Scientific and Technical Information of China (English)

    盛德鲲; 谈娟娟; 刘向东; 王丕新; 杨宇明

    2011-01-01

    采用原位聚合方法制备了蒙脱土( MMT)在聚氨酯(PUR)基体内呈不同分散状态的PUR/MMT复合材料.PUR预聚反应结束后加入MMT制备的PUR/MMT,MMT片层间距增大,基本以插层状态存在;利用异氰酸酯与MMT上的羟基官能团反应,使部分PUR分子链的硬段部分连接在MMT片层之上,可以使MMT片层在PUR基体内几乎完全剥离、更加均匀地分散.MMT连接在PUR分子链的硬段上,使MMT片层与PUR硬段相区之间的相互作用更强、对PUR软段相区的影响减弱,促使PUR软硬段两相之间出现更大程度的微相分离,导致了材料软段结晶温度的降低和力学性能的提高.%Two types of polyurethane/montmorillonite (PUR/MMT) nanocomposites with different disperssion conditions of silicate layers were prepared via in situ polymerization technology. The MMT added after prepolymerization could not disperse effectively and led to mostly intercalated nanocomposites, while the toluene diisocynate (TDI) of hard segment in PUR matrix grafted on the surface of the silicate layers before polymerization (named it as T-MMT PUR), The MMT showed a nearly full exfoliated structure and well dispersed in PUR matrix, which were due to the improvement of the dispersion and interfacial interaction between PUR chains and silicate layers of T-MMT PUR nanocomposites. The silicate layers grafted on the hard segment of the T-MMT PUR nanocomposites, enhanced the interaction between hard segment and the silicate layers, as well as weaken the interaction between soft segment and the silicate layers, which led to the intensifying of the phase separation between the soft segment and hard segment, and further caused the enhancement of mechanical properties and decrease of soft segment crystallization temperature.

  16. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites.

    Science.gov (United States)

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P; Ovchinnikova, Olga S; Jesse, Stephen; Martin, Halie; Etampawala, Thusitha; Dadmun, Mark; Sokolov, Alexei P

    2016-06-08

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

  17. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.

    Science.gov (United States)

    Huang, Yao; Yao, Mengyu; Zheng, Xing; Liang, Xichao; Su, Xiaojuan; Zhang, Yu; Lu, Ang; Zhang, Lina

    2015-11-09

    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering.

  18. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  19. Moisture influence on the electrical properties of cross-linked polyethylene/silica nanocomposites

    Science.gov (United States)

    Hui, Le

    During the last twenty years, nanodielectrics have emerged as an important dielectric material system to provide advanced dielectric properties for power equipment applications, among which, cross-linked polyethylene (XLPE)/silica nanocomposites are regarded as a promising candidate for power cables in the future. Despite the various improvements achieved in XLPE/silica nanocomposites compared to XLPE base resin, the influence of moisture has not been fully explored. For cable insulation materials, water treeing is of particular interest. Therefore, this thesis focuses on the influence of moisture on the electrical properties of XLPE/silica nanocomposites to reveal the facts and mechanisms related to the moisture diffusion and aging phenomena in XLPE/silica nanocomposites in a humid environment. First, moisture diffusion was monitored in different humid environments. XLPE/silica nanocomposites were found to have an increased moisture uptake compared to XLPE base polymer due to the inclusion of silica particles. Water shells, which have a higher water weight percent than that in XLPE matrix, are believed to form around silica particles/aggregates. Second, electrical characterization techniques such as dielectric spectroscopy, pulseelectro- acoustic analysis, 60 Hz AC breakdown as well as water treeing were utilized to investigate the influence of moisture on the electrical properties of XLPE/silica nanocomposites. Water shells and the change of the inter-particle/cluster distances due to loading levels and dispersion state are believed to be the two major factors that govern the dielectric behavior in wet XLPE/silica nanocomposites. At a high loading level of 12.5 wt%, percolation of water shells drastically changed the dielectric performance of the composites including increased permittivity, conduction and reduced dielectric strength. However, 5 wt% nanocomposites, even with elevated moisture content, perform comparably to XLPE. At the same time, water treeing was

  20. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  1. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  2. Thermoelectric Properties of Polyacrylonitrile-Based Nanocomposite

    Science.gov (United States)

    Yusupov, K.; Khovaylo, V.; Muratov, D.; Kozhitov, L.; Arkhipov, D.; Pryadun, V.; Vasiliev, A.

    2016-07-01

    A polyacrylonitrile (PAN)-based nanocomposite with 20 wt.% Fe-Co/C has been prepared by infrared pyrolysis. Morphological and structural studies revealed that the composite consists of polyacrylonitrile as a plastifier, Fe-Co as a filler alloy, and carbon, which was formed during combustion of the polymer. Electrical resistivity and thermal conductivity of the composite are rather low at ambient temperatures and do not exceed 1 Ohm m and 0.5 W/m K, respectively. However, due to a very low Seebeck coefficient, the calculated figure of merit ZT of the nanocomposite does not exceed 2.1 × 10-8.

  3. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    Science.gov (United States)

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  4. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    Science.gov (United States)

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications.

  5. Comparison Between Structures and Properties of ABS Nanocomposites Derived from Two Different Kinds of OMT

    Science.gov (United States)

    Cai, Yibing; Huang, Fenglin; Xia, Xin; Wei, Qufu; Tong, Xutao; Wei, Anfang; Gao, Weidong

    2010-03-01

    In the present work, the hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) were used to modify montmorillonite (MMT) based on the structural characteristic of the engineering thermoplastic acrylonitrile-butadiene-styrene copolymer (ABS) and the principle of “like dissolves like”, and then used to prepare the ABS/organic-modified montmorillonite (OMT) nanocomposites by melt-intercalation method. The influences of two different kinds of OMT on the structures and properties of the ABS nanocomposites were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), thermogravimetric analyses (TGA), Cone calorimetry and dynamic mechanical analyses (DMA), respectively. The increased basal spacing showed that ABS intercalated into the gallery of the OMT. The morphology indicated that the OMT dispersed well in the ABS resin and the intercalated structure for ABS/OMT-P16 nanocomposites and intercalated-exfoliated structure for ABS/OMT-CPC nanocomposites were respectively formed. The TGA results revealed that onset temperature of thermal degradation and charred residue at 700 °C of the ABS nanocomposites was remarkably enhanced compared to the pure ABS. It was also found from the Cone calorimetry tests that the peak of heat release rate (PHRR) decreased significantly, contributing to the reduced flammability. The DMA measurements indicated that the loading of silicate clays improved the storage modulus of the ABS resin. The partial exfoliation of the OMT-CPC within ABS nanocomposites was advantageous to increasing thermal stability properties, decreasing flammability properties, and improving mechanical properties.

  6. Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using Nanoindentation and microtensile testing.

    Science.gov (United States)

    Rama Sreekanth, P S; Kanagaraj, S

    2013-02-01

    A thrust on the enhancement of the mechanical properties of ultra high molecular weight polyethylene (UHMWPE) to enhance its longevity has taken a new direction with the advent of nanomaterials and carbon nanotubes. In the present work, UHMWPE was reinforced by chemically treated multi walled carbon nanotubes (MWCNTs) at different concentrations such as 0.5, 1.0, 1.5, 2.0, 2.5 and 5 wt%. The mechanical properties of nanocomposites were studied using a Nanoindentation technique and micro-tensile testing. It is observed that the toughness, ultimate stress, fracture strain, and yield stress of medical grade UHMWPE were enhanced by 176, 93, 70, and 44%, respectively at an optimum concentration of 2 wt% MWCNTs reinforcement. The mechanism for the enhancement of mechanical properties was confirmed by the micro-Raman and calorimetric technique. The reduction of the mechanical properties of nanocomposites beyond optimum concentration of MWCNTs was confirmed by the rheological studies. The generation of microvoids on the nanocomposites was verified by the scanning electron microscopy technique. Nanoindentation characteristics revealed that the surface hardness of UHMWPE was increased by 75% by the reinforcement of 2 wt% of MWCNTs. The Young's modulus obtained at the surface of nanocomposites was observed to be 9.8% higher than that of surface layer removed sample for 2 wt% nanocomposite. It is concluded that the presence of MWCNTs enhanced the mechanical properties and surface properties of medical grade UHMWPE.

  7. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2015-12-01

    Full Text Available The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol–halloysite nanotubes (PVA–HNT, and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA–HNT nanocomposites can be a potential way to address some of PVA’s limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA–HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA–HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

  8. Preparation and Property Study of Graphene Oxide Reinforced Epoxy Resin Insulation Nanocomposites with High Heat Conductivity

    Science.gov (United States)

    Shan, Xinran; Liu, Yongchang; Wu, Zhixiong; Liu, Huiming; Zhang, Zhong; Huang, Rongjin; Huang, Chuanjun; Liu, Zheng; Li, Laifeng

    2017-02-01

    In this paper, graphene oxide reinforced epoxy resin nanocomposites were successfully prepared. Compared with unmodified epoxy resin, the heat conductivity of the graphene oxide reinforced epoxy resin nanocomposites had been improved while keeping the insulation performance. The tensile strength was investigated at both room temperature (300 K) and liquid nitrogen temperature (77 K). And the fracture surfaces were examined by scanning electron microscopy (SEM). Results showed that the materials had excellent mechanical properties, which could be advantages for the applications as insulating layer in low temperature superconducting magnets.

  9. Nanocomposites: synthesis, structure, properties and new application opportunities

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Cury Camargo

    2009-03-01

    Full Text Available Nanocomposites, a high performance material exhibit unusual property combinations and unique design possibilities. With an estimated annual growth rate of about 25% and fastest demand to be in engineering plastics and elastomers, their potential is so striking that they are useful in several areas ranging from packaging to biomedical applications. In this unified overview the three types of matrix nanocomposites are presented underlining the need for these materials, their processing methods and some recent results on structure, properties and potential applications, perspectives including need for such materials in future space mission and other interesting applications together with market and safety aspects. Possible uses of natural materials such as clay based minerals, chrysotile and lignocellulosic fibers are highlighted. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.

  10. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  11. Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films

    Indian Academy of Sciences (India)

    Mudassir Hasan; Arghya Narayan Banerjee; Moonyong Lee

    2015-04-01

    The present paper reports the fabrication of TiO2@PVC nanocomposites by incorporating TiO2 in polyvinyl chloride (PVC) followed by solution casting to prepare TiO2@PVC nanocomposite thin films. The asprepared TiO2@PVC nanocomposite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, thermogravimetric analysis, optical spectroscopy and mechanical strength analyses. The TiO2@PVC nanocomposites were found to be thermally and mechanically more stable compared with pure PVC. The anatase TiO2 in the TiO2@PVC nanocomposite showed a lower indirect band gap compared with pure TiO2, which can be attributed to the strain within the nanocomposite, thereby affecting the band-structure of the nanocomposite. Significant enhancement in the mechanical properties of TiO2@PVC compared with pure PVC was observed with a 10 wt% TiO2 loading, such as a 50% increase in Young's modulus and almost 100% improvement in the tensile strength.

  12. Electroactive Shape Memory Property of a Cu-decorated CNT Dispersed PLA/ESO Nanocomposite

    Directory of Open Access Journals (Sweden)

    Javed Alam

    2015-09-01

    Full Text Available Shape memory polymer (SMP nanocomposites with a fast electro-actuation speed were prepared by dispersing Cu-decorated carbon nanotubes (CNTs (Cu-CNTs, 1 wt %, 2 wt %, and 3 wt % in a polylactic acid (PLA/epoxidized soybean oil (ESO blend matrix. The shape memory effect (SME induced by an electrical current was investigated by a fold-deploy “U”-shape bending test. In addition, the Cu-CNT dispersed PLA/ESO nanocomposite was characterized by atomic force microscopy (AFM, dynamic mechanical analysis (DMA and tensile and electrical measurements. The results demonstrated that the SME was dependent on the Cu-CNT content in the nanocomposites. When comparing the SMEs of the nanocomposite specimens with different Cu-CNT contents, the 2 wt % Cu-CNT dispersed system exhibited a shape recovery as high as 98% within 35 s due to its higher electrical conductivity that results from uniform Cu-CNT dispersion. However, the nanocomposites that contained 1 wt % and 3 wt % Cu-CNTs required 75 s and 63 s, respectively, to reach a maximum recovery level. In addition, the specimens exhibited better mechanical properties after the addition of Cu-CNTs.

  13. Influence of processing variables on the mechanical behavior of HDPE/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Renata Barbosa

    2012-06-01

    Full Text Available Nanocomposites were processed using the technique of melt intercalation, starting from a concentrated polar compatibilizer/organoclay (PE-g-MA/organoclay prepared in an internal mixer. The concentrate was incorporated into the matrix of HDPE by two methods: I counter-rotating twin-screw extruder and II co-rotating twin-screw extruder, using two screw profiles (ROS and 2KB90. After extrusion, the specimens of the extruded composites were injection molded. The X-ray diffraction (XRD technique was used to analyze the degree of expansion of the prepared clays. To analyze the degree of exfoliation of obtained nanocomposites, XRD and TEM (transmission electron microscopy were used. The influence of processing variables on mechanical properties was studied through the behavior of the modulus and tensile strength of nanocomposite systems. By XRD and TEM, it was seen that the clay was well dispersed in the matrix and the presence of intercalated and partially exfoliated hybrid structure for nanocomposites was observed when the systems were prepared in counter-rotating twin-screw extruder. A similar behavior was observed in the use of screws (2KB90 or ROS of the nanocomposites, with a reduction in modulus and tensile strength. Although the mixing process by extruding be the most common industrial practice, and also it is the preferred strategy for the preparation of polymer nanocomposites, much of the literature was directed to the study of chemical modification of clay, type and level of compatibilizer, in order to maximize the compatibility between clay and the polymeric matrix. On the other hand, studies about the role of the processing and configurations of screws are relatively scarce. The main motivation of this work was to expand and to contribute to spread a better understanding of the effects of processing to obtain polymer nanocomposites.

  14. The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites.

    Science.gov (United States)

    Rueda, Lorena; Garcia, Inaki; Palomares, Teodoro; Alonso-Varona, Ana; Mondragon, Inaki; Corcuera, Marian; Eceiza, Arantxa

    2011-06-15

    Precursors of polyurethane chains have been reacted by means of in situ polymerization with organically modified montmorillonite clay to obtain polyurethane nanocomposites containing from 1 to 4 wt % of nanoreinforcement. The effective final dispersion of inorganic component at nanometric scale was investigated by X-ray diffraction, atomic force microscopy, and transmission electron microscopy. In addition, the effect of the nanoreinforcement incorporation on thermal and mechanical behavior of polyurethane nanocomposites was evaluated. Nanocomposites showed similar mechanical properties to polyurethanes containing high-hard segment contents with higher tensile modulus and a decrease in elastomeric properties of polyurethane materials. Finally, biocompatibility studies using L-929 fibroblast have been carried out to examine in vitro cell response and cytotoxicity of the matrix and their nanocomposite materials. Results suggested that the organic modifier in the clay is unsuitable for biomedical devices in spite of the fact that the matrix is a good candidate for cell adhesion and proliferation. Copyright © 2011 Wiley Periodicals, Inc.

  15. Textural properties of poly(glycidyl methacrylate) : acid-modified bentonite nanocomposites

    NARCIS (Netherlands)

    Zunic, M.; Milutinovic-Nikolic, A.; Nastasovic, A.; Vukovic, Z.; Loncarevic, D.; Vukovic, I.; Loos, K.; ten Brinke, G.; Jovanovic, D.; Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van; Žunić, M.; Milutinović-Nikolić, A.; Nastasović, A.; Vuković, Z.; Lončarević, D.; Vuković, I.; Jovanović, D.

    The aim of this study was to obtain enhanced textural properties of macroporous crosslinked copolymer poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) by synthesizing nanocomposites with acid-modified bentonite. Nanocomposites were obtained by introducing various amounts of

  16. Effects of Plastizers on the Structure and Properties of Starch-Clay Nanocomposites

    Science.gov (United States)

    Biodegradable nanocomposites were successfully fabricated from corn starch and montmorillonite (MMT) nanoclays by melt extrusion processing. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and film propertie...

  17. Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films.

    Science.gov (United States)

    Alcantara, Gustavo B; Paterno, Leonardo G; Fonseca, Fernando J; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2013-12-07

    Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan δ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle-polyelectrolyte interfaces.

  18. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  19. The biocompatibility and anti-biofouling properties of magnetic core-multishell Fe@C NWs-AAO nanocomposites.

    Science.gov (United States)

    Lindo, André M; Pellicer, Eva; Zeeshan, Muhammad A; Grisch, Roman; Qiu, Famin; Sort, Jordi; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2015-05-28

    Soft-magnetic core-multishell Fe@C NWs-AAO nanocomposites were synthesized using anodization, electrodeposition and low-pressure chemical vapour deposition (CVD) at 900 °C. High chemical and mechanical stability is achieved by the conversion from amorphous to θ- and δ-Al2O3 phases above 600 °C. Moreover, the surface properties of the material evolve from bioactive, for porous AAO, to bioinert, for Fe@C NW filled AAO nanocomposite. Although the latter is not cytotoxic, cells do not adhere onto the surface of the magnetic nanocomposite, thus proving its anti-biofouling character.

  20. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho [Univ. of Suwon, Hwaseong (Korea, Republic of); Lee, Young Chul [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2016-02-15

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

  1. Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites

    OpenAIRE

    Youssef Mobarak; Bassyouni, M.; Almutawa, M.

    2013-01-01

    Materials selection process for electrical insulation application was carried out using Cambridge Engineering Selector (CES) program. Melt mixing technique was applied to prepare polyvinyl-chloride- (PVC-) nanofumed silica and nanomontmorillonite clay composites. Surface analysis and particles dispersibility were examined using scanning electron microscope. Dielectrical properties were assessed using Hipot tester. An experimental work for dielectric loss of the nanocomposite materials has bee...

  2. Assembly of PbTe/Pb-based nanocomposite and photoelectric property.

    Science.gov (United States)

    Zong, Zhaocun; Wang, Hongxia; Kong, Lingmin

    2013-04-24

    PbTe/Pb-based nanocomposite was assembled by combining the regular PbTe/Pb nanostructure and the ZnxMn1-xS nanoparticles; the photoelectric property of the nanocomposite was measured in situ. The results showed that the through current of the nanocomposite had an obvious increase compared to that of the individual PbTe/Pb nanomaterial under the same irradiation conditions. The improvement of photoelectric performance would be attributed to the synergistic effect brought by the incident light and exciting light of the ZnxMn1-xS nanoparticles. The result implied that the underlying mechanism could be used to improve the performance of nano-optoelectronic devices and the light-use efficiency of solar devices.

  3. Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties

    Science.gov (United States)

    Xiao, Yinglin; Zai, Jiantao; Tian, Bingbing; Qian, Xuefeng

    2017-07-01

    A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g-1 at a current of 1 A g-1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.

  4. Optical properties of CdS-glass nanocomposites

    Science.gov (United States)

    Popov, Ivan D.; Kuznetsova, Yulia V.; Sergeev, Alexander A.; Rempel, Svetlana V.; Rempel, Andrey A.

    2017-09-01

    CdS-glass nanocomposite included CdS nanoparticles in it have been synthesized. CdS nanoparticles in silicate glass matrix have an average diameter from 3 to 7.5 nm depending on a heat treatment regime. As was demonstrated using the methods of spectrophotometry and luminescence in the UV, visible and NIR optical ranges, optical properties of the nanocomposite significantly depends on the size of nanoparticles. The high temperature treatment has lead to increase the luminescence intensity. At the same time, the contribution of the lifetime of the slower decay component was increased.

  5. Preparation, Characterization and Dielectric Properties of Epoxy and Polyethylene Nanocomposites

    Science.gov (United States)

    Zhang, Chao; Mason, Ralf; Stevens, Gary

    Two very different kinds of polymer nanocomposites have been prepared, characterized and investigated by dielectric spectroscopy to investigate the effects of polymer-nanofiller matrix difference on the dielectric response of nanodielectric composites. Linear low density polyethylene (LLDPE) is a non-polar thermoplastic which has a high viscosity even in the melt phase and bisphenol-A epoxy resin with an anhydride hardener is a polar low viscosity thermosetting resin. Nanometric sized aluminium oxide filler was chosen as the common inorganic phase for both nanodielectrics. Generally, nanoparticles aggregate easily and are difficult to separate due to strong surface interactions. In this study various mixing methods were employed from ultrasonic liquid processing to controlled shear flow mixing to investigate the dispersion of the nanofillers. The resultant epoxy and polyethylene nanocomposites were characterized with SEM, TEM, and DSC. The dielectric properties and frequency response of the nanocomposites were measured in the frequency domain from 10-2 Hz to 106 Hz at different temperatures. In polyethylene nanocomposites, significant interfacial polarization is clearly seen. However, in epoxy nanocomposites, no obvious interfacial polarization is found. The results are discussed in terms of the difference in the electrical characteristics of the interfacial region between the polymers and the nano-alumina.

  6. Synthesis and properties of new polyimide/clay nanocomposite films

    Indian Academy of Sciences (India)

    Yagoub Mansoori; Somayeh Shah Sanaei; Mohammad-Reza Zamanloo; Gholamhassan Imanzadeh; Seyed Vahid Atghia

    2013-10-01

    A series of polymer–clay nanocomposite (PCN) materials consisting of polyimide and typical clay were prepared by solution dispersion. Quaternary alkylammonium modified montmorillonite, Cloisite 20A, was used as organoclay. Poly(amic acid) solution was prepared fromthe reaction of benzophenone-4,4′,3,3′-tetracarboxylic dianhydride and 2-(5-(3,5-diaminophenyl)-1,3,4-oxadiazole-2-yl) pyridine in dimethylacetamide. Thermal imidization was performed on poly(amic acid)/organoclay dispersion in a regular temperature-programmed circulation oven. The study of interlayer -spacing with X-ray diffraction pattern indicates that an exfoliated structure may be present in the nanocomposite 1%. Intercalated structures were obtained at higher organoclay loadings. Nanocomposites were studied using thermogravimertic analysis and differential scanning calorimetry. Nanocomposites exhibit higher glass transition temperature and improved thermal properties compared to neat polyimide due to the interaction between polymer matrix and organoclay particles. The results are also compared with data of a similar work. Morphology study with scanning electron microscopy showed that the surface roughness in nanocomposite 1%increased with respect to pristine polyimide. Solvent uptake measurements were also carried out for the prepared materials. Maximum solvent adsorption was observed for dimethyl sulfoxide (DMSO). It was found that the solvent uptake capacity decreased with increasing clay content.

  7. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nitturi Naresh Kumar

    2016-08-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is widely used in artificial joints in the replacement of knee, hip and shoulder that has been impaired as a result of arthritis or other degenerative joint diseases. The UHMWPE made plastic cup is placed in the joint socket in contact with a metal or ceramic ball affixed to a metal stem. Effective reinforcement of multi-walled carbon nanotubes (MWCNTs in UHMWPE results in improved mechanical and tribological properties. The hydrophobic nature of the nanocomposites surface results in lesser contact with biological fluids during the physiological interaction. In this project, we investigate the UHMWPE/MWCNTs nanocomposites reinforced with MWCNTs at different concentrations. The samples were treated with cold argon plasma at different exposure times. The water contact angles for 60 min plasma-treated nanocomposites with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % MWCNTs were found to be 55.65°, 52.51°, 48.01°, 43.72°, and 37.18° respectively. Increasing the treatment time of nanocomposites has shown transformation from a hydrophobic to a hydrophilic nature due to carboxyl groups being bonded on the surface for treated nanocomposites. Wear analysis was performed under dry, and also under biological lubrication, conditions of all treated samples. The wear factor of untreated pure UHMWPE sample was reduced by 68% and 80%, under dry and lubricated conditions, respectively, as compared to 2 wt % 60 min-treated sample. The kinetic friction co-efficient was also noted under both conditions. The hardness of nanocomposites increased with both MWCNTs loading and plasma treatment time. Similarly, the surface roughness of the nanocomposites was reduced.

  8. Synthesis and properties of epoxy-phenolic clay nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available An epoxy-phenolic resin suitable for use as a composite matrix was reinforced with modified nanoclay (montmorillonite type. Characterization by x-ray diffraction and transmission electron microscopy (TEM demonstrated that intercalated nanocomposites were formed with an inter-gallery distance of approximately 10 nm. The influence of nanoparticles on tensile strength and modulus, fracture toughness, and impact toughness was measured and compared with the unreinforced polymer. The results revealed that the maximum enhancement in stiffness and toughness was achieved with 2.5 wt% filler content. The enhancement in toughness behavior was attributed to the activation of multiple energy-dissipating damage mechanisms in the nanocomposites.

  9. Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams

    Directory of Open Access Journals (Sweden)

    M. Antunes

    2010-01-01

    Full Text Available This work presents the preparation and characterization of compression-moulded montmorillonite and carbon nanofibre-polypropylene foams. The influence of these nanofillers on the foaming behaviour was analyzed in terms of the foaming parameters and final cellular structure and morphology of the foams. Both nanofillers induced the formation of a more isometric-like cellular structure in the foams, mainly observed for the MMT-filled nanocomposite foams. Alongside their crystalline characteristics, the nanocomposite foams were also characterized and compared with the unfilled ones regarding their dynamic-mechanical thermal behaviour. The nanocomposite foams showed higher specific storage moduli due to the reinforcement effect of the nanofillers and higher cell density isometric cellular structure. Particularly, the carbon nanofibre foams showed an increasingly higher electrical conductivity with increasing the amount of nanofibres, thus showing promising results as to produce electrically improved lightweight materials for applications such as electrostatic painting.

  10. Fabrication and Properties of Ethylene Vinyl Acetate-Carbon Nanofiber Nanocomposites

    Directory of Open Access Journals (Sweden)

    George JinuJacob

    2008-01-01

    Full Text Available Abstract Carbon nanofiber (CNF is one of the stiffest materials produced commercially, having excellent mechanical, electrical, and thermal properties. The reinforcement of rubbery matrices by CNFs was studied in the case of ethylene vinyl acetate (EVA. The tensile strength was greatly (61% increased, even for very low fiber content (i.e., 1.0 wt.%. The surface modification of the fiber by high energy electron beam and gamma irradiation led to better dispersion in the rubber matrix. This in turn gave rise to further improvements in mechanical and dynamic mechanical properties of EVA. The thermal conductivity also exhibited improvements from that of the neat elastomer, although thermal stability of the nanocomposites was not significantly altered by the functionalization of CNFs. Various results were well supported by the morphological analysis of the nanocomposites.

  11. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  12. Preparation and mechanical properties of PNIPAM/Laponite nanocomposite hydrogel microspheres%PNIPAM/锂藻土纳米复合凝胶微球的制备及其弹性力学性能

    Institute of Scientific and Technical Information of China (English)

    原玫; 巨晓洁; 谢锐; 汪伟; 褚良银

    2014-01-01

    results show that PNIPAM/Laponite nanocomposite hydrogel microspheres exhibit elastic deformation at both 25℃ and 37℃,and the obtained force-deformation experimental data fit well with the Hertz Theory. The Laponite content in the nanocomposite hydrogel microspheres significantly affects their mechanical properties and temperature-responsive behaviors. With the increase of Laponite content,the thermo-responsive volume change degree of the nanocomposite hydrogel microspheres decreases. But the Young’s modulus of PNIPAM/Laponite nanocomposite hydrogel microspheres increases with the increase of the Laponite content at both 25℃ and 37℃. Furthermore,the Young’s modulus of PNIPAM/Laponite nanocomposite hydrogel microspheres at 37℃ is much larger than that at 25℃ due to the thermo-induced volume shrinkage and rigidity increase. The results in this study provide a valuable guidance for designing smart hydrogel microspheres for practical applications.

  13. Influence of mold temperature associated with glass fiber on the mechanical and thermal properties of a (PA6/GF/MMT) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Renato Adriano, E-mail: eng.damiani@hotmail.com [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Programa de Pos-Graduacao em Ciencias e Engenharia de Materiais; Duarte, Glaucea Warmeling; Riella, Humberto Gracher, E-mail: gwduarte@gmail.com, E-mail: huberto.riella@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Silva, Luciano Luiz; Mello, Josiane Maria Muneron de; Fiori, Marcio Antonio; Batiston, Eduardo Roberto, E-mail: marciofiori@gmail.com, E-mail: lucianols@unochapeco.edu.br, E-mail: josimello@unochapeco.edu.br, E-mail: erbatiston@unochapeco.edu.br [Universidade Comunitaria da Regiao de Chapeco (UNOCHAPECO), Chapeco, SC (Brazil)

    2017-01-15

    This work describes the second of a series of studies of the effects of injection molding conditions on the mechanical and thermal properties of Polyamide 6/Glass Fiber/Montmorillonite (PA6/GF/MMT) composites and was motivated by the lack of information about how the processing variables influence on the properties of three-phase composites containing fiber glass. By this time, the effects of the injection molding temperature associated with the fiber glass percentage on the mechanical and thermal properties of the composite are investigated. Some samples were processed, following a statistical experimental factorial planning, varying the mold temperature and the fiber glass percentage and maintaining 5 wt % of the MMT. The samples were submitted to tensile and flexural tests, XRD, SEM and DSC. The studies showed that an increase in the mold temperature and the fiber percentage improves the maximum tensile and flexural stresses. The increased mold temperature slows the cooling rate, which, over time, decreases the degree of crystallinity. However, there is an increase in the intercalation of the polymeric chains and the nanoclay lamellae, and the structure forms with fewer defects. (author)

  14. Effects of ultrasound time on the properties of polyvinyl alcohol-based nanocomposite films

    Directory of Open Access Journals (Sweden)

    Akbar Jokar

    2015-09-01

    Full Text Available Background and Objectives: Preparation and evaluation of nanocomposite films have become prevalent in recent years. One of the most important methods for dispersing nanoparticles in polymers is the use of ultrasound radiation. Polyvinyl alcohol-montmorillonite (PVA-MMT nanocomposite films were prepared via solvent casting method. Materials and Methods: The effects of different ultrasound times (0, 10, 20, 30, and 40 min on the properties of nanocomposite films were evaluated in a completely randomized design (CRD with five treatments and three replicates. The films were characterized by mechanical properties, opacity, water vapor permeability (WVP, and color. Fourier transform infrared (FTIR and X-ray diffraction (XRD were applied to investigate and prove the effects of ultrasound time. Results: Results revealed that the ultrasound time significantly affected the characteristics of the films. XRD and FTIR results were in accordance with the effects of sonication time. The changing trends of PVA film properties due to increasing the sonication times were not similar. Sonication time did not have any significant effect on some traits like a*, WVP, L*, and yellowness index (YI, while it affected b*, tensile strength, and opacity significantly. Conclusions: Depending on the target of using nanocomposite films, appropriate time of sonication should be used.

  15. PROPERTIES AND MORPHOLOGY OF UNSATURATED POLYESTER/ACRYLATE-TERMINATED POLYURETHANE/ORGANO-MONTMORILLONITE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Chang-jiang You; Jin-guo Xu; Song Xi; Xiao-xia Duan; Jie Shen; De-min Jia

    2005-01-01

    Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prepared by the sequential mixing, i.e. mixture of the ATPU and styrene (S) and OMMT were prepared in the first step; UPR was then added to the pre-intercalates of ATPU/S/OMMT. Results indicate that the mechanical properties and thermal properties of UPR/ATPU/OMMT nanocomposites greatly depend on the amount of ATPU and OMMT. Results show that the addition of ATPU could increase the impact strength of UPR/ATPU composites, but the tensile strength, flexural strength and heat resistance of the materials are obviously decreased. When the weight ratio between UPR, ATPU and OMMT were 82:15:3,the impact strength and heat distortion-temperature of nanocomposite were greatly improved, meanwhile there was little change for other properties of the nanocomposites. The synergistic enhancement effects of ATPU and OMMT on the composites were observed. The structures and morphology of the composites were investigated by X-ray diffraction,scanning electron microscopy and transmission electron microscopy.

  16. Thermal properties of radiolytically synthesized PVA/Ag nanocomposites

    Directory of Open Access Journals (Sweden)

    Krklješ Aleksandra N.

    2007-01-01

    Full Text Available The radiolytic method was used to synthesize two types of nanocomposites with silver, PVA/Ag by film casting and PVA hydrogel/Ag nanocomposites. This method is particularly suitable for generating metal nanoparticles in solution. The radiolytic species (solvated electrons and secondary radicals exhibit strong reducing properties such that metal ions are reduced at each encounter. Metal atoms then tend to grow into larger clusters. It was found that solid or swollen polymers are able to stabilize small crystallites against spontaneous growth via aggregation. Using differential scanning calorimetry (DSC, the melting behavior and kinetics of the PVA/Ag nanocomposites were investigated and compared to those of pure PVA. The melting as well as crystallization behavior of polymers is crucial because it governs the thermal properties, impact resistance and stress strain properties. Understanding the melting behavior is significant not only to tailor the properties of nanocomposites but to investigate the interactions between the constituents. The DSC curves of pure PVA and prepared nanocomposites show only one melting peak between 175 and 230°C, indicating that the melting behavior of these two systems are analogous. In both cases, with increasing heating rate, the melting peak shifts to a higher temperature, but with increasing Ag content the peak melting temperature is lower. When specimens are heated at high heating rate, the motion of PVA molecular chains cannot follow the heating temperature on time due to the influence of heat hysteresis, which leads to a higher peak melting temperature. When Ag nanoparticles are added they increase the heat transfer among the PVA molecular chains decreasing the melting temperature. The Ag content is a major factor affecting the degree of crystallinity. It was observed that at low nanofiller content, up to the 0.5 wt%, the degree of crystallinity of the nanocomposites increased, while at a higher content the

  17. Microstructure and Thermomechanical Properties of Polyimide-Silica Nanocomposites

    Directory of Open Access Journals (Sweden)

    A. Al Arbash

    2006-01-01

    Full Text Available Novel polyimide-silica nanocomposites with interphase chemical bonding have been prepared using the sol-gel process. The morphology, thermal and mechanical properties were studied as a function of silica content and compared with the similar composites having no interphase interaction. The polyimide precursors, polyamic acids (PAAs with or without pendant hydroxyl groups were prepared from the reaction of pyromellitic dianhydride with a mixture of oxydianiline and 1,3 phenylenediamine or 2,4-diminophenol in dimethylacetamide. The PAA with pendant hydroxyl groups was reacted with isocyanatopropyltriethoxysilane to produce alkoxy groups on the chain. The reinforcement of PAA matrices with or without alkoxy groups on the chain was carried out by mixing appropriate amount of tetraethoxysilane (TEOS and carrying out its hydrolysis and condensation in a sol-gel process. Thin hybrid films were imidized by successive heating up to 300C∘. The presence of alkoxy groups on the polymer chain and their cocondensation with TEOS developed the silica network which was interconnected chemically with the polyimide matrix. SEM studies show a drastic decrease in the silica particle size in the chemically bonded system. Higher thermal stability and mechanical strength, improved transparency, and low values of thermal coefficient of expansion were observed in case of chemically bonded composites.

  18. MWCNTs/Resin Nanocomposites: Structural, Thermal, Mechanical and Dielectric Investigation

    Directory of Open Access Journals (Sweden)

    N. D. Alexopoulos

    2015-11-01

    Full Text Available Multi-wall carbon nanotubes (MWCNTs were manufactured, characterized and added to a typical aeronautical resin matrix at different concentrations as nano-reinforcement. The carbon content of produced MWCNTs was determined to be around 98.5% while they consisted of 13-20 wall-layers and their external diameter had an average size in between 20 and 50 nm. MWCNTs were dispersed in an epoxy resin system and tensile specimens for different MWCNTs concentrations were prepared in an open mould. Electrical wiring was attached to the specimens’ surface and surface electrical resistance change was in-situ monitored during monotonic tension till fracture. Performed tensile tests showed that the MWCNTs addition increased both modulus of elasticity and ultimate tensile strength on the nano-composites with a simultaneously dramatic ductility decrease. The MWCNTs addition enhanced the investigated resin matrix with monitoring ability; electrical resistance change of the investigated tensile tests was correlated in the elastic regime with axial nominal strain and the gauge factor of the different MWCNTs concentration specimens were calculated. It was found that lowest MWCNTs concentration gave the best results in terms of piezo-resistivity and simultaneously the least enhancement in the mechanical properties.

  19. Processing, characterization and properties of oxide based nanocomposites

    Science.gov (United States)

    Bhaduri, Sutapa

    The synthesis, characterization and mechanical properties of oxide based nanocomposites are reported in this dissertation. Two binary systems are studied: Alsb2Osb3-MgO and Alsb2Osb3-ZrOsb2. Alsb2Osb3-MgO was chosen because of its relatively large field of solid solubilities at a moderate temperature. On the other hand, Alsb2Osb3-ZrOsb2 was chosen because it shows minimal solid solubility of the constituents. A novel "Auto Ignition" process using suitable fuels and oxidizers was utilized in the synthesis of nanocomposites and solid solutions. Thermodynamic calculations were carried out in predicting end point adiabatic temperatures (Tsbad) for each composition in both systems. Combustion temperatures were experimentally measured by means of a data acquisition system. Characterizations of the powders were carried out by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis (EDAX) and differential thermal analysis (DTA). Heat treatment experiments were carried out to study the grain growth behavior. A hot isostatic pressing (HIP) model was developed for the present nanoceramics. Input parameters were carefully chosen for such nanomaterials. The as-synthesized nanocrystalline powders were consolidated to near theoretical density by hot isostatic pressing (HIPing) while retaining fine grain size. The experimental results were compared with the predictions of the model. Mechanical properties, such as room temperature toughness, low temperatures well as high temperature hardness, were determined for both systems. Room temperature hardness values were (2.89-7.79) GPa and fracture toughness was between 2.7 and 5.82 MPa.msp{1/2} for various compositions in the Alsb2Osb3-MgO system. Room temperature hardness values were between 5.33 and 8.71 GPa and fracture toughness values ranged from (5.3-9.62) MPa.msp{1/2} for various compositions in the Alsb2Osb3-ZrOsb2 system. Nanoindentation experiments were carried out to further explore the room

  20. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Hiroaki [Composite Materials and Structures Center, Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824-1226 (United States)]. E-mail: miyagaw2@egr.msu.edu; Rich, Michael J. [Composite Materials and Structures Center, Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824-1226 (United States); Drzal, Lawrence T. [Composite Materials and Structures Center, Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824-1226 (United States)

    2006-03-15

    In this study, the thermo-physical properties of epoxy nanocomposites reinforced by fluorinated single wall carbon nanotubes (FSWCNT) and vapor grown carbon fibers (VGCF) were investigated. A sonication technique using a suspension of FSWCNT and VGCF in acetone was utilized to process nanocomposites in anhydride-cured epoxy. The viscoelastic properties of the nanocomposites were measured with dynamic mechanical analysis. The glass transition temperature decreased approximately 30 deg. C with an addition of 0.14 vol.% (0.2 wt.%) FSWCNT. The depression in T {sub g} is attributed to non-stoichiometric balance of the epoxy matrix caused by the fluorine on single wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally determined by DMA measurements. After adjusting the amount of the anhydride curing agent for stoichiometry, the storage modulus of the epoxy at room temperature increased 0.63 GPa with the addition of only 0.21 vol.% (0.30 wt.%) of FSWCNT, a 20% improvement compared with the anhydride-cured neat epoxy. For VGCF, the storage modulus at room temperature increased 0.48 GPa with the addition of only 0.94 vol.% (1.5 wt.%) and then reached a plateau for larger amounts of VGCF. To understand the influence of VGCF on thermo-physical properties, the microstructure of the nanocomposites was interrogated using transmission electron microscopy (TEM). This study discusses the chemical effects of fluorine on matrix properties and the effect of stoichiometric balance on the thermo-physical properties of nanocomposites.

  1. Study of thermal and mechanical properties of nanocomposites, synthesized from the organoclays and biodegradable polymers; Estudo das propriedades termicas e mecanicas de nanocompositos, formados a partir de argilas organofilicas e polimeros biodegradaveis

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, K.T.; Wiebeck, H.; Valenzuela-Diaz, F.R., E-mail: kilca_tanaka@hotmail.com [Universidade de Sao Paulo (LMPSOL/USP), Sao Paulo, SP (Brazil). Departamento de Engenharia Metalurgica e Materiais. Lab. de Materias Primas Particuladas e Solidos nao Metalicos

    2011-07-01

    The smectitic clays (MMT-Na{sup +}) have a broad range of industrial applications. The smectitic clays which the exchangeable cation sodium predominates have much more applications in this class of mineral. The sodium smectitic clays are hydrophilic in character with a high water Foster swelling. For uses in organic medium, where a high hydrophobicity and swelling are necessary, we must transform them in the organoclay form. This is accomplished by the cation exchange reaction of the sodium smectitic clay water dispersion with quaternary ammonium salts. In this paper, it was used the smectitic clays (MMT-Na{sup +}) from Argentina with CEC of 120meq/100g and swelling in water close to 20mL. Its modification was made using five quaternary ammonium salts. We characterize both sodium smectitic clay and the organoclay by X-ray diffraction (XRD) providing that occurred a basal expansion at the MMT-Na{sup +} for the five quaternary ammonium salts, Foster swelling and Infrared Spectra. After the synthesis, was done extrusion the two biodegradable plastics with the aim to incorporate the organoclay in these polymers. For characterization the biodegradable polymers, the proper choice is the thermal analysis and the mechanical test. Such analysis was effectuated in to pure plastic and the polymers nanocomposite, to proven of the resistance to the high temperature and the increased the mechanical properties of the modificated polymers when compared with the pure biodegradable plastics. (author)

  2. MECHANICAL ALLOYING SYNTHESIS OF FORSTERITE-DIOPSIDE NANOCOMPOSITE POWDER FOR USING IN TISSUE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Sorour Sadeghzade

    2015-03-01

    Full Text Available In present study the pure forsterite-diopside nanocomposite powder was successfully synthesized by the economical method of mechanical alloying and subsequence sintering, for the first time. The starting economical materials were talc (Mg3Si4H2O12, magnesium carbonate (MgCO3 and calcium carbonate (CaCO3 powders. The prepared powder was characterized by thermo gravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The results showed preparation of forsterite- diopside nanocomposite powder after 10 h mechanical alloying and sintering at 1200oC for 1 h. The powder crystallite sizes and agglomerated particle sizes were measured about 73 +/- 4 nm and 0.3 - 4 μm, respectively. Absence of enstatite that causes a reduction in mechanical and bioactivity properties of forsterite ceramic, is an important feature of produced powder.

  3. STRUCTURE AND MECHANICAL PROPERTIES OF PA6/ORGANIC RECTORITES NANOCOMPOSITES%PA6/有机累托石纳米复合材料的结构与力学性能

    Institute of Scientific and Technical Information of China (English)

    佘希锋; 马晓燕; 宋春莹

    2011-01-01

    PA6/organic clay nanocomposites were prepared through melt processing method by twin screw extruder with two kinds of laboratory made organic rectorites and two kinds of commercial organic montmorillonites. The dissociation of organic clay in PA6 matrix and the crystal form of the composites were investigated by X-ray diffraction;the effects of organic clay on the crystal morphology of PA6 were characterized by polarizing microscope. In addition, their comprehensive mechanical properties were also examined. The results indicated that the exfoliated nanocomposites were formed in PA6/clay systems successfully; the clays were beneficial to the growth of PA6 γ-crystal form, the incorporation of clays made the size of PA6 spherulite decrease. Moreover, their tensile strength and modulus increased while their break and notched izod impact strength decreased. To sum up, the comparison of comprehensive results demonstrated that the laboratory-made organic-modified rectorites were better than commercial organic modified montmorillonites in ameliorating the mechanical properties of PA6.%采用两种自制有机累托石、两种已商业化的有机蒙脱土分别和尼龙(PA)6经双螺杆挤出机熔融挤出制备PA6/有机粘土复合材料.利用X射线衍射(XRD)分析了有机粘土在复合材料中的解离情况和聚合物的晶型,利用偏光显微镜分析了粘土对PA6结晶形貌的影响,并分析了复合材料的综合力学性能.结果表明,四种有机粘土与PA6均可形成剥离型纳米复合材料,粘土有利于PA6的γ晶型生长,细化了PA6的球晶;不同有机粘土复合材料的拉伸强度和拉伸弹性模量都有增加,缺口冲击强度都有下降;四种有机粘土改性复合材料性能相比,自制有机累托石对PA6力学性能的改性效果优于两种有机蒙脱土.

  4. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  5. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2013-04-01

    Full Text Available Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM, wide/small angle X-ray diffraction (WAXS/SAXS, respectively and differential scanning calorimetry (DSC. TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites.

  6. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods

    Science.gov (United States)

    Palmero, Paola

    2015-01-01

    Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029

  7. Processing – morphology – property relationships of polyamide 6/polyethylene blend–clay nanocomposites

    Directory of Open Access Journals (Sweden)

    R. Scaffaro

    2013-10-01

    Full Text Available In this work, we studied the effect of the method of preparation and of reprocessing on the morphology and, consequently, on the physical properties of polyamide 6 (PA6/ high density polyethylene (HDPE-clay nanocomposite blends in the presence of different compatibilizers. In particular, the nanocomposites were obtained by melt mixing using a corotating twin screw extruder (E1. The blends thus obtained were re-extruded (E2 under the same operating conditions. Moreover, blends with the same final composition were produced using a masterbatch of the compatibilizer with the clay prepared in a separated stage in a batch mixer (MB. All the materials were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM and X-ray diffractometry (XRD analyses. In addition, the rheological behaviour and the, tensile and impact, properties were evaluated. The XRD and TEM analysis showed that re-extrusion slightly improves the morphology of the nanocomposites. A further improvement of the morphology, in terms of lower clay dimension and better dispersion, was observed in the MB blends. The results of the mechanical tests showed that reprocessing (E2 induced an increase of all the properties for all the three systems. A further general increase of the mechanical properties was showed by the MB blends.

  8. Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings

    Science.gov (United States)

    Pardo, A.; Buijnsters, J. G.; Endrino, J. L.; Gómez-Aleixandre, C.; Abrasonis, G.; Bonet, R.; Caro, J.

    2013-09-01

    The influence of the metal content (Cu: 0-28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25-50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon-copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3-28 at.%.

  9. Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A., E-mail: ainhoa.pardo@ctm.com.es [Fundació CTM Centre Tecnològic, Manresa (Spain); Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) (Spain); Buijnsters, J.G., E-mail: Ivan.Buijnsters@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Leuven (Belgium); Endrino, J.L., E-mail: jose.endrino@research.abengoa.com [Abengoa Research, Sevilla (Spain); Gómez-Aleixandre, C., E-mail: cgaleix@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) (Spain); Abrasonis, G., E-mail: g.abrasonis@hzdr.de [Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Bonet, R., E-mail: raul.bonet@ctm.com.es [Fundació CTM Centre Tecnològic, Manresa (Spain); Caro, J., E-mail: jaume.caro@ctm.com.es [Fundació CTM Centre Tecnològic, Manresa (Spain)

    2013-09-01

    The influence of the metal content (Cu: 0–28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25–50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon–copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3–28 at.%.

  10. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.

    Science.gov (United States)

    Xia, Ying; Larock, Richard C

    2011-09-01

    Waterborne castor oil-based polyurethane-silica nanocomposites with the polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. The formation of silica nanoparticles in water not only reinforces the resulting coatings, but also increases the crosslink density of the nanocomposites. The (29)Si solid state NMR spectrum indicates the formation of silica and the TEM indicates that the nanoparticles are embedded in the polymers, resembling a core-shell structure. The silica nanoparticles in the polymer matrix play an important role in improving both the mechanical properties and the thermal stabilities of the resulting nanocomposites. This work provides an effective and promising way to prepare biorenewable, high performance nanocomposite coatings.

  11. Linear and nonlinear optical properties of Au/SiO2 nanocomposite prepared by P123

    Institute of Scientific and Technical Information of China (English)

    Jingyue Fang; Shiqiao Qin; Xueao Zhang; Shengli Chang

    2012-01-01

    Mesoporous silica thin films loaded with gold nanoparticles are synthesized in the presence of EO20PO70EO20 (P123). Transmission electron microscope images show that the matrix of the nanocomposite is an ordered porous structure with a two-dimensional hexagonal phase. The wide-angle X-ray diffraction pattern implies that the nanocomposite contains gold crystals. These metallic nanoparticle-embedded solid thin films show some linear and nonlinear optical properties due to their special structure and composition. Gold nanoparticles bring about surface plasmon resonance, and an absorption peak stemming from this effect has been observed. The linear absorption property is analyzed by a quantum mechanism, and the results show that it is influenced by the size and volume fraction f gold nanoparticles. Furthermore, it shows an obviously clear nonlinear optical property measured by the z-scan technique. The magnitude of the nonlinear refractive index of the nanocomposite is estimated to be about 10-10 cm2/W.%Mesoporous silica thin films loaded with gold nanoparticles are synthesized in the presence of EO20PO70EO20 (P123).Transmission electron microscope images show that the matrix of the nanocomposite is an ordered porous structure with a two-dimensional hexagonal phase. The wide-angle X-ray diffraction pattern implies that the nanocomposite contains gold crystals.These metallic nanoparticleembedded solid thin films show some linear and nonlinear optical properties due to their special structure and composition. Gold nanoparticles bring about surface plasmon resonance,and an absorption peak stemming from this effect has been observed.The linear absorption property is analyzed by a quantum mechanism,and the results show that it is influenced by the size and volume fraction of gold nanoparticles.Furthermore,it shows an obviously clear nonlinear optical property measured by the z-scan technique.The magnitude of the nonlinear refractive index of the nanocomposite is estimated

  12. Comparison dielectric and thermal properties of polyurethane/organoclay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, Gülay [Department of Chemistry, University of Dicle, Diyarbakır 21280 (Turkey); Aydin, Haluk, E-mail: halukaydin@dicle.edu.tr [Department of Chemistry, University of Dicle, Diyarbakır 21280 (Turkey); Köytepe, Süleyman; Seçkin, Turgay [Department of Chemistry, University of Inonu, Malatya 44280 (Turkey)

    2013-08-20

    Highlights: • The PU/organoclay composites was successfully obtained by mixing method from solution. • The growth temperature does not exceed 60 °C in any step of the modification and drying. • PU-IL-Mt modified with IL showed power alternative to PU-QAS-Mt modified with QAS. • The PU composites exhibited better thermal stability and lower dielectric constants than the pure PU. - Abstract: Polyurethane composites were obtained with different organoclay contents. The organoclay Na{sup +}-montmorillonite was dispersed in the PU matrix by mixing method from solution. Na{sup +}-montmorillonite was modified with dodecyl ammonium sulphate and 1-methyl-3-octyl imidazolium tetrafluoroborate. The nanocomposites obtained by using different modifier were compared in terms of dielectric and thermal properties. The dispersion state of the organoclay particles and its effect on the thermogravimetric and dielectric properties of the composites was investigated. The characterization of PU/organooclay composites was carried out by means of scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis and X-ray diffraction. The dielectric properties of the PU/organoclay nanocomposites were studied in detail. The obtained PU/organoclay intercalated nanocomposites exhibited better thermal stability and improved lower dielectric constants than the pure PU.

  13. Effects of nanoparticle and matrix interface on nanocomposite properties

    Science.gov (United States)

    Miller, Sandi G.

    The objectives of this work were to functionalize two nanoparticles, layered silicate clay and expanded graphite, and evaluate the effects of surface modification on polymer nanocomposite properties. Two thermosetting resin systems were evaluated, a polyimide for high temperature applications, and a general use epoxy. The chemistry of the modifier or the particle surface was tailored in each case to optimize nanocomposite properties such as: particle dispersion, thermal oxidative stability (TOS), electrical conductivity, strength, and toughness. Dispersion of layered silicate clay into the two separate matrices demonstrated an apparent affinity between the silicate surface and aromatic compounds. Steps were taken in each case to disrupt that attraction; resulting in improved material properties. The dispersion of layered silicate clays into a thermosetting polyimide demonstrated that improved thermal oxidative stability was achieved only when the clay was modified with a combination of an aromatic diamine and an alkyl ammonium ion. When such a system was employed, the nanocomposite TOS improved by 25% over that of the base polyimide. Attention to the interactions between clay and aromatic containing compounds was also necessary for silicate modification and dispersion in an epoxy blend. Here, preferential contact between the clay and the aromatic containing sections of the blend was observed; resulting in nanocomposites exhibiting little enhancement to epoxy properties. By forcing the clay into the non-aromatic component, the material yield stress increased by up to 65%, Young's modulus increased by up to 80%, and increases in Tg of up to 11°C were observed relative to the base resin. Within nano-graphite containing materials, trade-offs in functionalization, dispersion, and properties were evaluated. Functionalization of graphite proved beneficial in terms of dispersion. For example, an epoxy functionalized graphite nanoparticle resulted in acceptable dispersion

  14. MORPHOLOGY, INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Zhi-xin Jia; Yuan-fang Luo; Shu-yan Yang; Bao-chun Guo; Ming-liang Du; De-min Jia

    2009-01-01

    A natural nanotubular material, halloysite nanotubes (HNTs), was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube (SBR/m-HNT) nanocomposites. Complex of resorcinol and hexamethylenetetramine (RH) was used as the interracial modifier. The structure, morphology and mechanical properties of SBR/m-HNT nanocomposites, especially the interfacial interactions, were investigated. SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at nanometer scale, but also enhance the interracial combination between HNTs and rubber matrix. FTIR and XPS investigations confirmed that a number of hydrogen bonds were formed between the phenol hydroxyl groups in resorcinol-formaldehyde resin derived from RH and the oxygen atoms in Si-O bonds or hydroxyl groups on HNTs surfaces. The m-HNTs modified with RH have significant reinforcing effect on SBR vulcanizates. RH as a good interfacial modifier can remarkably improve mechanical properties of SBR/HNT composites. The substantial improvement of comprehensive properties for SBR/m-HNT nanocomposites can be attributed to good dispersion and orientation of HNTs in SBR matrix at nanometer scale and the enhanced interracial interaction between HNTs and rubber matrix.

  15. Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mariangela Scavone

    2016-01-01

    Full Text Available The purpose of this study was to investigate the antimicrobial properties of multifunctional nanocomposites based on poly(dl-Lactide-co-Glycolide (PLGA and increasing concentration of silver (Ag nanoparticles and their effects on cell viability for biomedical applications. PLGA nanocomposite films, produced by solvent casting with 1 wt%, 3 wt% and 7 wt% of Ag nanoparticles were investigated and surface properties were characterized by atomic force microscopy and contact angle measurements. Antibacterial tests were performed using an Escherichia coli RB and Staphylococcus aureus 8325-4 strains. The cell viability and morphology were performed with a murine fibroblast cell line (L929 and a human osteosarcoma cell line (SAOS-2 by cell viability assay and electron microscopy observations. Matrix protein secretion and deposition were also quantified by enzyme-linked immunosorbent assay (ELISA. The results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles, which induce the onset of porous round-like microstructures and also affect the wettability. The PLGA/Ag films having silver nanoparticles of more than 3 wt% showed antibacterial effects against E. coli and S. aureus. Furthermore, silver-containing PLGA films displayed also a good cytocompatibility when assayed with L929 and SAOS-2 cells; indicating the PLGA/3Ag nanocomposite film as a promising candidate for tissue engineering applications.

  16. PREPARATION AND PROPERTIES OF FUMED SILICA/CYANATE ESTER NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Elhussein A.Taha; Jun-tao Wu; Kai Gao; Lin Guo

    2012-01-01

    Fumed silica/bisphenol A dicyanate ester (BADCy) nanocomposites were prepared by introducing different contents of nano-sized fumed SiO2 into the BADCy matrix.Two different average primary particle diameters of 12 and 40 nm were chosen.Dibutyltindilaurate (DBTDL) catalyst was chosen to catalyze the cyanate ester group into triazine group via cyclotrimerization reaction.The SEM micrographs indicated that the fumed SiO2 particles were homogeneously dispersed in the poly(bisphenol A dicyanate) matrix by means of ultrasonic treatment and the addition of a coupling agent.The FTIR spectroscopy shows that,not only DBTDL catalyzes the polymerization reaction but also-OH groups of the SiO2 particles surface help the catalyst for the complete polymerization of BADCy monomer.The thermal stability of the cured BADCy can be improved by adequate addition of fumed SiO2.A slight increase in the dielectric constant and dielectric loss values were identified by testing the dielectric properties of the prepared nanocomposite samples.By increasing the SiO2 content,there was a slight increasing in the thermal conductivity values of the tested samples.The obtained results proved that the fumed silica/BADCy nanocomposites had good thermal and dielectrical properties and can be used in many applications such as in the thermal insulation field.

  17. Cellulose nanomaterials review: structure, properties and nanocomposites

    OpenAIRE

    Moon, Robert J.; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeffrey

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction...

  18. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  19. Barrier Properties and Structural Study of Nanocomposite of HDPE/Montmorillonite Modified with Polyvinylalcohol

    Directory of Open Access Journals (Sweden)

    María C. Carrera

    2013-01-01

    Full Text Available In this work was studied the permeation of CO2 in films of high-density polyethylene (HDPE and organoclay modified with polyvinylalcohol (MMTHDTMA/PVA obtained from melt blending. Permeation study showed that the incorporation of the modified organoclay generates a significant effect on the barrier properties of HDPE. When a load of 2 wt% of MMTHDTMA/PVA was incorporated in the polymer matrix, the flow of CO2 decreased 43.7% compared to pure polyethylene. The results of TEM showed that clay layers were dispersed in the polymeric matrix, obtaining an exfoliated-structure nanocomposite. The thermal stability of nanocomposite was significantly enhanced with respect to the pristine HDPE. DSC results showed that the crystallinity was maintained as the pure polymeric matrix. Consequently, the decrease of permeability was attributable only to the effect of tortuosity generated by the dispersion of MMTHDTMA/PVA. Notably the mechanical properties remain equal to those of pure polyethylene, but with an increase in barrier properties to CO2. This procedure allows obtaining nanocomposites of HDPE with a good barrier property to CO2 which would make it competitive in the use of packaging.

  20. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, N.; Camacho-Aguilar, K.I.; Ramos-González, R. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Martinez, Arturo I., E-mail: mtz.art@gmail.com [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Herrera-Trejo, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22290-180 (Brazil)

    2016-05-15

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a “plum pudding”, where hematite NPs “raisins” are surrounded by ferrihydrite “pudding”. Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere. - Highlights: • Ferrihydrite/hematite nanocomposites were prepared. • The “plum pudding” morphology of the ferrihydrite/hematite nanocomposites was found. • The FORC diagrams of ferrihydrite/hematite nanocomposites have been measured.

  1. Properties of blends for profiles and semi-rigid films made of PVC nanocomposites produced in pilot scale

    Science.gov (United States)

    Obloj-Muzaj, Maria; Abramowicz, Agnieszka; Kumosinski, Marcin; Zielecka, Maria; Kozakiewicz, Janusz; Gorska, Agnieszka

    2016-05-01

    PVC nanocomposites containing 0.5 wt. %/VCM of either nanosilica or hybrid core/shell type nanofiller were produced in-situ in suspension polymerisation. Significant increase in impact strength of PVC composites obtained was observed (higher 25 - 60 % in comparison with PVC). The amount of impact modifier in selected rigid PVC blends (e.g. in window profiles) could be significantly reduced (≥ 50 %). Tensile and flexural properties of nanocomposites were similar to PVC, however, at smaller amount of impact modifier other mechanical properties improve. Tear resistance of rigid films was better.

  2. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites

    Science.gov (United States)

    Prakash, Jai; Kumar, Promod; Harris, R. A.; Swart, Chantel; Neethling, J. H.; Janse van Vuuren, A.; Swart, H. C.

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples.

  3. Efficient Charge Transfer Mechanism in Polyfluorene/ZnO Nanocomposite Thin Films

    OpenAIRE

    Bandar Ali Al-Asbahi; Mohammad Hafizuddin Haji Jumali; Rashad Al-Gaashani

    2014-01-01

    The optical properties and charge transfer mechanism of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/ZnO thin films have been investigated. The ZnO nanorods (NRs) were prepared via a microwave technique. The solution blending method was used to prepare the PFO/ZnO nanocomposites. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) were used to determine the structural properties, while UV-Vis and photoluminescence (PL) were employed to investigate the optical p...

  4. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  5. Role of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite

    Directory of Open Access Journals (Sweden)

    Mahsa Barzegar Vishlaghi

    2014-06-01

    Full Text Available Carbon nano-tube (CNT reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical alloying in two different procedures. The effects of CNT addition on microstructural and physical properties of nano-composite, Phase composition, morphology, magnetic and electrical properties of the samples were investigated by X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer, and four point probe techniques, respectively. The results showed that addition of CNT suppressed the solid solubility extension of Fe in Cu matrix. Dispersion and implantation of CNTs in the metal matrix improved, particles size was smaller and their shape was more granular when CNTs were added at the start of milling. Saturation magnetization and coercivity of composite samples increased with addition of CNT probably due to the presence of non-dissolved Fe in nano-composites and inhomogeneity of microstructure, respectively. Electrical resistivity of nano-composites was higher than that of matrix alloy. The increment was more when milling time of CNTs and metal powder was shorter.

  6. Study of mechanical, rheological and thermal properties of nanocomposite HMSPP (high melt strength polypropylene) with Brazilian bentonite; Estudo das propriedades mecanicas, reologicas e termicas de nanocomposito de HMSPP (polipropileno com alta resistencia do fundido) com uma bentonita brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Fermino, Danilo Marin

    2011-07-01

    This work concerns to the study of the mechanical, thermal and rheological behavior of the nano composite HMSPP - Polypropylene High Melt Strength (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba, known as 'Chocolate' in concentrations of 5 and 10% by weight, comparison of to one American Clay, Cloisite 20A nanocomposite was done. Agent compatibilizer polypropylene-graft, known as maleic anhydride (PP-g-AM) was addict 3% concentration thought technique melt intercalation using a twin-screw extruder and the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGM). The rheological behavior was evaluated in rheometer. The morphology of the nanocomposites was studied by the technique of scanning electron microscopy (SEM). The organophilic bentonite and the nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). (author)

  7. Cellulose nanomaterials review: structure, properties and nanocomposites.

    Science.gov (United States)

    Moon, Robert J; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeff

    2011-07-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

  8. Synthesis of Multiwalled Carbon Nanotube-Reinforced Polyborosiloxane Nanocomposites with Mechanically Adaptive and Self-Healing Capabilities for Flexible Conductors.

    Science.gov (United States)

    Wu, Tongfei; Chen, Biqiong

    2016-09-14

    Intrinsic self-healing polyborosiloxane (PBS) and its multiwalled carbon nanotube (MWCNT)-reinforced nanocomposites were synthesized from hydroxyl terminated poly(dimethylsiloxane) (PDMS) and boric acid at room temperature. The formation of Si-O-B moiety in PBS was confirmed by Fourier transform infrared spectroscopy. PBS and its MWCNT-reinforced nanocomposites were found possessing water- or methanol-activated mechanically adaptive behaviors; the compressive modulus decreased substantially when exposed to water or methanol vapor and recovered their high value after the stimulus was removed. The compressive modulus was reduced by 76%, 86%, 90%, and 83% for neat PBS and its nanocomposites containing 3.0, 6.2, and 13.3 wt % MWCNTs, respectively, in water vapor, and the modulus reduction activated by methanol vapor was greater than by water vapor. MWCNTs at higher contents acted as a continuous electrical channel in PBS offering electrical conductivity, which was up to 1.21 S/cm for the nanocomposite containing 13.3 wt % MWCNTs. The MWCNT-reinforced PBS nanocomposites also showed excellent mechanically and electrically self-healing properties, moldability, and adhesion to PDMS elastomer substrate. These properties enabled a straightforward fabrication of self-repairing MWCNT/PBS electronic circuits on PDMS elastomer substrates.

  9. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

    Science.gov (United States)

    Gardea, Frank; Glaz, Bryan; Riddick, Jaret; Lagoudas, Dimitris C.; Naraghi, Mohammad

    2016-03-01

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas.

  10. Dielectrical properties of PANI/TiO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chaturmukha, V. S.; Naveen, C. S.; Rajeeva, M. P.; Avinash, B. S.; Jayanna, H. S.; Lamani, Ashok R., E-mail: ashok1571972@gmail.com [Department of PG Studies and Research in Physics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka (India)

    2016-05-23

    Conducting polyaniline/titanium dioxide (PANI/TiO{sub 2}) composites have been succesfully synthesized by insitu polymerization technique. The PANI/TiO{sub 2} nanocomposites of different compositions were prepared by varying weight percentage of TiO{sub 2} nanoparticles such as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% into the fixed amount of the aniline monomer. The prepared powder samples were characterized by X-ray diffractometer (XRD) and Scanning electron microscope (SEM). The intensity of diffraction peaks for PANI/TiO{sub 2} composites is lower than that for TiO{sub 2}. SEM pictures show that the nanocomposite were prepared in the form of long PANi chains decorated with TiO{sub 2} nanoparticles. The dielectric properties and AC conductivity were studied in the frequency range1K Hz–10M Hz. At higher frequencies, the composites exhibit almost zero dielectric loss and maximum value of σ{sub ac} is found for a concentration of 20 wt% TiO{sub 2} in polyaniline. The interface between polyaniline and TiO{sub 2} plays an important role in yielding a large dielectric constant in nanocomposites.

  11. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Khairy

    2015-07-01

    Full Text Available Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4 with different contents of NiFe2O4 (2.5, 5 and 50 wt% were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermogravimetric analysis (TGA. Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite.

  12. Role of mineral proximity on mechanics of organic macromolecules in a bio-nanocomposite

    Science.gov (United States)

    Ghosh, Pijush

    Nacre, the iridescent inner layer of seashells, is a material exhibiting extraordinary mechanical properties. Nacre is a laminated nanocomposite composed of pseudohexagonal platelets that are 2 micrometer to 3 micrometer in diameter and 250 nm to 500 nm tall with an organic phase about 20 nm thick between the platelets. Although nacre is composed of about 95% aragonitic calcium carbonate and 5% organics (mainly proteins), the fracture toughness exhibited by nacre is 3000 times higher than aragonite. Nacre has been studied as an inspiration for design of the next generation of high-performance biomimetic nanocomposites. In this research, the influence of the close proximity of mineral aragonite on mechanical response of the organic phase is studied for the first time. The major focus of this research is to study the influence of mineral proximity on the mechanical properties of proteins in a natural bio-nanocomposite nacre. This work seeks to understand the fundamental mechanisms behind unfolding of protein at mineral proximity. The results and knowledge from this research will help in designing the next generation of high-performance materials, particularly with hybrid organic and inorganic phases. The influence of mineral proximity on the mechanical property of a protein is found by pulling a model protein domain at mineral proximity and without the presence of mineral. The "Glycine-Serine" domain of a nacre protein, Lustrin A, has been used as a model system. Steered Molecular Dynamics has been used for our simulations. The CHARMm potential parameters necessary for aragonite are derived. The protein is pulled at three different velocities and for same duration of time in the presence and absence of the mineral. It is concluded that several times more energy are required to unfold a protein in the presence of the mineral compared to unfolding the protein alone. A detailed quantitative analysis to understand reasons for the enhancement of the load deformation

  13. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    Directory of Open Access Journals (Sweden)

    Sini Kuriakose

    2015-04-01

    Full Text Available ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB and methyl orange (MO dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites.

  14. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO-CuO nanocomposites prepared by carbothermal evaporation method.

    Science.gov (United States)

    Kuriakose, Sini; Avasthi, D K; Mohapatra, Satyabrata

    2015-01-01

    ZnO-CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni(7+) ion irradiation on the structural and optical properties of ZnO-CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO-CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO-CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO-CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO-CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO-CuO nanocomposites.

  15. Non-toxic poly(ethylene terephthalate)/clay nanocomposites with enhanced barrier properties

    KAUST Repository

    Hayrapetyan, Suren

    2012-01-01

    Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer to facilitate polymer mixing during melt compounding. We demonstrate that the nanocomposites based on sulfonated polyester are a reliable alternative to their imidazolium counterparts, exhibiting enhanced properties (water vapor and UV transmission), without sacrificing the excellent transparency, clarity and mechanical strength of the matrix. © 2011 Elsevier Ltd. All rights reserved.

  16. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N{sub 3}) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400–800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. - Highlights: • IPN hydrogel nanocomposites were prepared by a one-pot strategy. • The maximum compressive and tensile strengths reached 24.8 and 1.98 MPa. • IPN hydrogels displayed excellent antibacterial activity and cytocompatibility. • This study provided a facile method for preparing IPN hydrogel nanocomposites.

  17. Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications.

    Science.gov (United States)

    Youssef, Ahmed M; Kamel, S; El-Samahy, M A

    2013-10-15

    With the increasing sustainability trend with packaging materials, paper and polymer nanocomposites represent a novel class of packaging materials. This study evaluates the potential achievement of alternative sustainable materials as antibacterial packaging application. Paper sheet from rice straw coated with 5 or 10% polystyrene (PS) nanocomposites using titanium dioxide nanoparticles (TiO2-NPs) doped or undoped with sliver nanoparticles (Ag-NPs) were prepared. The morphology of the uncoated and coated paper sheets was studied by SEM. The treated paper sheets were analyzed for their elemental composition using EDAX. The Barrier, air permeability, cob test, as well as mechanical properties and tensile strength were also evaluated. The inhibitory effect of modified paper sheets against Pseudomonas, Staphylococcus aureus, Candida, and Staphylococcus were investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    Science.gov (United States)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  19. Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship.

    Science.gov (United States)

    Bittmann, Birgit; Haupert, Frank; Schlarb, Alois Karl

    2011-01-01

    By the insertion of nanoparticles into a polymer matrix a considerable improvement of mechanical properties can be achieved. Therefore, a homogeneous distribution of fillers within the matrix is required. In the present paper the dispersion of TiO(2)-nanoparticles in a DGEBA (diglycidyl ether of bisphenol A) epoxy resin by means of an ultrasonic horn was studied. The systematic examination of process parameters of a previous study was completed in order to determine the optimum processing window leading to a good dispersion result without degrading the molecular structure of the epoxy resin. Therefore, particle sizes were examined using a dynamic light scattering device, and the effect of the ultrasonic treatment on the resin was surveyed by FT-IR spectroscopy (Fourier transform infrared spectroscopy). Furthermore, the mechanical performance of the nanocomposites was examined for various contents of TiO(2)-nanoparticles to show that the materials prepared by ultrasonic dispersion show an improved property's profile. In order to understand the reinforcing mechanisms of nanoparticles in the polymer matrix providing improved mechanical properties, scanning electron microscope (SEM) pictures of the fracture surfaces of the samples were carried out, which revealed that nanocomposites show a significantly rougher surface than the neat epoxy resin. This indicates a change in the fracture mechanisms.

  20. Dynamic optical properties of amorphous diamond-like carbon nanocomposite films doped with Cu and Ag nanoparticles

    Science.gov (United States)

    Tamulevičius, Tomas; Peckus, Domantas; Tamulevičiene, Asta; Vasiliauskas, Andrius; Čiegis, Arvydas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-09-01

    The investigation of relaxation processes in noble metal nanoparticles upon ultrafast excitations by femtosecond laser pulses is useful to understand the origin and the enhancement mechanism of the nonlinear optical properties for metaldielectric nanocomposites. In the current work we analyze diamond like carbon (DLC) film based copper and silver nanocomposites with different metal content synthesized employing unbalanced magnetron sputtering of metal targets with argon ions in acetylene gas atmosphere. Surface morphology and nanoparticle sizes were analyzed employing scanning electron and atomic force microscopy. Optical properties of the nanocomposite films were analyzed employing UV-VIS-NIR spectrometry. Transient absorption measurements were obtained employing Yb:KGW femtosecond laser spectroscopic system (HARPIA, Light Conversion Ltd.). Energy relaxation dynamics in Cu nanoparticles showed some significant differences from Ag nanoparticles. The increase of excitation intensity hasn't show additional nonlinear effects for the excited state relaxation dynamics for both kinds of samples.

  1. Microstructure morphology of BiOBr/I Nanocomposite and its formation mechanism

    Directory of Open Access Journals (Sweden)

    ZHOU Lingling

    2014-12-01

    Full Text Available BiOBr/I nanocomposites were synthesized through a low-temperature precipitation.These composites were characterized by XRD and FESEM.The results show BiOBr-BiOI nanocomposites possess the unique microstructure morphology.Meanwhile,the contents of the adjuvant and the ratios of mixed solvents have a significant influence on the morphology and formation mechanism of BiOBr-BiOI nanocomposites.

  2. Optical Properties of Nanoparticles and Nanocomposites

    CSIR Research Space (South Africa)

    Kumbhakar, P

    2014-01-01

    Full Text Available entitled “Optical properties and in vitro biological studies of oligonucleotide-modified quantum dots,” Gérard et al. have reported the synthesis and characterizations of a series of new oligonucleotide-modified CdTe quantum dots (QDs); also they have...

  3. Electrochemical Properties of Nanocomposite Nanoporous Carbon / Nickel Hydroxide

    Directory of Open Access Journals (Sweden)

    O.M. Hemiy

    2016-12-01

    Full Text Available The electrochemical properties of composite nanoporous carbon / nickel hydroxide as electrode material for hybrid supercapacitors were investigated. Fast reversible faradaic reactions flow was determined in connection with chemical makeup of the -Ni(OH2/С composite. It is shown that increase of nickel hydroxide concentration can intensify reactions. It is found that clean -Ni(OH2 has 238 F/g of specific capacity, but -Ni(OH2/С nanocomposite with 90 % nickel hydroxide has 292 F/g. Such capacity value can be considered as a maximum for these composites.

  4. Investigation of thermal properties of PUF/clay nanocomposites

    Science.gov (United States)

    Doğar, Çetin; Gürses, Ahmet; Karaca, Semra; Köktepe, Sevda; Mindivan, Ferda; Güneş, Kübra

    2014-11-01

    This study aims to investigate the thermal properties of phenol-urea-formaldehyde (PUF)/organoclay nanocomposites synthesized at various organoclay ratios by using their DSC thermograms, FT-IR spectra, and HRTEM images. From these analyses, it has been concluded that at low organoclay ratios, the platelets exfoliated of organoclay, which dispersed homogenously in the polymer matrix, created a positive effect in conformational arrangement as suitable to crystallization of PUF chains. DSC analyses revealed that two endotherms in all thermograms imply the presence of linear UF, PF, and PUF chains together. Low organoclay content may also lead to a cross-linked lattice, being more predominant than the linear chain arrangement.

  5. Characterization of Al–Al{sub 4}C{sub 3} nanocomposites produced by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Beltrán, A., E-mail: asantos@utchsur.edu.mx [Universidad Tecnológica de Chihuahua Sur, Carr. Chihuahua a Aldama km. 3 S/N, Col. Colinas del León, CP. 31313 Chihuahua, Chih. (Mexico); Goytia-Reyes, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Morales-Rodriguez, H.; Gallegos-Orozco, V. [Universidad Tecnológica de Chihuahua Sur, Carr. Chihuahua a Aldama km. 3 S/N, Col. Colinas del León, CP. 31313 Chihuahua, Chih. (Mexico); Santos-Beltrán, M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Baldenebro-Lopez, F. [Universidad Tecnológica de Chihuahua Sur, Carr. Chihuahua a Aldama km. 3 S/N, Col. Colinas del León, CP. 31313 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico)

    2015-08-15

    In this work, a mixture of Al–C–Al{sub 4}C{sub 3} nanopowder previously synthesized by mechanical milling and subsequent thermal treatment was used to reinforce the Al matrix. The nanocomposites were fabricated via high-energy ball milling and subsequent sintering process for different periods of time at 550 °C. Hardness and compression tests were performed to evaluate the mechanical properties of the nanocomposites in the as-milled and sintered conditions. According to the results the reinforcement located in the grain boundaries is responsible for the brittle behavior observed in the nanocomposites during the compression test. The combined effect of sintering and precipitation mechanisms produced an evident increase of the strength of the Al matrix at a relatively short sintering time. By using the Rietveld method the crystallite size and microstrain measurements were determined and correlated with the microhardness values. For the proper characterization of the nanoparticles present in the Al matrix, atomic force microscopy and high resolution electron microscopy were used. - Highlights: • Nanostructured Al{sub 4}C{sub 3} reinforcement was fabricated via mechanical milling and heat treatment. • We found a significant increase of the mechanical properties at short sintering times. • The formation of Al{sub 4}C{sub 3} with during sintering time restricted the excessive growth of the crystallite. • Al{sub 4}C{sub 3} located in the grain boundaries causes brittle fracture observed in compression tests. • There is a correlation between, crystallite size and microstrain values with microhardness.

  6. Processing-property relationships in epoxy resin/titanium dioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; More, Karren Leslie [ORNL

    2010-01-01

    In situ precipitated titanium dioxide nanoparticles improve the physical properties of polymer composites. Since the pioneering work at Toyota Research Center on exfoliated montmorillonite nanoparticles in a nylon matrix, extensive studies have been performed on polymer nanocomposites in an effort to better integrate organic and inorganic phases. Inorganic fillers, such as silicon and titanium oxides, are widely used because of their remarkable enhancement of the mechanical, electrical, barrier, and flame-retardancy properties of organic polymers. The dispersion and size of the fillers determine the performance of nanocomposites and, despite numerous methods and processing conditions reported in the literature, a universally simple method to scale up the distribution of nanofillers remains a challenge. A significant part of our research involves formulation of novel nanodielectrics that can withstand high electric fields and exhibit superior mechanical performance. Focusing on nanocomposites operating at cryogenic temperatures, our group developed an in situ method for nucleating titanium dioxide (TiO{sub 2}) nanoparticles in polyvinyl alcohol. We also applied this method to a variety of polymer matrices. Here, we present our recent work on a cryogenic resin filled with TiO{sub 2} nanoparticles. Using a particle-precursor solution from which TiO{sub 2} precipitates, we nucleated nanoparticles within the cryogenic epoxy resin Araldite 5808 (Huntsman Advanced Materials Inc., USA). We fabricated nanocomposite films at low weight percentages ({approx}2.5%) to avoid formation of large aggregates and interfaces. The morphology and dispersion of the in situ synthesized nanoparticles are shown by low- and high-magnification transmission-electron-microscopy (TEM) images. The TiO{sub 2} particles ({le}5nm in diameter) are uniformly nucleated and form evenly distributed nanometer-sized clusters in the polymer matrix. This morphology differs significantly from nanocomposites

  7. Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Liao, Shu-Hang; Yen, Chuan-Yu; Weng, Cheng-Chih; Lin, Yu-Feng; Ma, Chen-Chi M.; Yang, Ching-Hung; Tsai, Ming-Chi; Yen, Ming-Yu; Hsiao, Min-Chien; Lee, Shuo-Jen; Xie, Xiao-Feng; Hsiao, Yi-Hsiu

    This study aims at the fabrication of lightweight and high performance nanocomposite bipolar plates for the application in polymer electrode membrane fuel cells (PEMFCs). The thin nanocomposite bipolar plates (the thickness polypropylene (PP) with different crystallinities including high crystallinity PP (HC-PP), medium crystallinity PP (MC-PP), low crystallinity PP (LC-PP) were prepared to investigate the influence of crystallinity on the dispersion of MWCNTs in PP matrix. The optimum composition of original composite bipolar plates was determined at 80 wt.% graphite content and 20 wt.% PP content based on the measurements of electrical and mechanical properties with various graphite contents. Results also indicate that MWCNTs was dispersed better in LC-PP than other PP owing to enough dispersed regions in nanocomposite bipolar plates. This good MWCNT dispersion of LC-PP would cause better bulk electrical conductivity, mechanical properties and thermal stability of MWCNTs/PP nanocomposite bipolar plates. In the MWCNTs/LC-PP system, the bulk electrical conductivities with various MWCNT contents all exceed 100 S cm -1. The flexural strength of the MWCNTs/LC-PP nanocomposite bipolar plate with 8 phr of MWCNTs was approximately 37% higher than that of the original nanocomposite bipolar plate and the unnotched Izod impact strength of MWCNTs/LC-PP nanocomposite bipolar plates was also increased from 68.32 J m -1 (0 phr) to 81.40 J m -1 (8 phr), increasing 19%. In addition, the coefficient of thermal expansion of MWCNTs/LC-PP nanocomposite bipolar plate was decreased from 32.91 μm m -1 °C -1 (0 phr) to 25.79 μm m -1 °C -1 (8 phr) with the increasing of MWCNT content. The polarization curve of MWCNTs/LC-PP nanocomposite bipolar plate compared with graphite bipolar plate was also evaluated. These results confirm that the addition of MWCNTs in LC-PP leads to a significant improvement on the cell performance of the nanocomposite bipolar plate.

  8. Stiffening mechanisms in amorphous polyamide bio-nanocomposites

    Science.gov (United States)

    Focke, Walter W.; Macheca, Afonso D.; Benhamida, Aida; Kaci, Mustapha

    2016-05-01

    Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.

  9. Stiffening mechanisms in amorphous polyamide bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter W. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Macheca, Afonso D. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Department of Chemical Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo (Mozambique); Benhamida, Aida; Kaci, Mustapha [Laboratoire des Matériaux Polymères Avancés (LMPA), Université de Bejaia 06000 (Algeria)

    2016-05-18

    Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.

  10. Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering

    NARCIS (Netherlands)

    Carvalho, S; Ribeiro, E; Rebouta, L; Tavares, CJ; Mendonca, JP; Monteiro, AC; Carvalho, NJM; De Hosson, JTM; Cavaleiro, A

    2004-01-01

    This paper reports on the optimization of coating properties to improve the performance of tools in severe cutting conditions. Tungsten carbide tools coated with (Ti,Si,AI)N films deposited by d.c. reactive magnetron sputtering have been investigated. The structure and the hardness of the coated sam

  11. Synthesis and microwave absorption properties of PPy/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Gao, Duoduo [School of Material Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2014-11-15

    Polypyrrole (PPy)/cobalt (Co) nanocomposites were successfully prepared by an in-situ polymerization of pyrrole in the presence of synthesized Co nanoparticles. Characterization of the product was accomplished by XRD, TEM, FT-IR, VSM, and vector network analyzer techniques. XRD analysis revealed that characteristic diffraction peaks of polypyrrole and Co appeared at the same time in nanocomposites. FT-IR analysis indicated a successful conjugation of Co particles with polypyrrole. TEM confirmed the formation of a core-shell structure with a wide particle size distribution. Magnetization measurements showed that polypyrrole coating decreased the saturation magnetization of Co significantly. With the increase of the matching thickness, the absorption peak varied towards low frequency direction. When the matching thickness was 3.0 mm, the value of the maximum reflection loss (RL) was −20.0 dB at 13.8 GHz with the 7.2 GHz bandwidth. - Highlights: • The influence of PPy on the structure of Co is discussed. • The influence of PPy on the magnetic properties of Co is discussed. • The influence of PPy on the absorption property of Co is discussed. • PPy/Co possessed the excellent absorption property.

  12. Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites

    OpenAIRE

    Salavagione, Horacio Javier; Cazorla Amorós, Diego; Tidjane, Selma; BELBACHIR Mohammed; Benyoucef, Abdelghani; Morallón Núñez, Emilia

    2007-01-01

    A detailed study about the synthesis, characterization and properties of poly(o-methylaniline)(PoMea)/maghnite nanocomposites has been performed. Changes in the characteristics of the nanocomposites, depending on the intercalated cation between the clay layers before the synthesis, have been observed. Intercalated morphology has been detected by TEM in nanocomposites containing copper-treated maghnite (Magh-Cu), while when maghnite treated with strong acids was used (Magh-H); an e...

  13. Preparation and Properties of Nanocomposites from Pristine and Modified SWCNTs of Comparable Average Aspect Ratios

    Science.gov (United States)

    Smith, Joseph G.; Delozier, Donavon M.; Watson, Kent A.; Connell, John W.; Bekyarova, E.; Haddon, R.; Yu, A.

    2008-01-01

    Low color, flexible, space-durable polyimide films with inherent and robust electrical conductivity to dissipate electrostatic charge (ESC) have been under investigation as part of a materials development activity for future NASA space missions. The use of single-walled carbon nanotubes (SWCNTs) is one means to achieving this goal. Even though the concentration of SWCNTs needed to achieve ESC dissipation is typically low, it is dependent upon purity, size, dispersion, and functionalization. In this study, SWCNTs prepared by the electric arc discharge method were used to synthesize nanocomposites using the LaRC(TradeMark) CP2 backbone as the matrix. Pristine and functionalized SWCNTs were mixed with an alkoxysilane terminated amide acid of LaRC(TradeMark) CP2 and the soluble imide form of the polymer and the resultant nanocomposites evaluated for mechanical, thermal, and electrical properties. Due to the preparative conditions for the pristine and functionalized SWCNTs, the average aspect ratio for both was comparable. This permitted the assessment of SWCNT functionalization with respect to various interactions (e.g. van der Waals, hydrogen bonding, covalent bond formation, etc.) with the matrix and the macroscopic effects upon nanocomposite properties. The results of this study are described herein.

  14. GRAPHENE BASED METAL AND METAL OXIDE NANOCOMPOSITES: SYNTHESIS, PROPERTIES AND THEIR APPLICATIONS

    KAUST Repository

    Khan, Mujeeb

    2015-06-11

    Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials have increased exponentially. Particularly the easy preparation of graphene like materials, such as, highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including, electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail aspects of the graphene-based inorganic nanocomposites.

  15. Hydrogen desorption properties of MgH2-TiCr1.2Fe0.6 nanocomposite prepared by high-energy mechanical alloying

    Science.gov (United States)

    Mahmoudi, Nafiseh; Kaflou, A.; Simchi, A.

    2011-05-01

    In the present work, high-energy mechanical alloying (MA) was employed to synthesize a nanostructured magnesium-based composite for hydrogen storage. The preparation of the composite material with composition of MgH2-5 at% (TiCr1.2Fe0.6) was performed by co-milling of commercial available MgH2 powder with the body-centered cubic (bcc) alloy either in the form of Ti-Cr-Fe powder mixture with the proper mass fraction (sample A) or prealloyed TiCr1.2Fe0.6 powder (sample B). The prealloyed powder with an average crystallite size of 14 nm and particle size of 384 nm was prepared by the mechanical alloying process. It is shown that the addition of the Ti-based bcc alloy to magnesium hydride yields a finer particle size and grain structure after mechanical alloying. As a result, the desorption temperature of mechanically activated MgH2 for 4 h decreased from 327 °C to 262 °C for sample A and 241 °C for sample B. A high dehydrogenation capacity (∼5 wt%) at 300 °C is also obtained. The effect of the Ti-based alloy on improvement of the dehydrogenation is discussed.

  16. Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale.

    Science.gov (United States)

    Kossovich, Elena L; Safonov, Roman A

    2016-04-01

    Chitosan nanocomposites mechanical properties play a major role in usage of such materials for specific areas of application, mostly in medicine and development of ecologically-friendly production. Computer-based predictive modelling of such composites will reduce costs of their development. In this paper, a multiscale approach for structural characterization and evaluation of mechanical properties is proposed based on hybrid coarse-grained/all atom molecular dynamics. Chitosan films and fibers are constructed and studied in silico as well as chitosan composites with different types of randomly distributed reinforcing fillers (graphene nanoparticles, graphene oxide nanoparticles, carbon nanotubes, chitin nanoparticles). Young's moduli are found for such composites, degrees of improvement of mechanical properties and size effects within the framework of proposed methodology are discussed.

  17. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    Science.gov (United States)

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-10-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors.

  18. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

    Science.gov (United States)

    Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful

    2016-01-01

    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4).

  19. 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Elke M. F. Lemos

    2016-05-01

    Full Text Available Porous synthetic substrates are developed through tissue engineering technologies to grow new tissue, restoring the function of tissue or an organ. For bone regeneration, these scaffolds must support the dynamic load exerted on this tissue, achieved primarily by increasing their compression strength, as established in the literature. The aim of this paper was to incorporate an inorganic composite bioactive glass (60%SiO2 - 36%CaO - 4%P2O5 as a reinforcing agent in mechanical 3D scaffolds that must remain porous. Two strategies were adopted: a co-precipitation method to obtain a nanoparticulate dispersion of bioactive glass (BGNP and a sol-gel method to combine a bioactive glass solution (BG with a previously prepared chitosan polymer solution. Moreover, a lyophilization process was also used, generating highly porous scaffolds. Various aspects of the scaffold were evaluated, including the morphology, orientation and size of the pores, and mechanical strength, as obtained using the two synthetic methods. The data for compressive strength revealed increased strength after the incorporation of bioactive glass, which was more pronounced when utilizing the nanoscale bioactive glass.

  20. Mechanical, Thermal, and Microstructural Analysis of Polyvinyl Alcohol/Montmorillonite Nanocomposites

    Directory of Open Access Journals (Sweden)

    P. G. Allison

    2015-01-01

    Full Text Available Structural biomaterials such as nacre, bone, and fish scales possess unique structures that have hierarchical spatial configurations, which provide excellent mechanical properties when compared to their individual constituents. These observations have been the motivation for designing and characterizing bioinspired materials with high strength, high stiffness, and corrosion-resistant properties while at the same time being environmentally friendly. It has been demonstrated that polymer-clay nanocomposites can simulate the behavior of nacreous biomaterials such as abalone shell. Mechanical, thermal, and microstructural analyses characterized solution-cast polyvinyl alcohol (PVA/montmorillonite (MMT nanocomposite properties over compositions ranging from the neat polymer to 25% volume fraction of MMT nanoclay. Uniaxial tensile experiments were performed at displacement rates of 1 mm/min and 50 mm/min. Strength values are similar to those shown by nacre and represent a homogeneous dispersion of the MMT in the polymer matrix. Strength-to-weight ratios are similar to many structural metals.

  1. Evolution of microstructure, strain and physical properties in oxide nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    We, using LSMO:ZnO nanocomposite films as a model system, have studied the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. It further shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.

  2. Textural properties of poly(glycidyl methacrylate) : acid-modified bentonite nanocomposites

    NARCIS (Netherlands)

    Zunic, M.; Milutinovic-Nikolic, A.; Nastasovic, A.; Vukovic, Z.; Loncarevic, D.; Vukovic, I.; Loos, K.; ten Brinke, G.; Jovanovic, D.; Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van; Žunić, M.; Milutinović-Nikolić, A.; Nastasović, A.; Vuković, Z.; Lončarević, D.; Vuković, I.; Jovanović, D.

    2013-01-01

    The aim of this study was to obtain enhanced textural properties of macroporous crosslinked copolymer poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) by synthesizing nanocomposites with acid-modified bentonite. Nanocomposites were obtained by introducing various amounts of acid-modifie

  3. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites

    Science.gov (United States)

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). One of the reasons for unique properties of bio-nanocomposites is the differ...

  4. Viscoelastic properties of poly(butylene succinate)-co-adipate) nanocomposites

    CSIR Research Space (South Africa)

    Al-Thabaiti, SA

    2015-03-01

    Full Text Available This article reports the viscoelastic properties of poly[(butylene succinate)-co-adipate] (PBSA) nanocomposites. The nanocomposites of PBSA with various loadings of organically modified clay were prepared by melt-mixing in a batch-mixer. The solid...

  5. Textural properties of poly(glycidyl methacrylate) : acid-modified bentonite nanocomposites

    NARCIS (Netherlands)

    Zunic, M.; Milutinovic-Nikolic, A.; Nastasovic, A.; Vukovic, Z.; Loncarevic, D.; Vukovic, I.; Loos, K.; ten Brinke, G.; Jovanovic, D.; Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van; Žunić, M.; Milutinović-Nikolić, A.; Nastasović, A.; Vuković, Z.; Lončarević, D.; Vuković, I.; Jovanović, D.

    2013-01-01

    The aim of this study was to obtain enhanced textural properties of macroporous crosslinked copolymer poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) by synthesizing nanocomposites with acid-modified bentonite. Nanocomposites were obtained by introducing various amounts of acid-modifie

  6. Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Wang WG

    2014-02-01

    Full Text Available Weiguo Wang,1,* Xiang Sun,1,* Li Huang,2,* Yu Gao,1 Jinghao Ban,1 Lijuan Shen,1 Jihua Chen1 1Department of Prosthodontics, 2Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China*These authors contributed equally to this workAbstract: Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS, have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group] and methacryl POSS (MA-POSS [bears eight methacrylate functional groups] were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials

  7. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  8. Structure-property relationships in silica-siloxane nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, T.A.; Derzon, D.K.; Wang, L.C.

    1997-03-01

    The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on the effects of temperature and relative humidity on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process- structure-property relations. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate. Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

  9. Thermoelectric Properties of Alumina-Doped Bi0.4Sb1.6Te3 Nanocomposites Prepared through Mechanical Alloying and Vacuum Hot Pressing

    Directory of Open Access Journals (Sweden)

    Chung-Kwei Lin

    2015-11-01

    Full Text Available In this study, γ-Al2O3 particles were dispersed in p-type Bi0.4Sb1.6Te3 through mechanical alloying to form γ-Al2O3/Bi0.4Sb1.6Te3 composite powders. The composite powders were consolidated using vacuum hot pressing to produce nano- and microstructured composites. Thermoelectric (TE measurements indicated that adding an optimal amount of γ-Al2O3 nanoparticles improves the TE performance of the fabricated composites. High TE performances with figure of merit (ZT values as high as 1.22 and 1.21 were achieved at 373 and 398 K for samples containing 1 and 3 wt % γ-Al2O3 nanoparticles, respectively. These ZT values are higher than those of monolithic Bi0.4Sb1.6Te3 samples. The ZT values of the fabricated samples at 298–423 K are 1.0–1.22; these ZT characteristics make γ-Al2O3/Bi0.4Sb1.6Te3 composites suitable for power generation applications because no other material with a similarly high ZT value has been reported at this temperature range. The achieved high ZT value may be attributable to the unique nano- and microstructures in which γ-Al2O3 nanoparticles are dispersed among the grain boundary or in the matrix grain, as revealed by high-resolution transmission electron microscopy. The dispersed γ-Al2O3 nanoparticles thus increase phonon scattering sites and reduce thermal conductivity. The results indicated that the nano- and microstructured γ-Al2O3/Bi0.4Sb1.6Te3 alloy can serve as a high-performance material for application in TE devices.

  10. Magnetic properties of nano-composite particles

    Science.gov (United States)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  11. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.

    Science.gov (United States)

    Rouhi, S; Alizadeh, Y; Ansari, R

    2016-01-01

    Molecular dynamics simulations are used to study the physical and mechanical properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites. The effects of nanotube atomic structure, diameter, and volume fraction on the polymer density distribution, polymer atom distribution, stress-strain curves of nanocomposites and Young's, and shear moduli of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites are explored. It is shown that the density of polymer, surrounding the nanotube surface, has a peak near the nanotube surface. However, increasing distance leads to dropping it to the value near the density of pure polymer. It is seen that for armchair nanotubes, the average polymer atoms distances from the single-walled carbon nanotubes are larger than the polymer atom distance from zigzag nanotubes. It further is shown that zigzag nanotubes are better candidates to reinforce poly (ethylene oxide) than their armchair counterparts.

  12. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    Science.gov (United States)

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  13. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties.

    Science.gov (United States)

    Konwar, Achyut; Gogoi, Neelam; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-01-22

    In this work we report novel chitosan-carbon dots nanocomposite hydrogel films. A new green source "tea" was used as precursor for carbon dots (CDs). The electrostatic interaction of positive charge on chitosan and negative charge on CDs prepared from tea was used for the successful preparation of a stable and robust chitosan-carbon dots nanocomposite hydrogel film. The hydrogel films were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transformed infra-red spectroscopy (FTIR), scanning electron microscope (SEM), fluorescent microscopy, thermogravimetric analysis (TGA) and contact angle analysis. It was observed that chitosan-carbon dots hydrogel films are soft but tough with superior UV-visible blocking, swelling, thermal and mechanical properties in comparison to chitosan hydrogel film. Moreover chitosan-carbon dots films are more water repellent (hydrophobic) as indicated by their high contact angle values. Thus, fabrication of such green soft but tough biocompatible chitosan-carbon dots nanocomposite hydrogel films offers tremendous bio-medical and industrial applications.

  14. Polystyrene/magnetite nanocomposite synthesis and characterization: investigation of magnetic and electrical properties for using as microelectromechanical systems (MEMS

    Directory of Open Access Journals (Sweden)

    Omidi Mohammad Hassan

    2017-02-01

    Full Text Available In this work, a novel polystyrene/Fe3O4 nanocomposite prepared by in-situ method is presented. Magnetic Fe3O4 nanoparticles were encapsulated by polystyrene. The FT-IR spectra confirmed polystyrene/Fe3O4 nanocomposite preparation. The electrical properties of prepared nanocomposite were investigated by cyclic voltammetry (CV. The CV analysis showed good electrical conductivity of the synthesized nanocomposite. Magnetic properties of the nanocomposite were studied by vibrating sample magnetometer (VSM. The VSM analysis confirmed magnetic properties of the nanocomposite. The morphology and the size of the synthesized nanocomposite were investigated by field emission scanning electron microscope (FESEM. According to the VSM and CV results, such nanocomposite can be used in microelectromechanical systems.

  15. Fracture Mechanisms of Layer-By-Layer Polyurethane/Poly(Acrylic Acid) Nanocomposite

    Science.gov (United States)

    Kheng, Eugene R.

    A layer-by-layer(LBL) manufactured material is examined in detail in this thesis. Improvements are made to the method of its manufacture. Efforts are made to understand its fracture mechanisms and take advantage of these fracture mechanisms in the absorption of impact energy. A novel series of experiments has been performed on LBL manufactured thin films to demonstrate their unique fracture mechanisms. Polyurethane/Poly(Acrylic Acid) (PU/PAA) and PU/PAA/(PU/Clay)5 nanocomposite films readily undergo Interlaminar mode II fracture, because of the relatively weak elctrostatic bonds between monolayers. Tensile tests performed while under observation by a scanning electron microscope demonstrate the tendency of these nanocomposite films to undergo interlaminar mode II fracture even when loads are applied in the plane of nanocomposite film. It is concluded that these mechanisms of energy dissipation are responsible for the enhanced toughness of these films when used as layers between glass blocks in the prevention of impact damage to the glass. A novel automated manufacturing facility has been designed and built to deposit large sheets of Layer-by-Layer nanocomposite film. These large sheets are incorporated into a borosillicate glass composite in order to compare the ballistic characteristics of LBL PU based nanocomposite films to a single cast layer of polyurethane. It is demonstrated that shear fracture is the mode of failure in the blocks containing the nanocomposite film. The shear fracture surface in the nanocomposite after it has undergone a ballistic impact is characterized. Additional experiments are performed to characterize the interlaminar fracture stresses and toughnesses of the nanocomposite LBL layers, to assist in the implementation of a numerical crack band model that describes the nanocomposite film. The computational model predicts the failure of the ballistic nanocomposite samples, and the predicted V50 velocity is found to be in good agreement with

  16. HDPE/LLDPE blend-based nanocomposites - Part I: evaluation of thermo-mechanical properties and weathering resistance; Nanocompositos de blendas HDPE/LLDPE e OMMT - parte I: avaliacao das propriedades termo-mecanicas e da resistencia ao intemperismo

    Energy Technology Data Exchange (ETDEWEB)

    Passador, Fabio R.; Backes, Eduardo H.; Travain, Daniel R.; Ruvolo Filho, Adhemar; Pessan, Luiz A., E-mail: fabiopassador@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2013-07-01

    Nano composites from high density polyethylene/ linear low density polyethylene (HDPE/LLDPE) blends were prepared at the melt state in an extruder, using HDPE-g-MA as compatibilizer agent. The structural characterization was performed through wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The results showed that adding the compatibilizer induced formation of a predominant intercalated microstructure. Dynamic-mechanical studies showed that the addition of the compatibilizer increases the interactions between the nano clay surface and the polyolefin matrix. The weathering conditions affected the mechanical behavior of HDPE/LLDPE blend-based nano composites. Both treatments performed in hot water and in a forced convection air oven provided the relief of residual stresses in the polymer matrix, while the treatment in an accelerated aging chamber provided the formation of carbonyl groups that lead to a decreased degree of crystallinity and elastic modulus of the nanocomposites. (author)

  17. Mechanical Properties of Polyhydroxyalkanoate Bioceramic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    江涛; 胡平; 柳林; 李亚栋

    2002-01-01

    New composites prepared containing nanoscale hydroxyapatite or monetite uniformly distributed in a polyhydroxyalkanoate (polyhydroxybutyrate or polyhydroxybutyrate-hydroxyvalerate) matrix with mass fractions of 1%5% were then injected into dumb-like specimens. The results show that the tensile strength and the tensile modulus of the composites are improved. The microstructures of the composites were observed using transmission electron microscopy (TEM).

  18. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  19. Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes

    Science.gov (United States)

    Wang, Weiguo; Sun, Xiang; Huang, Li; Gao, Yu; Ban, Jinghao; Shen, Lijuan; Chen, Jihua

    2014-01-01

    Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional groups]) were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials. PMID:24550674

  20. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes.

    Science.gov (United States)

    Wang, Weiguo; Sun, Xiang; Huang, Li; Gao, Yu; Ban, Jinghao; Shen, Lijuan; Chen, Jihua

    2014-01-01

    Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional groups]) were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials.

  1. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tolesa Fita Chala

    2017-07-01

    Full Text Available In this work, novel WO3-x/polyurethane (PU nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72 and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications.

  2. Effect of external shearing force on exfoliation structure and properties of high-performance epoxy/clay nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LU Hai-jun; ZHANG Bao-yan; CHEN Xiang-bao

    2005-01-01

    To further investigate the influence of organic modifiers (primary amine with catalytic hydrogen and quaternary alkylammonium salt) on exfoliation behavior of clay tactoids, high-speed emulsifying and homogeneous mixing(HEHM) and ball milling were used to exert external shearing force on two organic clay tactoids (termed as MMTDDA and MMTDBDA, respectively), which were organically modified with DoDecyl Amine(DDA) and Dodecyl Benzyl Dimethyl Ammonium chloride(DBDA) ,respectively. The effects of external shearing force on microstructure and properties of both resultant nanocomposites were investigated by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA). The results show that whether the clay tactoids are organically modified with catalytic primary amine or quaternary alkylammonium salt, the large agglomerates will not be finely dispersed or exfoliated by conventional mixing (magnetic stirring). After being vigorously sheared by HEHM or ball milling, the dispersion and exfoliation of clay tactoids are increasingly promoted for both MMTDDA and MMTDBDA, and the mechanical properties of the high-performance epoxy/clay nanocomposites are enhanced. For epoxy/MMTDDA nanocomposites, impact strength can be increased up to 44.5 kJ/m2 from 32.1 kJ/m2 , which is about 39% higher than that of pristine matrix, and the flexural strength is enhanced by about 4%. A similar enhancement for epoxy/MMTDBDA nanocomposites has also been achieved. Improvement on thermal stability of epoxy/clay nanocomposites is dependent on the exfoliation of clay layers and molecular structure of the modifiers. The onset temperature is increased with the clay loading decreasing from 5% or higher content to 3% (mass fraction), and the DBDA modifier with the heat-resistant benzyl may also improve the stability of epoxy/MMTDBDA nanocomposites.

  3. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong, E-mail: jsliu@nuaa.edu.cn [Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhu, Kongjun, E-mail: kjzhu@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Sheng, Beibei [Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Li, Ziquan [Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Chemical Engineering Department, Nanjing College of Chemical Technology, Nanjing, Jiangsu 210048 (China); Tai, Guoan; Qiu, Jinhao; Wang, Jing [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Chen, Jiankang; You, Yuncheng [Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Gu, Qilin; Liu, Pengcheng [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2015-01-05

    Highlights: • Using a low-temperature solid-state method, ZnO/CdS nanocomposites were obtained • Grain growth kinetics of cubic CdS and hexagonal ZnO phase was described. • Sufficient grinding and heating treatment was a key for formation of composites. • Optical properties could be easily manipulated by reaction temperature and time. - Abstract: A simple low-temperature solid-state reaction in the presence of the surfactant PEG400 was developed to obtain ZnO/CdS nanocomposites. The effects of synthesis temperature and reaction time on crystal structure and optical properties of the nanocomposites were investigated by several technologies. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) characterizations showed that the products consisted of the nanoparticles, and the grain growth kinetics of the cubic CdS and the hexagonal ZnO phase in the nanocomposites was described. The mechanism analysis suggested that sufficient grinding and heating treatment was a key to form the ZnO/CdS nanocomposites, and the surfactant PEG400 was proved not to involve the reaction and prevent the nanoparticles from aggregating to larger in whole grinding and heat-treatment process. Ultraviolet–visible (UV–vis) spectra revealed that the band gaps of the nanocomposites could be tuned by the reaction temperature and reaction time. Photoluminescence (PL) spectra showed that the changing position and the intensity of the emission peaks resulted from the rate of electron transfer and recombination probability under the different conditions.

  4. Trends in nanoscale mechanics mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics

    CERN Document Server

    2014-01-01

    This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book has reviews of the recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided...

  5. Tribological and mechanical behaviour of dual-particle (nanoclay and CaSiO$_3$)-reinforced E-glass-reinforced epoxy nanocomposites

    Indian Academy of Sciences (India)

    T RAM PRABHU; S BASAVARAJAPPA; R B SANTHOSH; S M ASHWINI

    2017-02-01

    An E-glass-reinforced epoxy-based nanocomposite containing organomodified nanoclay (15–20 nm) and calcium silicate particles (75–149 $\\mu$m) was developed through mechanical shearing mixing and hand layup techniques. Three weight fractions (2, 3 and 4%) of nanoclay were selected to study the effects of nanoclay on mechanical and wear behaviour of nanocomposites. Tensile and flexural properties of nanocomposites were evaluated and compared. The wear properties were evaluated for three speed (3.14, 4.19 and 5.24 m s$^{−1}$) and load (20, 50, and 80 N) conditions based on a design of experiment (L16 matrix) concept. The wear loss results were statistically analysed to study the significance of load, speed and nanoclay content. The morphologies of wear surface and fracture surface were examined with the aid of a scanning electron microscope (SEM) to identify the wear and fracture mechanisms. It was found that the wear loss increases with increasing nanoclay amount due to the particle agglomeration effects. Statistical analysis determines that the load is the most significant parameter affecting the wear resistance of nanocomposites. The mean and S/N ratio analyses rank the parameters significance in affecting wear resistance as follows: load $>$ nanoclay content $>$ speed. The wear mechanisms of nanocomposites are complex due to the observation of multiple features such as fibre thinning, matrix wear and fibre/matrix debonding as against abrasive wear in the pure epoxy. Tensile and flexural test results show that a good dispersion of nanoclay is achieved with 2 wt% amount in epoxy-based nanocomposites. The mechanical properties degrade above 2 wt% due to the excessive reinforcement,uneven distribution and the particle agglomeration effects. Fractography studies of tension-failed samples show that pure epoxy resin fails by multimode gauge explosive mode, whereas nanocomposites fail mainly by the matrix/fibre interface failure and fibre breakages.

  6. Mechanical properties of viruses.

    Science.gov (United States)

    de Pablo, Pedro J; Mateu, Mauricio G

    2013-01-01

    Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

  7. Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, P.; Cerstvy, R.; Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.; Mayrhofer, P.H.; Mitterer, C. [Institut fuer Metallkunde und Werkstoffpruefung, Montanuniversitaet, Franz-Josef-Strasse 18, A-8700, Leoben (Austria)

    2000-09-30

    Zr-Cu-N nanocomposite films represent a new material of the type-nanocrystalline transition metal nitride (nc-MeN)/metal. In the present work, films were deposited onto steel substrates using unbalanced dc reactive magnetron sputtering of a Zr-Cu (62/38 at.%) target. Film structure, chemical composition, mechanical and optical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive electron probe microanalysis, depth-sensing microindentation and spectroscopic ellipsometry. It was found that (i) there is a strong correlation between the film structure, Cu content and film properties and (ii) either hard or superhard Zr-Cu-N films can be formed. The superhard coatings with hardness H>40 GPa are characterized by a columnar structure, a strong 111 XRD peak from ZrN grains and no diffraction peaks from Cu. These films exhibit a high elastic recovery of about 80% and contain a very low amount of Cu, approximately 1-2 at.%. In contrast, the hard (<40 GPa) Zr-Cu-N films are characterized by many diffraction peaks from polyoriented ZrN and Cu grains, a more random microstructure and a Cu content higher than 2 at.%. The optical properties of nanocomposite Zr-Cu-N films depend on the stoichiometry of the hard ZrN{sub x} compound and the content of Cu in the film. (orig.)

  8. Influence of gamma irradiation on structural, thermal and antibacterial properties of HPMC/ZnO nanocomposites

    Science.gov (United States)

    Rao, B. Lakshmeesha; Madhukumar, R.; Latha, S.; Shetty, G. Rajesha; Shivananda, C. S.; Chandra, K. Sharath; Sangappa, Y.

    2016-05-01

    This work was carried out to evaluate the effect of gamma irradiation on the structural, thermal and antibacterial properties of HPMC/ZnO nanocomposite films exposed to Cobalt-60 (Average energy: 1.25MeV). The X-ray diffraction study revealed that the crystallite size (L in Å) decreased as irradiation dose increased. The crystallinity (Xc) of the nanocomposites initially increased and at higher doses it was decreased. The thermal stability of the nanocomposites increased up to 50 kGy and after that decreased as the irradiation dose increased. But, HPMC/ZnO nanocomposite films, showed a promising range of antimicrobial activity against tested micro-organisms making nanocomposites suitable for food packing and other biomedical applications.

  9. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    Science.gov (United States)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2017-01-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  10. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    Science.gov (United States)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2016-11-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  11. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal [Chemical Engineering department, Universiti Teknology Petronas, Tronoh (Malaysia)

    2015-06-24

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  12. Nanocomposites films obtained from protein isolates of mechanically deboned chicken meat added with montmorillonite

    Directory of Open Access Journals (Sweden)

    Bruna da Silva Menezes

    Full Text Available Abstract The aim of this study was to evaluate the properties of nanocomposite films of protein isolates from mechanically deboned chicken meat with organoclay (montmorillonite. For the film development, a 23 experimental design was performed with three levels, protein isolate (2, 3.5, 5 g.100 mL-1 of solution, montmorillonite (0.3, 0.5, 0.7 g.100mL-1 of solution and glycerol (25, 30, 35 g.100 mL-1 CPI. The tensile strength varied between 6.7 and 9.1 MPa, elongation to break from 26-66%, opacity of 13.1 to 35.7 and solubility from 38.5% to 81.8%. Assessing the structural properties, interleaving of the isolate and montmorillonite can be noted. The results obtained in the experimental design indicate that 2.0 g of CPI.100 g-1 of solution, 0.8 g of MMT.100 g-1of solution and 0.2 g of glicerol.100 g-1CPI are the ideal parameters for preparing nanocomposite films.

  13. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  14. Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites

    Directory of Open Access Journals (Sweden)

    Youssef Mobarak

    2013-01-01

    Full Text Available Materials selection process for electrical insulation application was carried out using Cambridge Engineering Selector (CES program. Melt mixing technique was applied to prepare polyvinyl-chloride- (PVC- nanofumed silica and nanomontmorillonite clay composites. Surface analysis and particles dispersibility were examined using scanning electron microscope. Dielectrical properties were assessed using Hipot tester. An experimental work for dielectric loss of the nanocomposite materials has been investigated in a frequency range of 10 Hz–50 kHz. The initial results using CES program showed that microparticles of silica and clay can improve electrical insulation properties and modulus of elasticity of PVC. Nano-montmorillonite clay composites were synthesized and characterized. Experimental analyses displayed that trapping properties of matrix are highly modified by the presence of nanofillers. The nanofumed silica and nanoclay particles were dispersed homogenously in PVC up to 10% wt/wt. Dielectric loss tangent constant of PVC-nanoclay composites was decreased successfully from 0.57 to 0.5 at 100 Hz using fillers loading from 1% to 10% wt/wt, respectively. Nano-fumed silica showed a significant influence on the electrical resistivity of PVC by enhancing it up to 1 × 1011 Ohm·m.

  15. Effect of titanium addition on the magnetic property of Nd2Fe14B/α-Fe nanocomposite alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG

    2010-01-01

    Rapidly solidified nanocrystalline α-Fe/Nd2Fe14B alloys with enhanced coercivity were obtained by melt spinning.The effects of Ti addition on the microstructore and magnetic properties of the nanocomposite α-Fe/Nd2Fe14B alloys were investigated by X-ray diffraction(XRD)and superconducting quantum interference device(SQUID)magnetometer.The analysis of XRD showed that Vα-Fe estimated to be about 35.3% in the Ti-free α-Fe/Nd2Fe14B nanocomposites decreased down to 26.5% as the addition of was 5 at.% Ti.Accordingly,adding Ti resulted in relevant improvements of magnetic properties,especially of the coercivity Hc from 595 kA/m up to 1006 kA/m.The dependence of Mirrev(H)/2Mr on the reverse field H indicated that nucleation was the dominating mechanism for the magnetization reversal in these nanocomposites.The analysis of the temperature dependence of the demagnetization curve in the α-Fe/Nd2Fe14B nanocomposite magnets indicated that a reduction of αex could play a leading role in an increase in the coercivity of Ti-doped sample.

  16. Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology

    Science.gov (United States)

    Stein, Itai Y.; Wardle, Brian L.

    2016-01-01

    The promise of enhanced and tailored properties motivates the study of one-dimensional nanomaterials, especially aligned carbon nanotubes (A-CNTs), for the reinforcement of polymeric materials. While CNTs have remarkable theoretical properties, previous work on aligned CNT polymer matrix nanocomposites (A-PNCs) reported mechanical properties that are orders of magnitude lower than those predicted by rule of mixtures. This large difference primarily originates from the morphology of the CNTs, because the CNTs that comprise the A-PNCs have significant local curvature commonly referred to as waviness. Here we present a simulation framework capable of analyzing 105 wavy CNTs with realistic three-dimensional morphologies to quantify the impact of waviness on the effective elastic modulus contribution of wavy CNTs. The simulation results show that due to the low shear modulus of the reinforcing CNT ‘fibers’, and large (\\gt 50%) compliance contribution of the shear deformation mode, waviness reduces the effective stiffness contribution of the A-CNTs by two to three orders of magnitude. Also, the mechanical property predictions resulting from the simulation framework outperform those previously reported using finite element analysis since representative descriptions of the morphology are required to accurately predict properties of the A-PNCs. Further work to quantify the morphology of A-PNCs in three-dimensions, simulate their full non-isotropic constitutive relations, and predict their failure mechanisms is planned.

  17. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites.

  18. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ejder-Korucu, Mehtap, E-mail: mehtapejderk@gmail.com [Department of Chemistry, Faculty of Science and Literature, Kafkas University, 36000 Kars (Turkey); Gürses, Ahmet [Department of Chemistry Education, K.K. Education Faculty, Ataturk University, 25240 Erzurum (Turkey); Karaca, Semra [Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum (Turkey)

    2016-08-15

    Highlights: • PEO/clay nanocomposites were prepared via solution intercalation. Complete exfoliation occurs in samples of 0.5 and 2.0 CEC. • The impaired helical structure of PEO in nanocomposite structures had been verified based on the results of FTIR studies. • The crystallization temperature of PEO/OMMT nanocomposites is low compared to raw polymer. • The increase of melting temperatures indicates the increase of the stability of PEO in case of availability of clay. • The tensile strength, yield strength, % stretching of nanocomposite samples increase compared to raw polymer at all CEC rates. - Abstract: Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  19. Influence of Two Compatibilizers on Clay/PP Nanocomposites Properties

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela; Vuluga, Zina; Christiansen, Jesper de Claville

    2013-01-01

    -screw extruder was used to obtain nanocomposites based on polypropylene via the melt intercalation technique. X-ray diffraction and differential scanning calorimetric results showed that intercalated nanocomposites with improved thermal stability were obtained. Increases of 8% in tensile strength, 34% in modulus...

  20. Eco-friendly polymer nanocomposites processing and properties

    CERN Document Server

    Thakur, Vijay Kumar

    2015-01-01

    This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The co...

  1. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  2. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  3. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

    Science.gov (United States)

    Swain, S K; Gotman, I; Unger, R; Gutmanas, E Y

    2017-09-01

    In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The degradation behavior of the developed composite materials was studied by immersion in Ringer's and saline solutions for up to 1month. The mechanical properties, before and after immersion, were tested in compression and bending. All the compositions exhibited high mechanical strength, the strength in bending being several fold higher than that of polymer toughened β-TCP-30PLA nanocomposites prepared by the similar procedure of attrition milling and cold sintering, and of pure high-temperature sintered β-TCP. Partial substitution of iron with silver led to an increase in both strength and ductility. Furthermore, the galvanic action of silver particles dispersed in the iron phase significantly accelerated in vitro degradation of β-TCP-30(Fe-Ag) nanocomposites. After 1month immersion, the composites retained about 50% of their initial bending strength. In cell culture experiments, β-TCP-27Fe3Ag nanocomposites exhibited no signs of cytotoxicity towards human osteoblasts suggesting that they can be used as an implant material. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. PREPARATION AND PROPERTIES OF CLAY/POLY(N-ISOPROPYLACRYLAMIDE-co-ACRYL AMIDE) NANOCOMPOSITE HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoli; LIU Yang; Zhang WEI; JIANG Yongmei; GU Chunju; ZHU Meifang; Adler H.J.

    2006-01-01

    A series of clay/poly(N-isopropylacrylamide-co-acrylamide) nanocomposite hydrogels (S-N-M gels) have been successfully prepared by in situ polymerization. The mechanical properties,swelling behavior of S-N-M gels and the transparency changes during polymerization of S-N-M gels have been systematically investigated. Compared to traditional hydrogeb, S-N-M gels show excellent tensile properties and their swelling ratio increases with increasing acrylamide (AAm) content. The results of stress relaxation indicate that the stress loss decreases with increasing AAm content. It was surprisingly found that the transparency during all S-N-M gel synthesis changes abruptly, and the changes become more abrupt with increasing N-isopropylacrylamide content. It was concluded that the fact may be related to the hydrophilicity of copolymers. The weaker the hydrophilicity of copolymer, the more apparent the transparency change during S-N-M gels polymerization. We believe the relationship between hydrophilicity of copolymer and transparency changes will help to design novel nanocomposite hydrogels.

  5. Polyaniline-Doped Spherical Polyelectrolyte Brush Nanocomposites with Enhanced Electrical Conductivity, Thermal Stability, and Solubility Property

    Directory of Open Access Journals (Sweden)

    Na Su

    2015-09-01

    Full Text Available The synthesis procedure and dopant are crucial to the electrical conductivity, thermal stability, and solubility properties of polyaniline (PANI. In this paper, high-performance PANI was synthesized by means of chemical oxidative polymerization using anionic spherical polyelectrolyte brushes (ASPB as dopant. The bonding structure, crystallographic structure, morphology, and thermal stability of the conductive nanocomposite were analyzed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM, and thermo-gravimetric analysis (TGA respectively. Meanwhile, investigation on the electrical conductivity suggested that the room-temperature electrical conductivity of PANI doped with ASPB (PANI/ASPB was 19.3 S/cm, which was higher than that of PANI (7.0 S/cm, PANI doped with poly(sodium-p-styrenesulfonate (PSS (PANI/PSS (14.6 S/cm, PANI doped with SiO2 (PANI/SiO2 (18.2 S/cm, and PANI doped with canonic spherical polyelectrolyte brushes (CSPB (PANI/CSPB (8.0 S/cm. Meanwhile, the addition of ASPB improved the thermal stability and solubility properties of PANI. ASPB played the role of template. Conductive mechanism of PANI/ASPB nanocomposite can be explained by the theoretical models of three-dimensional variable range-hopping (3D VRH.

  6. Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nouari Saheb

    2015-01-01

    Full Text Available Metal matrix nanocomposites are advanced materials developed using ceramic nanoreinforcements and nanocrystalline metal matrices. These composites have outstanding properties and high potential for large number of functional and structural applications. In this work, nanocrystalline aluminium and Al-Al2O3 nanocomposites were synthesised using mechanical alloying and consolidated through spark plasma sintering technique. Scanning electron microscopy, X-ray diffraction, and mapping were used to characterize the powders and sintered samples. Density and hardness of sintered samples were measured using densimeter and hardness tester, respectively. It was found that milling of pure aluminium for 24 h reduced its crystallite size to less than 100 nm. For Al-Al2O3 nanocomposites, milling for 24 h decreased the crystallite size of the aluminium phase and resulted in uniform dispersion of the reinforcement. Sintering of the synthesised powders led to grain growth. Al2O3 contributed to growth inhibition when samples were sintered for 20 minutes and improved the hardness but reduced densification. The Al-10 vol.%  Al2O3 nanocomposite had the highest Vickers hardness value of 1460 MPa.

  7. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    Science.gov (United States)

    Ejder-Korucu, Mehtap; Gürses, Ahmet; Karaca, Semra

    2016-08-01

    Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  8. Biopolymer nanocomposites: processing, properties, and applications (wiley series on polymer engineering and technology)

    CERN Document Server

    2013-01-01

    Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources.Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of b...

  9. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  10. Improvement in tensile properties of PVC–montmorillonite nanocomposites through controlled uniaxial stretching

    Indian Academy of Sciences (India)

    Adnan Sarfraz; Muhammad Farooq Warsi; Muhammad Ilyas Sarwar; Muhammad Ishaq

    2012-08-01

    In this paper we present the results exhibiting an improvement in the tensile properties of polyvinyl chloride (PVC)–montmorillonite nanocomposites through uniaxial stretching. The clay was dispersed in PVC matrix with the help of dodecylamine. PVC–montmorillonite nanocomposites films containing varying amounts of clay (0–5%) were produced through solution elution technique. The films were stretched uniaxially at a constant temperature of 80 °C in three different steps using controlled loads. X-ray diffraction and stress–strain curves were obtained for both unstretched and stretched films in order to determine the improvement in various properties. The controlled uniaxial stretching of films close to the softening temperature of PVC has resulted in enhancement in the degree of crystallinity in the nanocomposites. This improvement in the structural order has also imparted increase in tensile strength and Young’s modulus of the nanocomposite films.

  11. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  12. Tailoring the physical properties of homopolymers and polymer nanocomposites via solid-state processing

    Science.gov (United States)

    Pierre, Cynthia

    Numerous approaches can be used to modify polymer properties. In this thesis, it is demonstrated that an innovative, continuous, industrially scalable process called solid-state shear pulverization (SSSP) can be used to enhance polymer properties with and without the addition of nanofillers. The SSSP process employs a modified twin-screw extruder in which the barrel is cooled rather than heated, resulting in the polymer being processed at a temperature below its glass transition temperature, if the polymer is amorphous, or its melt transition temperature, if the polymer is semi-crystalline. The material processed via SSSP experiences high levels of shear and compressive stresses, resulting in many repeated fragmentation and fusion steps during pulverization, which can lead to mechanochemistry. This research provides the first in-depth study on the effect of SSSP processing on the molecular structure as well as physical properties of homopolymers. Rheological characterization has demonstrated an increase in the melt viscosity of pulverized poly(ethylene terephthalate) (PET), which can be ascribed to the in situ formation of lightly branched PET. Further evidence of branched PET is provided via a dramatic increase in the rate of crystallization of the pulverized samples. These results suggest that SSSP processing can enhance the reuse and recyclability of PET. While SSSP processing has dramatic effects on the structure of polyesters and consequently their properties, a mild effect is observed for polyolefins. This thesis also demonstrates via a combination of methods that the well-exfoliated state can be achieved via SSSP processing of various polymer nanocomposites, using as-received, unmodified fillers. For example, extensive comparisons are made concerning the thermal stability in air or nitrogen atmosphere of polypropylene (PP)/clay, PP/graphite, and PP/carbon nanotube (CNT) nanocomposites made by SSSP. These comparisons suggest that the mechanism by which CNTs

  13. Comparative evaluation between montmorillonite clay/LLDPE and potassium hexaniobate/LLDPE nanocomposites: characterization of mechanical and transport properties; Avaliacao comparativa entre os nanocompositos de argila motmorilonita/LLDPE e com hexaniobato de potassio/LLDPE: caracterizacao das propriedades mecanicas e de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Daniel; Otaguro, Harumi, E-mail: daniikom@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica; Ruvolo Filho, Adhemar C. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2014-06-01

    Linear low density polyethylene-montmorillonite clay and linear low density polyethylene-organophilic niobate nanocomposites were obtained from dilution of masterbatch with 20% w/w of fillers in the LLDPE matrix by melt intercalation using a twin-screw extruder, obtaining nanocomposites with 1.5% up to 10.0% w/w of filler. In this study mechanical and water vapor and oxygen permeation tests were used to characterize the nanocomposites. In mechanical tests an increase of modulus values and decrease of toughness value by increasing concentration of montmorillonite clay were observed. The behavior of LLDPE-organophilic niobate nanocomposites was similar to LLDPE-montmorillonite clay nanocomposites but softer due to hexaniobate structure. The distribution of the organoclay is more homogeneous than organophilic niobate to concentrations below 10.0% filler using the SEM/FEG. It is possible to see a decrease in the permeability value with increasing concentration of montmorillonite clay for both gases used. In the LLDPE-organophilic niobate nanocomposites a decrease of permeability value occurs followed by an increase of permeability value for both gases used, with increasing concentration of organophilic niobate. Furthermore, it was observed that the polarity of the gas used is an important factor in the diffusion process through the nanocomposite. (author)

  14. Antibacterial Property and Cytotoxicity of a Poly(lactic acid/Nanosilver-Doped Multiwall Carbon Nanotube Nanocomposite

    Directory of Open Access Journals (Sweden)

    Chi-Hui Tsou

    2017-03-01

    Full Text Available A novel method was used to synthesize a nanosilver-doped multiwall carbon nanotube (MWCNT-Ag, and subsequently, the novel poly(lactic acid (PLA- and MWCNT-Ag-based biocompatible and antimicrobial nanocomposites were prepared by melt blending. Based on energy dispersive X-ray spectrometry images, an MWCNT-Ag was successfully synthesized. The effect of the MWCNT-Ag on the PLA bionanocomposites was investigated by evaluating their thermal and mechanical properties, antifungal activity, and cytotoxicity. The nanocomposites exhibited a high degree of biocompatibility with the MWCNT-Ag content, which was less than 0.3 phr. Furthermore, tensile strength testing, thermogravimetric analysis, differential scanning calorimetry, and antibacterial evaluation revealed that the tensile strength, thermostability, glass transition temperature, and antibacterial properties were enhanced by increasing the MWCNT-Ag content. Finally, hydrolysis analysis indicated that the low MWCNT-Ag content could increase the packing density of PLA.

  15. Millimeter Waveband Dielectric Properties of Nanocomposite Materials Based on Opal Matrices with Particles of Spinels

    Science.gov (United States)

    Rinkevich, A. B.; Perov, D. V.; Pakhomov, Ya A.; Samoylovich, M. I.; Kuznetsov, E. A.

    2016-09-01

    The dielectric properties of 3D nanocomposites based on opal matrices containing the particles of compounds with spinel structure have been studied. Microwave measurements have been carried out in the frequency range from 26 to 38 GHz. The frequency dependences of transmission and reflection coefficients are obtained. The values of the real and imaginary parts of complex dielectric permittivity have been retrieved. The X-ray phase analysis of the nanocomposites is performed and their structures are studied.

  16. Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites

    Science.gov (United States)

    Kaith, B. S.; Rajput, Jaspreet

    2014-01-01

    Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices. PMID:24523653

  17. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  18. Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deepali Sharma

    2014-01-01

    Full Text Available Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven, under pressure (autoclave, under vacuum (vacuum oven, and at room temperature (ambient condition. The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, and UV-visible (UV-VIS spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices.

  19. Preparation of MWNTs/PI nanocomposite materials and their dynamic mechanical properties and dielectric properties%碳纳米管/聚酰亚胺纳米复合材料的制备及动态力学性能和介电性能

    Institute of Scientific and Technical Information of China (English)

    贺国文; 谢玲; 谭凯元; 李衡峰

    2011-01-01

    The multi-walled carbon nanotubes (MWNTs) were modified by mixed strong acids and sulfuryl dichloride (SOCl2) successively. Their solubility in organic solvents and dispersivity in matrix of polyimides were improved greatly by modification. The unmodified and modified MWNTs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The polyimide (PI)/MWNTs composites were synthesized by in situ polymerization of 4,4'-diaminodiphenylether (ODA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA), in which the modified MWNTs were used as the fillers. The composites were characterized by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and measurement of capacitance. The results show that the PI/MWNTs composites have preferable heat stability as the same as the pure polyimide (PI). The dynamic mechanical properties improve with the mass fraction of MWNTs increasing. The value of storage modulus is 2.03 GPa at 50 ℃ when the mass fiaction of MWNTs is 10%. Compared with that of the pure PI, the storage modulus increases by 23.1%. The dielectric properties enhance sharply with the mass fraction of MWNTs increasing. For the nanocomposites containing 10% of MWNTs, the dielectric constant reaches 66.7 at 1 MHz, which comes up to 18.6 times of that of pure polyimide.Therefore, The MWNTs/PI is a kind of nanocomposite material with favorable properties of thermal properties, dynamic mechanical properties and dielectric properties.%依次用混强酸和SOCl2对多壁碳纳米管(MWNTs)进行改性,解决其在有机溶剂的溶解性和在基体聚酰亚胺中分散性问题,并采用光电子能谱(XPS)和透射电镜(TEM)对改性前后的MWNTs进行表征.以4,4'-二氨基二苯醚(ODA)和3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)为原料,以原位聚合法将改性碳纳米管掺杂聚酰亚胺(PI),制备MWNTs/PI纳米复合材料.通过热重分析(TGA)、动态力学分析(DMA)和电

  20. Fabrication of ZnO incorporated chitosan nanocomposites for enhanced functional properties of cellulosic fabric

    Science.gov (United States)

    Raza, Z. A.; Anwar, F.; Ahmad, S.; Aslam, M.

    2016-11-01

    This study concerns the fabrication of chitosan/zinc oxide nano-composites (CZNCs) by using a facile preparation method. The optical, structural and morphological features of nano-composites were investigated by using advanced analytical techniques. The developed CZNCs were coated on to woven cotton fabric by using the pad-dry-cure method. The coated fabric specimens were characterized for surface, functional and textile properties including antibacterial activity and (ultra violet) UV-blocking. The spectral and optical properties demonstrated that the nano-composites developed exhibited hexagonal structural pattern with an average particle size of about 50 nm. The resulting nano-composites were characterized by x-ray diffraction spectroscopy; scanning electron microscopy equipped with energy dispersive x-ray, dynamic light scattering technique and so forth. The incorporated concentration of zinc oxide nanoparticles affected both crystallite size and crystallinity of the nano-composites. The nano-composite coated cotton fabric exhibited durable antibacterial, UV-blocking and textile properties with a fair whiteness index.

  1. Designing thermo-responsive nanocomposites with anti-fouling properties

    Science.gov (United States)

    Liu, Ya; McFarlin, Gerald; Yong, Xin; Kuksenok, Olga; Balazs, Anna

    2015-03-01

    Inspired by marine organisms that utilize active ``defense'' (such as active cilia) to prevent the biofouling of their surfaces, we use computational modeling to design synthetic gel-based composite films that provide dual ``defense'' for antifouling applications. We design a nanocomposite gel film that can be harnessed to repel a variety of particles via either a temperature change or an imposed shear. Incorporation of stiff hydrophobic posts into a gel composed of cross-linked poly(N-isoproylacrylamide) chains allows us to drastically alter the film's surface properties when gel undergoes temperature-induced volume phase transition. Depending on whether the system's temperature is below or above the lower critical solution temperature (LCST) of the gel, the posts are hidden in the swollen gel or exposed to the external solution. We model our system using dissipative particle dynamics (DPD); we validate our model through comparisons with Flory-Rehner theory. We focus on the influence of shear and temperature on the position of the particle in the system and isolate the conditions under which adsorption of particles of different sizes to the substrate is effectively prevented.

  2. Optical properties of ZnO/PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kulyk, B., E-mail: bohdan_kulyk@yahoo.co [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Kapustianyk, V.; Tsybulskyy, V. [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Krupka, O. [Department of Chemistry, Kyiv Taras Shevchenko National University, 60 Volodymyrska Str., Kyiv (Ukraine); Sahraoui, B. [Institute of sciences and molecular technologies of Angers, MOLTECH Anjou - UMR CNRS 6200, Molecular interaction nonlinear optics and structuring MINOS, 2 bd Lavoisier, 49045 Angers Cedex 2 (France)

    2010-07-16

    The ZnO nanocrystals (ZnO NCs) with particle size, less than 100 nm, have been blended with polymethylmethacrylate (PMMA) by solution mixing to prepare PMMA/ZnO nanocomposite films. The structure of ZnO/PMMA nanocomposite films was characterized using X-ray diffractometry. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurements of temperature evolution of the photoluminescence (PL) spectra show intensive UV emission peak corresponding to the donor-bound excitons with binding energy of 51 meV and green emission band related to the intrinsic defects in ZnO. The temperature evolution of the emission peaks energy position, intensity and integral intensity in ZnO/PMMA nanocomposite films were examined.

  3. SYNTHESIS AND PROPERTIES OF POLYSTYRENE/LAPONITE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Wan-guo Hou; Wei-an Zhao; Dong-xiang Li

    2004-01-01

    Exfoliated polystyrene (PS)/laponite nanocomposites were prepared successfully. The characteristic d001diffraction peak of organo-laponite disappeared in the XRD patterns of nanocomposites, indicating that the laponite layers were exfoliated and the ordered crystal structure of laponite was destroyed because of the styrene polymerization. TEM observations showed that the exfoliated laponite primary particles were dispersed randomly in the PS matrix with lateral dimensions from 1 nm to 10 nm. SEM results showed that the PS/laponite nanocomposite particles were almost monodispersed spheres with the size of about 120 nm. Because of the interaction between PS and laponite nanolayers, the nanocomposites exhibited higher thermal stability and glass transition temperature when compared to pure PS.

  4. Electrical and Mechanical Properties of PMMA/nano-ATO Composites

    Institute of Scientific and Technical Information of China (English)

    Wei Pan; Huiqin Zhang; Yan Chen

    2009-01-01

    Conducting nanocomposites of poly (methyl methacryiate) (PMMA) and antimony doped tin oxide (ATO)were prepared by solution blending. The influences of ATO content on the electrical conductivity, thermal stability, and mechanical properties of the nanocomposites were investigated. A homogeneous dispersion of silane coupling agent modified ATO was achieved in PMMA matrix as evidenced by scanning electron microscopy. The resultant PMMA/silane-ATO nanocomposites were electrically conductive with significant conductivity enhancement at 4 wt pct. It was found that the composition at 4 wt pct ATO gave the higher tensile strength. Furthermore, it gave the largest elongation at break value among all the compositions.Thermal stability of the nanocornposites was remarkably enhanced by the incorporation of silane-ATO.

  5. Preparation, Characterization and Magnetic Properties of PANI/La-substituted LiNi Ferrite Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    JIANG, Jing; LI, Liang-Chao; XU, Feng

    2006-01-01

    Magnetic nanocomposites containing polyaniline (PANI)-coated La-substituted LiNi ferrite (LiNi0.5La0.02Fe1.98O4)were synthesized by in situ polymerization in aqueous solution of hydrochloric acid. The nanocomposites exhibited the magnetic hysteresis nature under applied magnetic field. The saturation magnetization (Ms) and coercivity (Hc)varied with the ferrite content. The obtained nanocomposites were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-Visible spectroscopy and vibrating sample magnetometer (VSM). TEM and SEM studies showed that the nanocomposites present the core-shell structure. The results of XRD patterns, FT-IR and UV-Visible spectra indicated the formation of PANI-LiNi0.5La0.02Fe1.98O4 nanocomposites and showed that the interaction existed between PANI backbone and ferrite particles in the nanocomposites. The bonding mechanism in the nanocomposites has been proposed.

  6. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2012-02-26

    Epoxy hybrid-nanocomposites reinforced with recycled cellulose fibers (RCF) and halloysite nanotubes (HNTs) have been fabricated and investigated. The dispersion of HNTs was studied by synchrotron radiation diffraction (SRD) and transmission electron microscopy (TEM). The influences of RCF/HNTs dispersion on the mechanical properties and thermal properties of these composites have been characterized in terms of flexural strength, flexural modulus, fracture toughness, impact toughness, impact strength, and thermogravimetric analysis. The fracture surface morphology and toughness mechanisms were investigated by SEM. Results indicated that mechanical properties increased because of the addition of HNTs into the epoxy matrix. Flexural strength, flexural modulus, fracture toughness, and impact toughness increased by 20.8, 72.8, 56.5, and 25.0%, respectively, at 1 wt% HNTs load. The presence of RCF dramatically enhanced flexural strength, fracture toughness, impact strength, and impact toughness of the composites by 160%, 350%, 444%, and 263%, respectively. However, adding HNTs to RCF/epoxy showed only slight enhancements in flexural strength and fracture toughness. The inclusion of 5 wt% HNTs into RCF/epoxy ecocomposites increased the impact toughness by 27.6%. The presence of either HNTs or RCF accelerated the thermal degradation of neat epoxy. However, at high temperature, samples reinforced with RCF and HNTs displayed better thermal stability with increased char residue than neat resin. © 2012 Society of Plastics Engineers.

  7. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Towards Hydrogen Evolution Reaction

    KAUST Repository

    Coy, Emerson

    2017-08-22

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin film electrodes of metal-carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures to date neglect long lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained whilst maintaining high electro catalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates towards HER , and furthermore, that the methodology presented here is suitable to produce other transition metal carbides (TM-C) with improved catalytic and mechanical properties.

  8. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    2016-08-15

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. The results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.

  9. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    (IL) could be obtained in a single step reaction. The incorporation of IL in the film, not only greatly improved its mechanical properties, by acting as a plasticizer, but also imparted a dual mechanism of charge transport. The segments of conjugated double bonds imparted electronic conductivity to the films, and the IL resulted in ionic conductivity. The presence of both electronic and ionic conduction pathways in the films was confirmed by electrochemical impedance spectroscopy (EIS). These IL-imbibed conjugated polymer films are promising as materials for electrochemical energy conversion and storage. In the third part of this work, conjugated polymer films containing multiwalled carbon nanotubes (MWNT) and graphene nanoplatelets (GNP) were synthesized and characterized. PPV--MWNT nanocomposite films and PA--GNP nanocomposite films were characterized using a variety of analytical techniques including transmission electron microscopy, quasistatic and dynamic nanoindentaiton, electrochemical impedance spectroscopy, and cyclic voltammetry. Potential application of these films is in electrochemical supercapacitors.

  10. Polyamide blend-based nanocomposites: A review

    Directory of Open Access Journals (Sweden)

    W. S. Chow

    2015-03-01

    Full Text Available Polymer blend nanocomposites have been considered as a stimulating route for creating a new type of high performance material that combines the advantages of polymer blends and the merits of polymer nanocomposites. In nanocomposites with multiphase matrices, the concept of using nanofillers to improve select properties (e.g., mechanical, thermal, chemical, etc of a polymer blend, as well as to modify and stabilize the blend morphology has received a great deal of interest. This review reports recent advances in the field of polyamide (PA blend-based nanocomposites. Emphasis is placed on the PA-rich blends produced by blending with other thermoplastics in the presence of nanofillers. The processing and properties of PA blend-based nanocomposites with nanofillers are discussed. In addition, the mechanical properties and morphology changes of PA blends with the incorporation of nanofillers are described. The issues of compatibility and toughening of PA blend nanocomposites are discussed, and current challenges are highlighted.

  11. Experimental Study on the Mechanical, Creep, and Viscoelastic Behavior of TiO2/Glass/Epoxy Hybrid Nanocomposites

    Science.gov (United States)

    Salehi, H. R.; Salehi, M.

    2016-11-01

    The mechanical and viscoelastic properties of hybrid glass/epoxy nanocomposites whose matrix was doped with 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were investigated in tension and bending. The nanoparticles were found to increase the strength of the composites by 20-30% and their stiffness by 10-20%. In addition, their creep resistance also grew. A SEM analysis of microstructure of the composites revealed that these improvements were caused by an increased adhesion between fibers and the matrix and enhanced properties of the matrix itself.

  12. Mechanical Properties of Nanofilled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Cristina-Elisabeta PELIN

    2015-06-01

    Full Text Available The paper presents a study concerning mechanical performance of thermoplastic nanocomposites based on isotactic polypropylene matrix, nanofilled with montmorillonite modified with quaternary ammonium salt and carboxyl functionalized carbon nanotubes, respectively, added in the same concentration relative to the matrix. The nanofilled and single polymer materials were obtained by simple melt compounding through extrusion process followed by injection molding into specific shape specimens for mechanical testing of the samples. Mechanical properties were evaluated by tensile and 3 point bending tests. In terms of modulus of elasticity, the results showed overall positive effects concerning the effect of nanofiller addition to the thermoplastic polymer. The fracture cross section of the tested specimens was characterized by FT-IR spectroscopy and SEM microscopy.

  13. The effect of mechanical relaxation on ultra-fast charge pulses in flexible epoxy resin nanocomposites

    Science.gov (United States)

    Montanari, G. C.; Xu, M.; Fabiani, D.; Dissado, L. A.

    2012-06-01

    Previously we have reported the existence of small-amplitude charge pulses in crosslinked Polyethylene (XLPE) and epoxy resin with a mobility several orders of magnitude higher than that found for the incoherent charge transport relevant to the steady state current. Here the relationship of this phenomenon to mechanical relaxation in the material is investigated by using a series of epoxy resin nanocomposites based on a resin that has its flexibility increased above that of the fully cured glassy epoxy network by the addition of a suitable flexibilizing chemical. Differential Scanning Calorimetry (DSC) measurements show that the stiffness of the nanocomposite is progressively increased as the nanoparticle concentration increases. Pulsed Electro-Acoustic (PEA) measurements reveal that both positive and negative fast charge pulses exist in the unfilled epoxy at 45 and 70°C under a field of 10 kV/mm with mobility 5×10-10 to 9×10-10 m2 V-1 s-1, amplitude between 2×10-5 and 3.6×10-5 C m-2 and repetition rates between 8 and 12 s-1. These values are reduced progressively as the nanoparticle concentration is increased from 0% in the unfilled epoxy. A β-mode mechanical relaxation is identified in the loss modulus by Dynamical Mechanical Analysis (DMA), whose activation energy moves to higher values with increasing nanoparticle concentration. It is shown that the repetition rates of both positive and negative pulses have similar values and are correlated with the β-mode activation energy; a similar correlation is found for the activation energy of the mobility of positive pulses. The correlation of the activation energy of the mobility of negative pulses and that of the β-mode is weaker although both show a progressive increase with nanoparticle concentration. The modification of the fast charge pulse properties by the mechanical stiffness of the epoxy nanocomposite is discussed in terms of the theory presented previously for their formation and transport.

  14. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

  15. Structural, Optical and Electrical Properties of PVA/PANI/Nickel Nanocomposites Synthesized by Gamma Radiolytic Method

    Directory of Open Access Journals (Sweden)

    Abdo Mohd Meftah

    2014-09-01

    Full Text Available This article reports a simultaneous synthesis of polyaniline (PANI and nickel (Ni nanoparticles embedded in polyvinyl alcohol (PVA film matrix by gamma radiolytic method. The mechanism of formation of PANI and Ni nanoparticles were proposed via oxidation of aniline and reduction of Ni ions, respectively. The effects of dose and Ni ions concentration on structural, optical, and electrical properties of the final PVA/PANI/Ni nanocomposites film were carefully examined. The s