WorldWideScience

Sample records for nanocomposite lubricating films

  1. Electrochromic nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  2. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  3. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  4. Dry lubricant films for aluminum forming.

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  5. Determining minimum lubrication film for machine parts

    Science.gov (United States)

    Hamrock, B. J.; Dowson, D.

    1978-01-01

    Formula predicts minimum film thickness required for fully-flooded ball bearings, gears, and cams. Formula is result of study to determine complete theoretical solution of isothermal elasto-hydrodynamic lubrication of fully-flooded elliptical contacts.

  6. Sputtering technology in solid film lubrication

    Science.gov (United States)

    Spalvins, T.

    1978-01-01

    Potential and present sputtering technology is discussed as it applies to the deposition of solid film lubricants particularly MoS2, WS2, and PTFE. Since the sputtered films are very thin, the selection of the sputtering parameters and substrate condition is very critical as reflected by the lubricating properties. It was shown with sputtered MoS2 films that the lubricating characteristics are directly affected by the selected sputtering parameters (power density, pressure, sputter etching, dc-biasing, etc.) and the substrate temperature, chemistry, topography and the environmental conditions during the friction tests. Electron microscopy and other surface sensitive analytical techniques illustrate the resulting changes in sputtered MoS2 film morphology and chemistry which directly influence the film adherence and frictional properties.

  7. Dissipative Properties of EHD Lubricant Film

    Science.gov (United States)

    Fedorov, S. V.

    2018-01-01

    For the case of the failure of the lubricant film at hydrodynamic lubrication a common thermodynamic theory of strength is considered. According to this theory the failure occurs when the internal energy density (potential and thermal components) in the volume of material reaches a constant for a given material. A special case of this theory is considered when only the density of heat (kinetic) component of internal energy is taken into account. Temperature condition determines the limit state for liquid lubricants - mineral oils. When analyzing the regularities of friction at EHD lubrication the state and properties of the oil film at the condition of irregular and hydrostatic compression. The original structural model of oil film at EHD lubrication in the form of the rotary oscillating cells with elastic interactions to each other is proposed. It is similar to the Rayleigh-Benard cells and corresponds to the cellular hypothesis of J. Gibbs for the case of equilibrium and reversible process. It is quite possible that the size of the cells have an order of about nano level. The oil film dissipates energy in the direction of relative motion of bodies. This oil film has the highest dissipative properties.

  8. Preparation and study of polystyrene/organic montmorillonite nanocomposite as lubricant additive of drilling fluid

    Science.gov (United States)

    Yu, Chengcheng; Ke, Yangchuan

    2017-08-01

    In this article, polystyrene/organic montmorillonite (PS/OMMT) nanocomposite was prepared via in-situ emulsion polymerization of styrene in the presence of organic montmorillonite. The certain amount of PS/OMMT nanocomposite and silicone oil mixtures provided novel nanocomposite lubricant additives of drilling fluid. Their experiment evaluations showed that the nanocomposite lubricant drilling fluid had the temperature resistance to increase up to 200°C, high lubricant with base drilling fluid compatibility, and stable rheological property. At 1.0 wt.% nanocomposite lubricant load in the base drilling fluid, the lubrication coefficient reduction rate reached 85.0%, the foaming rate was so low to 0.53%˜1.56%, and the filtration loss was decreased. This provided multifunctional practical nanocomposite lubricants and working fluids.

  9. Mechanisms of lubrication and wear of a bonded solid lubricant film

    Science.gov (United States)

    Fusaro, R. L.

    1980-01-01

    To obtain a better understanding of how bonded solid lubricant films lubricate and wear (in general), the tribological properties of polyimide-bonded graphite fluoride films were studied (in specific). A pin-on-disk type of testing apparatus was used; but in addition to sliding a hemispherically tipped rider, a rider with a 0.95 mm diameter flat area was slid against the film. This was done so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred. In the first, the film supported the load. The lubricating mechanism consisted of the shear of a thin surface layer (of the film) between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  10. A dynamic rheological model for thin-film lubrication

    International Nuclear Information System (INIS)

    Zhang Xiang-Jun; Huang Ying; Guo Yan-Bao; Tian Yu; Meng Yong-Gang

    2013-01-01

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ 0 , were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime. (condensed matter: structural, mechanical, and thermal properties)

  11. Investigation to Remove Lead and Antimony from Solid Film Lubricants

    National Research Council Canada - National Science Library

    Schneider, Steffen

    2001-01-01

    ..., and indications for successful application. The report includes test procedure datasheets for single test procedures and a questionnaire regarding the requirements of a tribological system to solid film lubricants. The report mainly deals with solid film lubricants conforming MIL-PRF-46010, MIL-PRF-46147 and MIL-L-23398.

  12. Experimental and Theoretical Approaches to Thin Film Lubrication Problems

    NARCIS (Netherlands)

    Lee-Prudhoe, I.; Venner, C.H.; Cann, P.M.; Spikes, H.; Snidle, R.W.; Evans, H.P.

    2006-01-01

    The last fifty years have seen tremendous advances in the field of thin film lubrication. This is particularly true of steady-state Elastohydrodynamic lubrication (EHL) where the accurate measurement of film thickness combined with advanced numerical modelling methods has been very successful.

  13. Evaluation of Selected Solid Lubricating Films

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2001-01-01

    An investigation was conducted to examine the friction and wear properties of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2, ion-plated silver, ion-plated lead, magnetron-sputtered diamondlike carbon (MS DLC), and plasma-assisted, chemical-vapor-deposited DLC (PACVD DLC) films in sliding contact with 6-mm-diameter AISI 440C stainless steel balls. Unidirectional ball-on-disk sliding friction experiments were conducted with a load of 5.9 N and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7) Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less than 1 percent). The main criteria for judging the performance of the solid lubricating films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cubic mm/N(dot)m or less, respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. The ion-plated lead and silver films met the criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen. The MS DLC and PACVD DLC films met the requirements in humid air and dry nitrogen but failed in ultrahigh vacuum.

  14. Durability Evaluation of Selected Solid Lubricating Films

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2001-01-01

    An investigation was conducted to examine the coefficients of friction, wear rates, and durability of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2, ion-plated silver, ion-plated lead, magnetron-sputtered diamondlike carbon (MS DLC), and plasma-assisted, chemical-vapor-deposited DLC (PACVD DLC) films in sliding contact with 6-mm-diameter AISI 440C stainless steel balls. Unidirectional ball-on-disk sliding friction experiments were conducted with a load of 5.9 N and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7) Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less than 1 percent). The main criteria for judging the performance of the solid lubricating films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N.m or less, respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. The ion-plated lead and silver films met the criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen. The MS DLC and PACVD DLC films met the requirements in humid air and dry nitrogen but failed in ultrahigh vacuum.

  15. Mechanisms of lubrication and wear of a bonded solid-lubricant film

    Science.gov (United States)

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were investigated. A pin-on-disk type of testing apparatus was used; in addition to sliding a hemispherically tipped rider, a rider with a 0.95-mm-diameter flat area was slid against the film so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred: in the first, the film supported the load and the lubricating mechanism consisted of the shear of a thin surface layer between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  16. A review of recent advances in solid film lubrication

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    Thin, adherent sputtered MoS2 and ion plated metallic (Au, Ag, Pb) lubricating films are primarily used in precision contacting triboelement surfaces where wear debris formation is critical and high reliability requirements have to be satisfied. Detailed structural and compositional characterization of solid film lubricants is of prime importance. It is this information from the nano-micro-macro level which is needed to interpret and improve the frictional behavior and assure long endurance lives. The purpose of this paper is to summarize in a concise review the solid lubricant film structure and morphology and their effects on the tribological properties of the lubricant systems. The tribological performance of thin lubricating films has significantly advanced through progressive understanding of the film parameters such as adhesion, cohesion, interface formation, nucleation and microstructural growth, critical film thickness and substrate finish, and temperature. Sputtered MoS2 and ion plated Au, Ag, and Pb films are separately discussed and evaluated in terms of the above film parameters to establish the most desirable film structures and thicknesses in order to achieve effective lubrication.

  17. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Science.gov (United States)

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  18. Advances in sputtered and ion plated solid film lubrication

    Science.gov (United States)

    Spalvins, T.

    1985-01-01

    The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.

  19. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  20. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H......(22); C(12)H(26), and C(14)H(30) confined between smooth gold surfaces. We observe well-defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous changes in the number n of lubricant...

  1. Mixed and Fluid Film Lubrication Characteristics of Worn Journal Bearings

    Directory of Open Access Journals (Sweden)

    Toshiharu Kazama

    2012-01-01

    Full Text Available The mixed and fluid film lubrication characteristics of plain journal bearings with shape changed by wear are numerically examined. A mixed lubrication model that employs both of the asperity-contact mechanism proposed by Greenwood and Williamson and the average flow model proposed by Patir and Cheng includes the effects of adsorbed film and elastic deformation is applied. Considering roughness interaction, the effects of the dent depth and operating conditions on the loci of the journal center, the asperity-contact and hydrodynamic fluid pressures, friction, and leakage are discussed. The following conclusions are drawn. In the mixed lubrication regime, the dent of the bearing noticeably influences the contact and fluid pressures. For smaller dents, the contact pressure and frictional coefficient reduce. In mixed and fluid film lubrication regimes, the pressure and coefficient increase for larger dents. Furthermore, as the dent increases and the Sommerfeld number decreases, the flow rate continuously increases.

  2. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  3. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets

    Directory of Open Access Journals (Sweden)

    Meysam Tabandeh-Khorshid

    2016-03-01

    Full Text Available In the present investigation, aluminum matrix nanocomposites reinforced by graphene nanoplatelets were synthesized by powder metallurgy method. The microstructure of the Al-Graphene nanoplatelets sample was investigated by TEM. The hardness measurements of these samples were investigated using a Rockwell hardness tester. To investigate the tribological behavior of aluminum matrix composites reinforced by graphene nanoplatelets and pure aluminum, pin-on-disk experiments were conducted on the prepared samples. In the experiments, the influence of reinforcement, volume fraction, normal load, and sliding velocity on the tribological performance was investigated. Results showed that the wear rate of Al-1wt.% GNP is increased with increasing normal loads. However, the coefficient of friction (COF of the Al-1wt.% GNP decreased with increasing normal loads. Formation of graphene film on the worn surface of Al-1wt.% GNP sample and morphology of the worn surfaces of aluminum and composite samples were analyzed by Optical Microscope (OM and Scanning Electron Microscope (SEM. It was found that the graphene nanoplatelets reinforced nano-composites showed superior tribological properties and demonstrated the ability of the self-lubricating nature of the composite during tribological conditions.

  4. Temperature dependence effect of viscosity on ultrathin lubricant film melting

    Directory of Open Access Journals (Sweden)

    A.V.Khomenko

    2006-01-01

    Full Text Available We study the melting of an ultrathin lubricant film under friction between atomically flat surfaces at temperature dependencies of viscosity described by Vogel-Fulcher relationship and by power expression, which are observed experimentally. It is shown that the critical temperature exists in both cases the exceeding of which leads to the melting of lubricant and, as a result, the sliding mode of friction sets in. The values of characteristic parameters of lubricant are defined, which are needed for friction reduction. In the systems, where the Vogel-Fulcher dependence is fulfilled, it is possible to choose the parameters at which the melting of lubricant takes place even at zero temperature of friction surfaces. The deformational defect of the shear modulus is taken into account in describing the lubricant melting according to the mechanism of the first-order transition.

  5. Tribological properties of self-lubricating Ta-Cu films

    Science.gov (United States)

    Qin, Wen; Fu, Licai; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    In this paper, Ta and TaCu films were deposited by using magnetron sputtering, and the tribological properties of the films against Si3N4 balls were investigated under the loads of 2 N and 5 N. The average grain sizes of both films are below 25 nm. Ta and TaCu films have approximate hardness. While the wear rate of TaCu film is much smaller than that of Ta film. Post-wear testing XRD, Raman and XPS revealed the formation of tantalum oxide on the worn surface of both Ta and TaCu films. Tantalum oxidation is effectively lubricating to reduce friction coefficient. So the friction coefficient of both Ta and TaCu film is about 0.45 under different applied loads. Meanwhile, the addition of Cu could increase the toughness of the film, and avoid the generation of wear debris, resulting in a significant increase in wear resistance.

  6. Inhomogeneities in sheared ultrathin lubricating films

    NARCIS (Netherlands)

    Manias, E; Hadziioannou, G; ten Brinke, G.

    1996-01-01

    Nonequilibrium molecular dynamics computer simulations have been used to study nanoscopically confined oligomer films under shear. Beyond the well-known density layering across such films, other structural and dynamical inhomogeneities exist across such films and are discussed here. When these films

  7. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    Science.gov (United States)

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Film Thickness and Friction Relationship in Grease Lubricated Rough Contacts

    Directory of Open Access Journals (Sweden)

    David Gonçalves

    2017-08-01

    Full Text Available The relationship between the film generation and the coefficient of friction in grease lubricated contacts was investigated. Ball-on-disc tests were performed under different operating conditions: entrainment speed, lubricant temperature and surface roughness. The tests were performed with fully formulated greases and their base oils. The greases were formulated with different thickener types and also different base oils natures and viscosities. Film thickness measurements were performed in ball-on-glass disc tests, and Stribeck curves were measured in ball-on-steel disc tests with discs of different roughness. The role of the thickener and the base oil nature/viscosity on the film thickness and coefficient of friction was addressed and the greases’ performance was compared based on their formulation.

  9. Effect of the External Lubrication Method for a Rotary Tablet Press on the Adhesion of the Film Coating Layer.

    Science.gov (United States)

    Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.

  10. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  11. Mixed film lubrication with biobased oils

    Science.gov (United States)

    Most tribological processes (e.g. metalworking), occur in the mixed film regime where the boundary and hydrodynamic properties of the oils play critical roles. In the work described here, the boundary and hydrodynamic properties of various biobased oils were evaluated. The oils were then investiga...

  12. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  13. Droplets in Microchannels: Dynamical Properties of the Lubrication Film.

    Science.gov (United States)

    Huerre, Axel; Theodoly, Olivier; Leshansky, Alexander M; Valignat, Marie-Pierre; Cantat, Isabelle; Jullien, Marie-Caroline

    2015-08-07

    We study the motion of droplets in a confined, micrometric geometry, by focusing on the lubrication film between a droplet and a wall. When capillary forces dominate, the lubrication film thickness evolves nonlinearly with the capillary number due to the viscous dissipation between the meniscus and the wall. However, this film may become thin enough (tens of nanometers) that intermolecular forces come into play and affect classical scalings. Our experiments yield highly resolved topographies of the shape of the interface and allow us to bring new insights into droplet dynamics in microfluidics. We report the novel characterization of two dynamical regimes as the capillary number increases: (i) at low capillary numbers, the film thickness is constant and set by the disjoining pressure, while (ii) above a critical capillary number, the interface behavior is well described by a viscous scenario. At a high surfactant concentration, structural effects lead to the formation of patterns on the interface, which can be used to trace the interface velocity, that yield direct confirmation of the boundary condition in the viscous regime.

  14. Tuning the Structure and Ionic Interactions in a Thermochemically Stable Hybrid Layered Titanate-Based Nanocomposite for High Temperature Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Lubbers, Roy; Veldhuis, Sjoerd; Narygina, Olga; Lette, Walter; Schipper, Dirk J.; ten Elshof, Johan E.

    2017-01-01

    Solid inorganic lubricants are thermally stable but they are often limited by their lack of deformability, while organic lubricants have limitations in terms of thermal stability. In this study, a novel solid organic–inorganic nanocomposite lubricant that synergistically combines the

  15. Rapid synthesis of flexible conductive polymer nanocomposite films

    International Nuclear Information System (INIS)

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-01-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10 4 S cm −1 ), even during repetitive bending. (paper)

  16. Electrochemical Formation of Cerium Oxide/Layered Silicate Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Adele Qi Wang

    2016-01-01

    Full Text Available Cerium oxide/montmorillonite nanocomposite films were synthesized electrochemically from solutions containing 0.5 to 50% Na-montmorillonite. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Nanocomposite films synthesized from montmorillonite concentrations lower than 10% were continuous, uniform, and dense. X-ray diffraction confirmed that the nanocomposite films retain the face-centered cubic structure of cerium oxide while incorporating exfoliated platelets of the montmorillonite into the matrix. In addition, calculations from XRD data showed particle sizes ranging from 4.50 to 6.50 nm for the nanocomposite coatings. Raman and FTIR spectroscopy had peaks present for cerium oxide and the layered silicates in the coatings. Cross-sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the presence of montmorillonite throughout the cerium oxide matrix.

  17. Efficient numerical method for computation of thermohydrodynamics of laminar lubricating films

    Science.gov (United States)

    Elrod, Harold G.

    1989-01-01

    The purpose of this paper is to describe an accurate, yet economical, method for computing temperature effects in laminar lubricating films in two dimensions. The procedure presented here is a sequel to one presented in Leeds in 1986 that was carried out for the one-dimensional case. Because of the marked dependence of lubricant viscosity on temperature, the effect of viscosity variation both across and along a lubricating film can dwarf other deviations from ideal constant-property lubrication. In practice, a thermohydrodynamics program will involve simultaneous solution of the film lubrication problem, together with heat conduction in a solid, complex structure. The extent of computation required makes economy in numerical processing of utmost importance. In pursuit of such economy, we here use techniques similar to those for Gaussian quadrature. We show that, for many purposes, the use of just two properly positioned temperatures (Lobatto points) characterizes well the transverse temperature distribution.

  18. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  19. Ultralow Friction of Steel Surfaces Using a 1,3-Diketone Lubricant in the Thin Film Lubrication Regime.

    Science.gov (United States)

    Li, Ke; Amann, Tobias; List, Mathias; Walter, Michael; Moseler, Michael; Kailer, Andreas; Rühe, Jürgen

    2015-10-13

    Ultralow friction (coefficient of friction μ ≈ 0.005) is observed when two steel surfaces are brought into sliding contact in the presence of a particular 1,3-diketone lubricant (1-(4-ethyl phenyl) nonane-1,3-dione). We investigate the friction process of such a system both experimentally and theoretically and show that the superlubricity is caused by a novel, unique mechanism: The formation of iron-1,3-diketonato complexes during frictional contact leads to a self-limiting, tribochemical polishing process while at the same time a self-assembled monolayer of the diketone is formed on the employed steel surfaces. This polishing process reduces the contact pressure and at the same time leads to formation of a boundary lubricant layer. During sliding the system transits from the original boundary lubrication regime toward hydrodynamic lubrication. Conductivity measurements across the friction gap during sliding show that the lubricant layer present in the gap between the two shearing surfaces is a only few 10 nanometers thick, so that the molecules experience under typical sliding conditions shear rates of a few 10(6) s(-1). Simulations show that under such strong shear the molecules become strongly oriented in the friction gap and the effective viscosity in sliding direction is significantly reduced so that the system is in the thin film lubrication regime and superlubricity is observed. The results of the experiments suggest that such diketones are promising lubricants to achieve a decrease of energy loss and frictional damage in steel based mechanical devices.

  20. Parched elasto hydrodynamic lubrication film thickness measurement in an instrument ball bearing

    Science.gov (United States)

    Kingsbury, E.; Schritz, B.; Prahl, J.

    1988-01-01

    Parched Elasto Hydrodynamic Lubricant (PEHL) film thickness in a large instrument ball bearing is measured by electrical capacitance across its ball set. Correlation is shown between changes in film thickness and changes in Basic Speed Ratio (BSR) measured at the same time. BSR is confirmed as a sensitive, non-intrusive measure of transients in film thickness in a real bearing.

  1. Effect of irradiation in nanocomposite films of LLDPE

    International Nuclear Information System (INIS)

    Jagtap, R.N.; Shaikh, J.; Anandakrishnan, R.; Sharma, A.K.; Varier, P.S.

    2009-01-01

    Melt compounding was used for the preparation of LLDPE/MMT nanocomposite. The films were irradiated with gamma irradiation to study its mechanical, optical, thermal properties, barrier properties. Montmorillonite clay was treated with cationic emulsifier, to modify the surface properties by HCl and functionalizing with acetic acid. These treated clays were then incorporated in LLDPE to prepare nanocomposite films and then it is irradiated with gamma rays for different dosages of irradiation varying from 0 to 30 kGy, which can be used for food packaging applications. These nanocomposites were characterized by XRD and FTIR. (author)

  2. Optimization and testing of solid thin film lubrication deposition processes

    Science.gov (United States)

    Danyluk, Michael J.

    A novel method for testing solid thin films in rolling contact fatigue (RCF) under ultra-high vacuum (UHV) and high rotational speeds (130 Hz) is presented in this thesis. The UHV-RCF platform is used to quantify the adhesion and lubrication aspects of two thin film coatings deposited on ball-bearings using a physical vapor deposition ion plating process. Plasma properties during ion plating were measured using a Langmuir probe and there is a connection between ion flux, film stress, film adhesion, process voltage, pressure, and RCF life. The UHV-RCF platform and vacuum chamber were constructed using off-the-shelf components and 88 RCF tests in high vacuum have been completed. Maximum RCF life was achieved by maintaining an ion flux between 10 13 to 1015 (cm-2 s-1) with a process voltage and pressure near 1.5 kV and 15 mTorr. Two controller schemes were investigated to maintain optimal plasma conditions for maximum RCF life: PID and LQR. Pressure disturbances to the plasma have a detrimental effect on RCF life. Control algorithms that mitigate pressure and voltage disturbances already exist. However, feedback from the plasma to detect disturbances has not been explored related to deposition processes in the thin-film science literature. Manometer based pressure monitoring systems have a 1 to 2 second delay time and are too slow to detect common pressure bursts during the deposition process. Plasma diagnostic feedback is much faster, of the order of 0.1 second. Plasma total-current feedback was used successfully to detect a typical pressure disturbance associated with the ion plating process. Plasma current is related to ion density and process pressure. A real-time control application was used to detect the pressure disturbance by monitoring plasma-total current and converting it to feedback-input to a pressure control system. Pressure overshoot was eliminated using a nominal PID controller with feedback from a plasma-current diagnostic measurement tool.

  3. Squeezing Molecularly thin Lubricant Films between curved Corrugated Surfaces with long range Elasticity

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    one being associated with devastating wear progress. The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths, C......The present work investigates the ability of two nm thick lubrication films to stay in a contact and thereby to prevent excessive wear of the surfaces. At this thickness the film is no longer a fluid but it is the very important intermediate between the lubricated and the dry regimes, the latter......3H8, C4H10, C8H18, C9H20, C10H22, C14H30 and C16H34, confined between corrugated gold surfaces. Well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. An external squeezing pressure induces discontinuous, thermally activated changes...

  4. Pressure Distribution in a Porous Squeeze Film Bearing Lubricated with a Herschel-Bulkley Fluid

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2016-12-01

    Full Text Available The influence of a wall porosity on the pressure distribution in a curvilinear squeeze film bearing lubricated with a lubricant being a viscoplastic fluid of a Herschel-Bulkley type is considered. After general considerations on the flow of the viscoplastic fluid (lubricant in a bearing clearance and in a porous layer the modified Reynolds equation for the curvilinear squeeze film bearing with a Herschel-Bulkley lubricant is given. The solution of this equation is obtained by a method of successive approximation. As a result one obtains a formula expressing the pressure distribution. The example of squeeze films in a step bearing (modeled by two parallel disks is discussed in detail.

  5. Improving the Friction Durability of Magnetic Head-Disk Interfaces by Thin Lubricant Films

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2016-01-01

    Full Text Available Nanowear and viscoelasticity were evaluated to study the nanotribological properties of lubricant films of Z-tetraol, D-4OH, and A20H, including their retention and replenishment properties. For A20H and thick Z-tetraol-coated disks, the disk surface partially protrudes, and the phase lag (tan⁡δ increases with friction. This result is consistent with replenishment of the lubricant upon tip sliding. For the D-4OH-coated disk, the tan⁡δ value decreases with tip sliding, similar to the case for the unlubricated disk. The durability of the lubricant-coated magnetic disks was then evaluated by load increase and decrease friction tests. The friction force of the unlubricated disk rapidly increases after approximately 30 reciprocating cycles, regardless of the load. The lubrication state can be estimated by mapping the dependence of friction coefficient on the reciprocating cycle number and load. The friction coefficient can be classified into one of four areas. The lowest friction area constitutes fluid lubrication. The second area constitutes the transition to mixed lubrication. The third area constitutes boundary lubrication. The highest friction of the fourth area results from surface fracture. The boundary lubricating area of the A20H lubricant was wide, because of its good retention and replenishment properties.

  6. Chitosan–silver oxide nanocomposite film: Preparation and ...

    Indian Academy of Sciences (India)

    The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an ...

  7. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Andrea G. P. R. Figueiredo

    2013-01-01

    Full Text Available A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA, using variable amounts of poly(ethylene glycol diacrylate (PEGDA as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate (PHEMA. Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs and thus are pointed as potential dry dressings for biomedical applications.

  8. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.

    Science.gov (United States)

    Figueiredo, Andrea G P R; Figueiredo, Ana R P; Alonso-Varona, Ana; Fernandes, Susana C M; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J D; Pascoal Neto, Carlos; Freire, Carmen S R

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.

  9. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    Science.gov (United States)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  10. Effect of surface condition on the formation of solid lubricating films at high temperatures

    Science.gov (United States)

    Hanyaloglu, Bengi; Graham, E. E.

    1992-01-01

    Solid films were produced on active metal or ceramic surfaces using lubricants (such as tricresyl phosphate) delivered as a vapor at high temperatures, and the lubricity of these deposits under different dynamic wear conditions was investigated. A method is described for chemically activating ceramic surfaces resulting in a surface that could promote the formation of lubricating polymeric derivative of TCP. Experiments were carried out to evaluate the wear characteristics of unlubricated cast iron and of Sialon ceramic at 25 and 280 C, and lubricated with a vapor of TCP at 280 C. It is shown that continuous vapor phase lubrication of chemically treated Sialon reduced its coefficient of friction from 0.7 to less than 0.1.

  11. Development of Poly (Lactic Acid) Nanocomposite Films by Ionizing Radiation

    International Nuclear Information System (INIS)

    Dadbin, Susan; Naimian, Faranak; Akhavan, Azam; Hasanpoor, Sorour

    2009-01-01

    Poly (lactic acid) and poly (lactic acid) -montmorillonite (MMT) nanocomposite films have been prepared by solvent casting method. Films were irradiated with 60Co radiation facility at various doses in the range of 5 to30 kGy. The effect of gamma irradiation on mechanical properties of neat PLA and nanocomposites is evaluated by the data obtained from tensile testing measurements. The degree of crosslinking is measured by gel content method. Thermal behavior of nanocomposites is studied by differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA). The morphology of the nanocomposites is characterized by transmission electron microscopy (TEM) and X ray diffraction. Structural changes in poly (lactic acid) are studied by Fourier transform infrared (FTIR). (author)

  12. Coatings and films derived from clay/wax nanocomposites

    Science.gov (United States)

    Chaiko, David J.; Leyva, Argentina A.

    2006-11-14

    The invention provides methods for making clay/wax nanocomposites and coatings and films of same with improved chemical resistance and gas barrier properties. The invention further provides methods for making and using emulsions of such clay/wax nanocomposites. Typically, an organophillic clay is combined with a wax or wax/polymer blend such that the cohesion energy of the clay matches that of the wax or wax/polymer blend. Suitable organophilic clays include mica and phyllosilicates that have been surface-treated with edge or edge and surface modifying agents. The resulting nanocomposites have applications as industrial coatings and in protective packaging.

  13. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  14. Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films

    Science.gov (United States)

    Yate, Luis; Martínez-de-Olcoz, Leyre; Esteve, Joan; Lousa, Arturo

    2017-10-01

    In this work, we report the first observation of novel nanocomposite thin films consisting of nanocrystalline chromium embedded in an amorphous chromium carbide matrix (nc-Cr/a-CrC) with relatively high hardness (∼22,3 GPa) and ultra low nanowear. The films were deposited onto silicon substrates using a magnetic filtered cathodic arc deposition system at various negative bias voltages, from 50 to 450 V. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggested the co-existence of chromium and chromium carbide phases, while high resolution transmission electron microscopy (HRTEM) confirmed the presence of the nc-Cr/a-CrC structure. The friction coefficient measured with the ball-on disk technique and the nanowear results showed a strong correlation between the macro and nano-tribological properties of the samples. These novel nanocomposite films show promising properties as solid lubricant and wear resistant coatings with relatively high hardness, low friction coefficient and ultra low nanowear.

  15. Load-Induced Hydrodynamic Lubrication of Porous Films.

    Science.gov (United States)

    Khosla, Tushar; Cremaldi, Joseph; Erickson, Jeffrey S; Pesika, Noshir S

    2015-08-19

    We present an exploratory study of the tribological properties and mechanisms of porous polymer surfaces under applied loads in aqueous media. We show how it is possible to change the lubrication regime from boundary lubrication to hydrodynamic lubrication even at relatively low shearing velocities by the addition of vertical pores to a compliant polymer. It is hypothesized that the compressed, pressurized liquid in the pores produces a repulsive hydrodynamic force as it extrudes from the pores. The presence of the fluid between two shearing surfaces results in low coefficients of friction (μ ≈ 0.31). The coefficient of friction is reduced further by using a boundary lubricant. The tribological properties are studied for a range of applied loads and shear velocities to demonstrate the potential applications of such materials in total joint replacement devices.

  16. Estimation of temperature in the lubricant film during cold forging of stainless steel based on studies of phase transformation in the film

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Olsen, J.S.; Christensen, Erik

    1999-01-01

    -3(PO4)(2). 4H(2)O and amorphous Zn1.5Ca1.5(PO4)(2)) lubricated with soap or MoS2. The temperature in the lubricant film during the process was estimated from changes in friction in correlation with observed phase transitions in the lubricant. Phase transitions in the carrier coatings as a function...

  17. Oxidation and Tribological Behavior of Ti-B-C-N-Si Nanocomposite Films Deposited by Pulsed Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Jang, Jaeho; Heo, Sungbo; Kim, Wang Ryeol; Kim, Jun-Ho; Nam, Dae-Geun; Kim, Kwang Ho; Park, Ikmin; Park, In-Wook

    2018-03-01

    Quinary Ti-B-C-N-Si nanocomposite films were deposited onto AISI 304 substrates using a pulsed d.c. magnetron sputtering system. The quinary Ti-B-C-N-Si (5 at.%) film showed excellent tribological and wear properties compared with those of the Ti-B-C-N films. The steady friction coefficient of 0.151 and a wear rate of 2 × 10-6 mm3N-1m-1 were measured for the Ti-B-C-N-Si films. The oxidation behavior of Ti-B-C-N-Si nanocomposite films was systematically investigated using X-ray diffraction (XRD), and thermal analyzer with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It is concluded that the addition of Si into the Ti-B-C-N film improved the tribological properties and oxidation resistance of the Ti-B-C-N-Si films. The improvements are due to the formation of an amorphous SiOx phase, which plays a major role in the self-lubricant tribo-layers and oxidation barrier on the film surface or in the grain boundaries, respectively.

  18. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  19. Pd-Ni-MWCNT nanocomposite thin films: preparation and structure

    Science.gov (United States)

    Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil

    2017-08-01

    The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.

  20. Analytical modeling of the thermal behavior of a thin lubricant film under nonlinear conditions

    Directory of Open Access Journals (Sweden)

    Laraqi Najib

    2017-01-01

    Full Text Available Lubrication is an important phenomenon in a wide field of industry such as automotive, aerospace, mechanical transmission systems and many others. The viscosity of fluid is a determining factor in the thermal behavior of lubricant and solid surfaces in friction. In practice the viscosity varies strongly as a function of local pressure and temperature. In this study we are interested in the effect of temperature on the viscosity and the thermal behavior of the lubricant. We solve the dynamic and energy equations under nonlinear conditions considering that the viscosity decreases following an exponential law of the temperature as it is known in the literature, μ = μ0 e-β (T-T0. The analytical solution is compared to a numerical modeling using a finite difference methods. The results show an excellent agreement. We analyse the effect of the viscosity coefficient, β, on the velocity and the temperature in the thin lubricant film.

  1. Synovial fluid lubrication of artificial joints: protein film formation and composition.

    Science.gov (United States)

    Fan, Jingyun; Myant, Connor; Underwood, Richard; Cann, Philippa

    2012-01-01

    Despite design improvements, wear of artificial implants remains a serious health issue particularly for Metal-on-Metal (MoM) hips where the formation of metallic wear debris has been linked to adverse tissue response. Clearly it is important to understand the fundamental lubrication mechanisms which control the wear process. It is usually assumed that MoM hips operate in the ElastoHydrodynamic Lubrication (EHL) regime where film formation is governed by the bulk fluid viscosity; however there is little experimental evidence of this. The current paper critically examines synovial fluid lubrication mechanisms and the effect of synovial fluid chemistry. Two composition parameters were chosen; protein content and pH, both of which are known to change in diseased or post-operative synovial fluid. Film thickness and wear tests were carried out for a series of model synovial fluid solutions. Two distinct film formation mechanisms were identified; an adsorbed surface film and a high-viscosity gel. The entrainment of this gel controls film formation particularly at low speeds. However wear of the femoral head still occurs and this is thought to be due primarily to a tribo-corrosion mechanisms. The implications of this new lubrication mechanism and the effect of different synovial fluid chemistries are examined. One important conclusion is that patient synovial fluid chemistry plays an important role in determining implant wear and the likelihood of failure.

  2. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  3. In situ measurement of conductivity during nanocomposite film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, Christoph O.; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch

    2016-05-15

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T{sub g} polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T{sub g}) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T{sub g}. Proper selection of the host polymer in combination with in situ resistance

  4. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Administrator

    an improved thermal stability of the polystyrene (PS) composite film much above its glass transition tempera- ture. Keywords. Thermal stability; polymer nanocomposites; low temperature .... The color of the solution changed immediately from pale yellow to black upon the addition. The reaction mix- ture was stirred for 2 h ...

  5. Synthesis and properties of new polyimide/clay nanocomposite films

    Indian Academy of Sciences (India)

    performance polyimide–clay nanocomposite materials based on a dual .... allowed to stand at room temperature overnight, and then heated first to 60. ◦. C and then to 320. ◦. C (heating rate of 1. ◦. C/ min) in a high temperature oven. The film was then ...

  6. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface.......The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...

  7. Thin layer flow and film decay modeling for grease lubricated rolling bearings

    NARCIS (Netherlands)

    Venner, Cornelis H.; van Zoelen, M.T.; Lugt, Pieter Martin

    2012-01-01

    A model is presented to predict lubricant supply layer changes on tracks in rolling bearings due to centrifugal forces and elastohydrodynamic contact pressure. Experimental validation is shown for centrifugal force driven free surface flow, and layer thickness (film thickness) decay in single

  8. Mechano-chemical factors in MoS2-film lubrication

    NARCIS (Netherlands)

    Salomon, G.; Gee, A.W.J.de; Zaat, J.H.

    1964-01-01

    The friction properties and the well reproducible endurance limits of MoS2-lubricant films, prepared from the dry powder, were studied on rigs. Special consideration was given to: (i) automation of the rubbing-in process, (ii) the control of temperature and atmosphere, (iii) photographic recording

  9. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    Science.gov (United States)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  10. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  11. Evolution of microstructure, strain and physical properties in oxide nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    We, using LSMO:ZnO nanocomposite films as a model system, have studied the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. It further shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.

  12. High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose

    Science.gov (United States)

    Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas

    2010-01-01

    The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...

  13. Preparation and thermomechanical properties of Ag-PVA nanocomposite films

    International Nuclear Information System (INIS)

    Gautam, Anurag; Ram, S.

    2010-01-01

    Metal-polymer hybrid nanocomposites have been prepared from an aqueous solution of polyvinyl alcohol (PVA) and silver nitrate (AgNO 3 ). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with PVA molecule at 60-70 deg. C over magnetic stirrer. UV-vis analysis, X-ray diffraction studies, transmission electron microscopy, scanning electron microscopy and current-voltage analysis were used to characterize the nanocomposite films prepared. The X-ray diffraction analysis reveals that silver metal is present in face centered cubic (fcc) crystal structure. Average crystallite size of silver nanocrystal is 19 nm, which increases to 22 nm on annealing the film at 150 deg. C in air. This result is in good agreement with the result obtained from TEM. The UV-vis spectrum shows a single peak at 433 nm, arising from the surface plasmon absorption of silver nanocolloids. This result clearly indicates that silver nanoparticles are embedded in PVA. An improvement of mechanical properties (storage modulus) was also noticed due to a modification of PVA up to 0.5 wt% of silver content. The current-voltage (I-V) characteristic of nanocomposite films shows increase in current drawn with increasing Ag-content in the films.

  14. Slippery when sticky: Lubricating properties of thin films of Taxus baccata aril mucilage

    DEFF Research Database (Denmark)

    Røn, Troels; Sankaranarayanan, Rishikesan; Chronakis, Ioannis S.

    2016-01-01

    Mucilage is hydrogel produced from succulent plants and microorganisms displaying unique adhesiveness and slipperiness simultaneously. The objective of this study is to establish an understanding on the lubricating mechanisms of the mucilage from Taxus baccata aril as thin, viscous lubricant film...

  15. PVDF-PZT nanocomposite film based self-charging power cell

    Science.gov (United States)

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Wang, Zhong Lin

    2014-03-01

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ˜0.010 μA h, higher than that of a pure PVDF film based SCPC (˜0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  16. Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation.

    Science.gov (United States)

    Veeregowda, Deepak H; van der Mei, Henny C; de Vries, Joop; Rutland, Mark W; Valle-Delgado, Juan J; Sharma, Prashant K; Busscher, Henk J

    2012-10-01

    Toothbrushing, though aimed at biofilm removal, also affects the lubricative function of adsorbed salivary conditioning films (SCFs). Different modes of brushing (manual, powered, rotary-oscillatory or sonically driven) influence the SCF in different ways. Our objectives were to compare boundary lubrication of SCFs after different modes of brushing and to explain their lubrication on the basis of their roughness, dehydrated layer thickness, and degree of glycosylation. A pilot study was performed to relate in vitro lubrication with mouthfeel in human volunteers. Coefficient of friction (COF) on 16-h-old SCFs after manual, rotary-oscillatory, and sonically driven brushing was measured using colloidal probe atomic force microscopy (AFM). AFM was also used to assess the roughness of SCFs prior to and after brushing. Dehydrated layer thicknesses and glycosylation of the SCFs were determined using X-ray photoelectron spectroscopy. Mouthfeel after manual and both modes of powered brushing were evaluated employing a split-mouth design. Compared with unbrushed and manually or sonically driven brushed SCFs, powered rotary-oscillatory brushing leads to deglycosylation of the SCF, loss of thickness, and a rougher film. Concurrently, the COF of a powered rotary-oscillatory brushed SCF increased. Volunteers reported a slightly preferred mouthfeel after sonic brushing as compared to powered rotating-oscillating brushing. Deglycosylation and roughness increase the COF on SCFs. Powered rotary-oscillatory brushing can deglycosylate a SCF, leading to a rougher film surface as compared with manual and sonic brushing, decreasing the lubricative function of the SCF. This is consistent with clinical mouthfeel evaluation after different modes of brushing.

  17. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  18. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    Science.gov (United States)

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  19. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  20. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  1. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  2. Action of colloidal silica films on different nano-composites

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  3. Dynamic friction and wear of a solid film lubricant during radiation exposure in a nuclear reactor

    Science.gov (United States)

    Jacobson, T. P.

    1972-01-01

    The effect of nuclear reactor radiation on the performance of a solid film lubricant was studied. The film consisted of molybdenum disulfide and graphite in a sodium silicate binder. Radiation levels of fast neutrons (E or = 1 MeV) were fluxed up to 3.5 times 10 to the 12th power n/sq cm-sec (intensity) and fluences up to 2 times 10 to the 18th power n/sq cm (total exposure). Coating wear lives were much shorter and friction coefficients higher in a high flux region of the reactor than in a low flux region. The amount of total exposure did not affect lubrication behavior as severely as the radiation intensity during sliding.

  4. SELF-LUBRICATING THIN FILMS FOR TOOL STEELS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2012-02-01

    Full Text Available Specimens made from Vanadis 6 cold work tool steel were machined, ground, heat processed by standard regime and finally mirror polished. After that, they were layered with CrAgN. The Ag-content in the layers was chosen to 3 wt% and 15 wt% respectively. Microstructural analysis revealed that the addition of 3 wt%Ag did not influence the growth manner of the films but the addition of 15 wt%Ag has made considerable changes in the film growth. The layer with 3 wt%Ag had excellent adhesion on the steel substrate. On the other hand, the addition of 15%Ag had strongly negative impact on the coating adhesion. Similar effect of different Ag addition has been established also to both the hardness and the Young modulus of the films, also. Both films have superior tribological properties against hard material (alumina as well as against soft counterpart (CuSn6 as-cast bronze.

  5. Effect of Viscosity Variation on the Micropolar Fluid Squeeze Film Lubrication of a Short Journal Bearing

    Directory of Open Access Journals (Sweden)

    N. B. Naduvinamani

    2013-01-01

    Full Text Available A theoretical study of the effect of the viscosity variation on the squeeze film performance of a short journal bearing operating with micropolar fluid is presented. The modified Reynolds equation accounting for the viscosity variation in micropolar fluid is mathematically derived. To obtain a closed form solution, the short bearing approximation under constant load is considered. The modified Reynolds equation is solved for the fluid film pressure and then the bearing characteristics, such as obtaining the load carrying capacity and the squeeze film time. According to the results evaluated, the micropolar fluid as a lubricant improves the squeeze film characteristics and results in a longer bearing life, whereas the viscosity variation factor decreases the load carrying capacity and squeezes film time. The result is compared with the corresponding Newtonian case.

  6. Atom beam sputtered Ag-TiO{sub 2} plasmonic nanocomposite thin films for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Sahu, Kavita [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India); Pandey, A. [Solid State Physics Laboratory, Defence Research and Development Organization, Timarpur, Delhi 110054 (India); Kumar, Mohit [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Ghosh, Tapas; Satpati, B. [Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064 (India); Som, T.; Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Avasthi, D.K. [Amity Institute of Nanotechnology, Noida 201313, Uttar Pradesh (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India)

    2017-07-31

    The development of nanocomposite coatings with highly enhanced photocatalytic activity is important for photocatalytic purification of water and air. We report on the synthesis of Ag-TiO{sub 2} nanocomposite thin films with highly enhanced photocatalytic activity by atom beam co-sputtering technique. The effects of Ag concentration on the structural, morphological, optical, plasmonic and photocatalytic properties of the nanocomposite thin films were investigated. UV–visible DRS studies revealed the presence of surface plasmon resonance (SPR) peak characteristic of Ag nanoparticles together with the excitonic absorption peak originating from TiO{sub 2} nanoparticles in the nanocomposites. XRD studies showed that the nanocomposite thin films consist of Ag nanoparticles and rutile TiO{sub 2} nanoparticles. The synthesized Ag-TiO{sub 2} nanocomposite thin films with 5 at% Ag were found to exhibit highly enhanced photocatalytic activity for sun light driven photocatalytic degradation of methylene blue in water, indicating their potential application in water purification.

  7. Low Molecular Weight Z-Tetraol Boundary Lubricant Films in Hard Disk Drives

    Directory of Open Access Journals (Sweden)

    R. J. Waltman

    2012-01-01

    Full Text Available Lower molecular weight Z-Tetraol films exhibit increased mechanical spacing in the slider-disk interface due to a lower z-profile. An increased resistance to lubricant disturbance on the disk surface (e.g., lube moguls with decreasing film thickness is attributed to an increasing contribution from the polar component of the disjoining pressure. Evaporative loss at temperatures typically encountered in a hard-disk drive also increases with decreasing molecular weight but is strongly dependent on the initial bonded fraction.

  8. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    A simple Kretschmann–Raether-type prism-based plasmonic device consisting of a glass prism, Au-WO3− nanocomposite film and various gas samples is considered. Complex permittivity for both stoichiometric and non-stoichiometric Au-WO3− nanocomposite films has been used for the simulation of the admittance ...

  9. Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films

    International Nuclear Information System (INIS)

    Badawi, Ali; Al Hosiny, N.

    2015-01-01

    Dynamic mechanical properties of nanocomposite films with different ratios of single walled carbon nanotubes/polymethyl methacrylate (SWCNTs/PMMA) are studied. Nanocomposite films of different ratios (0, 0.5, 1.0, and 2.0 weight percent (wt%)) of SWCNTs/PMMA are fabricated by using a casting technique. The morphological and structural properties of both SWCNT powder and SWCNTs/PMMA nanocomposite films are investigated by using a high resolution transmission electron microscope and x-ray diffractometer respectively. The mechanical properties including the storage modulus, loss modulus, loss factor (tan δ) and stiffness of the nanocomposite film as a function of temperature are recorded by using a dynamic mechanical analyzer at a frequency of 1 Hz. Compared with pure PMMA film, the nanocomposite films with different ratios of SWCNTs/PMMA are observed to have enhanced storage moduli, loss moduli and high stiffness, each of which is a function of temperature. The intensity of the tan δ peak for pure PMMA film is larger than those of the nanocomposite films. The glass transition temperature (T g ) of SWCNTs/PMMA nanocomposite film shifts towards the higher temperature side with respect to pure PMMA film from 91.2 °C to 99.5 °C as the ratio of SWCNTs/PMMA increases from 0 to 2.0 wt%. (paper)

  10. Surface Film Adsorption and Lubricity of Soybean Oil In-Water Emulsion and Triblock Copolymer Aqueous Solution: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Reza Taheri

    2016-12-01

    Full Text Available This paper investigates the surface film adsorption and lubricity of two different types of potential environmentally friendly cold metal forming lubricants: soybean vegetable oil in water VO/W emulsions and triblock copolymer aqueous solutions. The lubricants have different visual appearance, surface film adsorption characteristic, lubricity and surface cleaning behaviour. The effects of concentration, temperature and emulsification ultrasonic energy (for VO/W emulsion are studied. The result shows that the soybean VO/W emulsions have stronger adsorption, superior lubricity and anti-wear property compared to the copolymer solutions. The effect of temperature is investigated at 30 °C and 65 °C which are below and above cloud point of the aqueous copolymer solutions. Both lubricants show improved friction and anti-wear property at 65 °C. However, tenacious residual film remained on the discs surface after surface cleaning indicates lower cleanability of the soybean VO/W emulsions compared to the copolymer solutions, postulating the need for extra post-processing cleaning operations after cold forming process with VO/W emulsion lubricant.

  11. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  12. F and Ti doped silicate nanocomposite thin films for antimicrobial and easy clean applications.

    Science.gov (United States)

    Seo, YongSeong; Son, You-Hwan; Kim, Dae-Jin; Cho, Won-Je; Raj, C Justin; HyunYu, Kook

    2014-12-01

    Titanium isopropoxide (TIPO), tetraethyl orthosilicate (TEOS) and Fluoroalkylsilane (FAS) silane precursor were employed to coat transparent thin film on the glass substrate and these effectively prevents pollution on the glass from microorganisms. The each nanocomposition film was prepared by sol-gel method, the solution of nanocomposite was coated by spin coater with 1200 rpm for 30 sec and cured by thermal at 100 degrees C on glass which surface treated with Piranha solution. The nanocomposite films with highly self cleaning efficacy were fabricated and studied for various molar compositions of TEOS, TIPO and FAS. TEOS/TIPO film in glass substrate shows an optical transparency over 90% up to 30 mol% of TIPO in TEOS/TIPO composite films and also FAS incorporated up to 4 mol% onto TEOS/TIPO films. The anti-microbial efficiency of the nanocomposite film was improved 30% when it was exposed under UV light radiation than that in ambient condition.

  13. Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films.

    Science.gov (United States)

    Li, Jun; Du, Yong; Jia, Runping; Xu, Jiayue; Shen, Shirley Z

    2017-07-11

    Flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polypyrrole/paper (PEDOT:PSS/PPy/paper) thermoelectric (TE) nanocomposite films were prepared by a two-step method: first, PPy/paper nanocomposite films were prepared by an in situ chemical polymerization process, and second, PEDOT:PSS/PPy/paper TE composite films were fabricated by coating the as-prepared PPy/paper nanocomposite films using a dimethyl sulfoxide-doped PEDOT:PSS solution. Both the electrical conductivity and the Seebeck coefficient of the PEDOT:PSS/PPy/paper TE nanocomposite films were greatly enhanced from 0.06 S/cm to ~0.365 S/cm, and from 5.44 μV/K to ~16.0 μV/K at ~300 K, respectively, when compared to the PPy/paper TE nanocomposite films. The thermal conductivity of the PEDOT:PSS/PPy/paper composite film (0.1522 Wm -1 K -1 at ~300 K) was, however, only slightly higher than that of the PPy/paper composite film (0.1142 Wm -1 K -1 at ~300 K). As a result, the ZT value of the PEDOT:PSS/PPy/paper composite film (~1.85 × 10 -5 at ~300 K) was significantly enhanced when compared to that of the PPy/paper composite film (~4.73 × 10 -7 at ~300 K). The as-prepared nanocomposite films have great potential for application in flexible TE devices.

  14. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14......H30 confined between smooth gold surfaces. In most cases we observe well defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n...... of lubricant layers. We find that with increasing alkane chain length, the transition from n to n-1 layers occurs at higher pressure, as expected based on the increasing wettability ~or spreading pressure with increasing chain length. Thus, the longer alkanes are better boundary lubricants than the shorter...

  15. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  16. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films.

    Science.gov (United States)

    Zhang, Sihang; Sun, Gang; He, Yongfeng; Fu, Runfang; Gu, Yingchun; Chen, Sheng

    2017-05-17

    On the basis of nanocellulose obtained by acidic swelling and ultrasonication, rodlike nanocellulose/polyaniline nanocomposites with a core-shell structure have been prepared via in situ polymerization. Compared to pure polyaniline, the nanocomposites show superior film-forming properties, and the prepared nanocomposite films demonstrate excellent electrochemical and electrochromic properties in electrolyte solution. Nanocomposite films, especially the one prepared with 40% polyaniline coated nanocomposite, exhibited faster response time (1.5 s for bleaching and 1.0 s for coloring), higher optical contrast (62.9%), higher coloration efficiency (206.2 cm 2 /C), and more remarkable switching stability (over 500 cycles). These novel nanocellulose-based nanorod network films are promising novel electrochromic materials with excellent properties.

  17. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2017-01-01

    In recent years, theoretical and experimental efforts have transformed the conventional tilting-pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out...

  18. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2016-01-01

    In recent years, theoretical and experimental efforts have transformed the conventional tilting pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out...

  19. Lubrication Of Nonconformal Contacts

    Science.gov (United States)

    Jeng, Yeau-Ren

    1991-01-01

    Report discusses advances in knowledge of lubrication of nonconformal contacts in bearings and other machine elements. Reviews previous developments in theory of lubrication, presents advances in theory of lubrication to determine minimum film thickness, and describes experiments designed to investigate one of regimes of lubrication for ball bearings.

  20. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Science.gov (United States)

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transport, mechanical and global migration data of multilayer copolyamide nanocomposite films with different layouts

    OpenAIRE

    Scarfato, P.; Garofalo, E.; Di Maio, L.; Incarnato, L.

    2017-01-01

    Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to ?Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging? by?Garofalo et al. (2017) [1]...

  2. Curvilinear Squeeze Film Bearing with Porous Wall Lubricated by a Rabinowitsch Fluid

    Science.gov (United States)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2017-05-01

    The present theoretical analysis is to investigate the effect of non-Newtonian lubricant modelled by a Rabinowitsch fluid on the performance of a curvilinear squeeze film bearing with one porous wall. The equations of motion of a Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation the modified Reynolds equation is obtained. The analytical solution of this equation for the case of a squeeze film bearing is presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing and spherical bearing with a squeeze film are considered as numerical examples.

  3. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    Science.gov (United States)

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation of novel graphene-PEDOT:PSS nanocomposite films and fabrication of heterojunction diodes with n-Si

    Science.gov (United States)

    Pathak, C. S.; Singh, J. P.; Singh, R.

    2018-02-01

    In this paper, we report about the preparation of novel nanocomposite films based on graphene and poly (3,4 ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). It has been observed that the prepared nanocomposite material shows excellent electrical conductivity of 60 S/cm and highly transparent (>90%) in the visible region. The resistivity of graphene and PEDOT:PSS nanocomposite films decreases as temperature increases, which is a characteristic behavior of semiconductors. The conductivity of nanocomposite film is enhanced by two orders of magnitude as compared to pristine PEDOT:PSS film. Au/graphene-PEDOT:PSS nanocomposite/n-Si/In-Ga diodes are fabricated and it exhibited rectifying behavior.

  5. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  6. Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics

    Science.gov (United States)

    Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi

    2017-06-01

    All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.

  7. Squeeze film lubrication for non-Newtonian fluids with application to manual medicine.

    Science.gov (United States)

    Chaudhry, Hans; Bukiet, Bruce; Roman, Max; Stecco, Antonio; Findley, Thomas

    2013-01-01

    In this paper, we computed fluid pressure and force on fascia sheets during manual therapy treatments using Squeeze Film Lubrication theory for non-Newtonian fluids. For this purpose, we developed a model valid for three dimensional fluid flow of a non-Newtonian liquid. Previous models considered only one-dimensional flows in two dimensions. We applied this model to compare the one-dimensional flow of HA, considered as a lubricating fluid, around or within the fascia during sliding, vibration, and back-and-forth sliding manipulation treatment techniques. The fluid pressure of HA increases dramatically as fascia is deformed during manual therapies. The fluid force increases more during vertical vibratory manipulation treatment than in constant sliding, and back and forth motion. The variation of fluid pressure/force causes HA to flow near the edges of the fascial area under manipulation in sliding and back and forth motion which may result in greater lubrication. The fluid pressure generated in manual therapy techniques may improve sliding and permit muscles to work more efficiently.

  8. Effect of halloysite content on carboxymethyl cellulose/halloysite nanotube bio-nanocomposite films

    Science.gov (United States)

    Suppiah, Kathiravan; Leng, Teh Pei; Husseinsyah, Salmah; Rahman, Rozyanty; Keat, Yeoh Cheow

    2017-04-01

    Carboxymethyl cellulose/halloysite nanotube (CMC/HNT) bio-nanocomposite films were prepared by solution casting method. The effect of HNT content on tensile properties and morphology were studied. The results showed that the tensile strength of the CMC/HNT bio-nanocomposite films achieved optimum at 10 wt% of HNT content. The elongation at break and modulus of elasticity increased with increasing HNT content. The morphology of CMC/HNT bio-nanocomposite films showed that the poor distribution of HNT filler was observed at 20 wt% of HNT content.

  9. Preparation and tribological behaviors of poly (ether ether ketone) nanocomposite films containing graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: shj6922@163.com; Li Na; Yang Jin; Min Chunying [Jiangsu University, School of Materials Science and Engineering (China); Zhang Zhaozhu [Chinese Academy of Sciences, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics (China)

    2013-02-15

    The composite films of poly (ether ether ketone) (PEEK) filled with different proportions of graphene oxide (GO) nanosheets were prepared by the cast method. The tribological behaviors of the composite films under boundary lubrication (water and liquid paraffin oil lubrication) were investigated and compared with that under dry sliding on an UMT-2 friction and wear machine, by running a steel sphere against the composite films. The results were as follows: GO nanosheets as the filler greatly improve the wear resistance of PEEK under boundary lubrication, though the composites show a different dependence of wear resistance on the filler content. Scanning electron microscopy and optical microscopy performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of GO could be attributed to their small size and extremely thin laminated structure, which allow the GO to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  10. Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films.

    Science.gov (United States)

    Barzegar, Hassan; Azizi, Mohammad Hossein; Barzegar, Mohsen; Hamidi-Esfahani, Zohreh

    2014-09-22

    Using fresh foods which undergo the least processing operations developed widely in recent years. Active packaging is a novel method for preserving these products. Active starch-clay nanocomposite films which contained potassium sorbate (PS) at a level of 0, 5, 7.5 and 10 g PS/100 g starch were produced and their physical, mechanical and antimicrobial properties were evaluated. In order to evaluate antimicrobial properties of films Aspergillus niger was used. The results showed that 5% of the PS did not produce antimicrobial property in the film, but by increasing the content of the additive in film formulation, antimicrobial effect increased. PS increased water permeability and elongation at break of the films, but decreased tensile strength. The rate of PS migration into the semi-solid medium in starch-nanocomposites was lower than starch films. This shows that nanocomposite films could retain their antimicrobial property for longer time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. PET based nanocomposite films for microwave packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.; Albanese, D., E-mail: dalbanese@unisa.it; Di Matteo, M.; Di Maio, L., E-mail: ldimaio@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  12. PET based nanocomposite films for microwave packaging applications

    Science.gov (United States)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  13. PET based nanocomposite films for microwave packaging applications

    International Nuclear Information System (INIS)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-01-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET

  14. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 1. Design of nanocomposite film-based plasmonic device for gas sensing ... A theoretical simulation study incorporating the use of admittance loci design methodology in SPR-based sensing device using gold-tungsten trioxide (Au-WO3−) nanocomposite ...

  15. Nonlinear optical properties of ZnO/poly (vinyl alcohol) nanocomposite films

    International Nuclear Information System (INIS)

    Jeeju, P. P.; Jayalekshmi, S.; Chandrasekharan, K.

    2014-01-01

    Extensive studies have already been reported on the optical characteristics of ZnO/polymer nanocomposite films, using a variety of polymers including transparent polymers such as polystyrene, polymethyl methacrylate etc and many interesting results have been established regarding the non linear optical characteristics of these systems. Poly (vinyl alcohol)(PVA) is a water soluble polymer. Though the structural and optical studies of ZnO/PVA nanocomposite films have already been investigated, there are no detailed reports on the nonlinear optical characteristics of ZnO/PVA nanocomposite films, irrespective of the fact that these nanocomposite films can be synthesized using quite easy and cost effective methods. The present work is an attempt to study in detail the nonlinear optical behaviour of ZnO/PVA nanocomposite films using Z-scan technique. Highly transparent ZnO/PVA nanocomposite films were prepared from the ZnO incorporated PVA solution in water using spin coating technique. The ZnO nanoparticles were synthesized by the simple chemical route at room temperature. High-resolution transmission electron microscopy studies show that the ZnO nanoparticles are of size around 10 nm. The ZnO/PVA nanocomposite films were structurally characterized by X-ray diffraction technique, from which the presence of both PVA and ZnO in the nanocomposite was established. The optical absorptive nonlinearity in the nanocomposite films was investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption in ZnO with efficiency more than 50%. These films also show a self defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The present studies indicate that, highly transparent and homogeneous films of ZnO/PVA nanocomposite can be obtained on glass substrates using simple methods, in a highly cost effective way, since PVA is water soluble. These nanocomposite films offer

  16. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Costas A. Charitidis

    2013-04-01

    Full Text Available The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS, require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CNx, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

  17. Reduction of the dynamic load capacity in a squeeze film damper operating with a bubbly lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, S.E.; San Andres, L.A.

    1999-10-01

    Squeeze film dampers (SFDs) are effective means to reduce vibrations and to suppress instabilities in rotor-bearing systems. However, at operating conditions while traversing critical speeds with large orbital whirl motions, ingestion and entrapment of air into the thin lands of SFDs generates a bubbly mixture (air in lubricant) that is known to reduce the dynamic film pressures and the overall damping capability. This pervasive phenomenon lacks proper physical understanding and sound analytical modeling. An experimental investigation to quantify the forced performance of a SFD operating with a controlled bubbly mixture is detailed. Tests are conducted in a constrained circular orbit SFD to measure the dynamic squeeze film pressures and journal motion at two whirl frequencies (8.33 and 16.67 Hz) as the air content in the mixture increases from 0% to 100%. The analysis of period-averaged film pressures reveals a zone of uniform low pressure of magnitude equal to the discharge pressure, independently of the mixture composition. The uniform pressure zone extends as the mixture void fraction increases. Radial and tangential film forces are estimated from the dynamic pressures at two axial locations of measurement. The tangential (damping) force decreases proportionally with the mixture volume fraction, while a radial hydrostatic force remains nearly invariant. The experimental results quantify effects previously known by qualitative description only, thus providing a benchmark towards the development of sound theoretical models.

  18. Optical absorption and photoluminescence properties of ZnO/PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kulyk, B; Kapustianyk, V [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Krupka, O [Department of Chemistry, Kyiv Taras Shevchenko National University, 60 Volodymyrska Str., Kyiv (Ukraine); Sahraoui, B, E-mail: bohdan_kulyk@yahoo.com [Department of Physics, University of Angers, 2 Lavoisier Av., Angers (France)

    2011-04-01

    The ZnO nanocrystals (ZnO NCs) with particle size, less than 100 nm, have been blended with polymethylmethacrylate (PMMA) by solution mixing to prepare PMMA/ZnO nanocomposite films. The structure of ZnO/PMMA nanocomposite films was characterized using X-ray diffractometry. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurements of temperature evolution of the photoluminescence (PL) spectra show intensive UV emission peak corresponding to the donor-bound excitons with binding energy of 51 meV and green emission band related to the intrinsic defects in ZnO. The temperature evolution of the emission peaks energy position, intensity and integral intensity in ZnO/PMMA nanocomposite films were examined.

  19. Scanning and transmission electron microscopy investigation of multiwall carbon nanotube/nickel oxide nanocomposite thin films

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-12-01

    Full Text Available Owing to their unique electronic and optical properties, nanocomposite thin films are widely used for converting solar radiation therapy into other conventional energy forms, such as heat and electricity. Carbon nanotube-based composites which can...

  20. Oxygen permeability of nanocomposite-based polyolefin films; Permeabilidade do oxigenio em filmes nanocompositos poliolefinicos

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama-Novak, Jane H.; Amaral, Rafael A.; Ruffino, Vivianne; Habert, A. Claudio; Borges, Cristiano P., E-mail: jane@peq.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Mano, Barbara [BRASKEM S.A., Duque de Caxias, RJ (Brazil)

    2015-07-01

    Polyethylene and polypropylene are vastly employed for packaging due to their high versatility and low cost. However, their films are permeable at different degree to small molecules like gases and the use of additives improves the barrier properties. Therefore, the aim of this work is to investigate the effect of organically modified montmorillonite on oxygen transport properties of PE and PP films. Nanocomposites were prepared by means of polymer dissolution in organic solvent and subsequent nanoparticle addition at 3, 5 and 10% (w/w). Scanning electron microscopy images of the films indicate the presence of microcavities and some agglomerated nanoclay. On the other hand, X-rays diffraction analysis shows clay in well-dispersed state independent of polyolefin type. Enhancement of oxygen barrier is achieved, but this property is dependent on the nanoclay content, polyolefin type and film morphology. (author)

  1. High-negative effective refractive index of silver nanoparticles system in nanocomposite films

    Science.gov (United States)

    Altunin, Konstantin K.; Gadomsky, Oleg N.

    2012-03-01

    We have proved on the basis of the experimental optical reflection and transmission spectra of the nanocomposite film of poly(methyl methacrylate) with silver nanoparticles that (PMMA + Ag) nanocomposite films have quasi-zero refractive indices in the optical wavelength range. We show that to achieve quasi-zero values of the complex index of refraction of composite materials is necessary to achieve high-negative effective refractive index in the system of spherical silver nanoparticles.

  2. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    dnc(n2 nc − k2 nc − n2 p sin2 θi − 2inncknc)1/2,. (2) where nnc and knc are respectively the real and imaginary parts of the complex refractive index of the nanocomposite film, governed by eq. (1) and λ is the wavelength of the incident light. The characteristic matrix of the nanocomposite film is given by. [. B. C. ] = [ cos δnc.

  3. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  4. Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate

    Science.gov (United States)

    Young, Y.-N.; Stone, H. A.

    2017-06-01

    The dynamics of an elastic sheet lubricated by a thin liquid film on a wetting solid substrate is examined using both numerical simulations of a long-wave lubrication equation and a quasistatic model. Interactions between the liquid and the wetting substrate are modeled by a disjoining pressure that gives rise to an ultrathin (precursor) film. For a fluid interface without elastic bending stiffness, a flat precursor film may be linearly unstable and evolve towards an equilibrium of a single "drop" connected to a flat ultrathin film. Similar behavior is found when the thin film is covered by an elastic sheet: The sheet deforms, rearranging the thin liquid film, and contributes regulating surface forces such as a bending resistance and/or a tensile force, which may arise from interactions between the sheet and liquid or inextensibility of the sheet. Glasner's quasistatic model [Phys. Fluids 15, 1837 (2003), 10.1063/1.1578076], developed for a liquid film, is adopted to investigate the combined effects of elastic and tensile forces in the sheet on the thin film dynamics. The equilibrium height of the drop is found to vary inversely with the bending rigidity. When the elastic sheet is inextensible (such as a lipid bilayer membrane), a compressive tensile force may occur and the equilibrium film height is dependent less on the bending rigidity and more on the excess area of the membrane. Analyses of the lubrication equation also show that the precursor film transitions monotonically to the core film for tension-dominated dynamics. In contrast, for elasticity-dominated dynamics, a spatial oscillation of film height in the contact line region is found. In addition, elasticity in the sheet causes a sliding motion of the thin film: the contact angle is rendered zero by elasticity, and the contact line moves at a finite speed.

  5. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.

    Science.gov (United States)

    Palgrave, Robert G; Parkin, Ivan P

    2006-02-08

    Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.

  6. Melting, crystallization and optical behaviors of poly (ethylene terephthalate)-silica/polystyrene nanocomposite films

    International Nuclear Information System (INIS)

    Wu Tianbin; Ke Yangchuan

    2007-01-01

    Poly (ethylene terephthalate) (PET)-silica (SiO 2 )/polystyrene (PS) nanocomposite films were prepared by melting PET with the core-shell SiO 2 /PS nanoparticles. Differential scanning calorimetry (DSC) results showed that the crystallization temperature of PET-SiO 2 /PS nanocomposite films with 2 wt.% PS-encapsulated SiO 2 nanoparticles reached 205.1 deg. C, 11.6 deg. C higher than that of PET. For crystallized PET-SiO 2 /PS nanocomposite films, double melting peaks appeared in DSC curves similar to PET. Scanning electron microscopy revealed a netlike fibre morphology for the amorphous PET-SiO 2 /PS nanocomposite films with 2 wt.% PS-encapsulated SiO 2 nanoparticles. The light transmittance of these amorphous PET-SiO 2 /PS nanocomposite films reached 87.9%, compared to 84.2% for PET. With the increase of annealing temperature from 110 to 150 deg. C, the transmittance of PET-SiO 2 /PS nanocomposite films decreased slowly from 69.9 to 46.9%, while their haziness increased slightly from 45.8 to 48.2%. All these phenomena are suggested to result from the strongly heterogeneous nucleation of PS-encapsulated SiO 2 nanoparticles in PET

  7. Influence of surface topography on friction, film breakdown and running-in in the mixed lubrication regime

    NARCIS (Netherlands)

    Lugt, Pieter Martin; Severt, R.W.M.; Fogelström, J.; Tripp, J.H.

    2001-01-01

    The influence of surface topography on the lubricant film build-up ability and the friction characteristics of potential rolling bearing surfaces has been investigated by experiments on two-disc rigs. Traction-friction torque measurements were made for a variety of surface combinations, together

  8. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    Directory of Open Access Journals (Sweden)

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  9. An Automatic Detection Method of Nanocomposite Film Element Based on GLCM and Adaboost M1

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available An automatic detection model adopting pattern recognition technology is proposed in this paper; it can realize the measurement to the element of nanocomposite film. The features of gray level cooccurrence matrix (GLCM can be extracted from different types of surface morphology images of film; after that, the dimension reduction of film can be handled by principal component analysis (PCA. So it is possible to identify the element of film according to the Adaboost M1 algorithm of a strong classifier with ten decision tree classifiers. The experimental result shows that this model is superior to the ones of SVM (support vector machine, NN and BayesNet. The method proposed can be widely applied to the automatic detection of not only nanocomposite film element but also other nanocomposite material elements.

  10. Jenkins model based ferrofluid lubrication of a curved rough annular squeeze film: Effect of slip velocity

    Directory of Open Access Journals (Sweden)

    Patel Jimit R.

    2015-01-01

    Full Text Available This paper analyzes the combined effect of slip velocity and transverse roughness on the performance of a Jenkins model based ferrofluid lubrication of a squeeze film in curved rough annular plates. The slip model of Beavers and Joseph has been invoked to evaluate the effect of slip velocity. In order to find the effect of surface roughness the stochastic averaging model of Christensen and Tonder has been used. The pressure distribution is obtained by solving the concerned stochastically averaged Reynolds type equation. The load carrying capacity is calculated. The graphical representations of the results indicate that the effect of transverse surface roughness is adverse in general, however, the situation is relatively better in the case of negatively skewed roughness. Further, Jenkins model based ferrofluid lubrication offers some measures in reducing the adverse effect of roughness when slip parameter is kept at reduced level with a suitable ratio of curvature parameters. Lastly, the positive effect of magnetization gets a boost due to the combined effect of variance (-ve and negatively skewed roughness suitably choosing the aspect ratio.

  11. The influence of the lubricant film on the stiffness and damping characteristics of a deep groove ball bearing

    Science.gov (United States)

    Jacobs, William; Boonen, Rene; Sas, Paul; Moens, David

    2014-01-01

    This paper experimentally investigates the formation of a lubricant film in a deep groove ball bearing and its effect on the bearing dynamics. A novel test rig is introduced, which allows testing different types and sizes of bearings in real-life conditions. The test rig dynamics are optimised such that the dynamic properties of the bearing are measured in a frequency range below the resonances of the flexible modes. Two properties of the bearing, both its stiffness and damping value in the direction of the static bearing load, are identified. The behaviour of the lubricant film between the rolling elements and raceways is measured based on the electrical resistance through the bearing. For this purpose, the bearing housing is electrically isolated from the surrounding structure. The electrical resistance, stiffness and damping of the test bearing are identified during a speed run-up. The influence of the bearing temperature is analysed as well. During a run-up at constant bearing temperature, the measurement of the electrical resistance describes the formation of the lubricant film. Due to the formation of the lubricant film, the bearing stiffness increases by 3.2% while the damping increases by 24%. During a warm-up of the bearing, the viscosity of the lubricant film decreases strongly. A resulting decrease in electrical resistance, stiffness and damping is measured. Finally, the electrical resistance, stiffness and damping are identified at different speeds, after the bearing has reached a stable temperature at each speed. A combined effect of both rotation and temperature is observed and discussed.

  12. CrN-Ag nanocomposite coatings: Control of lubricant transport by diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-12-01

    1-{mu}m-thick self-lubricating CrN-Ag composite coatings containing 16 at.% Ag were deposited on Si substrates by reactive co-sputtering at T{sub s} = 400 Degree-Sign C, and were covered with CrN cap layers with a columnar microstructure and a thickness d = 0-1000 nm. Vacuum annealing at T{sub a} = 500 and 600 Degree-Sign C for 1 h causes Ag transport to the sample surface and the formation of Ag surface grains. Quantitative scanning electron microscopy and energy dispersive spectroscopy analyses show that increasing d from 0 to 10 to 100 nm for T{sub a} = 500 Degree-Sign C leads to a decrease in the areal density of Ag surface grains from 0.86 to 0.45 to 0.04 {mu}m{sup -2}, while their lateral size remains constant at 360 {+-} 60 nm. However, increasing T{sub a} to 600 Degree-Sign C causes a doubling of the Ag grain size, and a 4-30 times larger overall Ag transport. These results are explained by kinetic barriers for Ag diffusion through the porous cap layer with a porosity that decreases with increasing d, resulting in an effective activation barrier for Ag transport that increases from 0.78 eV in the absence of a cap layer to 0.89 eV for d = 10 nm and 1.07 eV for d = 30 nm. Auger electron spectroscopy depth profile analyses of annealed layers reveal no detectable Ag within the CrN cap layer and a uniform depletion of the Ag reservoir throughout the composite coating thickness, indicating unhindered Ag transport within the composite. The overall results show that a CrN diffusion barrier cap layer is an effective approach to control Ag lubricant transport to the surface of CrN-Ag composite coatings. - Highlights: Black-Right-Pointing-Pointer CrN-Ag composite coatings are capped with CrN diffusion barriers. Black-Right-Pointing-Pointer Ag diffuses to the surface during annealing at 500 or 600 Degree-Sign C. Black-Right-Pointing-Pointer The Ag transport is controlled by the cap thickness d = 0-1000 nm. Black-Right-Pointing-Pointer The activation energy for Ag

  13. Jenkins Model Based Ferrofluid Lubrication of a Curved Rough Annular Squeeze Film with Slip Velocity

    Directory of Open Access Journals (Sweden)

    J.R. Patel

    2015-06-01

    Full Text Available This paper deals with the combined effect of roughness and slip velocity on the performance of a Jenkins model based ferrofluid squeeze film in curved annular plates. Beavers and Joseph’s slip model has been adopted to incorporate the effect of slip velocity. The stochastic model of Christensen and Tonder has been deployed to evaluate the effect of surface roughness. The associated stochastically averaged Reynolds type equation is solved to derive the pressure distribution, leading to the calculation of load carrying capacity. The graphical representation makes it clear that although, the effect of transverse surface roughness is adverse in general, Jenkins model based ferrofluid lubrication provides some measures in mitigating the adverse effect and this becomes more manifest when the slip parameter is reduced and negatively skewed roughness occurs. Of course, a judicious choice of curvature parameters and variance (-ve add to this positive effect.

  14. PP/clay nanocomposite films for food package; Filmes de nanocomposito PP/argila organofilica para embalagens de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Arthur R.A.; Silva, Suedina M.L., E-mail: suedina@dema.ufcg.ed [Universidade Federal de Campina Grande (UAEMat/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Andrade, Daniela L.A.C.S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Engenharia de Processos; Mesquita, Wandemberg B. [Felinto Industria e Comercio Ltda., Campina Grande, PB (Brazil)

    2009-07-01

    Small contents of organoclays (1 wt %) were incorporated to PP modified with maleic anhydride by melt intercalation, in order to prepare polymeric films for further applications in food package sector. The films were characterized by X-ray diffraction (XRD) and mechanical properties. The data indicates that the incorporation of organoclay to PP results in transparent films with intercalated morphology and highly. The mechanical properties of nanocomposites films were superior from those pristine films. The results evidences that the PP/PP-g-MA/organoclay nanocomposite films, prepared in this study might be promissory to the food package market and, in short time, be used like a new product by industries of this sector. (author)

  15. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinyan [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); Chen Xinhua [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Kang Yingke; Yang Guangbin; Yu Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China); Zhang Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Jinming Road, Kaifeng, Henan Province 475004 (China)

    2010-12-15

    Superhydrophobic poly(methyl methacrylate)-SiO{sub 2} (coded as PMMA-SiO{sub 2}) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO{sub 2}) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO{sub 2} nanocomposite films was investigated in relation to the dosage of SiO{sub 2} nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO{sub 2} nanocomposite films when hydrophobic SiO{sub 2} nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO{sub 2} nanocomposite films had a static water contact angle of above 162{sup o}, showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  16. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    International Nuclear Information System (INIS)

    Wang Jinyan; Chen Xinhua; Kang Yingke; Yang Guangbin; Yu Laigui; Zhang Pingyu

    2010-01-01

    Superhydrophobic poly(methyl methacrylate)-SiO 2 (coded as PMMA-SiO 2 ) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO 2 ) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO 2 nanocomposite films was investigated in relation to the dosage of SiO 2 nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO 2 nanocomposite films when hydrophobic SiO 2 nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO 2 nanocomposite films had a static water contact angle of above 162 o , showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  17. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  18. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  19. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.

  20. Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses

    NARCIS (Netherlands)

    Pavlukhina, Svetlana; Zhuk, Iryna; Mentbayeva, Almagul; Rautenberg, Emily; Chang, Wei; Yu, Xiaojun; van de Belt-Gritter, Betsy; Busscher, Henk J.; van der Mei, Henny C.; Sukhishvili, Svetlana A.

    We report pH/bacteria-responsive nanocomposite coatings with multiple mechanisms of antibacterial protection that include the permanent retention of antimicrobials, bacteria-triggered release of antibiotics and bacteria-induced film swelling. A novel small-molecule-hosting film was constructed using

  1. Transport, mechanical and global migration data of multilayer copolyamide nanocomposite films with different layouts.

    Science.gov (United States)

    Scarfato, P; Garofalo, E; Di Maio, L; Incarnato, L

    2017-06-01

    Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to "Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging" by Garofalo et al. (2017) [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2], [3], [4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.

  2. Transport, mechanical and global migration data of multilayer copolyamide nanocomposite films with different layouts

    Directory of Open Access Journals (Sweden)

    P. Scarfato

    2017-06-01

    Full Text Available Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE as moisture resistant layer in direct contact with food. The data are related to “Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging” by Garofalo et al. (2017 [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2–4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.

  3. Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Katiyar, Vimal; Plackett, David

    2011-01-01

    Melt-extruded L-polylactide (PLA) nanocomposite films were prepared from commercially available PLA and laurate-modified Mg–Al layered double hydroxide (LDH-C12). Three films were tested for total migration as well as specific migration of LDH, tin, laurate and low molecular weight PLA oligomers...

  4. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  5. Pulsed DC sputtered DLC based nanocomposite films : controlling growth dynamics, microstructure and frictional properties

    NARCIS (Netherlands)

    Shaha, K.P.; Pei, Y.T.; Chen, C.Q.; Hosson, J.Th.M. de

    Surface smoothness of diamond-like carbon based thin films becomes a crucial property for developing nearly frictionless protective coatings. Surface roughness and the dynamic growth behaviour of TiC/a-C nanocomposite films, deposited by non-reactive pulsed DC (p-DC) sputtering of graphite targets,

  6. Nanocomposite C-Pd thin films – a new material with specific spectral properties

    Directory of Open Access Journals (Sweden)

    M. Suchańska

    2013-09-01

    Full Text Available In this paper, the results of optical investigations for thin films of carbon-palladium (C-Pd nanocomposites are presented. This films were prepared using two steps method (PVD/ CVD. The optical and Raman spectroscopy has been used to characterize the material. The multinanolayer model was used to explain the specific spectral properties.

  7. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V. [Department of Physics, Mahatma Fule Arts, Commerce & SitaramjiChoudhari Science College, Warud, Dist. Amravati (MS), India-444906 (India); Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, SantGadge Baba Amravati University, Amravati (MS), India-444602 (India); Talwatkar, S. S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS), India-440071 (India); Sunatkari, A. L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS), India-440001 (India)

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  8. Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.M., E-mail: danidqi@hotmail.com.br [Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa, PR (Brazil); Hechenleitner, A.A. Winkler [Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa, PR (Brazil); Lima, S.M.; Andrade, L.H.C. [Universidade Estadual de Mato Grosso do Sul, CP 351, 79804-970 Dourados, MS (Brazil); Caires, A.R.L. [Universidade Federal da Grande Dourados, 79804-970 Dourados, MS (Brazil); Pineda, E.A. Gomez [Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa, PR (Brazil)

    2011-08-15

    Highlights: {yields} PVA films containing different concentrations of ZnO nanoparticules was prepared. {yields} The inert atmosphere increases the thermal stability of PVA films. {yields} UV radiation increased the roughness of the PVA/ZnO material. {yields} Red shift in the peak emission for the PVA film with ZnO inserted. {yields} ZnO in the PVA film affect the optical, thermal and morphologic properties. - Abstract: ZnO nanoparticles with average diameter of 25 nm were synthesized by a modified sol-gel method and used in the preparation of (in wt.%) (100 - x) poly(vinyl alcohol) (PVA)/x ZnO nanocomposite films, with x = 0, 1, 2, 3, 4, and 5. The PVA/ZnO films were exposed to UV radiation for 96 h and their thermal, morphological, and spectroscopic properties were investigated. In inert atmosphere, the nanocomposite films showed lower thermal stability than the pure PVA film, and the calorimetric data suggest an interaction between PVA and ZnO in the nanocomposite films. Some crystalline phases could be seen in the films with ZnO, and a direct dependence on the ZnO concentration was also observed. The original structure of ZnO nanoparticles remained unaltered in the PVA matrix and they were uniformly distributed on the film surface. The roughness of the PVA film was not modified by the addition of ZnO; however, it increased after 96 h of UV irradiation, more significantly in the nanocomposite films. The films showed an absorption band centered at 370 nm and a broad emission band in the UV-vis region when excited at 325 nm.

  9. Oil film thickness measurement and analysis for an angular contact ball bearing operating in parched elastohydrodynamic lubrication. M.S. Thesis. Final Report

    Science.gov (United States)

    Hunter, Scott D.

    1986-01-01

    The capacitance method is used to estimate the oil film thickness in the Hertzian contact zone of an angular contact ball bearing operating in parched elastohydrodynamic lubrication. The parched elastohydrodynamic lubrication regime is characterized by a transient film thickness and basic speed ratio (ball spin rate over combined race speed) and the formation of a friction polymer. The experimental apparatus tests 40 mm 108 H ball bearings in the counter rotating race mode at loads of 200 and 300 lb, a film parameter of 1.6 and nominal inner and outer race speeds of 38 and 26 rps, respectively. Experimental results are presented for the capacitance, thickness, and conductance of the oil film as functions of elapsed time and for the basic speed ratios as a function of elapsed time, load, and amount of lubricant applied to the test bearing. Results indicate that a friction polymer formed from the initial lubricant has an effect on the capacitance and basic speed ratio measurements.

  10. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  11. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging.

    Science.gov (United States)

    Rodríguez, Francisco J; Torres, Alejandra; Peñaloza, Ángela; Sepúlveda, Hugo; Galotto, María J; Guarda, Abel; Bruna, Julio

    2014-01-01

    Nanocomposites based on biopolymers have been recognised as potential materials for the development of new ecofriendly food packaging. In addition, if these materials incorporate active substances in their structure, the potential applications are much higher. Therefore, this work was oriented to develop nanocomposites with antimicrobial activity based on cellulose acetate (CA), a commercial organoclay Cloisite30B (C30B), thymol (T) as natural antimicrobial component and tri-ethyl citrate (TEC) as plasticiser. Nanocomposites were prepared by a solvent casting method and consisted of 5% (w/w) of C30B, 5% (w/w) of TEC and variable content of T (0%, 0.5% and 2% w/w). To evaluate the effect of C30B into the CA matrix, CA films without this organoclay but with T were also prepared. All nanocomposites showed the intercalation of CA into the organoclay structure; furthermore this intercalation was favoured when 2% (w/w) of T was added to the nanocomposite. In spite of the observed intercalation, the presence of C30B inside the CA matrices increased the opacity of the films significantly. On the other hand, T showed a plasticiser effect on the thermal properties of CA nanocomposites decreasing glass transition, melting temperature and melting enthalpy. The presence of T in CA nanocomposites also allowed the control de Listeria innocua growth when these materials were placed in contact with this Gram-positive bacterium. Interestingly, antimicrobial activity was increased with the presence of C30B. Finally, studies on T release showed that the clay structure inside the CA matrix did not affect its release rate; however, this nanofiller affected the partition coefficient KP/FS which was higher to CA nanocomposites films than in CA films without organoclay. The results obtained in the present study are really promising to be applied in the manufacture of food packaging materials.

  12. A Solid Film Lubricant Composition for Use at High Sliding Velocities in Liquid Nitrogen

    Science.gov (United States)

    Wisander, D. W.; Johnson, R. L.

    1960-01-01

    Solid-lubricant-containing compositions can be of value as films and solid bodies for bearing and seal surfaces in low-temperature liquefied gases. An experimental composition including polytetrafluoroethylene (PTFE), an epoxy resin, and lithium-alumina-silicate was studied in friction, wear, and endurance experiments in liquid nitrogen (-320 F). This composition was formulated to approximate the thermal expansion of metals used in cryogenic systems. Hemisphere (3/6-in. radius) rider specimens were used and in most experiments the load was 1000 g. Films (0.005-in. thick) on disk specimens gave good endurance life, low rider wear, and desirable friction (f = 0.02 to 0.07). They functioned at a higher sliding velocity (no failure at 16, 000 ft/min) with copper rider specimens than with stainless steel riders (failure at 9000 ft/min). Solid rider material of the experimental composition had good friction and wear properties at sliding velocities above 4000 ft/min. It is important to use the experimental composition with mating materials having good thermal conductivity.

  13. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, F. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: antonella.rossi@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100, Cagliari (Italy); Lainé, E.; Woodward, P. [Enabling Research, Infineum UK Ltd., Milton Hill, Steventon, Oxfordshire OX13 6BD (United Kingdom); Spencer, N.D., E-mail: nicholas.spencer@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland)

    2017-02-28

    Highlights: • The additives bulk interactions in “neat” blends at high temperatures is evaluated. • The competition among the different additives to react with air-oxidized steel surfaces under pure thermal condition is investigated. • Different thermal films are grown, their in depth-composition and thickness is determined by ARXPS. • A reaction mechanism is proposed for elucidating the composition of the thermals films. - Abstract: Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  14. Accounting for Film-Forming and Damping Properties of Lubricants in Worm Gear Design

    Directory of Open Access Journals (Sweden)

    S. A. Polyakov

    2014-01-01

    Full Text Available The paper offers to use a curve of changing vibration amplitude of the rotating moment on the worm shaft of reducer in the process of growing brake (loading moment as one of criteria of the worm reducer operability. A condition of reducer operability at the nominal moment is lack of vibrations of the rotating moment with a critical value of amplitude.It is shown that vibrations of rotating moment on a shaft of the electric engine, by their nature, are self-vibrations in the system with "negative friction". Values of the brake moment at which there is a sharp increase of vibration amplitude leading to operability loss correspond to the nominal moment for this reducer or to the brake moment, corresponding to the maximum efficiency. It is shown that different lubricants differently influence on the generation of self-vibrations. The most efficient damping occurs when using oil with the additive "Striboil", and the reason of falling efficiency at the excess of the nominal moment is essentially increased energy losses at generation of vibrations with "negative friction", especially when approaching to the resonance area. Thus, taking into account a nature of damping vibrations, with using different lubricants, allows us to increase the permissible tension since the more is a damping value the more is a brake moment corresponding to the maximum efficiency. It is noted that, when using the additives to oils, a growth of the permissible tension is caused by the processes of film formation increasing the real contact area, which increases its share of the nominal contact area determined by the Hertz formula.

  15. Fabrication of polyhydroxybutyrate (PHB)/γ-Fe2O3 nanocomposite film and its properties study.

    Science.gov (United States)

    Moghaddam, Shokooh; Taghi Khorasani, Mohammad; Hosseinkazemi, Hesam; Biazar, Esmaeil; Fazeli, Mahyar

    2016-06-01

    Magnetic separation has numerous advantages in isolating cancerous and normal cells used in the diagnosis and treatment sectors. Here, we produced magnetic nanocomposite films made of polyhydroxybutyrate (PHB)/magnetite nanoparticles (γ-Fe2O3), and the properties of the films by SEM, TEM, FTIR, DMTA, contact angle, and cellular analyses were investigated. The microscopic images showed uniform distribution of γ-Fe2O3 magnetic nanoparticles in polymeric matrix. The chemical bounds between magnetic nanoparticles and polymeric matrix demonstrated using the FTIR spectrophotometer. The DMTA and contact angle results indicated an increase in the glass transition temperature and hydrophilic properties of nanocomposites is achieved by increasing the magnetic nanoparticles amount in polymer matrix. The cellular results were showed that adhesion of cancer cells compared to normal cells was significantly enhanced by the induction of a magnetic field. These nanocomposite films can be used as a substrate for cellular adhesion and separation processes.

  16. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.

    Science.gov (United States)

    El Miri, Nassima; Abdelouahdi, Karima; Barakat, Abdellatif; Zahouily, Mohamed; Fihri, Aziz; Solhy, Abderrahim; El Achaby, Mounir

    2015-09-20

    This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Squeeze-Film Lubrication of the Human Ankle Joint Subjected to the Cyclic Loading Encountered in Walking

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2005-01-01

    Roč. 127, č. 1 (2005), s. 141-147 ISSN 0742-4787 R&D Projects: GA ČR(CZ) GA103/04/0150 Institutional research plan: CEZ:AV0Z20710524 Keywords : cyclic loading * human ankle joint * squeeze-film lubrication * synovial fluid filtration * synovial gel formation Subject RIV: JJ - Other Materials Impact factor: 0.682, year: 2005

  18. Novel chitosan-magnesium aluminum silicate nanocomposite film coatings for modified-release tablets.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2011-04-04

    Chitosan (CS), a positively charged polysaccharide, and magnesium aluminum silicate (MAS), a negatively charged clay with silicate layers, can electrostatically interact to form nanocomposite films. In this study, CS-MAS nanocomposite films were evaluated for use in tablet film coating. Effects of CS-MAS ratio and coating level on water uptake and drug release from the coated tablets were investigated. Surface and film matrix morphology of the coated film and the effect of enzymes in the simulated gastro-intestinal fluid on drug release were also examined. The results demonstrated that the CS-MAS coated tablets had a rough surface and a layered matrix film, whereas a smooth surface and dense matrix film on the CS coated tablets was found. However, the CS-MAS coated tablets provided fewer film defects than the CS coated tablets. Nanocomposite formation between CS and MAS could retard swelling and erosion of CS in the composite films in acidic medium. The higher MAS ratio of the CS-MAS coated tablets gave lower water uptake and slower drug release when compared with the CS coated tablets. Moreover, the CS-MAS films on the tablets presented good stability towards enzymatic degradation in simulated intestinal fluid. The release of drug from the CS-MAS coated tablets could be modulated by varying CS-MAS ratios and coating levels. Additionally, drug solubility also influenced drug release characteristics of the CS-MAS coated tablets. These findings suggest that the CS-MAS nanocomposites displays a strong potential for use in tablet film coating intended for modifying drug release from tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Yang Jin; Zhang Zhaozhu; Men Xuehu; Xu Xianghui

    2009-01-01

    Stable, transparent and superhydrophobic carbon nanotube (CNT) nanocomposite films were fabricated by one-step spray casting process using the polystyrene functionalized CNTs, which were prepared by 'living' free-radical polymerization and analyzed by means of infrared spectroscopy and thermal gravimetric analysis. The CNT film has a high water contact angle of 160 o and a sliding angle of less than 3 deg. The surface topography of the fabricated film was characterized by field emission scanning electron microscopy. The transparency of the CNT film was investigated by UV-vis spectroscopy. The result shows that the CNT film has light transmittance of about 78% in the visible light region.

  20. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au; Kosasih, B. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfield Avenue, Wollongong, NSW 2522 (Australia)

    2015-10-28

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.

  1. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants.

    Science.gov (United States)

    Nithya, Rajendran; Meenakshi Sundaram, Nachiappan

    2015-01-01

    In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. The objective of the study reported here was to prepare a composite film of nanocrystalline hydroxyapatite (HAp) and polycaprolactone (PCL) polymer loaded with ciprofloxacin, a frequently used antibiotic agent for bone infections. Nanocrystalline HAp was synthesized by precipitation method using the precursor obtained from eggshell. The nanocomposite film (HAp-PCL-ciprofloxacin) was prepared by solvent evaporation. Drug-release and biodegradation studies were undertaken by immersing the composite film in phosphate-buffered saline solution, while a cytotoxicity test was performed using the fibroblast cell line NIH-3T3 and osteoblast cell line MG-63. The pure PCL film had quite a low dissolution rate after an initial sharp weight loss, whereas the ciprofloxacin-loaded HAp-PCL nanocomposite film had a large weight loss due to its fast drug release. The composite film had higher water absorption than the pure PCL, and increasing the concentration of the HAp increased the water absorption. The in vitro cell-line study showed a good biocompatibility and bioactivity of the developed nanocomposite film. The prepared film will act as a sustainable bone implant in addition to controlled drug delivery.

  2. Solid Lubrication Fundamentals and Applications. Chapter 1; Introduction and Background

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1996-01-01

    This chapter presents an introduction and historical background to the field of tribology, especially solid lubrication and lubricants and sets them in the perspective of techniques and materials in lubrication. Also, solid and liquid lubrication films are defined and described.

  3. Solid Lubrication Fundamentals and Applications: Introduction and Background. Revision 1

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter presents an introduction and historical background to the field of tribology, especially solid lubrication and lubricants and sets them in the perspective of techniques and materials in lubrication. Also, solid and liquid lubrication films are defined and described.

  4. Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films

    Science.gov (United States)

    Bhavsar, Shilpa; Patel, Gnansagar B.; Singh, N. L.

    2018-03-01

    In the present work, a simple solution casting method was utilized to synthesize aluminium oxide (Al2O3) doped polystyrene (PS) polymer nanocomposite films. As synthesized films were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultra violet (UV)-visible spectroscopy, photoluminescence (PL) method and scanning electron microscopy (SEM). The crystalline nature of the films was found to decrease after incorporation of filler in the polymer matrix as revealed by XRD results. A new carbonyl group was appeared in the FTIR spectra and confirmed the charge transfer reaction between filler and polymer matrix. The decrease in the band gap was found with the filler concentration in the synthesized polymer nanocomposite films. Photoluminescence emission spectra of nanocomposites were observed at 411 nm, 435 nm and 462 nm, respectively in violet-blue region which indicates interaction between the dopant and the polymer matrix. The PL emission spectra of polymer nanocomposite films with 3 wt% of Al2O3 filler exhibited higher peak intensity. The Al2O3 filler dispersion is found to reduce band gap and promote luminescence property in polystyrene. SEM analysis indicates the agglomeration of Al2O3 nanoparticles into PS matrix at higher concentration.

  5. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    Science.gov (United States)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  6. Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds.

    Science.gov (United States)

    Zhang, Huanjun; Popp, Matthias; Hartwig, Andreas; Mädler, Lutz

    2012-04-07

    Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO(2) films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO(2) surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron microscopy imaging shows SnO(2) nanoparticles embedded in the polymeric matrix, constituting the nanocomposite material. Thermogravimetric analysis indicates that the porosity of the nanocomposite films decreases from 98% to 75%, resulting in a significant enhancement of the hardness of the films. DC conductivity measurements conducted in situ on the nanocomposite layer suggest a gradual increase in the layer resistance, pointing to a loss of connectivity between the SnO(2) primary particles as the polymerization proceeds. This journal is © The Royal Society of Chemistry 2012

  7. Fabrication and characterization of polyaniline-znO hybrid nanocomposite thin films.

    Science.gov (United States)

    Kaushik, Ajeet; Kumar, Jitendra; Tiwari, M K; Khan, R; Malhotra, B D; Gupta, Vinay; Singh, S P

    2008-04-01

    Polyaniline (PANI)-ZnO nanocomposite thin film has been successfully fabricated on glass substrates by using vacuum deposition technique. The as-grown PANI-ZnO nanocomposite thin films have been characterized using X-ray diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, UV-visible spectrophotometer and Fourier Transform Infrared (FTIR) spectroscopy, respectively. X-ray diffraction of as-grown film shows the reflection of ZnO nanoparticles along with a broad peak of PANI. The surface morphology of nanocomposite films has been investigated using scanning electron microscopy and atomic force microscopy. The hypsochromic shift of the UV absorption band corresponding to pi-pi* transition in polymeric chain of PANI and a band at 504 cm(-1) due to ZnO nanoparticles has been observed in the FTIR spectra. The hydrogen bonding between the imine group of PANI and ZnO nanoparticle has been confirmed from the presence of the absorbance band at 1151 cm(-1) in the FTIR spectra of the nanocomposite thin films.

  8. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  9. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging.

    Science.gov (United States)

    Sarwar, Muhammad Salman; Niazi, Muhammad Bilal Khan; Jahan, Zaib; Ahmad, Tahir; Hussain, Arshad

    2018-03-15

    Antimicrobial packaging is an area of emerging interest and is rapidly expanding with application of nanotechnology. The present work investigates the effect of nanocellulose (NC) and Ag NPs on the physical, mechanical and thermal properties of PVA nanocomposite films. The tensile strength of PVA was improved from 5.52 ± 0.27 MPa to 12.32 ± 0.61 MPa when filled with 8 wt% of NC. Nanocomposite films exhibited strong antibacterial activity against both Staphylococcus aureus (MRSA) and Escherichia coli (DH5-alpha). The maximum inhibition zone at 0.5 g Ag NPs with 12 wt% NC against DH5-alpha was 14 ± 0.70 mm. While, the maximum inhibition zone at 0.3 g Ag NPs for 16 wt% NC was 13.6 ± 0.68 mm against MRSA. Moreover, nanocomposites films have no cytotoxicity effect on HepG2 and cell viability was more than 90%. Based on mechanical properties and antibacterial potential of the developed nanocomposite films, it can be envisaged to use these films for packaging applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Lubrication fundamentals

    CERN Document Server

    Pirro, DM

    2001-01-01

    This work discusses product basics, machine elements that require lubrication, methods of application, lubricant storage and handling, and lubricant conservation. This edition emphasizes the need for lubrication and careful lubricant selection.

  11. Multi-element analysis of lubricant oil by WDXRF technique using thin-film sample preparation

    International Nuclear Information System (INIS)

    Scapin, M. A.; Salvador, V. L. R.; Lopes, C. D.; Sato, I. M.

    2006-01-01

    The quantitative analysis of the chemical elements in matrices like oils or gels represents a challenge for the analytical chemists. The classics methods or instrumental techniques such as atomic absorption spectrometry (AAS) and plasma optical emission spectrometry (ICP-OES) need chemical treatments, mainly sample dissolution and degradation processes. X-ray fluorescence technique allows a direct and multi-element analysis without previous sample treatments. In this work, a sensible method for the determination of elements Mg, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Sn, Ba and Pb in lubricating oil is presented. The x-ray fluorescence (WDXRF) technique using linear regression method and thin film sample preparation was used. The validation of the methodology (repeatability and accuracy) was obtained by the analysis of the standard reference materials SRM Alpha AESAR lot 703527D, applying the Chauvenet, Cochrane, ANOVA and Z-score statistical tests. The method presents a relative standard deviation lower than 10% for all the elements, except for Pb determination (RSD Pb 15%). The Z-score values for all the elements were in the range -2 < Z < 2, indicating a very good accuracy.(Full text)

  12. Multiscale simulation of thin-film lubrication: free-energy-corrected coarse graining.

    Science.gov (United States)

    Wu, Z-B; Zeng, X C

    2014-09-01

    The quasicontinuum method was previously extended to the nonzero temperature conditions by implementing a free-energy correction on non-nodal atoms in coarse-grained solid systems to avoid the dynamical constraint, [Diestler, Wu, and Zeng, J. Chem. Phys. 121, 9279 (2004)]. In this paper, we combine the extended quasicontinuum method and an atomistic simulation to treat the monolayer film lubrication with elastic (nonrigid) substrates. It is shown that the multiscale method with the coarse-graining local elements in the merging regions between the atomistic and continuous descriptions of the substrates can reasonably predict the shear stress profile, the mean separation curve, and the transverse stress profile in the fully atomistic simulation for the tribological system. Moreover, when the nonlocal elements are placed in the merging regions, the inhomogeneous solid atoms in the near regions covered by the cut-off circles of the nonlocal elements replace the homogeneous ones at the equilibrium configuration for the free-energy correction on the non-nodal atoms. The treatment can cause an unphysical sliding between the near and far regions of the upper substrate. It is shown that if the free-energy correction on the non-nodal atoms in the coarse-grained merging regions is removed, the multiscale method can still well reproduce the shear stress profile, the mean separation curve, and the transverse stress profile obtained from the fully atomistic simulation for the system.

  13. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol nanocomposite films

    Directory of Open Access Journals (Sweden)

    H. Y. Zhan

    2012-10-01

    Full Text Available Three techniques including acid hydrolysis (AH, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO-mediated oxidation (TMO and ultrasonication (US were introduced to isolate nanocellulose from microcrystalline cellulose, in order to reinforce poly(vinyl alcohol (PVA films. Important differences were noticed in fiber quality of nanocellulose and film properties of PVA nanocomposite films. The TMO treatment was more efficient in nanocellulose isolation with higher aspect ratio, surface charge (–47 mV and yields (37%. While AH treatment resulted in higher crystallinity index (88.1% and better size dispersion. The fracture surface, thermal behavior and mechanical properties of the PVA nanocomposite films were investigated by means of scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA and tensile testing. The results showed that both the TMO-derived and AH-derived nanocellulose could be dispersed homogeneously in the PVA matrices. AH/PVA films had higher elongation at break (51.59% at 6 wt% nanocellulose loading as compared with TMO/PVA, while TMO/PVA films shown superior tensile modulus and strength with increments of 21.5% and 10.2% at 6wt% nanocellulose loading. The thermal behavior of the PVA nanocomposite films was higher improved with TMO-derived nanofibrils addition.

  14. Silver/poly(vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications.

    Science.gov (United States)

    Fatema, Ummul K; Rahman, M Muhibur; Islam, M Rakibul; Mollah, M Yousuf A; Susan, Md Abu Bin Hasan

    2018-03-15

    Water in oil microemulsion (w/o) is a simple preparative route for nanoparticles where water droplets (dispersed in continuous oil medium and stabilized by surfactants and cosurfactants) act as nanoreactors to carry out chemical reactions. If polymeric matrix is incorporated inside the core of the microemulsions, it should prevent the agglomeration of nanoparticles after separation from microemulsions. Thus polymer nanocomposite films prepared from w/o microemulsions are expected to give narrow and homogeneous size distribution of nanoparticles throughout the polymer host. Silver/poly(vinyl alcohol) (Ag/PVA) nanocomposite film was successfully prepared, for the first time, using Triton X-100 (TX-100)/1-butanol/cyclohexane/water microemulsion. Reduction of the metal salt was carried out in the core of w/o microemulsion droplets containing PVA polymeric matrix. After separation from the microemulsion, Ag/PVA nanocomposite film was then prepared by solution casting method. The antibacterial activity of the nanocomposites was tested against Gram-negative, Escherichia coli and Gram-positive, Staphylococcus aureus by agar diffusion method. Ag nanoparticles with an average diameter of 105 nm could be synthesized using PVA, whereas in the absence of PVA the nanoparticles agglomerated. The distribution of Ag nanoparticles on PVA surface of the nanocomposite film prepared using microemulsion was uniform, whereas the film prepared through in situ generation of Ag nanoparticles by chemical reduction process on PVA host showed non-uniform, coagulated, bunches of Ag nanoparticles. The film synthesized using microemulsion exhibited enhanced antibacterial efficacy compared to that prepared through in situ synthesis under the same test condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Epitaxial YBa2Cu3O7-x nanocomposite thin films from colloidal solutions

    Science.gov (United States)

    Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X.

    2015-12-01

    A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles (ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal-organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa2Cu3O7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO2 and ZrO2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents (J c ˜ 3-4 MA cm-2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.

  16. High Performances of Artificial Nacre-Like Graphene Oxide-Carrageenan Bio-Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Wenkun Zhu

    2017-05-01

    Full Text Available This study was inspired by the unique multi-scale and multi-level ‘brick-and-mortar’ (B&M structure of nacre layers. We prepared the B&M, environmentally-friendly graphene oxide-carrageenan (GO-Car nanocomposite films using the following steps. A natural polyhydroxy polymer, carrageenan, was absorbed on the surface of monolayer GO nanosheets through hydrogen-bond interactions. Following this, a GO-Car hybridized film was produced through a natural drying process. We conducted structural characterization in addition to analyzing mechanical properties and cytotoxicity of the films. Scanning electron microscope (SEM and X-ray diffraction (XRD analyses showed that the nanocomposite films had a similar morphology and structure to nacre. Furthermore, the results from Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS and Thermogravimetric (TG/DTG were used to explain the GO-Car interaction. Analysis from static mechanical testers showed that GO-Car had enhanced Young’s modulus, maximum tensile strength and breaking elongation compared to pure GO. The GO-Car nanocomposite films, containing 5% wt. of Car, was able to reach a tensile strength of 117 MPa. The biocompatibility was demonstrated using a RAW264.7 cell test, with no significant alteration found in cellular morphology and cytotoxicity. The preparation process for GO-Car films is simple and requires little time, with GO-Car films also having favorable biocompatibility and mechanical properties. These advantages make GO-Car nanocomposite films promising materials in replacing traditional petroleum-based plastics and tissue engineering-oriented support materials.

  17. Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine

    DEFF Research Database (Denmark)

    Pongjanyakul, Thaned; Khunawattanakul, Wanwisa; Strachan, Clare J

    2013-01-01

    The objective of this study was to prepare and characterize chitosan-magnesium aluminum silicate (CS-MAS) nanocomposite films as a buccal delivery system for nicotine (NCT). The effects of the CS-MAS ratio on the physicochemical properties, release and permeation, as well as on the mucoadhesive...

  18. Nanoscale deformation mechanism of TiC/a-C nanocomposite thin films

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Shaha, K.P.; Hosson, J.Th.M. De

    2009-01-01

    This paper concentrates on the deformation behavior of amorphous diamondlike carbon composite materials. Combined nanoindentation and ex situ cross-sectional transmission electron microscopy investigations are carried out on TiC/a-C nanocomposite films, with and without multilayered structures

  19. Pulsed laser deposition of multiwall carbon nanotube/NiO nanocomposite thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-07-01

    Full Text Available of multiwall carbon nanotube/NiO nanocomposite thin films Brian Yalisi1,2, Kittessa Roro1, Ngcali Tile1,2 and Andrew Forbes1,2,3 1CSIR- National Laser Centre, Pretoria, SA 2School of Physics, University of KwaZulu Natal, Durban, SA 3School of Physics...

  20. Water vapor selective thin film nanocomposite membranes prepared by functionalized Silicon nanoparticles

    NARCIS (Netherlands)

    Baig, Muhammad Irshad; Ingole, Pravin G.; Jeon, Jae deok; Hong, Seong Uk; Choi, Won Kil; Jang, Boyun; Lee, Hyung Keun

    2017-01-01

    In this work, we have reported a facile method to improve the water vapor permeation performance of thin film nanocomposite membranes by tailoring the surface properties of Silicon nanoparticles. Inductively coupled plasma technique was utilized to synthesize amorphous Silicon nanoparticles (~. 10.

  1. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Kunzo, P.; Kováčová, E.; Vávra, I.; Križanová, O.; Smatko, V.; Stejskal, Jaroslav; Konyushenko, Elena; Omastová, M.; Špitálský, Z.; Mičušík, M.; Krupa, I.

    2011-01-01

    Roč. 519, č. 12 (2011), s. 4123-4127 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas sensor * polyaniline thin film * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2011

  2. Ni-toughened nc-TiN/a-SiNx nanocomposite thin films

    NARCIS (Netherlands)

    Zhang, Sam; Sun, Deen; Fu, Yongqing; Pei, Y.T.; Hosson, J.Th.M. De

    2005-01-01

    Nanocomposite nc-TiN/a-SiNx thin films containing Ni up to similar to 40 at.% were prepared by co-sputtering of Ti, TiNi and Si3N4 targets in ArN2 gas atmosphere. Adjusting TiNi/(Ti+TiNi) target power ratio altered chemical composition, microstructure and consequently mechanical properties. X-ray

  3. Fundamentals of fluid lubrication

    Science.gov (United States)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  4. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects.

    Science.gov (United States)

    Choudhury, Dipankar; Rebenda, David; Sasaki, Shinya; Hekrle, Pavel; Vrbka, Martin; Zou, Min

    2018-02-17

    This study evaluates the impact of dimple shapes on lubricant film formation in artificial hip joints. Micro-dimples with 20-50 µm lateral size and 1 ± 0.2 µm depths were fabricated on CrCoMo hip joint femoral heads using a picosecond laser. Tribological studies were performed using a pendulum hip joint simulator to apply continuous swing flexion-extension motions. The results revealed a significantly enhanced lubricant film thickness (≥ 500 nm) with micro-dimpled prosthesis heads at equilibrium position after the lubricant film has fully developed. The average lubricant film thickness of dimpled prostheses with square- and triangular-shaped dimple arrays over time is about 3.5 that of the non-dimpled prosthesis (204 nm). Remarkably, the prosthesis with square-shaped dimple arrays showed a very fast lubricant film formation reaching their peak values within 0.5 s of pendulum movement, followed by prosthesis with triangular-shaped dimple arrays with a transition period of 42.4 s. The fully developed lubricant film thicknesses (≥ 700 nm) are significantly higher than the surface roughness (≈ 25 nm) demonstrating a hydrodynamic lubrication. Hardly any scratches appeared on the post-experimental prosthesis with square-shaped dimple array and only a few scratches were found on the post-experimental prosthesis with triangular-shaped dimple arrays. Thus, prostheses with square-shaped dimple arrays could be a potential solution for durable artificial hip joints. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2015-04-01

    Full Text Available A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm. It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed.

  6. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate.

    Science.gov (United States)

    Shi, Shih-Chen; Huang, Teng-Feng; Wu, Jhen-Yu

    2015-04-14

    A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC) via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm). It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed.

  7. Silver Diffusion and High-Temperature Lubrication Mechanisms of YSZ-Ag-Mo Based Nanocomposite Coatings (Preprint)

    National Research Council Canada - National Science Library

    Hu, J. J; Muratore, C; Voevodin, A. A

    2006-01-01

    Yttria-stabilized zirconia (YSZ) nanocomposite coatings consisting of silver and molybdenum were produced by a hybrid process of filtered vacuum arc, magnetron sputtering and pulsed laser depositions for tribological investigations...

  8. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  9. Nanodiamond particles/PVDF nanocomposite flexible films: thermal, mechanical and physical properties

    Science.gov (United States)

    Jaleh, Babak; Sodagar, Shima; Momeni, Amir; Jabbari, Ameneh

    2016-08-01

    Recently, polymer nanocomposites reinforced with nanoparticles have attracted a lot of attention due to their unique physical and mechanical properties. In this work, poly (vinylidene fluoride)/nanodiamond particles nanocomposite films were prepared by solution casting method with various nanodiamond particles contents. The samples were investigated by Fourier transform infrared spectroscopy and x-ray diffraction technique. The results revealed an obvious α to β-phase transformation compared to pure PVDF. The most (or the maximum) phase transformation from α to β-phase (>90%) was found for nanocomposite film with 8% wt nanodiamond particles. Scanning electron micrographs showed considerable decrease in the size of spherulitic crystal structure of PVDF with adding nanoparticles. The photoluminescence property of nanocomposite films was investigated by photoluminescence spectroscopy and the optical band gap value was calculated from the UV-visible absorption spectra. The results showed that after the incorporation of nanoparticles into PVDF, the value of optical band gap decreased. Thermal stability of samples was studied by thermogravimetric analysis. Due to an increase in the electroactive phase (β) percentage by adding nanoparticles, the resistance of samples to thermal degradation improved. The mechanical properties of samples were investigated by tensile test and hardness measurements. The elastic modulus and hardness of samples were enhanced by adding nanodiamond particles and elongation to fracture decreased.

  10. PANI and Graphene/PANI Nanocomposite Films — Comparative Toluene Gas Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Mitesh Parmar

    2013-12-01

    Full Text Available The present work discusses and compares the toluene sensing behavior of polyaniline (PANI and graphene/polyaniline nanocomposite (C-PANI films. The graphene–PANI ratio in the nanocomposite polymer film is optimized at 1:2. For this, N-methyl-2-pyrrolidone (NMP solvent is used to prepare PANI-NMP solution as well as graphene-PANI-NMP solution. The films are later annealed at 230 °C, characterized using scanning electron microscopy (SEM as well Fourier transform infrared spectroscopy (FTIR and tested for their sensing behavior towards toluene. The sensing behaviors of the films are analyzed at different temperatures (30, 50 and 100 °C for 100 ppm toluene in air. The nanocomposite C-PANI films have exhibited better overall toluene sensing behavior in terms of sensor response, response and recovery time as well as repeatability. Although the sensor response of PANI (12.6 at 30 °C, 38.4 at 100 °C is comparatively higher than that of C-PANI (8.4 at 30 °C, 35.5 at 100 °C, response and recovery time of PANI and C-PANI varies with operating temperature. C-PANI at 50 °C seems to have better toluene sensing behavior in terms of response time and recovery time.

  11. Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films.

    Science.gov (United States)

    Tollan, Christopher M; Marcilla, Rebeca; Pomposo, Jose A; Rodriguez, Javier; Aizpurua, Javier; Molina, Jon; Mecerreyes, David

    2009-02-01

    The novel application of gold and silver nanorods as irreversible thermochromic dyes in polymeric ionic liquid (PIL) nanocomposites is proposed here. These materials have been synthesized by anion exchange of an imidazolium-based PIL in a solution that also contained gold nanorods. This resulted in the entrapment of the nanoobjects within a solid polymer precipitate. In this article, the effect of the temperature was studied in relation to the change of shape and, consequently, color of the gold or silver nanorods within the films. For the nanocomposites studied here, a maximum of two visual thermochromic transitions was observed for gold nanorods and up to three transitions were observed for silver nanorods.

  12. The influence oil film lubrication of the piston-cylinder dynamic

    Directory of Open Access Journals (Sweden)

    Adriana Tokar

    2008-10-01

    Full Text Available An analytical study of the dynamics of a piston in a reciprocating engine was conducted. The equation of Reynolds and moving of piston are derived. The analysis, which incorporates a hydrodynamic lubrication model, was applied to M501 diesel engine. The results of this study indicate that piston dynamics were found to be sensitive to piston-cylinder bore clearance, location of the wrist pin and lubricant viscosity, underscoring their importance in engine design.

  13. Enhanced Flux Pinning in Laser Ablated YBCO:BaTiO3 Nanocomposite Thin Film

    Science.gov (United States)

    Jha, Alok K.; Khare, Neeraj; Pinto, R.

    2011-07-01

    The effect of incorporation of BaTiO3 (BTO) nanoparticles on the flux pinning properties of laser deposited YBCO:BTO thin films has been studied. Substantial increase in critical current density (JC) and pinning force density of the nanocomposite thin films was observed. The study of temperature and field dependence of JC of YBCO and YBCO:BTO thin films indicates similar type of pinning. The lattice mismatch between YBCO and BTO seems to introduce more defects resulting in improved flux pinning properties.

  14. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics...... and control techniques. The feasibility of influencing the dynamic fluid film coefficients (stiffness and damping) by means of a controllable fluid injection into opposed bearing recesses is investigated. By controlling the pressure and flow injection using servo control systems, it is possible to obtain...

  15. Triple-component nanocomposite films prepared using a casting method: Its potential in drug delivery

    Directory of Open Access Journals (Sweden)

    Sadia Gilani

    2018-04-01

    Full Text Available The purpose of this study was to fabricate a triple-component nanocomposite system consisting of chitosan, polyethylene glycol (PEG, and drug for assessing the application of chitosan–PEG nanocomposites in drug delivery and also to assess the effect of different molecular weights of PEG on nanocomposite characteristics. The casting/solvent evaporation method was used to prepare chitosan–PEG nanocomposite films incorporating piroxicam-β-cyclodextrin. In order to characterize the morphology and structure of nanocomposites, X-ray diffraction technique, scanning electron microscopy, thermogravimetric analysis, and Fourier transmission infrared spectroscopy were used. Drug content uniformity test, swelling studies, water content, erosion studies, dissolution studies, and anti-inflammatory activity were also performed. The permeation studies across rat skin were also performed on nanocomposite films using Franz diffusion cell. The release behavior of films was found to be sensitive to pH and ionic strength of release medium. The maximum swelling ratio and water content was found in HCl buffer pH 1.2 as compared to acetate buffer of pH 4.5 and phosphate buffer pH 7.4. The release rate constants obtained from kinetic modeling and flux values of ex vivo permeation studies showed that release of piroxicam-β-cyclodextrin increased with an increase in concentration of PEG. The formulation F10 containing 75% concentration of PEG showed the highest swelling ratio (3.42±0.02 in HCl buffer pH 1.2, water content (47.89±1.53% in HCl buffer pH 1.2, maximum cumulative drug permeation through rat skin (2405.15±10.97 μg/cm2 in phosphate buffer pH 7.4, and in vitro drug release (35.51±0.26% in sequential pH change mediums, and showed a significantly (p<0.0001 higher anti-inflammatory effect (0.4 cm. It can be concluded from the results that film composition had a particular impact on drug release properties. The different molecular weights of PEG have a

  16. Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay.

    Science.gov (United States)

    Davachi, Seyed Mohammad; Shekarabi, Azadeh Sadat

    2018-02-17

    Nowadays, food security is a vital issue and antimicrobial packaging could play an important role in this matter. In this regard, Salvia macrosiphon seed mucilage (SSM) and nanoclay, as new sources for the production of food-grade edible films were investigated. These edible films were prepared by incorporation of SSM with glycerol and different percentage of nanoclay. Upon addition of nanoclay up to 2% physical, mechanical and thermal properties were considerably improved and the composite films showed the lowest water vapor permeability (WVP), as well as highest elongation at break and tensile strength. The nanocomposite edible films also showed antibacterial activity due to the SSM nature. Addition of nanoclay, increased the hydrophobicity, which makes the films great alternatives for food packaging. This study revealed that these novel antimicrobial edible films could be a promising packaging option for a wide range of food products. Copyright © 2018. Published by Elsevier B.V.

  17. Plasmonic Properties of Nanostructured Diamond Like Carbon/Silver Nanocomposite Films with Nanohole Arrays

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2016-11-01

    Full Text Available Plasmonic properties of the diamond like carbon nanocomposite films with embedded silver nanoparticles with patterned nanohole arrays were analyzed in this study. The films were deposited by unbalanced reactive magnetron sputtering of silver target. Nanopatterning of the films was performed by combining electron beam nanolithography and ion beam etching techniques. Modeling of plasmonic properties was done using the classical Maxwell-Garnett theory. Modeling data and experimental results were in good accordance. Formation of the nanohole pattern in diamond like carbon films doped with silver resulted in decreased intensity of the surface plasmon resonance absorbance peak. No new absorbance or transmittance peaks were observed after the nanopattering. It was explained by extraordinary transmission effect in nanostructured DLC : Ag film films due to plasmon polariton resonance inside of the nanoholes.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13193

  18. Clay platelet partition within polymer blend nanocomposite films by EFTEM.

    Science.gov (United States)

    Linares, Elisângela M; Rippel, Márcia M; Galembeck, Fernando

    2010-12-01

    Transmission electron microscopy (TEM) is the main technique used to investigate the spatial distribution of clay platelets in polymer nanocomposites, but it has not often been successfully used in polymer blend nanocomposites because the high contrast between polymer phases impairs the observation of clay platelets. This work shows that electron spectral imaging in energy-filtered TEM (EFTEM) in the low-energy-loss spectral crossover region allows the observation of platelets on a clear background. Separate polymer domains are discerned by imaging at different energy losses, above and below the crossover energy, revealing the material morphology. Three blends (natural rubber [NR]/poly(styrene-butyl acrylate) [P(S-BA)], P(S-BA)/poly(vinyl chloride) [PVC], and NR/starch) were studied in this work, showing low contrast between the polymer phases in the 40-60 eV range. In the NR/P(S-BA) and P(S-BA)/PVC blend nanocomposites, the clay platelets accumulate in the P(S-BA) phase, while in the P(S-BA)/PVC nanocomposites, clay is also found at the interfaces. In the NR/starch blend, clay concentrates at the interface, but it also penetrates the two polymer phases. These observations reveal that nanostructured soft materials can display complex morphochemical patterns that are discerned thanks to the ability of EFTEM to produce many contrast patterns for the same sample.

  19. Synthesis and properties of new polyimide/clay nanocomposite films

    Indian Academy of Sciences (India)

    Nanocomposites exhibit higher glass transition temperature and improved thermal properties compared to neat polyimide due to the interaction between polymer matrix and organoclay particles. The results are also compared with data of a similar work. Morphology study with scanning electron microscopy showed that the ...

  20. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    International Nuclear Information System (INIS)

    Jeeju, P.P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2013-01-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  1. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, P.P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Chandrasekharan, K.; Sudheesh, P. [Department of Physics, National Institute of Technology, Calicut, Kerala (India)

    2013-03-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  2. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    (IL) could be obtained in a single step reaction. The incorporation of IL in the film, not only greatly improved its mechanical properties, by acting as a plasticizer, but also imparted a dual mechanism of charge transport. The segments of conjugated double bonds imparted electronic conductivity to the films, and the IL resulted in ionic conductivity. The presence of both electronic and ionic conduction pathways in the films was confirmed by electrochemical impedance spectroscopy (EIS). These IL-imbibed conjugated polymer films are promising as materials for electrochemical energy conversion and storage. In the third part of this work, conjugated polymer films containing multiwalled carbon nanotubes (MWNT) and graphene nanoplatelets (GNP) were synthesized and characterized. PPV--MWNT nanocomposite films and PA--GNP nanocomposite films were characterized using a variety of analytical techniques including transmission electron microscopy, quasistatic and dynamic nanoindentaiton, electrochemical impedance spectroscopy, and cyclic voltammetry. Potential application of these films is in electrochemical supercapacitors.

  3. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    Science.gov (United States)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  4. Polymer-ZnO nanocomposites foils and thin films for UV protection

    International Nuclear Information System (INIS)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya; Yunus, Wan Mahmood Mat

    2014-01-01

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images

  5. Polymer-ZnO nanocomposites foils and thin films for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang (Malaysia)

    2014-09-03

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  6. Polymer-ZnO nanocomposites foils and thin films for UV protection

    Science.gov (United States)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Yunus, Wan Mahmood Mat; Abdullah, Ibtisam Yahya

    2014-09-01

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  7. Properties and characteristics of nanocomposite films from tilapia skin gelatin incorporated with ethanolic extract from coconut husk.

    Science.gov (United States)

    Nagarajan, Muralidharan; Benjakul, Soottawat; Prodpran, Thummanoon; Songtipya, Ponusa

    2015-12-01

    Impacts of ethanolic extract from coconut husk (EECH) at 0-0.4 % (w/w, on protein basis) on properties of films from tilapia skin gelatin and gelatin/Cloisite Na(+) nanocomposite films were investigated. Young's Modulus, tensile strength and elongation at break of both films decreased with addition of EECH (P < 0.05). The lowest water vapour permeability (WVP) was obtained for gelatin film containing 0.05 % EECH (w/w) (P < 0.05). Nevertheless, the nanocomposite film showed the lowest WVP when incorporated with 0.4 % EECH (w/w) (P < 0.05). Generally, L*- value (lightness) decreased and a*- value (redness) of films increased (P < 0.05) with increasing levels of EECH, regardless of nanoclay incorporation. Transparency of both films generally decreased as the level of EECH increased (P < 0.05). Intercalated or exfoliated structure of nanocomposite films was revealed by wide angle X-ray diffraction (WAXD) analysis. Based on scanning electron microscopic (SEM) analysis, the rougher surface was found when EECH was added. EECH had varying impact on thermal stability of films as revealed by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. Thus, the incorporation of EECH determined the properties of both gelatin film and nanocomposite film in which the improved water vapour barrier property could be obtained.

  8. Microstructural parameters and high third order nonlinear absorption characteristics of Mn-doped PbS/PVA nanocomposite films

    Science.gov (United States)

    Ramezanpour, B.; Mahmoudi Chenari, Hossein; Sadigh, M. Khadem

    2017-11-01

    In this work, undoped and Mn-doped PbS/PVA nanocomposite films have been successfully fabricated using the simple solution-casting method. Their crystalline structure was examined by X-ray powder diffraction (XRD). XRD pattern show the formation of cubic structure of PbS for Mn-doped PbS in PVA matrix. Microstructure parameters of Mn-doped PbS/PVA nanocomposite films were obtained through the size-strain plot (SSP) method. The thermal stability of the nanocomposite film was determined using Thermogravimetric analysis (TGA). Furthermore, Z-scan technique was used to investigate the optical nonlinearity of nanocomposite films by a continuous-wave laser irradiation at the wavelength of 655 nm. This experimental results show that undoped PbS/PVA nanocomposite films indicate high nonlinear absorption characteristics. Moreover, the nanocomposite films with easy preparation characteristics, high thermal stability and nonlinear absorption properties can be used as an active element in optics and photonic devices.

  9. Friction regimes in the lubricants solid-state regime

    OpenAIRE

    Schipper, Dirk J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughness on this transition. The friction measurements showed that in the lubricants solid-state region three lubrication modes can be distinguished: A) full-film lubrication; separation is maintained b...

  10. ZnO-PVA nanocomposite films for low threshold optical limiting applications

    International Nuclear Information System (INIS)

    Viswanath, Varsha; Beenakumari, C.; Muneera, C. I.

    2014-01-01

    Zinc oxide-PVA nanocomposite films were fabricated adopting a simple method based on solution-casting, incorporating small weight percentages ( −3 M to 7×10 −3 M), and their structure, morphology, linear and low threshold nonlinear optical properties were investigated. The films were characterized as nanostructured ZnO encapsulated between the molecules/chains of the semicrystalline host polymer PVA. The samples exhibited low threshold nonlinear absorption and negative nonlinear refraction, as studied using the Z-scan technique. A switchover from SA to RSA was observed as the concentration of ZnO was increased. The optical limiting of 632.8 nm CW laser light displayed by these nanocomposite films is also demonstrated. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |χ (3) |, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. The results show that the ZnO-PVA nanocomposite films have great potential applications in future optical and photonic devices

  11. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods

    OpenAIRE

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Ooi, CH Raymond; Mahmood, Mohamad Rusop

    2013-01-01

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the...

  12. The effects of surface roughness on low haze ultrathin nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kanniah, Vinod [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Tru Vue, Inc. 9400 West, 55th St, McCook, IL 60525 (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Druffel, Thad [Vision Dynamics LLC, 1950 Production Court, Louisville, KY 40299 (United States); Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States)

    2013-07-31

    Control of surface roughness in optical applications can have a large impact on haze. This work compares surface roughness and haze for self-assembled experimental surface structures as well as simulated surface structures for ultrathin nanocomposite films. Ultrathin nanocomposite films were synthesized from an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles as the dispersed phase. An in-house spin coating deposition technique was used to make thin nanocomposite films on hydrophilic (glass) and hydrophobic (polycarbonate) substrates. Manipulating the size ratios of the silica nanoparticle mixtures generated multimodal height distributions, varied the average surface roughness (σ) and changed lateral height–height correlations (a). For the simulated surfaces, roughness was estimated from their morphologies, and haze was calculated using simplified Rayleigh scattering theory. Experimental data for haze and morphologies of nanocomposite films corresponded well to these properties for simulated tipped pyramid surfaces. A correlation based on simple Rayleigh scattering theory described our experimental data well, but the exponent on the parameter, σ/λ (λ is the wavelength of incident light), does not have the expected value of 2. A scalar scattering model and a prior Monte Carlo simulation estimated haze values similar to those of our experimental samples. - Highlights: • Bidisperse nanoparticle mixtures created structured surfaces on thin films. • Monodisperse discrete phases created unimodal structure distributions. • Bidisperse discrete phases created multimodal structure distributions. • Multimodal structures had maximum heights ≤ 1.5 D{sub large} over our variable range. • Simplified Rayleigh scattering theory linked roughness to haze and contact angle.

  13. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite.

    Science.gov (United States)

    Nouri, Afsaneh; Yaraki, Mohammad Tavakkoli; Ghorbanpour, Mohammad; Agarwal, Shilpi; Gupta, Vinod Kumar

    2018-04-01

    Montmorillonite -copper oxide (MMT-CuO) nanocomposites were prepared by a facile and eco-friendly method and introduced into chitosan (Cs) matrix to enhance its optical, mechanical and antibacterial properties. The synthesized composites were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The antimicrobial activity of MMT-CuO nanocomposites showed more than 99% mortality against two Gram-negative bacterium (E.coli (PTCC 1270), P.aeruginosa (PTCC 1430)) and two Gram-positive bacterium (S.aureus (PTCC1112) B.cereus (PTCC- 1015)). The effect of weight fraction of MMT-CuO nanocomposites (1, 3 and 5% w/w) as antibacterial nanofiller on physical, optical, mechanical, microstructural, and antibacterial properties of chitosan films were evaluated. The obtained data showed that introducing small amount MMT-CuO to chitosan films could enhance the mechanical, antibacterial properties, and decreased both water solubility and UV transition with the lowest effect on the transparency of the films. The incorporation of 3% w/w MMT-CuO-90 nanocomposite into the films increased the tensile strong (TS), and elongation at break (E%) values 58.5% and 52.4%, respectively while reduced the water vapor permeability and oxygen permeability about 55% and 32%, respectively. CSG3MMT-CuO-90 films showed intense antibacterial activity against food borne pathogenic and more effective against S. aureus and B.cereus. than E.coli and P.aeruginosa. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Lubrication fundamentals

    International Nuclear Information System (INIS)

    Wills, J.G.

    1990-01-01

    This book is organized under the following headings: lubricating oils; lubricating greases; synthetic lubricants; machine elements; lubricant application; internal combustion engines; stationary gas turbines; steam turbines; hydraulic turbines; nuclear power plants; automotive chassis components; automotive power transmissions; compressors; handling, storing, and dispensing lubricants, in-plant handling for lubricant conservation

  15. Metal forming and lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  16. Properties of Poly(lactic acid Nanocomposite Film Containing Modified Cellulose Nanofibers

    Directory of Open Access Journals (Sweden)

    Hadi Almasi

    2014-02-01

    Full Text Available ICellulose nanofibers (CNF-reinforced poly(lactic acid (PLA nanocomposite was prepared by casting method. In order to improve the compatibility and miscibility of the whole system with respect to PLA matrix, CNFs were treated with oleic acid. The resulting modified nanofibers (MCNF exhibited reduced polarity and crystalline structure as compared with unmodified CNF. These MCNF were subsequently introduced into a PLA polymeric matrix and the effect of nanofiller on physicochemical properties of the nanocomposites was studied. Surface morphologies of PLA films studied by atomic force microscopy and it was revealed that the surface roughness of nanocomposites increased by increasing the nanofiber content. The morphology of fracture surface, evaluated by scanning electron microscopy, confirmed the uniform dispersion of MCNF at low levels. However, a higher level of MCNF (12 wt% led to less dispersion uniformity and more agglomeration of the nanofibers. The thermal analysis by differential scanning calorimetry showed that the melting temperature of the PLA-MCNF nanocomposites was significantly higher than that of pure PLA film. Also, the degree of crystallinity increased with an increase in MCNF content. X ray diffraction patterns confirmed that the addition of MCNF resulted in increased crystalline structure in PLA matrix. At MCNF content of 12 wt%, the tensile strength and Young’s modulus of the nanocomposites increased by 2.5 and 2 folds than those of pure PLA films, respectively. These improvements were primarily attributed to the effect of surface modification and uniform dispersion of the MCNF in the PLA matrix. However, the MCNF formed aggregates in the higher loading levels (12 wt %.

  17. Graphene Oxide-TiO2 Nanocomposite Films for Electron Transport Applications

    Science.gov (United States)

    Saleem, Abida; Ullah, Naveed; Khursheed, Kamran; Iqbal, Tahir; Shah, Saqlain A.; Asjad, Muhammad; Sarwar, Nazim; Saleem, Murtaza; Arshad, Muhammad

    2018-03-01

    Graphene oxide-titanium dioxide (GO-TiO2) nanocomposite thin films were prepared for application as the window layer of perovskite solar cells. Graphene oxide (GO) was prepared by a modified Hummer's method, and titanium dioxide (TiO2) nanoparticles were synthesized by hydrothermal solution method. Thin films of GO-TiO2 nanocomposite were prepared with different wt.% of GO by spin coating on indium tin oxide (ITO) substrate followed by annealing at 150°C. X-ray diffraction analysis revealed rutile phase of TiO2 nanostructures. The bandgap of the pure TiO2 thin film was found to be 3.5 eV, reducing to 2.9 eV for the GO-TiO2 nanocomposites with a red-shift towards higher wavelength. Furthermore, thermal postannealing at 400°C improved the transparency in the visible region and decreased the sheet resistance. Morphological and elemental analysis was performed by scanning electron microscopy and energy-dispersive x-ray spectroscopy, respectively. The current-voltage characteristic of the GO-TiO2 nanocomposites indicated Ohmic contact with the ITO substrate. The chemical composition of the as-synthesized GO-TiO2 nanocomposites was investigated by x-ray photoelectron spectroscopy (XPS). The results presented herein demonstrate a new, low-temperature solution-processing approach to obtain rGO-TiO2 composite material for use as the electron transport layer of perovskite solar cells.

  18. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    International Nuclear Information System (INIS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  19. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    International Nuclear Information System (INIS)

    Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G.

    2015-01-01

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  20. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y.S. [Department of Physics, Mahatma Fule Arts, Commerce and S C Science Mahavidyalaya, Warud, Dist. Amravati (MS), 444906 (India); Talwatkar, S.S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS) 440071 (India); Sunatkari, A.L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS) 440001 (India); Pahurkar, V.G. [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India); Muley, G.G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India)

    2015-11-30

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  1. Deposition of Cu/a-C:H Nanocomposite Films

    Czech Academy of Sciences Publication Activity Database

    Hanuš, J.; Steinhartová, T.; Kylian, O.; Kousal, J.; Malinský, Petr; Choukourov, A.; Macková, Anna; Biederman, H.

    2016-01-01

    Roč. 13, č. 9 (2016), s. 879-887 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : gas aggregation sources * hard coatings * magnetron * nanocomposites * nanoparticles Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.846, year: 2016

  2. Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a-C Protective Coatings

    NARCIS (Netherlands)

    Martinez-Martinez, Diego; Lopez-Cartes, Carlos; Gago, Raul; Fernandez, Asuncion; Carlos Sanchez-Lopez, Juan

    2009-01-01

    Nanocomposite films composed by small crystallites of hard phases embedded in an amorphous lubricant matrix have been extensively studied as protective coatings. These kinds of coatings have often to work in extreme environments, exposed to high temperatures (above 800-900 degrees C), and/or

  3. Structural modifications of the salivary conditioning film upon exposure to sodium bicarbonate: implications for oral lubrication and mouthfeel.

    Science.gov (United States)

    Ash, A; Wilde, P J; Bradshaw, D J; King, S P; Pratten, J R

    2016-03-14

    The salivary conditioning film (SCF) that forms on all surfaces in the mouth plays a key role in lubricating the oral cavity. As this film acts as an interface between tongue, enamel and oral mucosa, it is likely that any perturbations to its structure could potentially lead to a change in mouthfeel perception. This is often experienced after exposure to oral hygiene products. For example, consumers that use dentifrice that contain a high concentration of sodium bicarbonate (SB) often report a clean mouth feel after use; an attribute that is clearly desirable for oral hygiene products. However, the mechanisms by which SB interacts with the SCF to alter lubrication in the mouth is unknown. Therefore, saliva and the SCF was exposed to high ionic strength and alkaline solutions to elucidate whether the interactions observed were a direct result of SB, its high alkalinity or its ionic strength. Characteristics including bulk viscosity of saliva and the viscoelasticity of the interfacial salivary films that form at both the air/saliva and hydroxyapatite/saliva interfaces were tested. It was hypothesised that SB interacts with the SCF in two ways. Firstly, the ionic strength of SB shields electrostatic charges of salivary proteins, thus preventing protein crosslinking within the film and secondly; the alkaline pH (≈8.3) of SB reduces the gel-like structure of mucins present in the pellicle by disrupting disulphide bridging of the mucins via the ionization of their cysteine's thiol group, which has an isoelectric point of ≈8.3.

  4. Hybrid ICP/sputter deposition of TiC/CaO nanocomposite films for biomedical application

    Science.gov (United States)

    Kulisch, W.; Colpo, P.; Gibson, P. N.; Ceccone, G.; Shtansky, D. V.; Levashov, E. A.; Jelinek, M.; Philip, P. J. M.; Rossi, F.

    2006-02-01

    TiC/a-C nanocomposite films doped with CaO have been deposited by means of a hybrid PVD/PACVD technique, which combines dc magnetron sputtering of a TiC0.5+10% CaO target, with a subsequent high density inductively coupled plasma (ICP) in order to excite and ionize the sputtered species to a high degree. The films were characterized according to their morphology, structure and thickness by scanning electron microscopy, their composition and bonding structure by X-ray photoelectron spectroscopy, and their crystalline properties by X-ray diffraction. The films consist of fcc titanium carbide nanocrystallites with grain sizes of 5 15 nm and an amorphous carbon phase. The average composition is Ti0.43C0.35Ca0.02O0.15N0.05. The influence of the ICP plasma power and the bias voltage applied to the substrate on the major film properties has been investigated. A number of such TiC/a-C/CaO nanocomposite films on silicon substrates have been subjected to a 60 day cell test with human osteoblastic cells in order to investigate their suitability for the coating of prostetic implants. The results of these cell tests, some of which turned out to be rather promising, are discussed in terms of film properties such as surface roughness and biaxial stress.

  5. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Indigo Carmine Dye-Polymer Nanocomposite Films For Optical Limiting Applications

    Science.gov (United States)

    Sreeja, S.; Mayadevi, S.; Suresh, S. R.; Frobel, P. G. Louie; Smijesh, N.; Philip, Reji; Muneera, C. I.

    2011-10-01

    Nanocomposite films of an organic dye-polymer (Indigo Carmine-PVA) system were fabricated and their optical limiting behaviour was investigated under excitation with 532 nm laser pulses of 5 ns temporal width using the open aperture Z-scan technique. The samples displayed optical limiting behavior under the experimental conditions. The Atomic Force Microscopic (AFM) analysis of the surface topography revealed homogeneous distribution of nanoclustered aggregates grown within the polymer matrix and an average roughness of ˜2.02 nm for the surface. The estimated values of the effective nonlinear absorption coefficient, βeff (˜10-7-10-8 cm/W) marked up to the highest reported ones in literature in the nanosecond regime. The results indicate that these nanocomposite films are potential materials for optical limiting devices used for the protection of human eyes and other delicate optical sensors from laser induced optical damage.

  7. Thin nanocomposite films of polyaniline/Au nanoparticles by the Langmuir-Blodgett technique.

    Science.gov (United States)

    Tanami, Golan; Gutkin, Vitaly; Mandler, Daniel

    2010-03-16

    The Langmuir-Blodgett (LB) method was used to deposit multilayers of polyaniline (PANI)- and mercaptoethanesulfonate (MES)-stabilized Au nanoparticles. The electrostatic interaction between the negatively charged nanoparticles in the subphase and the positively charged PANI at the air-water interface assisted the deposition of the nanocomposite film onto a solid support. These PANI/Au-NPs films were characterized using cyclic voltammetry, copper under potential deposition, scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. We found that the nanocomposite layers were uniform and reproducible. The density of Au-NPs in the monolayer depended on the acidity of the subphase as well as on the nanoparticles concentration. Moreover, the Au-NPs extrude above the PANI and therefore could be used as nanoelectrodes for the underpotential deposition (UPD) of copper.

  8. Tethered Lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Lynden

    2010-09-15

    We have performed extensive experimental and theoretical studies of interfacial friction, relaxation dynamics, and thermodynamics of polymer chains tethered to points, planes, and particles. A key result from our tribology studies using lateral force microscopy (LFM) measurements of polydisperse brushes of linear and branched chains densely grafted to planar substrates is that there are exceedingly low friction coefficients for these systems. Specific project achievements include: (1) Synthesis of three-tiered lubricant films containing controlled amounts of free and pendent PDMS chains, and investigated the effect of their molecular weight and volume fraction on interfacial friction. (2.) Detailed studies of a family of hairy particles termed nanoscale organic hybrid materials (NOHMs) and demonstration of their use as lubricants.

  9. Vascular endothelial cells in cultures on nanocomposite silver/hydrocarbon plasma polymer films with antimicrobial activity

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Koshelyev, H.; Nosková, Lenka; Choukourov, A.; Benada, Oldřich; Macková, Anna; Lisá, Věra; Biederman, H.

    2008-01-01

    Roč. 10, č. 8 (2008), s. 2082-2087 ISSN 1454-4164 R&D Projects: GA AV ČR(CZ) KAN101120701 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10480505; CEZ:AV0Z10100520; CEZ:AV0Z50200510 Keywords : nanocomposite films * endothelium * E. coli Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.577, year: 2008

  10. Enhancement of ZnO-rGO nanocomposite thin films by gamma radiation for E. coli sensor

    Science.gov (United States)

    Noor Azmy, Noor Azwen; A. Bakar, Ahmad Ashrif; Arsad, Norhana; Idris, Sarada; Mohmad, Abdul Rahman; Abdul Hamid, Aidil

    2017-01-01

    The fabricated E. coli sensor of ZnO-rGO nanocomposite thin films by gamma radiation was investigated. Nanocomposite films were prepared via sol-gel method and were irradiated at 10 kGy at room temperature. The surface characteristic of as-prepared samples have been characterized by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The proposed structure shows that exposed gamma radiation may change the microstructure of the films occurs as a result of their flexible structure. Uv-vis spectra of nanocomposite were studied to investigate the optical behavior of ZnO-rGO films and the optical energy band gap and Urbach energy were found to be gamma dose dependent. The sensing properties were identified by measuring the changes of conductivity of film using I-V measurement. Upon exposure to E. coli, the radiated ZnO-rGO films (1.00 vol% GO) exhibited higher sensitivity, as much as 4.62 × 10-3, than un-radiated films, 1.04 × 10-3. This enhancement of the I-V response was attributed to a positive influence of the gamma radiation in these films. The results prove that our ZnO-rGO nanocomposites thin films by gamma radiation demonstrate a strong performance for the detection of microbiological organisms in water.

  11. The Preparation of Graphene Reinforced Poly(vinyl alcohol Antibacterial Nanocomposite Thin Film

    Directory of Open Access Journals (Sweden)

    Yuan-Cheng Cao

    2015-01-01

    Full Text Available Methylated melamine grafted polyvinyl benzylchloride (mm-g-PvBCl was prepared which was used as additive in poly(vinyl alcohol (PVA and graphene nanosheets (GNs were used to reinforce the mechanical strength. Using casting method, antimicrobial nanocomposite films were prepared with the polymeric biocide loading lever of 1 wt%, 5 wt%, and 10 wt%. Thermogravimetric analysis (TGA characterization revealed the 2.0 wt% of graphene content in resultant nanocomposites films. XRD showed that the resultant GNs 2 theta was changed from 16.6 degree to 23.3 degree. Using Japanese Industry Standard test methods, the antimicrobial efficiency for the loading lever of 1 wt%, 5 wt%, and 10 wt% was 92.0%, 95.8%, and 97.1%, respectively, against gram negative bacteria E. coli and 92.3%, 99.6%, and 99.7%, respectively, against the gram positive S. aureus. These results indicate the prepared nanocomposite films are the promising materials for the food and drink package applications.

  12. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  13. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    International Nuclear Information System (INIS)

    Akbashev, A.R.; Telegin, A.V.; Kaul, A.R.; Sukhorukov, Yu.P.

    2015-01-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr 1–x Sr x MnO 3 and ferroelectric hexagonal LuMnO 3 were grown on ZrO 2 (Y 2 O 3 ) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics

  14. Gastric mucus and mucuslike hydrogels: Thin film lubricating properties at soft interfaces

    DEFF Research Database (Denmark)

    Røn, Troels; Patil, Navin J.; Ajalloueian, Fatemeh

    2017-01-01

    Mucus is a viscous slime that plays a vital role in protecting and lubricating biological tissues, in particular, soft epithelium interfaces such as in the stomach, intestines, and esophagus. Previous attempts to generate mucus models that mimick or simulate its characteristics have been predomin...

  15. Enhancement of ZnO-rGO nanocomposite thin films by gamma radiation for E. coli sensor

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azmy, Noor Azwen [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, 43650, UKM, Bangi, Selangor (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, 43650, UKM, Bangi, Selangor (Malaysia); Arsad, Norhana [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, 43650, UKM, Bangi, Selangor (Malaysia); Idris, Sarada [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, 43650, UKM, Bangi, Selangor (Malaysia); Radiation Facilities Division, Block 42, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Mohmad, Abdul Rahman [MEMS-NEMS and Nanoelectronics, Institute of Microengineering and Nanoelectronics (IMEN), 43650 UKM, Bangi, Selangor (Malaysia); Abdul Hamid, Aidil [School of Biosciences and Biotechnology, Faculty of Science and Technology, 43650 UKM, Bangi, Selangor (Malaysia)

    2017-01-15

    Highlights: • ZnO-rGO nanocomposite thin films by gamma radiation for E. coli sensor were fabricated for the first time. • Exposed to gamma radiation leads to the change the microstructure of the films. • The optical behaviors of thin films were found to be gamma dose dependent. • The sensors had a linear response with GO concentration. • The sensors exhibited enhanced sensitivity at higher gamma radiation. - Abstract: The fabricated E. coli sensor of ZnO-rGO nanocomposite thin films by gamma radiation was investigated. Nanocomposite films were prepared via sol–gel method and were irradiated at 10 kGy at room temperature. The surface characteristic of as-prepared samples have been characterized by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The proposed structure shows that exposed gamma radiation may change the microstructure of the films occurs as a result of their flexible structure. Uv–vis spectra of nanocomposite were studied to investigate the optical behavior of ZnO-rGO films and the optical energy band gap and Urbach energy were found to be gamma dose dependent. The sensing properties were identified by measuring the changes of conductivity of film using I-V measurement. Upon exposure to E. coli, the radiated ZnO-rGO films (1.00 vol% GO) exhibited higher sensitivity, as much as 4.62 × 10{sup −3}, than un-radiated films, 1.04 × 10{sup −3}. This enhancement of the I-V response was attributed to a positive influence of the gamma radiation in these films. The results prove that our ZnO-rGO nanocomposites thin films by gamma radiation demonstrate a strong performance for the detection of microbiological organisms in water.

  16. Facile Assembly of Aligned Magnetic Nanoparticle Chains in Polymer Nanocomposite Films by Magnetic Flow Coating.

    Science.gov (United States)

    Yuan, Hongyi; Zvonkina, Irina J; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Pyun, Jeffrey; Karim, Alamgir

    2017-03-29

    Magnetic nanoparticle chains are found in biosystems, such as in the brain of migratory birds. Inspired by natural assemblies, in a novel approach, the facile assembly of magnetically aligned polymer grafted cobalt nanoparticle (MPGNP) chains in thin polymer films was accomplished by using low strength permanent magnets directly during the flow-casting process. Unlike previous studies of MPGNP chain alignment in the high viscosity melt phase, the high mobility of such dispersed MPGNPs during casting by magnetic flow coating of polystyrene (PS) nanocomposite thin films from a dispersion allowed for formation of well-aligned MPGNP chains at the PS film/air interface. Both spherical (symmetric) and cylindrical (asymmetric) MPGNP aligned chains were obtained with distinct properties. The average chain length and width, number of particles per chain, spacing between parallel chains, and chain alignment were quantified using surface probe and electron microscopy, and grazing incidence X-ray. The aligned chains did not randomize when annealed above the film glass temperature, apparently due to the high translational entropic barrier for macroscopic (GISAXS) chain realignment. The Young's bending modulus of the aligned MPGNP nanocomposite films as revealed by a thin film wrinkling metrology showed that the elastic modulus along the chain axis direction was higher for the film with the cylindrical but not the spherical MPGNP chains. This suggests that PGNP chain flexural properties depend on asymmetry of the local MPGNP unit, much like the persistence length "stiffness" effect of polymer chains. The ferromagnetic nature of the aligned PGMNP chains resulted in film rotation, as well as repulsive and attractive translation under an applied external magnetic field. Such magnetically responsive films can be useful for sensors and other applications.

  17. Performance evaluation of cassava starch-zinc nanocomposite film for tomatoes packaging

    Directory of Open Access Journals (Sweden)

    Adeshina Fadeyibi

    2017-05-01

    Full Text Available Biodegradable nanocomposite films are novel materials for food packaging because of their potential to extend the shelf life of food. In this research, the performance of cassava starch-zincnanocomposite film was evaluated for tomatoes packaging. The films were developed by casting the solutions of 24 g cassava starch, 0-2% (w/w zinc nanoparticles and 55% (w/w glycerol in plastic mould of 12 mm depth. The permeability of the films, due to water and oxygen, was investigated at 27°C and 65% relative humidity while the mechanical properties were determined by nanoindentation technique. The average thickness of the dried nanocomposite films was found to be 17±0.13 μm. The performances of films for tomatoes packaging was evaluated in comparison with low density polyethylene (LDPE; 10 μm at the temperature and period ranges of 10-27°C and 0-9 days, respectively. The quality and microbial attributes of the packaged tomatoes, including ascorbic acid, β-carotene and total coliform were analysed at an interval of 3 days. The results revealed that the water vapour permeability increased while the oxygen permeability decreased with the nanoparticles (P<0.05. The hardness, creep, elastic and plastic works, which determined the plasticity index of the film, decreased generally with the nanoparticles. The films containing 1 and 2% of the nanoparticles suppressed the growth of microorganisms and retained the quality of tomatoes than the LDPE at 27°C and day-9 of packaging (P<0.05. The results implied that the film could effectively be used for tomatoes packaging due to their lower oxygen permeability, hardness, elastic and plastic works.

  18. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  19. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    Science.gov (United States)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  20. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Low-temperature transmission electron microscopy (TEM) studies were performed on polystyrene (PS, w = 234 K) – Au nanoparticle composite thin films that were annealed up to 350°C under reduced pressure conditions. The composite thin films were prepared by wet chemical approach and the samples were then ...

  1. Graphene Oxide Reinforced Polycarbonate Nanocomposite Films with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    R. Mahendran

    2016-01-01

    Full Text Available The incorporation of carbonaceous nanofillers into polymers can result in significant materials with improved physicochemical properties and novel composite functionalities. In this study, we have fabricated antibacterial, lightweight, transparent, and flexible graphene oxide (GO reinforced polycarbonate thin films by a facile and low-cost methodology. Solution blending is employed to get a homogeneous mixture of PC-GO composites at various loading of GO, and the thin films are prepared by dry-wet phase inversion technique. Thermal studies and micrographs of the films revealed the incorporation of GO in PC matrix. Microstructure of the thin films showed the homogeneous dispersion of GO at micro- and nanoscales; however, at higher loading of GO (0.7%, significant agglomeration is observed. More importantly, PC-GO composite films exhibited excellent antibacterial activities against E. coli and S. aureus, owing to the antibacterial nature of GO nanoparticles.

  2. Growth and characteristics of PbS/polyvinyl alcohol nanocomposites for flexible high dielectric thin film applications

    International Nuclear Information System (INIS)

    Hmar, J.J.L.; Majumder, T.; Mondal, S.P.

    2016-01-01

    PbS/polyvinyl alcohol (PbS/PVA) nanocomposites have been grown by a chemical bath deposition process at various growth temperatures (60–100 °C). Transmission electron microscopy (TEM) study revealed the formation of PbS nanoparticles of diameter 6–20 nm encapsulated in PVA matrix. Optical band gap of the nanocomposite films have been found to decrease (1.45 eV–0.67 eV) with increase in growth temperature from 60 °C to 100 °C. The impedance measurements have been carried out by depositing the PbS/PVA films on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrates. The room temperature dielectric permittivity and ac conductivity measurements have been carried out for ITO/PbS/PVA/Al devices deposited at various growth temperatures. The nanocomposite films demonstrate superior dielectric permittivity compare to pure PVA polymer. The flexibility studies of ITO/PbS/PVA/Al devices have been performed at different bending angles. - Highlights: • PbS nanoparticles of diameter 6–20 nm were grown in polyvinyl (PVA) matrix. • Optical band gap of nanocomposite films was varied from 1.45–0.67 eV. • The nanocomposite thin films demonstrated superior dielectric permittivity. • Flexibility study of thin film devices was performed at various bending angles.

  3. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  4. Squeeze-film Lubrication of the Human Ankle Joint with Synovial Fluid Filtrated by Articular Cartilage with the Superficial Zone Worn out

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2000-01-01

    Roč. 33, č. 11 (2000), s. 1415-1422 ISSN 0021-9290 R&D Projects: GA ČR GA103/00/0008 Keywords : human ankle joint * squeeze-film lubrication * synovial fluid filtration * worn-out cartilage superficial zone Subject RIV: BK - Fluid Dynamics Impact factor: 1.474, year: 2000

  5. Fabrication of transparent cellulose acetate/graphene oxide nanocomposite film for UV shielding

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Nusrat; Khan, Wasi, E-mail: wasiamu@gmail.com; Azam, Ameer; Naqvi, A. H. [Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh - 202002 (India)

    2016-05-23

    In this work, we have fabricated transparent cellulose acetate/graphene oxide nanocomposite (CAGONC) films for ultraviolet radiations (UVR) shielding. Graphene oxide (GO) was synthesized by modified Hummer’s method and CAGONC films were fabricated by solvent casting method. The films were analyzed using characterization techniques like x-ray diffraction (XRD), energy dispersive x-ray (EDX) equipped scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultra-violet visible (UV-VIS) spectroscopy. Four films were prepared by varying the wt% of GO (0.1wt%, 0.2wt% and 0.3wt%) with respect to cellulose acetate (CA). UV-vis measurements exhibit optical transparency in the range of 76-99% for visible light while ultra-violet radiation was substantially shielded.

  6. Synthesis of ultra-smooth and ultra-low friction DLC based nanocomposite films on rough substrates

    NARCIS (Netherlands)

    Shaha, K.P.; Pei, Y.T.; Chen, C.Q.; Hosson, J.Th.M. De

    2010-01-01

    Rough TiC/a-C films were intentionally grown on smooth surface to simulate a rough finishing of industrial substrates. Surface roughness and growth dynamics of TiC/a-C nanocomposite films deposited on such rough surfaces by non-reactive pulsed-DC (p-DC) sputtering of graphite targets at 350 kHz

  7. MWCNTs-PANi nanocomposite films prepared by AC-EPD technique and its potential for enhance supercapacitor electrode

    Science.gov (United States)

    Hasnan, Nur Shamimie Nadzwin; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla

    2017-08-01

    MWCNTs-PANi nanocomposite thin film has been prepared by using alternating current electrophoretic deposition (AC-EPD) technique. The AC-EPD technique is used in aqueous suspension to avoid damage film deposited caused by the decomposition of water. The frequency and the waveform used in EPD process were 1 kHz and rectangular signal respectively. AC electric field applied in EPD process produced a smooth deposit of MWCNTs and MWCNTs-PANi nanocomposite on nickel foils. The films produced also have been evaluated for its potential application of supercapacitor electrode. Results show AC-EPD is a promising technique for successful MWCNTs-PANi nanocomposite film deposition and its potential application as supercapacitor electrode.

  8. Optical and magnetic properties of PAA@Fe nanocomposite films

    Directory of Open Access Journals (Sweden)

    Jing-jing Zhang

    2013-07-01

    Full Text Available A simple method to fabricate porous anodic alumina films embedded with Fe is reported. The films exhibit vivid structural colors and magnetic properties after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The coercivity mechanism of the Fe nanowires in our case is consistent with fanning reversal mode. PAA@Fe films can be used in many areas including decoration, display and multifunctional anti-counterfeiting applications.

  9. Potassium Permanganate Solution-containing Polyethylene Nanocomposite Film Used as Color Indicator in Smart Packaging

    Directory of Open Access Journals (Sweden)

    Mojgan Mirzataheri

    2017-07-01

    Full Text Available In recent years, different color indicators have been developed and utilized in smart packaging to better visualize the fruit shelf-life and its safety consumption date as well as to minimize the loss of agricultural products. In this study, a potassium permanganate solution-containing polyethylene nanocomposite film was prepared through melt mixing process as color indicator for smart packaging. Two kinds of silica nanoparticles of different surface hydrophobicity were incorporated in the LDPE films to study the effect of hydrophilicity of nanoparticles on the film barrier properties. The morphology and dispersion of nanoparticles were studied using SEM/EDX technique. The gas permeability, dynamic scanning calorimetry, melt flow index and mechanical properties were investigated to find an optimum formulation. The results of the oxygen barrier tests showed that the increase of nanoparticles loading in the polymer matrix increased the permeability up to 95% for the sample containing 5% hydrophilic silica. The hydrophilic nanosilica was well dispersed in the matrix and generated void channels which allowed to form a permeable polymer film. The presence of nanosilica did not alter the polymer crystallinity as well as the mechanical properties of the nanocomposite films. The melt flow index data showed that the silica/polyethylene nanocomposites could be produced with appropriate processability. The color indicator was then fabricated using potassium permanganate placed on a woven fabric. The whole colored fabric was then put within a sealed permeable polyethylene bag. The efficiency of the color indicator against ethylene gas has been measured for a duration of 10 days which is suitable in kiwi fruit packaging.

  10. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    International Nuclear Information System (INIS)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-01-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4% wt/wt ) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films

  11. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  12. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  13. Nanocomposite Diamond and Nitride Films on Structural Materials

    National Research Council Canada - National Science Library

    White, Henry

    2001-01-01

    ...) An electron cyclotron resonance microwave plasma enhanced chemical vapor deposition system was designed and used to grow diamond and diamond-like films on structural materials such as Fe-based alloys (316 stainless steel...

  14. Direct verification of the lubrication force on a sphere travelling through a viscous film upon approach to a solid wall

    KAUST Repository

    Marston, Jeremy

    2010-05-21

    Experiments were performed to observe the motion of a solid sphere approaching a solid wall through a thin layer of a viscous liquid. We focus mainly on cases where the ratio of the film thickness, ℘, to the sphere diameter, D, is in the range 0.03 ℘lubrication theory. Using high-speed video imaging we show, for the first time, that the equations of motion based on the lubrication approximation correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show that the penetration depth at which the sphere motion is first arrested by the viscous force, which decreases with increasing Stokes number, matches well with theoretical predictions. An example for a shear-thinning liquid is also presented, showing that this simple set-up may be used to deduce the short-time dynamical behaviour of non-Newtonian liquids. © 2010 Cambridge University Press.

  15. Study of dynamic emission spectra from lubricant films in an elastohydrodynamic contact using Fourier transform spectroscopy

    Science.gov (United States)

    Lauer, J. L.

    1978-01-01

    Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.

  16. Structural and magneto-dielectric property of (1-x)SBT-xLSMO nanocomposite thin films

    International Nuclear Information System (INIS)

    Maity, Sarmistha; Bhattacharya, D.; Dhar, A.; Ray, S.K.

    2009-01-01

    Full text: In recent years, interest in multiferroic materials has been increasing due to their potential applications. As single-phase multiferroic materials have very low room temperature magnetoelectric coefficient, recent studies have been concentrated on the possibility of attaining a coupling between the two order parameters by designing composites with magnetostrictive and piezoelectric phases via stress mediation. Composite thin films with homogenous matrix, composition spread with terminal layers being ferromagnetic and ferroelectric, layer-by-layer growth, superlattices, as well as epitaxial growth of ferromagnetic and ferroelectric layers on suitable substrates are been currently considered. In the present work, a nanostructured composite thin film of strontium bismuth tantalate (SBT) (ferroelectric layer) and lanthanum strontium manganese oxide (LSMO) (ferromagnetic layer) were fabricated using pulsed laser deposition. Phase separated multiferroic thin films with thickness varying from 50nm to 150nm were deposited from composite target (1-x)SBT-xLSMO with x=0.2, 0.5, 0.8. Grazing angle X-ray diffraction study combined with photo electron spectroscopy with depth profiling was carried out to study the phase separation. Interface quality of the thin film on silicon substrate was studied by Rutherford backscattering spectroscopy. Influence of film thickness and composition (x) on the electrical property of film was examined using impedance spectroscopy. The composite films exhibited ferroelectric as well as ferromagnetic characteristics at room temperature. A small kink in the dielectric spectra near the Neel temperature of LSMO confirmed the magneto-electric effect in the nanocomposite films

  17. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit.

    Science.gov (United States)

    Kaewklin, Patinya; Siripatrawan, Ubonrat; Suwanagul, Anawat; Lee, Youn Suk

    2018-06-01

    The feasibility of active packaging from chitosan (CS) and chitosan containing nanosized titanium dioxide (CT) to maintain quality and extend storage life of climacteric fruit was investigated. The CT nanocomposite film and CS film were fabricated using a solution casting method and used as active packaging to delay ripening process of cherry tomatoes. Changes in firmness, weight loss, a*/b* color, lycopene content, total soluble solid, ascorbic acid, and concentration of ethylene and carbon dioxide of the tomatoes packaged in CT film, CS film, and control (without CT or CS films) were monitored during storage at 20°C. Classification of fruit quality as a function of different packaging treatments was visualized using linear discriminant analysis. Tomatoes packaged in the CT film evolved lower quality changes than those in the CS film and control. The results suggested that the CT film exhibited ethylene photodegradation activity when exposed to UV light and consequently delayed the ripening process and changes in the quality of the tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films

    International Nuclear Information System (INIS)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Nozaki, Tomohiro; Ryu, Meguya; Morikawa, Junko

    2016-01-01

    Silicon nanocrystals (SiNCs) are well known for their size-dependent optical and electronic properties; they also have the potential for low yet controllable thermal properties. As a silicon-based low-thermal conductivity material is required in microdevice applications, SiNCs can be utilized for thermal insulation. In this paper, SiNCs and polymer nanocomposites were produced, and their thermal conductivity, including the density and specific heat, was measured. Measurement results were compared with thermal conductivity models for composite materials, and the comparison shows a decreasing value of the thermal conductivity, indicating the effect of the size and presence of the nanostructure on the thermal conductivity. Moreover, employing silicon inks at room temperature during the fabrication process enables a low cost of fabrication and preserves the unique properties of SiNCs. (paper)

  19. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    Science.gov (United States)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-04-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  20. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo; Choi, Hyun Muk [Kyonggi University, Suwon (Korea, Republic of)

    2016-01-15

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  1. Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications

    Science.gov (United States)

    Mansouri, S.; Coskun, B.; El Mir, L.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed; Yakuphanoglu, F.

    2018-04-01

    Graphene is a sheet-structured material that lacks a forbidden band, being a good candidate for use in radiofrequency applications. We have elaborated graphene-oxide-doped poly(3-hexylthiophene) nanocomposite to increase the interlayer distance and thereby open a large bandgap for use in the field of logic circuits. Graphene oxide/poly(3-hexylthiophene) (GO/P3HT) nanocomposite thin-film transistors (TFTs) were fabricated on silicon oxide substrate by spin coating method. The current-voltage ( I- V) characteristics of TFTs with various P3HT compositions were studied in the dark and under light illumination. The photocurrent, charge carrier mobility, subthreshold voltage, density of interface states, density of occupied states, and I ON/ I OFF ratio of the devices strongly depended on the P3HT weight ratio in the composite. The effects of white-light illumination on the electrical parameters of the transistors were investigated. The results indicated that GO/P3HT nanocomposite thin-film transistors have high potential for use in radiofrequency applications, and their feasibility for use in digital applications has been demonstrated.

  2. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    International Nuclear Information System (INIS)

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  3. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  4. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  5. Modification of Functional Properties of Whey Protein Isolate Nanocomposite Films and Coatings with Nanoclays

    Directory of Open Access Journals (Sweden)

    Kerstin Müller

    2017-01-01

    Full Text Available Whey protein based films have received considerable attention to be used for environment friendly packaging applications. However, such biopolymers are prevented for use in commercial packaging due to their limited mechanical and barrier performance. The addition of nanofillers is a common method to overcome those drawbacks of biopolymers. Whey protein isolate (WPI based nanocomposite cast films and coatings were produced using montmorillonite and vermiculite clay as nanofiller in different concentrations. Uniform distribution of filler within the polymeric matrix was confirmed by scanning electron microscopy. Mechanical properties such as tensile strength as well as Young’s modulus were increased after increasing the filler content, while elongation at break values decreased. All samples showed weak barrier potential against water vapor. Nanoclay incorporation, however, reduced water vapor transmission rates by approximately 50%. The oxygen barrier performance was improved for all nanocomposites. Results also indicated proportionality with the filler ratio according to applied models. The highest barrier improvement factors (BIF were greater than five for the cast films and even greater than sixteen for the coatings. Developed WPI-based composites depicted nanoenhanced material properties representing a promising alternative to fossil-based packaging films.

  6. Pentacene-Based Thin Film Transistor with Inkjet-Printed Nanocomposite High-K Dielectrics

    Directory of Open Access Journals (Sweden)

    Chao-Te Liu

    2012-01-01

    Full Text Available The nanocomposite gate insulating film of a pentacene-based thin film transistor was deposited by inkjet printing. In this study, utilizing the pearl miller to crumble the agglomerations and the dispersant to well stabilize the dispersion of nano-TiO2 particles in the polymer matrix of the ink increases the dose concentration for pico-jetting, which could be as the gate dielectric film made by inkjet printing without the photography process. Finally, we realized top contact pentacene-TFTs and successfully accomplished the purpose of directly patternability and increase the performance of the device based on the nanocomposite by inkjet printing. These devices exhibited p-channel TFT characteristics with a high field-effect mobility (a saturation mobility of ̃0.58 cm2 V−1 s−1, a large current ratio (>103 and a low operation voltage (<6 V. Furthermore, we accorded the deposited mechanisms which caused the interface difference between of inkjet printing and spin coating. And we used XRD, SEM, Raman spectroscopy to help us analyze the transfer characteristics of pentacene films and the performance of OTFTs.

  7. Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method

    International Nuclear Information System (INIS)

    Ahmed, Faheem; Kumar, Shalendra; Arshi, Nishat; Anwar, M.S.; Su-Yeon, Lee; Kil, Gyung-Suk; Park, Dae-Won; Koo, Bon Heun; Lee, Chan Gyu

    2011-01-01

    Polyaniline (PANI)-ZnO nanoparticles composites film has been successfully fabricated by solution casting technique on glass substrate in which ZnO nanopowder was prepared via auto combustion method and used as inorganic materials. The as-grown nanocomposites film has been characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM) for their structural and morphological characterizations. X-ray diffraction studies of as-grown film showed the reflection of ZnO nanoparticles along with a broad peak of PANI. The AFM study of the film shows the incorporation of ZnO nanoparticles into the polymer matrix which was further supported by roughness measurement. TEM images showed that the size of ZnO nanoparticles in the nanocomposites increase from ∼ 35 nm to ∼ 45 nm, indicating the interaction of nanoparticles with PANI molecular chains. FTIR spectra showed a band at 501 cm -1 due to ZnO nanoparticles while the hydrogen bonding between the amine group of PANI and ZnO nanoparticles had been confirmed from the presence of the absorption band at 1148 cm -1 .

  8. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  9. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Science.gov (United States)

    Tamulevičius, Tomas; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-01

    We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF4/O2 plasma chemical etching and Ar+ sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar+ in C2H2 gas atmosphere. Films with different silver content (0.6-12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet-visible light (UV-VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF4/O2 mixture plasma for 2-6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C2H2/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF4/O2 mixture plasma chemical etching, direct Ar+ sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF4/O2 gas mixture with photoresist mask revealed micrometer range lines of silver nanoparticles, while Ar+ sputtering and combined processing employing aluminum mask resulted in nanocomposite material (DLC:Ag) micropatterns.

  10. Study of mechanical properties of films of nanocomposites LLDPE/bentonite; Estudo das propriedades mecanicas de filmes de nanocompositos PEBDL/bentonita

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Eduardo M.; Carvalho, Laura H.; Canedo, Eduardo L.; Coutinho, Maria G.F.; Costa, Raquel B., E-mail: laura@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materias, Universidade Federal de Campina Grande (UAEMa/UFCG) Campina Grande, PB (Brazil); Araujo, Arthur R.A. [Felinto Industria e Comercio Ltda., Campina Grande, PB (Brazil)

    2011-07-01

    Mechanical properties of LLDPE/bentonite clay were determined as a function of clay content (1 and 2% w/w), purification and organophilization. Raw materials were characterized by FTIR and XRD. Nanocomposites were obtained as flat films and characterized by XRD and mechanical properties. Results indicate that best overall mechanical properties were displayed by systems containing purified clay and that they tended to decrease with increasing clay content. Organofilization was effective and only intercalated nanocomposites were obtained. (author)

  11. Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content

    Energy Technology Data Exchange (ETDEWEB)

    Chen Cheng; Li Junguo [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Luo Guoqiang, E-mail: qhy2013@163.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Xiong Yuanlu; Zhang Qiang; Shen Lianmeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Ag/PMMA nanocomposite films with high silver content are prepared by in situ synthesis. Black-Right-Pointing-Pointer The size of Ag nanoparticles can be controlled by reaction time. Black-Right-Pointing-Pointer The electrical properties of Ag/PMMA nanocomposites films shows enhancement compared with the pure PMMA. Black-Right-Pointing-Pointer The recycle photo-responsive properties of Ag/PMMA nanocomposite films are proposed. - Abstract: Ag/PMMA nanocomposites have attracted much attention due to its superior mechanical, optical and electrical properties. In this article, Ag/PMMA nanocomposite films with high silver content (20 wt%) have been successfully in situ synthesized. UV-vis analysis, transmission electron microscopy (TEM), current-voltage (I-V) analysis, hall effect measurement system and electrochemical workstation are used to characterize the nanocomposite films. The results reveal that silver nanoparticles (NPs) homogeneously distribute in PMMA films and the particles size of silver NPs which has been controlled from 1.68 to 6.98 nm. Ag/PMMA nanocomposite films show electrical properties due to the conduction paths created by Ag nanoparticles. With the increasing diameter of silver NPs, the current density decreases and resistivity increases, respectively. Photo-responsive properties of Ag/PMMA nanocomposite films indicate that conduction paths could be destroyed by illumination and rebuilt in dark condition.

  12. Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content

    International Nuclear Information System (INIS)

    Chen Cheng; Li Junguo; Luo Guoqiang; Xiong Yuanlu; Zhang Qiang; Shen Lianmeng

    2012-01-01

    Highlights: ► Ag/PMMA nanocomposite films with high silver content are prepared by in situ synthesis. ► The size of Ag nanoparticles can be controlled by reaction time. ► The electrical properties of Ag/PMMA nanocomposites films shows enhancement compared with the pure PMMA. ► The recycle photo-responsive properties of Ag/PMMA nanocomposite films are proposed. - Abstract: Ag/PMMA nanocomposites have attracted much attention due to its superior mechanical, optical and electrical properties. In this article, Ag/PMMA nanocomposite films with high silver content (20 wt%) have been successfully in situ synthesized. UV–vis analysis, transmission electron microscopy (TEM), current–voltage (I–V) analysis, hall effect measurement system and electrochemical workstation are used to characterize the nanocomposite films. The results reveal that silver nanoparticles (NPs) homogeneously distribute in PMMA films and the particles size of silver NPs which has been controlled from 1.68 to 6.98 nm. Ag/PMMA nanocomposite films show electrical properties due to the conduction paths created by Ag nanoparticles. With the increasing diameter of silver NPs, the current density decreases and resistivity increases, respectively. Photo-responsive properties of Ag/PMMA nanocomposite films indicate that conduction paths could be destroyed by illumination and rebuilt in dark condition.

  13. Preparation and characterization of HMSPP/MMT/silver nanocomposite films with antibacterial activity

    International Nuclear Information System (INIS)

    Oliani, Washington Luiz; Komatsu, Luiz Gustavo Hiroki; Berenguer, Isabelle; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes; Lincopan, Nilton

    2015-01-01

    The aim of study was to use nanocomposites for bactericide packing for food. The polypropylene modified by irradiation in acetylene at dose of 12.5 kGy, also known as high-melt-strength-polypropylene (HMSPP), with montmorillonite (MMT) and silver nanoparticles (AgNPs) composed a mix to process by melt intercalation in a twin-screw extruder. As compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA). The nanocomposites were evaluated by Fourier Transformed Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and determination of antibacterial activity. The results indicate the formation of microstructures predominantly intercalated and flocculated. Further, the antibacterial properties of the films were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. (author)

  14. Micro structural studies of PVA doped with metal oxide nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. B. Rithin [Dept. of Physics, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Crasta, Vincent, E-mail: vcrasta@yahoo.com; Viju, F. [Dept. of Physics, St. Joseph Engineering College, Vamanjoor, Mangalore-575028, Karnataka (India); Praveen, B. M. [Dept. of Chemistry, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Shreeprakash, B. [Dept. of Mechanical Engineering, Srinivas School of Engineering, Mangalore-575025, Karnataka (India)

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  15. Preparation and characterization of HMSPP/MMT/silver nanocomposite films with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washington Luiz; Komatsu, Luiz Gustavo Hiroki; Berenguer, Isabelle; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes, E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lincopan, Nilton [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola de Farmacia. Dept. de Analises Clinicas; Rangari, Vijaya Kumar [Center For Advanced Materials Science and Engineering Tuskegee University, AL (United States)

    2015-07-01

    The aim of study was to use nanocomposites for bactericide packing for food. The polypropylene modified by irradiation in acetylene at dose of 12.5 kGy, also known as high-melt-strength-polypropylene (HMSPP), with montmorillonite (MMT) and silver nanoparticles (AgNPs) composed a mix to process by melt intercalation in a twin-screw extruder. As compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA). The nanocomposites were evaluated by Fourier Transformed Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and determination of antibacterial activity. The results indicate the formation of microstructures predominantly intercalated and flocculated. Further, the antibacterial properties of the films were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. (author)

  16. Multilayer Thin Films Sequential Assembly of Nanocomposite Materials

    CERN Document Server

    Decher, Gero

    2012-01-01

    This second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces. Praise for the first edition: "... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development..." –Polymer News With contri

  17. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites

    OpenAIRE

    Abdalla, Soliman; Al-Marzouki, Fahad; Obaid, Abdullah; Gamal, Salah

    2016-01-01

    Nano-composite films have been the subject of extensive work for developing the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of...

  18. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  19. Structure and Friction Behavior of CrNx/a-C:H Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Lunlin Shang

    2014-01-01

    Full Text Available CrN and CrNx/a-C:H nanocomposite films were deposited on Si substrates by the magnetron sputtering technique. The structure, chemical state, and friction behavior of the CrNx/a-C:H films prepared at various CH4 content were studied systematically. The CrN film shows strong (111 and (220 orientation, while the CrNx/a-C:H films consist of the nanocrystalline CrNx or Cr particles embedded in an amorphous hydrocarbon (a-C:H matrix and show weak diffraction peaks, which is in accordance with the XPS analysis results. The typical Raman D and G peaks are observed, indicating that the separated amorphous carbon or CNx phase appears in the CrNx/a-C:H films. However, no chromium carbide was observed in all the as-deposited samples. From the SEM graphs, all the deposited films depicted a dense and compact microstructure with well-attached interface with the substrate. The average friction coefficient of the CrNx/a-C:H films largely decreased with increasing CH4 content.

  20. Deposition and microstructure of Ti-containing diamond-like carbon nanocomposite films

    International Nuclear Information System (INIS)

    Yang, Won Jae; Sekino, Tohru; Shim, Kwang Bo; Niihara, Koichi; Auh, Keun Ho

    2005-01-01

    Ti-containing diamond-like carbon (DLC) films were deposited by plasma decomposition of CH 4 /Ar gas mixtures with an introduction of tetrakis(dimethylamino)titanium (TDMAT, Ti[(CH 3 ) 2 N] 4 ), which was used as a precursor of titanium. The films deposited were found to be nanocomposite coatings consisting of TiN nanocrystalline clusters and amorphous hydrocarbon (a-C:H), indicating that the nanocrystalline clusters were embedded in the DLC matrix. The crystallinity of TiN clusters, as well as the Ti atomic concentrations in the films, increased with an increase of substrate temperature. The substrate temperature applied to form a crystalline phase in the DLC matrix induced a graphitization of amorphous hydrocarbon matrix. The increase of volume fraction of TiN nanocrystalline clusters in the DLC matrix enhanced the mechanical properties of nanostructured coatings, although the graphite-like structural transition of DLC matrix happened due to the applied heating

  1. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Administrator

    performed at liquid nitrogen temperatures to reduce the electron–beam-induced radiation damage. The results showed a marginal increase in Au nanoparticle diameter (2⋅3 nm–3⋅6 nm) and more importantly, an improved thermal stability of the polystyrene (PS) composite film much above its glass transition tempera- ture.

  2. Multilayer thin films: sequential assembly of nanocomposite materials

    National Research Council Canada - National Science Library

    Decher, Gero; Schlenoff, Joseph B

    2003-01-01

    ... polymeric or nanoparticulate building blocks, understanding the polymer physical chemistry of multilayers, or characterizing their optical, electrical or biological activities. The reasons for the intense interest in the field are also clearly evident: multilayers bridge the gap between monolayers and spun-on or dip-coated films, ...

  3. Effect of annealing temperature on electrical properties of poly (methyl methacrylate): titanium dioxide nanocomposite films using spin coating deposition technique

    International Nuclear Information System (INIS)

    Ismail, L N; Habibah, Z; Herman, S H; Rusop, M

    2014-01-01

    Nanocomposite poly (methyl methacrylate) :titanium dioxide (PMMA :TiO 2 ) film were deposited on glass substrate. The effect of annealing temperature, especially on electrical, dielectric and the morphological properties of the thin films were investigated by current-voltage (I-V) measurement, impedance spectroscopy, and FESEM. The annealing temperature is varies from 120°C, 140°C, 160°C, 180°C and 200°C. The electrical properties results showing when nanocomposite film annealed at '20°C produce the lowest current. Meanwhile, when the annealing temperature increased, the current increased drastically and this indicates the PMMA:TiO 2 nanocomposite film are no longer having insulating properties. The dielectric properties also indicate that film annealed at 120°C has the best dielectric properties compared to other temperature. The FESEM results show that as the temperature increased, the PMMA:TiO 2 nanocomposite film started to create a phase separation between the PMMA matrix and TiO 2 nanoparticles

  4. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Ali M. A. Abdul Amir AL-Mokaram

    2017-05-01

    Full Text Available The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2 has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV. The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS. The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  5. A thin film degradation study of a fluorinated polyether liquid lubricant using an HPLC method

    Science.gov (United States)

    Morales, W.

    1986-01-01

    A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether fluid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.

  6. Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film

    Science.gov (United States)

    Mukherjee, P. S.; Das, A. K.; Dutta, B.; Meikap, A. K.

    2017-12-01

    A comprehensive study on the prevailing conduction mechanism, dielectric relaxation and current voltage behaviour of Polyvinyl alcohol (PVA) - Silver (Ag) nanotube composite film has been reported. Introduction of Ag nanotubes enhances the conductivity and dielectric permittivity of film. Film shows semiconducting behaviour with two activation energies. The dc conductivity of the nanocomposite film obeys the adiabatic small polaron model. The dielectric permittivity can be analysed by modified Cole-Cole model. A non-Debye type asymmetric behaviour has been observed in the sample. The back to back Schottky diode concept has been used to describe the current-voltage characteristic of the composite film.

  7. Nickel nanoparticles effect on the electrochemical energy storage properties of carbon nanocomposite films.

    Science.gov (United States)

    Bettini, Luca Giacomo; Divitini, Giorgio; Ducati, Caterina; Milani, Paolo; Piseri, Paolo

    2014-10-31

    The growth of nanostructured nickel : carbon (Ni : C) nanocomposite thin films by the supersonic cluster beam deposition of nickel and carbon clusters co-deposited from two separate beam sources has been demonstrated. Ni : C films retain the typical highly disordered structure with predominant sp(2) hybridization, low density, high surface roughness and granular nanoscale morphology of cluster assembled nanostructured carbon, but display enhanced electric conductivity. The electric double layer (EDL) capacitance of Ni : C films featuring the same thickness (200 nm) and different nickel volumetric concentrations (0-35%) has been investigated by electrochemical impedance spectroscopy employing an aqueous solution of potassium hydroxide (KOH 1 M) as electrolyte solution. Evidence of increased electric conductivity, facilitated EDL formation and negligible porous structure modification was found as consequence of Ni embedding. This results in the ability to synthesize electrodes with tailored specific power and energy density by the accurate control of the amount of deposited Ni and C clusters. Moreover, nickel nanoparticles were shown to catalyze the formation of tubular onion-like carbon structures upon mild thermal treatment in inert atmosphere. Electrochemical characterization of the heated nanocomposite electrodes revealed that the presence of long range ordered sp(2) structures further improves the power density and energy storage properties.

  8. Characterization and Optical and Dielectric Properties of Polyvinyl Chloride/Silica Nanocomposites Films

    Directory of Open Access Journals (Sweden)

    T. Abdel-Baset

    2016-01-01

    Full Text Available Silica nanoparticles were synthesized by a sol-gel method and mixed with different amounts of polyvinyl chloride (PVC to get nanocomposite films. The samples were characterized by XRD, HR-TEM, SEM, and FTIR. High resolution transmission electron microscopy (HR-TEM proved that the average particle size of the nanosilica is 15 nm. The scanning electron microscopy (SEM showed that the nanosilica was well dispersed on the surface of the PVC films. Fourier Transform Infrared (FTIR spectra for nanocomposite films intimate a significant change in the intensity of the characteristic peaks of the functional group with addition of nanosilica. The optical band gap was found to decrease with the addition of nanosilica while the refractive index increased. The dielectric constant ε′, the dielectric loss modulus M′′, and AC conductivity (σAC were also studied. It was found that ε′ increases with temperature for all samples, clear dielectric α-relaxation observed from dielectric loss M′′ around the glass temperature (Tg, and this could be related to micro-Brownian motion of the main PVC chain. The activation energy was calculated, and the AC conductivity could be a hopping one. The results of this work are discussed and compared with previously obtained data.

  9. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    International Nuclear Information System (INIS)

    Ben Dkhil, S.; Bourguiga, R.; Davenas, J.; Cornu, D.

    2012-01-01

    Highlights: ► Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. ► We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. ► The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. ► We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV–visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V oc and short-circuit current density J sc are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  10. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, F34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. Black-Right-Pointing-Pointer We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. Black-Right-Pointing-Pointer We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV-visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V{sub oc} and short-circuit current density J{sub sc} are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  11. Optical properties of nanocomposites: Percolation films, nanowires, and nanoholes

    Science.gov (United States)

    Podolskiy, Viktor Anatolyevich

    The optical properties of percolation films, nanowires, nanowire composites, and nanoholes composites were studied theoretically. Developed theory predicts the existence of localized plasmon modes in metal-dielectric percolation films when the metal concentration is close to the percolation threshold. Due to the plasmon localization local fields, local field fluctuations are extremely enhanced on the surface of percolation composite. This explains enormous enhancement of the nonlinear diffuse scattering by the percolation film. Also, localization of the plasmon modes and their coupling to optical phonon modes leads to the enhanced absorption by thick percolation composites. Our simulations show that spatial plasmon modes localization and unique local spectral characteristics of these modes make it possible to produce extremely sharp responses using the percolation composites. The developed technique suggests the existence of propagating polariton modes in the metal nanowire, which explains the unique spatial distribution of the electromagnetic field around the metal nanowire. Our simulations show the existence of sharp plasmon resonance in single nanowire and localized plasmon modes in nanowire percolation composite. The specific nanowire composite, which has negative refractive index is suggested. Development of recent Generalized Ohm's Law (GOL) approach allows us to explain extraordinary light transmittance by metal-nanoholes composite. The theory predicts large local field enhancement in such composite close to the transmittance resonance. The theory also predicts the plausibility of light nano-management using metal-holes composites.

  12. Harvesting Nanocatalytic Heat Localized in Nanoalloy Catalyst as a Heat Source in a Nanocomposite Thin Film Thermoelectric Device.

    Science.gov (United States)

    Zhao, Wei; Shan, Shiyao; Luo, Jin; Mott, Derrick M; Maenosono, Shinya; Zhong, Chuan-Jian

    2015-10-20

    This report describes findings of an investigation of harvesting nanocatalytic heat localized in a nanoalloy catalyst layer as a heat source in a nanocomposite thin film thermoelectric device for thermoelectric energy conversion. This device couples a heterostructured copper-zinc sulfide nanocomposite for thermoelectrics and low-temperature combustion of methanol fuels over a platinum-cobalt nanoalloy catalyst for producing heat localized in the nanocatalyst layer. The possibility of tuning nanocatalytic heat in the nanocatalyst and thin film thermoelectric properties by compositions points to a promising pathway in thermoelectric energy conversion.

  13. Preparation and investigation of diamond-like carbon nanocomposite thin films for nanophotonics

    Science.gov (United States)

    Panosyan, Zh.; Gharibyan, A.; Sargsyan, A.; Panosyan, H.; Hayrapetyan, D.; Yengibaryan, Y.

    2010-08-01

    Flexible Plasma Enhanced Chemical Vapor Deposition (PECVD) technology of Diamond Like Carbon (DLC) thin film preparation on the surface of Si and organic glasses has been elaborated. Modification of PECVD equipment has been implemented by integrating ion and magnetron sources. In this paper toluene (C7H8) has been used as a nanocmposite film forming hydrocarbon which decomposition yields to the multi component plasma in vacuum chamber. Nitrogen has been used as a dopand. Investigation of plasma composition influence to the optical and mechanical properties of DLC films has been observed. The presence of sp3 and sp2 hybridization states have been proven by Raman spectroscopy and their ratios have been estimated with the help of ID, IG characteristic lines for different technological conditions. High precision refractive index and thickness measurements of DLC films have been implemented by means of laser ellipsometer. Refractive indices of prepared films have been varied in the region 1.5-3.1 and thicknesses have been varied in the region 50-250 nm. Extraordinary change in refractive index has been explained with the help of formation of differently sized sp2 carbon based clusters in the sp3 matrix. Different types of carbon and hydrogen bonds have been observed in the obtained structures by means of FTIR. Obvious prospectives of DLC nanocomposite film as a promissing nanophotonic material has been discussed.

  14. Preparation and characterization of polymeric nanocomposite films for application as protective coatings

    Science.gov (United States)

    Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.

    2017-08-01

    Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara

  15. Solid Lubrication Fundamentals and Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2001-01-01

    Solid Lubrication Fundamentals and Applications description of the adhesion, friction, abrasion, and wear behavior of solid film lubricants and related tribological materials, including diamond and diamond-like solid films. The book details the properties of solid surfaces, clean surfaces, and contaminated surfaces as well as discussing the structures and mechanical properties of natural and synthetic diamonds; chemical-vapor-deposited diamond film; surface design and engineering toward wear-resistant, self-lubricating diamond films and coatings. The author provides selection and design criteria as well as applications for synthetic and natural coatings in the commercial, industrial and aerospace industries..

  16. Final Joint Test Protocol JP-P-1-1 for Validation of Alternatives to Lead-Containing Dry Film Lubricants for Antigalling/Antifretting, Antiseizing, and Assembly Aid Applications

    National Research Council Canada - National Science Library

    Thomstatter, John

    2004-01-01

    ... an additional test requirement for humidity resistance. This requirement was identified by turbine engine original equipment manufacturers based on experience in evaluating water-based dry film lubricants (DFLs...

  17. Modification of rubber surface with DLC thin films for low friction and self lubrication

    NARCIS (Netherlands)

    Bui, X. L.; Pei, Y. T.; Mulder, E. D. G.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma treatment of HNBR substrate is proven to be crucial for the improvement of film

  18. Multilayer Thin Films Sequential Assembly of Nanocomposite Materials

    CERN Document Server

    Decher, Gero

    2003-01-01

    Materials scientists are often faced with the problem of modifying surfaces of objects, yet keeping their shape and properties. This book provides a detailed survey on the new technology of adsorption from solution for the fabrication of molecularly ordered multicomposite films in order to replace and expand on the well known Langmuir-Blodgett technology and to open the field of molecular self-assembly to materials and biosciences. The book is aimed at scientists who want to integrate several different functional entities in a single device. To this audience it presents the technique of layer-

  19. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.

    Science.gov (United States)

    El Achaby, Mounir; El Miri, Nassima; Aboulkas, Adil; Zahouily, Mohamed; Bilal, Essaid; Barakat, Abdellatif; Solhy, Abderrahim

    2017-03-01

    Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications. Copyright © 2016. Published by Elsevier B.V.

  20. Mechanical and solubility properties of bio-nanocomposite film of semi refined kappa carrageenan/ZnO nanoparticles

    Science.gov (United States)

    Saputri, Apriliana Eka; Praseptiangga, Danar; Rochima, Emma; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    The aim of this present work is to develop semi refined kappa carrageenan based bio-nanocomposite film as an alternative to synthetic petroleum based food packaging materials. Among natural polymers, carrageenan is one of the most promising material, since it is a renewable bioresource. The ZnO nanoparticles (0.5%; 1.0%; 1.5% w/w carrageenan) was incorporated into carrageenan polymer to prepare bio-nanocomposite films, where ZnO acts as reinforcement for carrageenan matrix. The mechanical and solubility properties of the prepared films were investigated as a function of ZnO concentration. The results indicated that the addition of ZnO exhibits greater solubility compared to the neat film. The elongation at break is insignificantly different on the films with and without addition ZnO. The tensile strength of the film was highest for the sample with 0.5% ZnO. These mechanical and solubility properties suggest that bio-nanocomposite film of semi refined kappa carrageenan and nanoparticle ZnO can be effectively used as food packaging material.

  1. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-06

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g.: sensing, energy conversion) of these materials, introduces additional complications with regard to the processing-morphology-function behavior. A primary challenge is to understand and control the viscosity of a PNC with decreasing film thickness confinement for nanoscale applications. Using a combination of X-ray photon correlation spectroscopy (XPCS) and X-ray standing wave based resonance enhanced XPCS to study the dynamics of neat poly-2-vinyl pyridine (P2VP) chains and the nanoparticle dynamics, respectively, we identified a new mechanism that dictates the viscosity of PNC films in the nanoscale regime. We show that while the viscosities of neat P2VP films as thin as 50 nm remained the same as the bulk, PNC films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were equal to the bulk values. These results -NP proximities and suppression of their dynamics -suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for 2D and 3D nanoscale applications.

  2. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    Science.gov (United States)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  3. Effects of UV laser micropatterning on frictional performance of diamond-like nanocomposite films

    Science.gov (United States)

    Zavedeev, Evgeny V.; Zilova, Olga S.; Shupegin, Mikhail L.; Barinov, Alexej D.; Arutyunyan, Natalia R.; Roch, Teja; Pimenov, Sergei M.

    2016-11-01

    We report on UV laser modification and micropatterning of diamond-like nanocomposite (DLN) films (a-C:H,Si:O) with nanosecond pulses and effects of laser surface microstructuring on the frictional performance of DLN films on the nano- and macroscale. A technique of direct laser interference patterning was applied to produce arrays of periodic linear microstructures on the DLN films. The UV laser irradiation was performed at low fluences corresponding to the regime of surface graphitization and incipient ablation. At the initial stage of the thin film modification, the laser-induced spallation and graphitization in the surface layers were found to strongly influence the nanoscale topography and mechanical properties of the DLN surface. Frictional properties of the laser-patterned DLN films were studied using (1) atomic force microscopy in lateral force mode and (2) a ball-on-flat tribometer under linear reciprocating sliding against a 100Cr6 steel ball. The lateral force microscopy measurements revealed that the laser-irradiated regions were characterized by increased friction forces due to microspallation effects and enhanced surface roughness, correlating with tribotests at the initial stage of sliding. During prolonged sliding in ambient air, both the original and laser-patterned DLN surfaces exhibited low-friction performance at the friction coefficient of 0.07-0.08.

  4. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-07

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.

  5. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films

    International Nuclear Information System (INIS)

    Chen, Aiping; Bi, Zhenxing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2013-01-01

    Vertically aligned nanocomposite (VAN) oxide thin films have recently stimulated a significant amount of research interest owing to their novel architecture, vertical interfacial strain control and tunable material functionalities. In this work, the growth mechanisms of VAN thin films have been investigated by varying the composite material system, the ratio of the two constituent phases, and the thin film growth conditions including deposition temperature and oxygen pressure as well as growth rate. It has been shown that thermodynamic parameters, elastic and interfacial energies and the multiple phase ratio play dominant roles in the resulting microstructure. In addition, vertical interfacial strain has been observed in BiFeO 3 (BFO)- and La 0.7 Sr 0.3 MnO 3 (LSMO)-based VAN thin film systems; the vertical strain could be tuned by the growth parameters and selection of a suitable secondary phase. The tunability of physical properties such as dielectric loss in BFO:Sm 2 O 3 VAN and low-field magnetoresistance in LSMO-based VAN systems has been demonstrated. The enhancement and tunability of those physical properties have been attributed to the unique VAN architecture and vertical strain control. These results suggest that VAN architecture with novel microstructure and unique vertical strain tuning could provide a general route for tailoring and manipulating the functionalities of oxide thin films

  6. The optical and mechanical properties of PVA-Ag nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, A.G.; Attia, W.; Abd El-Kader, K.M., E-mail: kamalmarei@yahoo.com

    2014-03-25

    Highlights: • We prepared PVA -Ag composite films which used in different filed of applications. • The XRD results showed Ag nanoparticles entering the polymer PVA matrix. • Optical band gap as a result of doping has been found to be reduced significantly. • Young's modulus increases while the strain decreases due to increasing Ag content. -- Abstract: Poly (vinyl alcohol) (PVA) loaded silver (Ag) nanoparticles were successfully prepared by chemical reduction methods. The synthesized nanoparticles are characterized using UV–visible spectrophotometer, X-ray diffractometer (XRD) and Transmission electron microscope (TEM). The contents of the inorganic phase in the nanocomposites were determined by using atomic absorption spectroscopy (AA) for silver, and were found to be 0.2, 0.4, 0.8 and 1.5 wt.%. Optical absorption studies in the wavelength range 190–900 nm showed additional peak at 420 nm for differently doped films, in addition to the peak at 200 nm for undoped PVA film. There is observable change in the absorbed intensity at 420 nm with filling levels. This is due to the link between the Ag metal ion and the polymer OH- groups. The indirect energy gaps were calculated. It was found that Young’s modulus and the strength at the break increase, while the energy gaps and the strain decrease as the concentration of Ag content is increased. The XRD results showed that the Ag nanoparticles entering the polymer PVA matrix and the crystallinity was strongly influenced by the amount of Ag nanoparticles. The electron diffraction image for the highest concentration sample shows the crystalline nature of the silver metal nanoparticles. TEM of the nanocomposite films revealed the presence of Ag particles with average diameter of 12 nm.

  7. An Ensemble Learning for Predicting Breakdown Field Strength of Polyimide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available Using the method of Stochastic Gradient Boosting, ten SMO-SVR are constructed into a strong prediction model (SGBS model that is efficient in predicting the breakdown field strength. Adopting the method of in situ polymerization, thirty-two samples of nanocomposite films with different percentage compositions, components, and thicknesses are prepared. Then, the breakdown field strength is tested by using voltage test equipment. From the test results, the correlation coefficient (CC, the mean absolute error (MAE, the root mean squared error (RMSE, the relative absolute error (RAE, and the root relative squared error (RRSE are 0.9664, 14.2598, 19.684, 22.26%, and 25.01% with SGBS model. The result indicates that the predicted values fit well with the measured ones. Comparisons between models such as linear regression, BP, GRNN, SVR, and SMO-SVR have also been made under the same conditions. They show that CC of the SGBS model is higher than those of other models. Nevertheless, the MAE, RMSE, RAE, and RRSE of the SGBS model are lower than those of other models. This demonstrates that the SGBS model is better than other models in predicting the breakdown field strength of polyimide nanocomposite films.

  8. Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation.

    Science.gov (United States)

    Tang, Bolin; Zhuang, Junjun; Wang, Liming; Zhang, Bo; Lin, Suya; Jia, Fei; Dong, Lingqing; Wang, Qi; Cheng, Kui; Weng, Wenjian

    2018-03-07

    The binding of cell integrins to proteins adsorbed on the material surface is a highly dynamic process critical for guiding cellular responses. However, temporal dynamic regulation of adsorbed proteins to meet the spatial conformation requirement of integrins for a certain cellular response remains a great challenge. Here, an active CoFe 2 O 4 /poly(vinylidene fluoride-trifluoroethylene) nanocomposite film, which was demonstrated to be an obvious surface potential variation (Δ V ≈ 93 mV) in response to the applied magnetic field intensity (0-3000 Oe), was designed to harness the dynamic binding of integrin-adsorbed proteins by in situ controlling of the conformation of adsorbed proteins. Experimental investigation and molecular dynamics simulation confirmed the surface potential-induced conformational change in the adsorbed proteins. Cells cultured on nanocomposite films indicated that cellular responses in different time periods (adhesion, proliferation, and differentiation) required distinct magnetic field intensity, and synthetically programming the preferred magnetic field intensity of each time period could further enhance the osteogenic differentiation through the FAK/ERK signaling pathway. This work therefore provides a distinct concept that dynamically controllable modulation of the material surface property fitting the binding requirement of different cell time periods would be more conducive to achieving the desired osteogenic differentiation.

  9. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Science.gov (United States)

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  10. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods.

    Science.gov (United States)

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Ooi, Ch Raymond; Mahmood, Mohamad Rusop

    2013-08-27

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems.

  11. Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Dengsong; Shi Liyi; Li Li; Zhang Jianping

    2008-01-01

    Novel ternary nanocomposite trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania optical films were successfully prepared through a nonaqueous in situ sol-gel method. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). PMMA/ZrO 2 -TiO 2 incorporating networks formed from alcoholysis of poly(MMA-co-MSMA), zirconium n-butoxide and titanium isoproproxide. The structure, morphology and property of the obtained nanocomposite films were investigated by X-ray photoelectron spectra, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, scanning probe microscopy, thermogravimetric analyses, UV-vis spectrum and spectro-ellipsometer. The nanoparticle size, roughness, thermal stability, UV-shielding property, and refractive index of nanocomposite films increase with the increasing of inorganic contents. The formation mechanism and reason of such improvements were examined and interpreted in a theoretical model. The nanocomposite films possess interesting properties in thermal stability and optical response due to the uniform incorporating networks between organic polymer chains and inorganic clusters

  12. Determining the mass density of a hydrocarbon matrix in thin-film nanocomposites by ion-beam techniques

    NARCIS (Netherlands)

    Chechenin, N. G.; Chernykh, P. N.; Kulikauskas, V. S.; Pei, Y.; Vainshtein, D.; De Hosson, J. Th. M.

    2007-01-01

    An approach based on ion-beam analysis, including Rutherford backscattering, nuclear backscattering, and elastic recoil detection, for determining the partial mass density of a hydrocarbon matrix in nanocomposites is proposed and applied to the nc-TiC/a-C:H thin-film coating material.

  13. Investigation of electrical and optical properties of MEH-PPV: ZnO nanocomposite films for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Azhar, N. E. A., E-mail: najwaezira@yahoo.com; Shafura, A. K., E-mail: shafura@ymail.com; Affendi, I. H. H., E-mail: irmahidayanti.halim@gmail.com; Shariffudin, S. S., E-mail: sobihana@gmail.com [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Saurdi, I., E-mail: saurdy788@gmail.com [Faculty of Electrical Engineering, UiTM Sarawak, Kampus Kota Meranek, Sarawak (Malaysia); Alrokayan, Salman A. H., E-mail: dr.salman@alrokayan.com; Khan, Haseeb A., E-mail: khan-haseeb@yahoo.com [Research Chair of Targeting and Treatment of Cancer Using Nanoparticles Department of Biochemistry, College of Science, King Saud University (KSU), 245 Riyadh 11454 (Saudi Arabia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor (Malaysia)

    2016-07-06

    Recent investigations of the promising materials for optoelectronic have been demonstrated by introducing n-type inorganic material into conjugated polymer. The optical and electrical of nanocomposite films based on poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and zinc oxide (ZnO) nanostructured of various deposition layers (1 to 3 layers) have been investigated. The MEH-PPV: ZnO nanocomposite films were deposited using spin-coating technique. The surface morphology nanocomposite films were characterized using field emission scanning electron microscope. From surface profiler measurement, we found that the thickness of nanocomposite films increased as deposition time increased. The optical properties were measured using photoluminescence spectroscope. The photoluminescence (PL) spectra showed that two deposition layers is the highest intensity at visible region (green emission) due to high energy transfer from particles to the polymer. The current density for two layers sample is due to aggregation of conjugated polymer chain hence form excited interchain exciton for optical excitation. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.

  14. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods

    Science.gov (United States)

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Ooi, CH Raymond; Mahmood, Mohamad Rusop

    2013-08-01

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems.

  15. Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (Vinyl alcohol) by casting method.

    Science.gov (United States)

    Asad, Mohammad; Saba, Naheed; Asiri, Abdullah M; Jawaid, M; Indarti, Eti; Wanrosli, W D

    2018-07-01

    TEMPO-oxidize nanocellulose (TONC) suspension has been obtained from total chlorine free (TCF) oil palm empty-fruit-bunches (OPEFB) pulp using 4-acetamido-TEMPO (2,2,6,6-tetramethyl piperidin-1-oxyl) mediated oxidation with sodium hypochlorite and sodium bromide in water at 25 °C and pH 10. TONC suspension with varied content from 0.5 to 6% (w/w) reinforced polyvinyl alcohol (PVA) polymer based nanocomposite films were prepared by the casting method. The structural interaction between the TONC and PVA was characterized by the Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the 4% (w/w) TONC content reinforced nanocomposite exhibited the highest tensile strength and modulus with an increase of 122% and 291% respectively, compared to PVA while the elongation at break decreased about 42.7%. Thermal stability of PVA based nanocomposite films was improved after incorporation of TONC. Incorporation of TONC in PVA film increases its crystallinity due to strongly linking between the hydroxyl groups of materials however considerable decreases beyond 2 wt% loading are observed. TONC incorporation beyond 2 wt% also reduces the melting temperature peaks and enthalpy of nanocomposite films. FT-IR spectra, NMR and SEM indicate that there is interaction between the TONC and PVA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent.

    Science.gov (United States)

    Sivaranjana, P; Nagarajan, E R; Rajini, N; Jawaid, M; Rajulu, A Varada

    2017-06-01

    Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO 3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of oil lubricated, fluid film, thrust bearings with allowance for temperature dependent viscosity

    Science.gov (United States)

    Pan, C. H. T.; Malanoski, S. B.

    1972-01-01

    A preliminary design study was performed to seek a fluid-film thrust bearing design intended to be part of a high-speed, hybrid (rolling element/fluid film) bearing configuration. The base line used is a design previously tested. To improve the accuracy of theoretical predictions of load capacity, flow rate, and friction power loss, an analytical procedure was developed to include curvature effects inherent in thrust bearings and to allow for the temperature rise in the fluid due to viscous heating. Also, a narrow-groove approximation in the treatment of the temperature field was formulated to apply the procedure to the Whipple thrust bearing. A comparative trade-off study was carried out assuming isothermal films; its results showed the shrouded-step design to be superior to the Whipple design for the intended application. An extensive parametric study was performed, employing isoviscous calculations, to determine the optimized design, which was subsequently recalculated allowing for temperature effects.

  18. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  19. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  20. Graphene derivatives/Fe{sub 3}O{sub 4}/polymer nanocomposite films: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hatel, Rhizlane [University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, PO Box 1796, Atlas, Fez 30000 (Morocco); Goumri, Meryem [University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, PO Box 1796, Atlas, Fez 30000 (Morocco); XLIM UMR 7252- University of Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Ratier, Bernard [XLIM UMR 7252- University of Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Baitoul, Mimouna, E-mail: baitoul@yahoo.fr [University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, PO Box 1796, Atlas, Fez 30000 (Morocco)

    2017-06-01

    This paper reports a simple solution casting method for the preparation of nanocomposite films in which graphene oxide (GO)/Fe{sub 3}O{sub 4} nanocomposites are incorporated into poly (vinyl alcohol) (PVA) matrix. The films obtained with different weight percent of GO/Fe{sub 3}O{sub 4} (0.5, 0.7 and 1 wt%) are subjected an in situ chemical and thermal reduction in order to explore the evolution and interactions between these components under different treatments and get an insight into on how this can affects the optical and electrical properties of these nanocomposites. Characterization was carried out using, UV–Vis absorption, Photoluminescence, electrical conductivity measurements, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Strong covalent functionalization occurs between the polymer and graphene derivatives (GD)/Fe{sub 3}O{sub 4} hybrids. The experimental results obtained for our nanocomposites films exhibit significant enhancement in properties highlighted the efficiency of the in situ thermal reduction. The high absorption with strong photoluminescence and electrical conductivity achieved might promote these nanocomposites for opto-electronic devices in near future. - Highlights: • Novel inorganic-organic hybrid flexible films were successfully prepared. • Good interfacial interaction between the graphene/Fe{sub 3}O{sub 4} and the hydroxyl-rich PVA. • Optical and electrical properties of Graphene Derivatives/Fe{sub 3}O{sub 4}/PVA were investigated. • Thermally reduced GO/Fe{sub 3}O{sub 4}/PVA films show high absorption and strong photoluminescence.

  1. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    Directory of Open Access Journals (Sweden)

    Khaled Sayed Elbadawi Ramadan

    Full Text Available Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002 crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2 and 0.9±0.1 C m(-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

  2. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    Science.gov (United States)

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

  3. Effect of annealing on structural and optical properties of diamond-like nanocomposite thin films

    Science.gov (United States)

    Jana, Sukhendu; Das, Sayan; De, Debasish; Gangopadhyay, Utpal; Ghosh, Prajit; Mondal, Anup

    2014-03-01

    The annealing effect on structural and optical properties of the Diamond-like Nanocomposite (DLN) thin film deposited on glass substrate by Plasma Assisted Chemical Vapor Deposition (PACVD) method has been investigated. The films were annealed at temperature ranging from 300 to 600 °C, with 100 °C interval for 9 minutes by rapid thermal process (RTP) under vacuum. The structural changes of the annealed films have been studied using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscope (SEM), and optical parameters have been determined using transmittance and reflectance spectra in UV-UIS-NIR range. The result shows that the refractive index increases gradually from 1.79 to 2.84 with annealing temperature due to out-diffusion of H by breaking Si-H and C-H bond leads to Si-C bond, i.e. more cross linking structure. In higher temperature range, graphitization also enhanced the refractive index. However, the optical band gap at up to 400 °C initially increases from 3.05 to 3.20 eV and then decreases due to graphitization. The film has a great potential to be used as anti-reflection coating (ARC) on silicon-based solar cell.

  4. YIG: Bi2O3 Nanocomposite Thin Films for Magnetooptic and Microwave Applications

    Directory of Open Access Journals (Sweden)

    M. Nur-E-Alam

    2015-01-01

    Full Text Available Y3Fe5O12-Bi2O3 composite thin films are deposited onto Gd3Ga5O12 (GGG substrates and their annealing crystallization regimes are optimized (in terms of both process temperatures and durations to obtain high-quality thin film layers possessing magnetic properties attractive for a range of technological applications. The amount of bismuth oxide content introduced into these nanocomposite-type films is controlled by adjusting the RF power densities applied to both Y3Fe5O12 and Bi2O3 sputtering targets during the cosputtering deposition processes. The measured material properties of oven-annealed YIG-Bi2O3 films indicate that cosputtering of YIG-Bi2O3 composites can provide the flexibility of application-specific YIG layers fabrication of interest for several existing, emerging, and also frontier technologies. Experimental results demonstrate large specific Faraday rotation (of more than 1°/µm at 532 nm, achieved simultaneously with low optical losses in the visible range and very narrow peak-to-peak ferromagnetic resonance linewidth of around ΔHpp= 6.1 Oe at 9.77 GHz.

  5. Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.

    Science.gov (United States)

    Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying

    2018-03-28

    Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

  6. On the validity of the classical hydrodynamic lubrication theory applied to squeeze film dampers

    International Nuclear Information System (INIS)

    Danaila, S; Moraru, L

    2010-01-01

    Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. The SFD - squirrel cage combination is probably the most used system for tuning the stiffness and damping of the supports for rotors installed on ball bearings. Squeeze film dampers are essentially hydrodynamic bearings which contain the ball bearings housings of ball-bearings supported shafts. Consequently, the oil film within the SFD are influenced only by the precession and nutation of the shaft, that is the flow of the oil within the damper is not directly influenced by the spin of the rotor. However, in the classical theory, the flow in the thin film is also governed by the Reynolds equation. In this paper, some of the limits of the classical theory of the SFD are discussed and theoretical and experimental studies, which illustrate the ideas presented herein, are presented as well. The orbits of an unbalanced rotor that is supported by a ball-bearings-SFD-squirrel-cage assembly at one end and by rigidly mounted ball bearings at the other end are computed using the bearing forces provided by the classical short bearing theory. The numerical model also includes the properties of the squirrel cage. The parameters of the squirrel cage were measured, together with the effect of the friction within the assembly. Experimental unbalance responses were also collected for various rotation speeds and unbalances to validate the numerical simulations.

  7. On the validity of the classical hydrodynamic lubrication theory applied to squeeze film dampers

    Energy Technology Data Exchange (ETDEWEB)

    Danaila, S; Moraru, L, E-mail: sterian.danaila@gmail.co [' Elie Carafoli' Department of Aerospace Sciences, Faculty of Aerospace Engineering, ' Politehnica' University of Bucharest, Spl. Independentei 313, Bucharest (Romania)

    2010-08-15

    Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. The SFD - squirrel cage combination is probably the most used system for tuning the stiffness and damping of the supports for rotors installed on ball bearings. Squeeze film dampers are essentially hydrodynamic bearings which contain the ball bearings housings of ball-bearings supported shafts. Consequently, the oil film within the SFD are influenced only by the precession and nutation of the shaft, that is the flow of the oil within the damper is not directly influenced by the spin of the rotor. However, in the classical theory, the flow in the thin film is also governed by the Reynolds equation. In this paper, some of the limits of the classical theory of the SFD are discussed and theoretical and experimental studies, which illustrate the ideas presented herein, are presented as well. The orbits of an unbalanced rotor that is supported by a ball-bearings-SFD-squirrel-cage assembly at one end and by rigidly mounted ball bearings at the other end are computed using the bearing forces provided by the classical short bearing theory. The numerical model also includes the properties of the squirrel cage. The parameters of the squirrel cage were measured, together with the effect of the friction within the assembly. Experimental unbalance responses were also collected for various rotation speeds and unbalances to validate the numerical simulations.

  8. On the validity of the classical hydrodynamic lubrication theory applied to squeeze film dampers

    Science.gov (United States)

    Dănăilă, S.; Moraru, L.

    2010-08-01

    Squeeze film dampers (SFD) are devices utilized to control vibrations of the shafts of high-speed rotating machinery. The SFD - squirrel cage combination is probably the most used system for tuning the stiffness and damping of the supports for rotors installed on ball bearings. Squeeze film dampers are essentially hydrodynamic bearings which contain the ball bearings housings of ball-bearings supported shafts. Consequently, the oil film within the SFD are influenced only by the precession and nutation of the shaft, that is the flow of the oil within the damper is not directly influenced by the spin of the rotor. However, in the classical theory, the flow in the thin film is also governed by the Reynolds equation. In this paper, some of the limits of the classical theory of the SFD are discussed and theoretical and experimental studies, which illustrate the ideas presented herein, are presented as well. The orbits of an unbalanced rotor that is supported by a ball-bearings-SFD-squirrel-cage assembly at one end and by rigidly mounted ball bearings at the other end are computed using the bearing forces provided by the classical short bearing theory. The numerical model also includes the properties of the squirrel cage. The parameters of the squirrel cage were measured, together with the effect of the friction within the assembly. Experimental unbalance responses were also collected for various rotation speeds and unbalances to validate the numerical simulations.

  9. An airbag for drops: high speed interferometry studies of air film lubrication in drop impact

    NARCIS (Netherlands)

    de Ruiter, J.

    2014-01-01

    The impact of droplets on solid surfaces is of wide-spread relevance in for example pesticide spraying, fluid coating, and ink-jet printing. The impact process includes the formation and spreading of an air film between the droplet and the surface before the droplet actually touches the surface.

  10. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging.

    Science.gov (United States)

    Beak, Songee; Kim, Hyeri; Song, Kyung Bin

    2017-11-01

    Olive flounder bone gelatin (OBG) was used for a film base material in this study. In addition, zinc oxide nanoparticles (ZnO) were incorporated into the OBG film to prepare a nanocomposite film and to impart antimicrobial activity to it. The tensile strength of the OBG film increased by 6.62 MPa, and water vapor permeability and water solubility decreased by 0.93 × 10 -9 g/m s Pa and 13.79%, respectively, by the addition of ZnO to the OBG film. In particular, the OBG-ZnO film exhibited antimicrobial activity against Listeria monocytogenes. To investigate the applicability of the OBG-ZnO packaging film, fresh spinach was wrapped in this film and stored for a week. The results indicated that the OBG-ZnO film showed antimicrobial activity against L. monocytogenes inoculated on spinach without affecting the quality of spinach, such as vitamin C content and color. Thus, the OBG-ZnO nanocomposite film can be applied as an efficient antimicrobial food packaging material. As a base material of edible films, gelatin was extracted from olive flounder bone, which is fish processing by-product. Olive flounder bone gelatin (OBG) nanocomposite films were prepared with zinc oxide nanoparticles (ZnO). For an application to antimicrobial packaging, spinach was wrapped with the OBG-ZnO nanocomposite film. © 2017 Institute of Food Technologists®.

  11. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  12. Lubrication of Articular Cartilage.

    Science.gov (United States)

    Jahn, Sabrina; Seror, Jasmine; Klein, Jacob

    2016-07-11

    The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.

  13. Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films

    Science.gov (United States)

    Zhang, Wenrui; Fan, Meng; Li, Leigang; Chen, Aiping; Su, Qing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2015-11-01

    The ability to control the morphology of heterointerfaces with coupled functionalities is fascinating from both fundamental and technological perspectives. Here, using BiFeO3:CoFe2O4 vertically aligned nanocomposite (VAN) films as a model system, we demonstrate a simple and effective method to modulate the heterointerface and its morphology in nanocomposite films with pulsed laser deposition. By tuning the deposition frequency through thickness during film growth, both vertically straight and gradient heterointerfaces have been achieved. The modulated heterointerface is strongly correlated with strain tuning and interface coupling, and thus modifies the magnetic anisotropy, coercive fields, and ferroelectric switching behavior. This study provides a viable approach for tailoring the interface strain and coupling in VAN and achieving tunable physical properties.

  14. A novel porous aspirin-loaded (GO/CTS-HA)n nanocomposite films: Synthesis and multifunction for bone tissue engineering.

    Science.gov (United States)

    Ji, Mingxiang; Li, Han; Guo, Hailin; Xie, Anjian; Wang, Shaohua; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; He, Jiacai

    2016-11-20

    A novel porous graphene oxide (GO)/chitosan (CTS)-hydroxyapatite (HA) nanocomposite film was successfully prepared for the first time by combining layer-by-layer (LBL) assembly technology with biomimetic mineralization method. The LBL technology was used to control the thickness of film as well as induce the biomimetic mineralization of biocompatible HA. The obtained (GO/CTS-HA)n film provided ideal platform for the proliferation of mouse mesenchymal stem cells (mMSCs). The pore size in the film is about 300nm, and the porous architecture made the film have high aspirin loading efficiency. Also the accumulated loading dosage could be adjusted by the film thickness, and the sustained release of aspirin could ensure well anti-inflammatory effect. The above advantages may alleviate the pain of patients and give the better environment for bone regeneration. This multifunctional aspirin-loaded (GO/CTS-HA)n film provided an inspiration for the synthesis of novel porous inorganic/biomacromolecule nanocomposite films as the biocoatings applied in bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inorganic nanocomposite films with polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition

    Science.gov (United States)

    Darwish, Abdalla M.; Sarkisov, Sergey S.; Mele, Paolo; Saini, Shrikant; Moore, Shaelynn; Bastian, Tyler; Dorlus, Wydglif; Zhang, Xiaodong; Koplitz, Brent

    2017-08-01

    We report on the new class of inorganic nanocomposite films with the inorganic phase hosting the polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition of the inorganic target material and matrix assisted pulsed laser evaporation of the polymer (MBMT-PLD/MAPLE). We used the exemplary nanocomposite thermoelectric films of aluminum-doped ZnO known as AZO with the nanofillers made of poly(methyl methacrylate) known as PMMA on various substrates such as SrTiO3, sapphire, fused silica, and polyimide. The AZO target was ablated with the second harmonic (532 nm) of the Nd:YAG Q-switched laser while PMMA was evaporated from its solution in chlorobenzene frozen in liquid nitrogen with the fundamental harmonic (1064 nm) of the same laser (50 Hz pulse repetition rate). The introduction of the polymer nanofillers increased the electrical conductivity of the nanocomposite films (possibly due to the carbonization of PMMA and the creation of additional channels of electric current) three times and reduced the thermal conductivity by 1.25 times as compared to the pure AZO films. Accordingly, the increase of the thermoelectric figure-of merit ZT would be 4 times. The best performance was observed for the sapphire substrates where the films were the most uniform. The results point to a huge potential of the optimization of a broad variety of optical, opto-electronic, and solar-power nanocomposite inorganic films by the controllable introduction of the polymer nanofillers using the MBMT-PLD/MAPLE method.

  16. Nanocomposite synthesis and photoluminescence properties of MeV Au-ion beam modified Ni thin films

    International Nuclear Information System (INIS)

    Siva, Vantari; Datta, Debi P.; Singh, Avanendra; Som, T.; Sahoo, Pratap K.

    2016-01-01

    Graphical abstract: - Highlights: • Nanocomposite can be controllably synthesized from Ni thin films on silica by simply adding required fluence of MeV energy Au ions into the matrix. • Energy transfer to Ni thin films causes local melting and diffusion into silica matrix and formation of nanocomposites. • Ion implantation can lead to metal incorporation and nucleation of nanoparticles in silica, which gives rise to photoluminescence bands in visible wavelength region. • The intensity of the photoluminescence peak can be tuned by creating specific amount of Ni and Au incorporation via ion implantation, which might be useful for optoelectronic applications. - Abstract: We report on the synthesis and properties of nano-composites from thin Ni films on Silica matrix using Au-ion beam. When 2.2 MeV Au-ions are irradiated on 5 nm Ni film on Silica, the surface morphology changes drastically with ion fluence. In fact, within a fluence range of 5 × 10 14 –1 × 10 16 ions/cm 2 , a sharp increase in surface roughness follows after an initial surface smoothening. The depth profiles extracted from Rutherford backscattering spectra demonstrates the diffusion of Ni and Au into the silica matrix. The photoluminescence spectra of the irradiated samples reveal the development of two bands centered at 3.3 eV and 2.66 eV, respectively. Deconvolution of those bands shows five different emission peaks, corresponding to different luminescence centers, which confirms the existence of Ni–Au nanocomposites in silica matrix. The optical and structural modifications are understood in terms of ion induced local heating and mass transport due to thermal spikes, which leads to nanocomposite formation in silica.

  17. Solution-Processed Interfacial PEDOT:PSS Assembly into Porous Tungsten Molybdenum Oxide Nanocomposite Films for Electrochromic Applications.

    Science.gov (United States)

    Li, Haizeng; McRae, Liam; Elezzabi, Abdulhakem Y

    2018-03-28

    Electrochromic devices (ECDs) have received increased attention for applications including optoelectronics, smart windows, and low-emission displays. However, it has been recognized that the ECDs with transition-metal oxide (TMO) electrodes possess a high charge transport barrier because of their poor electrical conductivity, which limits their electrochromic performance. In this work, we addressed this limitation by utilizing a conjugated polymer to fabricate an organic-inorganic nanocomposite film that decreases the charge transport barrier of typical TMO electrodes. Using a conventional spray-layer-by-layer (spray-LbL) deposition technique, we demonstrate an electrochromic film composed of porous layers of tungsten molybdenum oxide (W 0.71 Mo 0.29 O 3 ) nanorods permeated with an interconnected conductive layer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The introduction of PEDOT:PSS is shown to significantly reduce the charge transport barrier, allowing the nanocomposite W 0.71 Mo 0.29 O 3 /PEDOT:PSS electrode to exhibit significantly improved electrochromic switching kinetics compared with the deposited W 0.71 Mo 0.29 O 3 films. Furthermore, the optical contrast of the nanocomposite electrode was observed to be superior to both pure PEDOT:PSS and W 0.71 Mo 0.29 O 3 electrodes, with a performance that exceeded the linearly predicted contrast of combining the pure films by 23%. The enhanced performance of the PEDOT:PSS-intercalated porous W 0.71 Mo 0.29 O 3 nanocomposite electrodes and the facile synthesis through a spray-LbL method demonstrate a viable strategy for preparing fast assembling high-performance nanocomposite electrodes for a wide variety of electrochemical devices.

  18. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in graphene oxide–Nafion nanocomposite film

    International Nuclear Information System (INIS)

    Zhang Lili; Cheng Huhu; Zhang Huimin; Qu Liangti

    2012-01-01

    Direct electron transfer of horseradish peroxidase (HRP) immobilized in graphene oxide (GO)–Nafion nanocomposite film and its application as a new biosensor was investigated with electrochemical methods. Immobilized HRP shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity for the reduction of H 2 O 2 and O 2 . As a new sensor with excellent electrocatalytic response to the reduction of H 2 O 2 and O 2 , calibrations with good linear relationships were obtained from 1.0 μmol L −1 to 1.0 mmol L −1 for H 2 O 2 and from 0.5 μmol L −1 to 18.6 μmol L −1 for O 2 with the detection limits of 4.0 × 10 −7 mol L −1 for H 2 O 2 and 1.0 × 10 −7 mol L −1 for O 2 at a signal-to-noise ratio of 3. Additionally, the responses showed Michaelis–Menten behavior with K m app values of 0.684 mmol L −1 for H 2 O 2 and 0.0160 mmol L −1 for O 2 . Moreover, the cathodic peak current of an HRP/GO/Nafion/GCE biosensor decreases by less than 5% after 4 weeks. These results reveal that GO can be conveniently incorporated into a polymer nanocomposite for fabrication of new GO-based biosensors.

  19. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis

    Science.gov (United States)

    Salehi, Tahereh Mombeini; Peyravi, Majid; Jahanshahi, Mohsen; Lau, Woei-Jye; Rad, Ali Shokuhi

    2018-04-01

    In this work, microporous substrates modified by zeolite nanoparticles were prepared and used for composite membrane making with the aim of reducing internal concentration polarization (ICP) effect of membranes during engineered osmosis applications. Nanocomposite substrates were fabricated via phase inversion technique by embedding nanostructured zeolite (clinoptilolite) in the range of 0-0.6 wt% into matrix of polyethersulfone (PES) substrate. Of all the substrates prepared, the PES0.4 substrate (with 0.4 wt% zeolite) exhibited unique characteristics, i.e., increased surface porosity, lower structural parameter ( S) (from 0.78 to 0.48 mm), and enhanced water flux. The thin film nanocomposite (TFN) membrane made of this optimized substrate was also reported to exhibit higher water flux compared to the control composite membrane during forward osmosis (FO) and pressure-retarded osmosis (PRO) test, without compromising reverse solute flux. The water flux of such TFN membrane was 43% higher than the control TFC membrane (1.93 L/m2 h bar) with salt rejection recorded at 94.7%. An increment in water flux is ascribed to the reduction in structural parameter, leading to reduced ICP effect.

  20. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720-1740 (United States); Lee, Daeho [Department of Mechanical Engineering, Gachon University, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  1. Effect of Relative Humidity on the Tribological Properties of Self-Lubricating H3BO3 Films Formed on the Surface of Steel Suitable for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    E. Hernández-Sanchez

    2015-01-01

    Full Text Available The effect of environmental humidity on the self-lubricating properties of a thin film of boric acid (H3BO3 was evaluated. H3BO4 films were successfully formed on the surface of AISI 316L steel. The study was conducted on AISI 316L steel because of its use in biomedical applications. First, the samples were exposed to boriding to generate a continuous surface layer of iron borides. The samples were then exposed to a short annealing process (SAP at 1023 K for 5 min and cooled to room temperature while controlling the relative humidity (RH. Five different RH conditions were tested. The purpose of SAP was to promote the formation of a surface film of boric acid from the boron atoms present in the iron boride layers. The presence of the boric acid at the surface of the borided layer was confirmed by Raman spectroscopy and X-ray diffraction (XRD. The self-lubricating capability of the films was demonstrated using the pin-on-disk technique. The influence of RH was reflected by the friction coefficient (FC, as the samples cooled with 20% of RH exhibited FC values of 0.16, whereas the samples cooled at 60% RH showed FC values of 0.02.

  2. Ferrofluid lubrication of circular squeeze film bearings controlled by variable magnetic field with rotations of the discs, porosity and slip velocity

    Science.gov (United States)

    Shah, Rajesh C.; Shah, Rajiv B.

    2017-12-01

    Based on the Shliomis ferrofluid flow model (SFFM) and continuity equation for the film as well as porous region, modified Reynolds equation for lubrication of circular squeeze film bearings is derived by considering the effects of oblique radially variable magnetic field (VMF), slip velocity at the film-porous interface and rotations of both the discs. The squeeze film bearings are made up of circular porous upper disc of different shapes (exponential, secant, mirror image of secant and parallel) and circular impermeable flat lower disc. The validity of Darcy's Law is assumed in the porous region. The SFFM is important because it includes the effects of rotations of the carrier liquid as well as magnetic particles. The VMF is used because of its advantage of generating maximum field at the required active contact area of the bearing design system. Also, the effect of porosity is included because of its advantageous property of self-lubrication. Using Reynolds equation, general form of pressure equation is derived and expression for dimensionless load-carrying capacity is obtained. Using this expression, results for different bearing design systems (due to different shapes of the upper disc) are computed and compared for variation of different parameters.

  3. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  4. Optimization of crosslinked poly(vinyl alcohol) nanocomposite films for mechanical properties.

    Science.gov (United States)

    Rouhi, Milad; Razavi, Seyed Hadi; Mousavi, Seyed Mohammad

    2017-02-01

    The effects of glycerol, bacterial cellulose nanocrystal (BCNC) and boric acid concentrations on the mechanical properties of PVA based films, including ultimate tensile strength (UTS), elongation at break (EAB), tensile Young's modulus (TYM), tensile toughness to break (TT), ultimate puncture strength (UPS), puncture deformation (PD), puncture Young's modulus (PYM) and puncture toughness to break (PT), were scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R 2 values ranging from 0.945 to 0.977 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum UTS (72.84MPa), EAB (293.43%), UPS (4.64MPa) and PD (31.80%) could be achieved at 13.89% glycerol concentration, 5.00% BCNC concentration and a boric acid content of 1.96%. The predicted values for optimum conditions were in good agreement with experimental data. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the formation of intramolecular and intermolecular hydrogen and ether crosslinkages in PVA and/or BCNC chains when boric acid is applied. Results showed that PVA/BCNC nanocomposite films plasticized with glycerol and crosslinked with boric acid showed appropriate mechanical properties that made them suitable as a disposable packaging film. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  6. Highly ordered self-assembling polymer/clay nanocomposite barrier film.

    Science.gov (United States)

    Cook, Ray; Chen, Yihong; Beall, Gary W

    2015-05-27

    Efforts to mimic complex-structured biologically based materials such as abalone shell have occupied substantial research time and effort in science and engineering. The majority of the efforts involve tedious and expensive techniques and processes. Layer-by-layer (LBL) is one such technique that can produce materials with quite unique physical properties, approaching, and in some cases surpassing, those seen in nature. The LBL technique, however, is quite tedious and difficult to implement commercially. We report here the discovery of an organic/inorganic spontaneous self-assembling system that forms a highly structured nanocomposite. The driving force behind this self-assembly appears to be entropy. This discovery should open up completely new avenues to designing hierarchical composites and structures. The films have been studied by X-ray diffraction and the barrier properties for oxygen diffusion measured.

  7. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  8. Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films.

    Science.gov (United States)

    Karthikeyan, B; Pandiyarajan, T; Mangalaraja, R V

    2016-01-05

    ZnO:PVA nanocomposite films were prepared and their fluorescence and time resolved photoluminescence properties were discussed. X-ray diffraction and infrared spectroscopy results confirmed the ZnO:PVA interaction. Optical absorption spectra showed two bands at 280 and 367nm which were ascribed to PVA and excitonic absorption band, respectively. Fluorescence spectra showed that the blue emission of ZnO was enhanced about tenfold through chemical interface electron transfer. The electron transfer from ZnO to PVA and its decay dynamics were experimentally analyzed through time resolved fluorescence measurements. The study revealed that the excited electrons found pathway through PVA to ground state which was slower than the pure ZnO nanoparticles. Copyright © 2015. Published by Elsevier B.V.

  9. Study of films properties of nanocomposites recycled polystyrene and sodium bentonite

    International Nuclear Information System (INIS)

    Machado, Messias dos Santos; Valenzuela, Maria das Gracas da Silva; Telles, Victor Bridi; Valenzuela-Diaz, Francisco Rolando; Wiebeck, Helio

    2014-01-01

    The technological advances in the world induces a great use of plastics materials with growing demand. Besides this fact, the improvement of this material's uses require a special attention because of its degradation difficulties that brings environmental problems. In this work were produced films of discarded polystyrene cups and sodium bentonite, due to its property of forming nanocomposite, initially, the ratios of filler with 1, 2 and 3% with glycerol added as plasticizer. Proportions of 4, 5 and 7% were tested too, with and without addition of calcium sulfate, with the intention of observing the influences in the properties related to increases in dosage of nano load and seeks to improve the properties. The results of the analysis of characterization (XRD, DSC, SEM) indicated the possibility of recycling this material with satisfactory properties for some important applications. (author)

  10. Solid Lubricants for Oil-Free Turbomachinery

    Science.gov (United States)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  11. Preparation and Structural Properties of Free Films from Rapeseed Oil-Based Rigid Polyurethane-Montmorillonite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Sergey Gaidukov

    2013-01-01

    Full Text Available The preparation of free standing films of biobased rigid polyurethanes (PU from rapeseed oil (RO and diethanolamine (DEA polyol and its modification with organomontmorillonite (OMMT nanoparticles are described. Heat enthalpy of the interaction during in situ mixing of RO/DEA polyol and OMMT is measured in isothermal profile. The Fourier transform infrared spectral analysis (FTIR-ATR is used to determine the urethane group concentration and hydrogen bonds formation in PU and PU/OMMT nanocomposites. X-ray diffraction shows the formation of intercalated and exfoliated structures of OMMT. The glass-transition temperature is used to demonstrate the formation for the intercalated and exfoliated nanocomposites of an interphase with a possible compact structure and the altered polymer chain mobility. The prepared PU/OMMT nanocomposites are also characterized by the enhanced thermal degradation characteristics upon heating in air atmosphere.

  12. Study of the structure of 3D-ordered macroporous GaN-ZnS:Mn nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kurdyukov, D. A., E-mail: kurd@gvg.ioffe.ru; Shishkin, I. I.; Grudinkin, S. A.; Sitnikova, A. A.; Zamoryanskaya, M. V.; Golubev, V. G. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2015-05-15

    A film-type 3D-ordered macroporous GaN-ZnS:Mn nanocomposite with the structure of an inverted opal is fabricated. Structural studies of the nanocomposite are performed, and it is shown that GaN and ZnS:Mn introduced into the pores of the silica opal are nanocrystallites misoriented with respect to each other. It is shown that the nanocomposite is a structurally perfect 3D photonic crystal. The efficiency of using a buffer of GaN crystallites to preclude interaction between the surface of the spherical a-SiO{sub 2} particles forming the opal matrix and chemically active substances introduced into the pores is demonstrated.

  13. Pillar shape modulation in epitaxial BiFeO3–CoFe2O4 vertical nanocomposite films

    Directory of Open Access Journals (Sweden)

    Dong Hun Kim

    2014-08-01

    Full Text Available Self-assembled epitaxial CoFe2O4-BiFeO3 nanocomposite films, in which pillars of CoFe2O4 grow within a single crystal BiFeO3 matrix, show both ferrimagnetism and ferroelectricity. The pillars typically have a uniform cross-section, but here two methods are demonstrated to produce a width modulation during growth by pulsed laser deposition. This was achieved by growing a blocking layer of BiFeO3 to produce layers of separated pillars or pillars with constrictions, or by changing the temperature during growth to produce bowling-pin shaped pillars. Modulated nanocomposites showed changes in their magnetic anisotropy compared to nanocomposites with uniform width. The magnetic anisotropy was interpreted as a result of magnetoelastic and shape anisotropies.

  14. Pillar shape modulation in epitaxial BiFeO3-CoFe2O4 vertical nanocomposite films

    Science.gov (United States)

    Kim, Dong Hun; Aimon, Nicolas M.; Ross, C. A.

    2014-08-01

    Self-assembled epitaxial CoFe2O4-BiFeO3 nanocomposite films, in which pillars of CoFe2O4 grow within a single crystal BiFeO3 matrix, show both ferrimagnetism and ferroelectricity. The pillars typically have a uniform cross-section, but here two methods are demonstrated to produce a width modulation during growth by pulsed laser deposition. This was achieved by growing a blocking layer of BiFeO3 to produce layers of separated pillars or pillars with constrictions, or by changing the temperature during growth to produce bowling-pin shaped pillars. Modulated nanocomposites showed changes in their magnetic anisotropy compared to nanocomposites with uniform width. The magnetic anisotropy was interpreted as a result of magnetoelastic and shape anisotropies.

  15. Fast-LPG Sensors at Room Temperature by α-Fe2O3/CNT Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    B. Chaitongrat

    2018-01-01

    Full Text Available We present performance of a room temperature LPG sensor based on α-Fe2O3/CNT (carbon nanotube nanocomposite films. The nanocomposite film was fabricated via the metallic Fe catalyst particle on CNTs in which both the catalyst particles and the CNT were simultaneously synthesized by chemical vapor deposition (CVD synthesis and were subsequently annealed in air to create α-Fe2O3. These methods are simple, inexpensive, and suitable for large-scale production. The structure, surface morphologies, and LPG response of nanocomposite films were investigated. Raman spectroscopy and XPS analysis showed the formation of α-Fe2O3 on small CNTs (SWNTs. Morphological analysis using FE-SEM and AFM revealed the formation of the porous surface along with roughness surface. Additionally, the sensing performance of α-Fe2O3/CNTs showed that it could detect LPG concentration at lower value than 25% of LEL with response/recovery time of less than 30 seconds at room temperature. These results suggest that the α-Fe2O3/CNTs films are challenging materials for monitoring LPG operating at room temperature.

  16. Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite

    Science.gov (United States)

    Heiba, Z. K.; Mohamed, Mohamed Bakr; Imam, N. G.

    2017-05-01

    CdS nanoparticles (NPs) nucleated at different temperatures were composited with PVA to control and fine-tune optical absorption and emission of the nano-hybrid composite by varying the sizes of the CdS NPs which in turn depends on the nucleation temperature. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with absorption and photoluminescence spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with refractive index in the range of 2-4. UV/VIS measurements were also used in calculating different optical and dielectric parameters such as refractive index, extinction coefficient, dielectric constants, and optical conductivity. The optical parameters varied with the incorporation of CdS NPs within PVA matrix; accordingly, the optical constants of the nanocomposite films could be controlled by size of CdS content. Tauc's relation was used to determine the optical band gap and to determine the type of electronic transition. It is found that the direct allowed transition is more probable in CdS/PVA nanocomposite film of direct band gap around 3.8 eV. Blue and green light emissions from CdS/PVA nanocomposite film have been observed. Further, the PL studies indicated the emission peak observed at UV band represents band to band transition, while the blue and green emissions could be assigned to the optical transition of the first excitonic state of the CdS NPs and emission from interstitial sulfur respectively. The blue shift in the PL spectra was parallel to the shift observed in UV/VIS spectra. Because of its excellent fluorescence and highly transparent performance, the composite film of CdS nucleated at 200 °C was found to be suitable for bio-related applications such as bio-labeling, bio-imaging, drug delivery, and LEDs as well as a window layer in solar cell.

  17. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    Science.gov (United States)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  18. Structural, Mechanical and Tribological Properties of NbCN-Ag Nanocomposite Films Deposited by Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Fanjing Wu

    2018-01-01

    Full Text Available In this study, reactive magnetron sputtering was applied for preparing NbCN-Ag films with different Ag additions. Ag contents in the as-deposited NbCN-Ag films were achieved by adjusting Ag target power. The composition, microstructure, mechanical properties, and tribological properties were characterized using energy-dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HRTEM, Raman spectrometry, nano-indentation, and high-temperature sliding wear tests. Results indicated that face-centered cubic (fcc NbN, hexagonal close-packed (hcp NbN and fcc Ag, amorphous C and amorphous CNx phase co-existed in the as-deposited NbCN-Ag films. After doping with 2.0 at.% Ag, the hardness and elastic modulus reached a maximum value of 33 GPa and 340 GPa, respectively. Tribological properties were enhanced by adding Ag in NbCN-Ag films at room temperature. When the test temperature rose from 300 to 500 °C, the addition of Ag was found beneficial for the friction properties, showing a lowest friction coefficient of ~0.35 for NbCN-12.9 at.% Ag films at 500 °C. This was mainly attributed to the existence of AgOx, NbOx, and AgNbOx lubrication phases that acted as solid lubricants to modify the wear mechanism.

  19. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application

    International Nuclear Information System (INIS)

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-01-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness = 262.4 MPa; elastic modulus = 5800 MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. - Highlights: • PVA/ZrP (undoped/doped with Ca, Mg and Ti) nanocomposite scaffolds were developed. • The nanocomposites were prepared via solvent casting method. • PVA/doped ZrP films exhibited enhanced mechanical properties than PVA/undoped ZrP. • Excellent bioactivity was observed in the PVA/doped ZrP films than PVA/undoped ZrP.

  20. Low friction slip-rolling contacts. Influences of alternative steels, high performance thin film coatings and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Christian

    2013-02-01

    Due to the growing environmental awareness worldwide, containment provisions for CO{sub 2} emissions in mobility systems and increasing performance requirements the demands on mechanical systems and their materials continuously rise. These high demands require the implementation of new technical approaches, for example of light-weight strategies in automotive powertrains, and directly raise questions about the suitability of the most promising technical solution. Two basic parameters, the surface hardness of the tooth flanks and the core fatigue strength of the tooth root, illustrate exemplarily increasing demands on material grades used for gear wheels in automotive powertrains. In addition to light-weight strategies, a reduction in friction and an increase of the fatigue lifetime are two other major development directions to strive the mentioned targets. It is clear that any kind of solution must show an equal application profile, preferably an improvement, compared to the state-of-the-art solutions. For tribological systems, the following paths may offer lower friction and higher load carrying capabilities: 1. Alternative base oils and additives (such as esters, polyglycols), 2. Thin film coatings (e.g. DLC) and/or 3. Novel steel metallurgies. In previous investigations on the slip-rolling resistance of thin film coatings (a-C, ta-C, Zr(C,N)) the substrates were mainly made of the bearing steels 100Cr6H and Cronidur 30. Applying contact pressures of up to P{sub 0max} = 2.9 GPa (F{sub N} = 2,000 N), the samples were tested up to 10 million load cycles in endurance tests. The aim of the present work is to broaden the research by varying the input parameters. Newly developed engine oil mixtures, high performance thin film coatings and alternative steel solutions are intensively investigated in highly stressed slip-rolling contacts at lubricant temperatures of 120 C. Specifically, in using new steel metallurgies, i.e. the high toughness and high strength steels V300

  1. Friction regimes in the lubricants solid-state regime

    NARCIS (Netherlands)

    Schipper, Dirk J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and

  2. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties.

    Science.gov (United States)

    Murariu, Marius; Doumbia, Awa; Bonnaud, Leila; Dechief, Anne-Laure; Paint, Yoann; Ferreira, Manuela; Campagne, Christine; Devaux, Eric; Dubois, Philippe

    2011-05-09

    Metallic oxides have been successfully investigated for the recycling of polylactide (PLA) via catalyzed unzipping depolymerization allowing for the selective recovery of lactide monomer. In this contribution, a metallic oxide nanofiller, that is, ZnO, has been dispersed into PLA without detrimental polyester degradation yielding PLA/ZnO nanocomposites directly suitable for producing films and fibers. The nanocomposites were produced by melt-blending two different grades of PLA with untreated ZnO and surface-treated ZnO nanoparticles. The surface treatment by silanization proved to be necessary for avoiding the decrease in molecular weight and thermal and mechanical properties of the filled polyester matrix. Silane-treated ZnO nanoparticles yielded nanocomposites characterized by good mechanical performances (tensile strength in the interval from 55 to 65 MPa), improved thermal stability, and fine nanofiller dispersion, as evidenced by microscopy investigations. PLA/ZnO nanocomposites were further extruded in films and fibers, respectively, characterized by anti-UV and antibacterial properties.

  3. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Science.gov (United States)

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  5. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-01-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH. Images Fig. 10 PMID:3490

  6. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  7. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    The main objective of this research project is the investigation of multirecess hydrostatic journal bearings with active hybrid (hydrostatic and hydrodynamic) lubrication. This paper gives a theoretical contribution to the modeling of this kind of bearing, combining computational fluid dynamics...

  8. A computer solution for the dynamic load, lubricant film thickness and surface temperatures in spiral bevel gears

    Science.gov (United States)

    Chao, H. C.; Cheng, H. S.

    1987-01-01

    A complete analysis of spiral bevel gear sets is presented. The gear profile is described by the movements of the cutting tools. The contact patterns of the rigid body gears are investigated. The tooth dynamic force is studied by combining the effects of variable teeth meshing stiffness, speed, damping, and bearing stiffness. The lubrication performance is also accomplished by including the effects of the lubricant viscosity, ambient temperature, and gear speed. A set of numerical results is also presented.

  9. Fabrication of Antibacterial Poly(Vinyl Alcohol Nanocomposite Films Containing Dendritic Polymer Functionalized Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Andreas Sapalidis

    2018-03-01

    Full Text Available A series of poly(vinyl alcohol (PVA nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI are prepared by solvent casting technique. The modified carbon-based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0% w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized CNTs into the PVA matrix.

  10. Structure and magnetic properties of spinel-perovskite nanocomposite thin films on SrTiO3 (111) substrates

    Science.gov (United States)

    Kim, Dong Hun; Yang, Junho; Kim, Min Seok; Kim, Tae Cheol

    2016-09-01

    Epitaxial CoFe2O4-BiFeO3 nanocomposite thin films were synthesized on perovskite structured SrTiO3 (001) and (111) substrates by combinatorial pulsed laser deposition and characterized using scanning electron microscopy, x-ray diffraction, and vibrating sample magnetometer. Triangular BiFeO3 nanopillars were formed in a CoFe2O4 matrix on (111) oriented SrTiO3 substrates, while CoFe2O4 nanopillars with rectangular or square top surfaces grew in a BiFeO3 matrix on (001) substrates. The magnetic hysteresis loops of nanocomposites on (111) oriented SrTiO3 substrates showed isotropic properties due to the strain relaxation while those of films on SrTiO3 (001) substrates exhibited a strong out-of-plane anisotropy originated from shape and strain effects.

  11. Synthesis and characterization of foldable and magnetic field-sensitive, freestanding poly(vinyl acetate)/poly(vinyl chloride)/polyfuran composite and nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sarıtaş, Sevilay; Eşsiz, Serpil; Sarı, Bekir, E-mail: bsari@gazi.edu.tr

    2017-07-01

    Highlights: • In this study, ternary composite/nanocomposite films were synthesized. • Magnetic field-sensitive folding films were prepared without any elastomer. • Morphological studies show that all composite films have a smooth surface. • The ternary composites/nanocomposite show improved thermal stability compared to the pure PF. - Abstract: In this study, polyfuran and poly(vinyl acetate)/poly(vinyl chloride)/polyfuran ternary composites were synthesized via the chemical polymerization method. The temperature and magnetic field–sensitive novel composites and the nanocomposite were obtained in the form of powders and films. It was observed that the prepared novel conductive films have superior properties at a certain temperature range (25–50 °C) such as bending and folding. The structural properties, thermal behavior, surface morphology, internal structure, and surface roughness of the prepared samples were investigated by various characterization techniques. The conductivities of the samples were measured at room temperature and different temperatures by the four-point technique. X-ray Diffraction analysis results demonstrated that the PF and composites have an amorphous structure, whereas the nanocomposite is in crystalline form. The saturation magnetization (Ms) values of the magnetite and nanocomposite were found to be 58.9 and 5.3 emu g{sup −1}, respectively. It was found that magnetite-doped nanocomposite has superparamagnetic properties at room temperature.

  12. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  13. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  14. EFFECT OF VARIOUS POROUS STRUCTURES ON THE SHLIOMIS MODEL BASED FERROFLUID LUBRICATION OF THE FILM SQUEEZED BETWEEN ROTATING ROUGH CURVED CIRCULAR PLATES

    Directory of Open Access Journals (Sweden)

    Jimit R Patel

    2014-12-01

    Full Text Available Efforts have been made to analyze the Shliomis model based ferrofluid lubrication of a squeeze film between rotating rough curved circular plates where the upper plate has a porous facing. Different models of porosity are treated. The stochastic modeling of Christensen and Tonder has been employed to evaluate the effect of surface roughness. The related stochastically averaged Reynolds type equation is numerically solved to obtain the pressure distribution, leading to the calculation of load carrying capacity. The results presented in graphical form establish that the Kozeny-Carman model is more favorable as compared to the Irmay one from the design point of view. It is observed that the Shliomis model based ferrofluid lubrication performs relatively better than the Neuringer-Rosensweig one. Although the bearing suffers due to transverse surface roughness, with a suitable choice of curvature parameters and rotational ratio, the negative effect of porosity and standard deviation can be minimized by the ferrofluid lubrication at least in the case of negatively skewed roughness.

  15. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties.

    Science.gov (United States)

    Mohammadi, Hamid; Kamkar, Abolfazl; Misaghi, Ali

    2018-02-01

    This work examined the physico mechanical parameters and antibacterial activity of CMC/okra mucilage (OM) blend films containing ZnO nanoparticles (NPs). Different proportions of CMC and okra mucilage (100/0; 70/30; 60/40 and 50/50 respectively), were mixed and casted to posterior analysis of formed films. The more colored films were obtained by higher contents of okra mucilage and adding ZnO nanoparticles. The incorporation of ZnO NPs into CMC film decreased the elongation at the break (EB) value of the films and increased the tensile strength (TS) value of the film. With increase in CMC concentration in the films, higher water vapor permeability and higher solubility in water were achieved. Microstructure analysis using SEM showed a smooth and compact surface morphology, homogeneous structure, and a rough surface for CMC, CMC+ZnO, and CMC/OM30%+ZnO, respectively. Nanocomposite films presented antibacterial activity against tested bacteria. Films contained okra mucilage showed more antibacterial activity. The inhibitory activities of resultant films were stronger against S. aureus than E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    International Nuclear Information System (INIS)

    Lu, Jinlin; Song, Hua; Li, Suning; Wang, Lin; Han, Lu; Ling, Han; Lu, Xuehong

    2015-01-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO 2 ) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO 2 nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO 2 nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO 2 and the synergistic effect between the inorganic nano-TiO 2 and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO 2 nanocomposite film by electropolymerization • PEDOT:PSS/TiO 2 film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO 2 film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO 2 film displays a good stability for electrochromic application

  17. Ag{sup +12} ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sarla; Vijay, Y. K. [Department of Physics, University of Rajasthan, Jaipur-302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur-302017 (India)

    2013-02-05

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag{sup +12} ions at different fluences varying from 1 Multiplication-Sign 10{sup 11} to 1 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  18. Ag+12 ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    International Nuclear Information System (INIS)

    Sharma, Sarla; Vijay, Y. K.; Vyas, Rishi

    2013-01-01

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag +12 ions at different fluences varying from 1×10 11 to 1×10 13 ions/cm 2 . The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1×10 12 ion/cm 2 ). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  19. Nanocomposite films of cobalt-containing polyacrylonitrile as a basis of gas-sensitive material for resistive type sensors

    Science.gov (United States)

    Bednaya, T. A.; Konovalenko, S. P.

    2017-05-01

    The structure of the metal-carbon nanocomposite based on cobalt-containing polyacrylonitrile (PAN) is studied. The morphology of a surface with the theory of selforganization was analysed. The elemental composition, chemical and electronic states of the elements composing the material films are determined by the X-ray photoelectron spectroscopy (XPS) method. The X-ray diffraction (XRD) method shows that the obtained materials contain crystalline inclusions of CoO, Co3O4 and CoO (OH) in the organic matrix of PAN. Gas-sensitive characteristics of the obtained films.

  20. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films

    Science.gov (United States)

    Arya, Anil; Sharma, A. L.

    2018-01-01

    Free-standing solid polymer nanocomposite (PEO-PVC)  +  LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5  ×  10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion  =  0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a

  1. Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensing

    Science.gov (United States)

    Rodrigues, M. S.; Costa, D.; Domingues, R. P.; Apreutesei, M.; Pedrosa, P.; Martin, N.; Correlo, V. M.; Reis, R. L.; Alves, E.; Barradas, N. P.; Sampaio, P.; Borges, J.; Vaz, F.

    2018-04-01

    Nanomaterials based on Localized Surface Plasmon Resonance (LSPR) phenomena are revealing to be an important solution for several applications, namely those of optical biosensing. The main reasons are mostly related to their high sensitivity, with label-free detection, and to the simplified optical systems that can be implemented. For the present work, the optical sensing capabilities were tailored by optimizing LSPR absorption bands of nanocomposite Au/TiO2 thin films. These were grown by reactive DC magnetron sputtering. The main deposition parameters changed were the number of Au pellets placed in the Ti target, the deposition time, and DC current applied to the Ti-Au target. Furthermore, the Au NPs clustering, a key feature to have biosensing responses, was induced by several post-deposition in-air annealing treatments at different temperatures, and investigated via SEM analysis. Results showed that the Au/TiO2 thin films with a relatively low thickness (∼100 nm), revealing concentrations of Au close to 13 at.%, and annealed at temperatures above 600 °C, had the most well-defined LSPR absorption band and thus, the most promising characteristics to be explored as optical sensors. The NPs formation studies revealed an incomplete aggregation at 300 and 500 ⁰C and well-defined spheroidal NPs for higher temperatures. Plasma treatment with Ar led to a gradual blue-shift of the LSPR absorption band, which demonstrates the sensitivity of the films to changes in the dielectric environment surrounding the NPs (essential for optical sensing applications) and the exposure of the Au nanoparticles (crucial for a higher sensitivity).

  2. Micro-elasthohydrodynamic lubrication in concentrated sliding contacts

    NARCIS (Netherlands)

    Sloetjes, J.W.

    2006-01-01

    Due to the trend of down-sizing, machine elements are forced to operate under increasingly severe conditions. For lubricated systems this means that the lubricating films reduce to a level such that asperity interaction starts to play a role. For this reason, the full film lubrication of

  3. Improvement in Functional Properties of Soy Protein Isolate-Based Film by Cellulose Nanocrystal–Graphene Artificial Nacre Nanocomposite

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-07-01

    Full Text Available A facile, inexpensive, and green approach for the production of stable graphene dispersion was proposed in this study. We fabricated soy protein isolate (SPI-based nanocomposite films with the combination of 2D negative charged graphene and 1D positive charged polyethyleneimine (PEI-modified cellulose nanocrystals (CNC via a layer-by-layer assembly method. The morphologies and surface charges of graphene sheets and CNC segments were characterized by atomic force microscopy and Zeta potential measurements. The hydrogen bonds and multiple interface interactions between the filler and SPI matrix were analyzed by Attenuated Total Reflectance–Fourier Transform Infrared spectra and X-ray diffraction patterns. Scanning electron microscopy demonstrated the cross-linked and laminated structures in the fracture surface of the films. In comparison with the unmodified SPI film, the tensile strength and surface contact angles of the SPI/graphene/PEI-CNC film were significantly improved, by 99.73% and 37.13% respectively. The UV–visible light barrier ability, water resistance, and thermal stability were also obviously enhanced. With these improved functional properties, this novel bio-nanocomposite film showed considerable potential for application for food packaging materials.

  4. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material.

    Science.gov (United States)

    Arfat, Yasir Ali; Ejaz, Mohammed; Jacob, Harsha; Ahmed, Jasim

    2017-02-10

    Guar gum (GG) based nanocomposite (NC) films were prepared by incorporating silver-copper alloy nanoparticles (Ag-Cu NPs) through solution casting method. Effect of NP loadings (0.5-2%) on the thermo-mechanical, optical, spectral, oxygen barrier and antimicrobial properties of the GG/Ag-Cu NC films were investigated. Tensile testing showed an improvement in the mechanical strength, and a decrease in elongation at break for all NP loadings. NP incorporation into GG films showed a marked influence on the color values. The NC films showed excellent UV, light and oxygen barrier capability. Thermal properties of the NC films were improved as evidenced from the differential scanning calorimetry and the thermal conductivity data. NC films became rough and coarse over neat GG film as visualized through the scanning electron microscopy. A strong antibacterial activity was exhibited by NC films against both Gram-positive and Gram-negative bacteria, and therefore, the film could be considered as an active food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites

    Directory of Open Access Journals (Sweden)

    Soliman Abdalla

    2016-02-01

    Full Text Available Nano-composite films have been the subject of extensive work for developing the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of four highly pure amorphous polymer films: polymethyl methacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher breakdown performance is a character of polyimide (PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  6. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    International Nuclear Information System (INIS)

    Zhang Lin; Li Fan; Chen Yiwang; Wang Xiaofeng

    2011-01-01

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: → ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. → ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. → Thermal stability of these films is improved compared with those of physically blending ones.

  7. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Li Fan, E-mail: lfan@ncu.edu.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Xiaofeng [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-08-15

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: > ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. > ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. > Thermal stability of these films is improved compared with those of physically blending ones.

  8. The effect of FR enhancement in reactive ion beam sputtered Bi, Gd, Al-substituted iron- garnets: Bi2O3 nanocomposite films

    OpenAIRE

    Berzhansky, V.; Shaposhnikov, A.; Karavainikov, A.; Prokopov, A.; Mikhailova, T.; Lukienko, I.; Kharchenko, Yu.; Miloslavskaya, O.; Kharchenko, N.

    2012-01-01

    The effect of considerable Faraday rotation (FR) and figure of merit (Q) enhancement in Bi, Gd, Al-substituted iron garnets: Bi2O3 nano-composite films produced by separate reactive ion beam sputtered Bi:YIG and Bi2O3 films was found. It reached threefold enhancement of the FR and twofold of the Q one on GGG substrates.

  9. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  10. Dependence of Pin Surface Roughness for Friction Forces of Ultrathin Perfluoropolyether Lubricant Film on Magnetic Disks by Pin-on-Disk Test

    Directory of Open Access Journals (Sweden)

    H. Tani

    2012-01-01

    Full Text Available We fabricated supersmooth probes for use in pin-on-disk sliding tests by applying gas cluster ion beam irradiation to glass convex lenses. In the fabrication process, various changes were made to the irradiation conditions; these included one-step irradiation of Ar clusters or two-step irradiation of Ar and N2 clusters, with or without Ar cluster-assisted tough carbon deposition prior to N2 irradiation, and the application of various ion doses onto the surface. We successfully obtained probes with a centerline averaged surface roughness that ranged widely from 1.08 to 4.30 nm. Using these probes, we measured the friction forces exerted on magnetic disks coated with a molecularly thin lubricant film. Perfluoropolyether lubricant films with different numbers of hydroxyl end groups were compared, and our results indicated that the friction force increases as the surface roughness of the pin decreases and that increases as the number of hydroxyl end groups increases.

  11. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite.

    Science.gov (United States)

    Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E

    2010-06-01

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.

  12. Lubrication a practical guide to lubricant selection

    CERN Document Server

    Lansdown, A R

    1982-01-01

    Lubrication: A Practical Guide to Lubricant Selection provides a guide to modern lubrication practice in industry, with emphasis on practical application, selection of lubricants, and significant factors that determine suitability of a lubricant for a specific application. Organized into 13 chapters, this book begins with a brief theoretical opening chapter on the basic principles of lubrication. A chapter then explains the choice of lubricant type, indicating how to decide whether to use oil, grease, dry lubricant, or gas lubrication. Subsequent chapters deal with detailed selection of lubric

  13. Improvement of Food Packaging-Related Properties of Whey Protein Isolate-Based Nanocomposite Films and Coatings by Addition of Montmorillonite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2017-11-01

    Full Text Available In this study, the effects of the addition of montmorillonite (MMT nanoplatelets on whey protein isolate (WPI-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast films and coatings were prepared by dispersing 0% (reference sample, 3, 6, 9% (w/w protein MMT, or, depending on the protein concentration, also 12 and 15% (w/w protein MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15% (w/w protein MMT into 10% (w/w dispersion WPI-based cast films or coatings, the oxygen permeability (OP was reduced by 91% for glycerol-plasticized and 84% for sorbitol-plasticized coatings, water vapor transmission rate was reduced by 58% for sorbitol-plasticized cast films. Due to the addition of MMT nanofillers, the Young’s modulus and tensile strength improved by 315 and 129%, respectively, whereas elongation at break declined by 77% for glycerol-plasticized cast films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high-nanofiller loadings. These results suggest that the addition of natural MMT nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging

  14. Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: fabrication, characterization and properties.

    Science.gov (United States)

    Azizi, Susan; Ahmad, Mansor B; Ibrahim, Nor Azowa; Hussein, Mohd Zobir; Namvar, Farideh

    2014-06-18

    In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.

  15. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure

    Directory of Open Access Journals (Sweden)

    Junlong Tian

    2015-06-01

    Full Text Available In this work, Au-Bi2Te3 nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus forewing (T_FW as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi2Te3 nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD, field-emission scanning-electron microscopy (FESEM, and transmission electron microscopy (TEM. Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi2Te3 nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.

  16. Electronic excitation induced modifications of structural, electrical and optical properties of Cu-C60 nanocomposite thin films

    Science.gov (United States)

    Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Ojha, S.; Chand, S.; Sharma, G. D.

    2017-09-01

    High energy ion irradiation significantly affects the size and shape of nanoparticles in composites. Low concentration metal fraction embedded in fullerene matrix in form of nanocomposites was synthesized by thermal co-evaporation method. Swift heavy ion irradiation was performed with 120 MeV Au ion beam on Cu-C60 nanocomposites at different fluences 1 × 1012, 3 × 1012, 6 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Absorption spectra demonstrated that absorption intensity of nanocomposite thin film was increased whereas absorption modes of fullerene C60 were diminished with fluence. Rutherford backscattering spectroscopy was also performed to estimate the thickness of the film and atomic metal fraction in matrix and found to be 45 nm and 3%, respectively. Transmission electron microscopy was performed for structural and particle size evaluation of Cu nanoparticles (NPs) in fullerene C60 matrix. A growth of Cu nanoparticles is observed at a fluence of 3 × 1013 ions/cm2 with a bi-modal distribution in fullerene C60. Structural evolution of fullerene C60 matrix with increasing fluence of 120 MeV Au ion beam is studied by Raman spectroscopy which shows the amorphization of matrix (fullerene C60) at lower fluence. The growth of Cu nanoparticles is explained using the phenomena of Ostwald ripening.

  17. Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices

    Science.gov (United States)

    Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang

    2017-12-01

    Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.

  18. Au–C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Saif A., E-mail: khansaifahmad@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Saravanan, K. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Tayyab, M.; Bagchi, S. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Structural evolution of gold–carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au–C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au–C{sub 60} NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 10{sup 18} W cm{sup −2}. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au–C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  19. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Magnetic nanocomposites

    OpenAIRE

    Kulkarni, Amit

    2012-01-01

    Composite materials result from combination of two or more materials benefiting from the favorable properties of each constituent. Especially when the filler material is in nanometer size, it offers extra degrees of freedom with which physical properties can be manipulated to obtain new functionalities. Such materials are known as nanocomposites. For instance the electrical conductivity of nanocomposite film depends on the inter particle separation and can be varied from insulating to metalli...

  1. Lubricant Film Breakdown and Material Pick-Up in Sheet Forming of Advanced High Strength Steels and Stainless Steels when Using Environmental Friendly Lubricants

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Olsson, M.; Bay, Niels

    2014-01-01

    chemically with the tool and workpiece material forming thin films, which adhere strongly to the surfaces and reduce the tendency to metal-metal contact and material pick-up. Production tests of new, environmentally benign tribo-systems are, however, costly and laboratory tests are preferred as a preliminary...... the tribological performance, i.e. tendency to material pick-up and galling, of the evaluated tribo-systems. Moreover the SEM analysis shows that different workpiece materials result in different types of material pick-up....

  2. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rujisamphan, Nopporn [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Murray, Roy E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Deng, Fei [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Supasai, Thidarat, E-mail: fscitrs@ku.ac.th [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-04-15

    Graphical abstract: - Highlights: • The well-controlled Ti–PTFE composite films were prepared by co-sputtering. • Ti clusters showed particle sizes varied between 10 and 30 nm in the PTFE matrix. • The swelling of polymer is the driving force to change interparticle distance and therefore a change in resistance. • The sensitivities of the Ti–PTFE devices were found to be in a range of 1.01–1.04. - Abstract: Titanium and polytetrafluoroethylene (Ti–PTFE) nanocomposite thin films were successfully fabricated on glass substrates using a combination of dc and rf magnetron sputtering. When the Ti–PTFE composites were prepared at below the percolation threshold i.e. 27% metal volume filling (F), Ti clusters with the average sizes of 7 ± 2 nm were found. As the Ti content was increased above the percolation threshold (F = 62%), the connecting regions of Ti were formed within the polymer matrix and the electrical property changed rapidly from insulator-like to metal-like properties. The Ti–PTFE composites prepared near the percolation threshold showed the electrical response to different volatile organic compounds (VOCs). The sensitivity significantly depended upon the VOCs concentrations. These composites devices showed the presence of distinct chemical bonds of C−C, C−CF, C−F and CF{sub 2} and TiF in TiO{sub 2} on the surface as investigated by X-ray photoelectron spectroscopy (XPS) while the surface morphology, characterized by atomic force microscopy (AFM) presented the root mean square (RMS) surface roughness of 13.3 nm. Cross-section transmission electron microscopy (TEM) images of the device revealed Ti clusters dispersed in PTFE matrix with particle sizes varied between 10 nm and 30 nm.

  3. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  4. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  5. Manganese dioxide-graphene nanocomposite film modified electrode as a sensitive voltammetric sensor of indomethacin detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuxia; Zhang, Zhenfa; Zhang, Cuizong; Huang, Wei; Liang, Caiyun; Peng, Jinyun [Guangxi Normal University for Nationalities, Chongzuo (China)

    2016-08-15

    Excess amount of analgesic and anti-inflammatory drug, such as indomethacin, often leads to serious gastrointestinal complications; therefore, amount of such active compound should be regulated in commercial drugs. This study proposes an efficient analytical technique to detect indomethacin selectively. We prepared and investigated electrochemical properties of a manganese dioxide-graphene nanocomposite film modified glassy carbon electrode (MnO{sub 2}-Gr/GCE). The behavior of the modified electrode as electrocatalyst towards indomethacin oxidation was also examined. The cyclic voltammetric results reveal that the electrocatalytic activity for the oxidation of indomethacin can significantly be enhanced on the MnO{sub 2}-Gr/GCE. Indomethacin exhibited a sensitive anodic peak at about 0.90 V at MnO{sub 2}-Gr/GCE. The data obtained from differential pulse voltammetry showed that the anodic peak currents were linearly dependent on the indomethacin concentrations in the range of 1.0 X 10{sup -7} to 2.5 X 10{sup -5} mol/L with a detection limit of 3.2 X 10{sup -8} mol/L (S/N = 3). Most importantly, the proposed method shows efficient and selective sensing of indomethacin in commercial harmaceutical formulations. This is the first report of a voltammetric sensor for indomethacin using MnO{sub 2}-Gr/GCE. We believe that this new method can be commercialized for routine applications in laboratories.

  6. Desenvolvimento de filmes de nananocompósitos polipropileno/argila organofílica para embalagens Development of polypropylene/organoclay nanocomposite films for packaging

    Directory of Open Access Journals (Sweden)

    Arthur R. A. Araújo

    2012-01-01

    Full Text Available Neste trabalho foram preparados filmes de nanocompósitos de polipropileno (PP contendo 1% em massa de bentonita modificada organicamente com tecnologia nacional (APO. Polipropileno enxertado com anidrido maleico (PP-g-AM e copolímero de etileno e álcool vinílico (EVOH foram utilizados como agentes compatibilizantes. Os nanocompósitos foram preparados através da intercalação no estado fundido em extrusora de filme plano. A influência do tipo e do teor de compatibilizante e do tipo de polipropileno, na morfologia, propriedades mecânicas e de barreira ao vapor d'água dos referidos filmes foi investigada. Os dados de difração de raio X evidenciam que apesar da morfologia dos nanocompósitos ter sido afetada pelo tipo de compatibilizante, esta praticamente não variou com o teor de compatibilizante utilizado. As morfologias e as propriedades de barreira ao vapor d'água dos nanocompósitos preparados com os polipropilenos PP H401 e PP H07D-00 são semelhantes. Entretanto, aqueles preparados com PP H07D-00 apresentaram melhores propriedades mecânicas, excetuando a resistência da termossoldagem à tração, do que os preparados com a matriz polimérica PP H401, e a transparência dos nanocompósitos preparados com PP H07D-00 foi idêntica à da matriz polimérica sem argila. Os resultados indicam que os filmes de nanocompósitos PP H07D-00 compatibilizados com 15% de PP-g-AM e contendo 1% de argila organofílica APO podem ser promissores para aplicação em embalagens.This work deals with polypropylene (PP nanocomposite films containing 1 wt. (% bentonite clay organically modified with national technology (APO. Maleic anhydride grafted polypropylene (PP-g-MA and ethylene vinyl alcohol (EVOH were used as compatibilizing agents. Nanocomposites were prepared by melt intercalation in a flat film extruder. An investigation was made of the influence from the type and content of compatibilizer and type of polypropylene on the morphology

  7. Solid Lubrication Fundamentals and Applications. Chapter 2

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.

  8. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  9. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two

  10. Effect of titanium oxide–polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors

    International Nuclear Information System (INIS)

    Della Pelle, Andrea M.; Maliakal, Ashok; Sidorenko, Alexander; Thayumanavan, S.

    2012-01-01

    Previous studies have shown that organic thin film transistors with pentacene deposited on gate dielectrics composed of a blend of high K titanium oxide–polystyrene core–shell nanocomposite (TiO 2 –PS) with polystyrene (PS) perform with an order of magnitude increase in saturation mobility for TiO 2 –PS (K = 8) as compared to PS devices (K = 2.5). The current study finds that this performance enhancement can be translated to alternative small single crystal organics such as α-sexithiophene (α-6T) (enhancement factor for field effect mobility ranging from 30-100× higher on TiO 2 –PS/PS blended dielectrics as compared to homogenous PS dielectrics). Interestingly however, in the case of semicrystalline polymers such as (poly-3-hexylthiophene) P3HT, this dramatic enhancement is not observed, possibly due to the difference in processing conditions used to fabricate these devices (film transfer as opposed to thermal evaporation). The morphology for α-sexithiophene (α-6T) grown by thermal evaporation on TiO 2 –PS/PS blended dielectrics parallels that observed in pentacene devices. Smaller grain size is observed for films grown on dielectrics with higher TiO 2 –PS content. In the case of poly(3-hexylthiophene) (P3HT) devices, constructed via film transfer, morphological differences exist for the P3HT on different substrates, as discerned by atomic force microscopy studies. However, these devices only exhibit a modest (2×) increase in mobility with increasing TiO 2 –PS content in the films. After annealing of the transferred P3HT thin film transistor (TFT) devices, no appreciable enhancement in mobility is observed across the different blended dielectrics. Overall the results support the hypothesis that nucleation rate is responsible for changes in film morphology and device performance in thermally evaporated small molecule crystalline organic semiconductor TFTs. The increased nucleation rate produces organic polycrystalline films with small grain

  11. Developments in lubricant technology

    CERN Document Server

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  12. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    Science.gov (United States)

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films

    Science.gov (United States)

    El-Bashir, S. M.; Alwadai, N. M.; AlZayed, N.

    2018-02-01

    Polymer nanocomposite films were prepared by doping fullerene C60 in polymer blend composed of polymethacrylate/polyvinyl acetate blends (PMMA/PVAc) using solution cast technique. The films were characterized by differential scanning calorimeter (DSC), Transmission electron microscope (TEM), DC/AC electrical conductivity and dielectric measurements in the frequency range (100 Hz- 1 MHz). The glass transition temperature, Tg, was increased by increasing the concentration of fullerene C60; this property reflects the increase of thermal stability by increasing the nanofiller content. The DC and AC electrical conductivities were enhanced by increasing C60 concentration due to the electron hopping or tunneling between filled and empty localized states above Tg. The relaxation time was determined from the αβ -relaxations and found to be attenuated by increasing the temperature as a typical behavior of amorphous polymers. The calculated values of thermodynamic parameters revealed the increase of molecular stability by increasing the doping concentration; this feature supports the application of PMMA/PVAc/C60 nanocomposite films in a wide scale of solar energy conversion applications such as luminescent down-shifting (LDS) coatings for photovoltaic cells.

  14. Local probing of magnetoelectric coupling and magnetoelastic control of switching in BiFeO3-CoFe2O4 thin-film nanocomposite

    Science.gov (United States)

    Yan, Feng; Chen, Guannan; Lu, Li; Finkel, Peter; Spanier, Jonathan E.

    2013-07-01

    We report on the combination of piezoresponse force microscopy (PFM), magnetic force microscopy, and local ferroelectric switching with magnetic field for the study of a thin-film magnetoelectric (ME) nanocomposite. The collection of PFM under an applied variable magnetic field within a polycrystalline perovskite-spinel BiFeO3-CoFe2O4 (BFO-CFO) 0-3 type thin-film nanocomposite enables quantitative and proximal measurement of magnetoelastic strain-driven ME response. Combination of measurement of the as-grown strain state with local measurements of microstructure and macroscopic magnetization permits local mapping of ME coupling.

  15. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO3:CoFe2O4 vertically aligned nanocomposite thin films

    Science.gov (United States)

    Zhang, Wenrui; Jian, Jie; Chen, Aiping; Jiao, Liang; Khatkhatay, Fauzia; Li, Leigang; Chu, Frank; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2014-02-01

    Self-assembled BiFeO3:CoFe2O4 (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO3 (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  16. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan

    2014-01-01

    Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively...... on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates.© 2014 Elsevier B.V. All rights reserved...

  17. Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans

    Directory of Open Access Journals (Sweden)

    Sinem Yeniyol

    2015-01-01

    Full Text Available Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM, and X-ray diffraction (XRD. The topology was assessed by White Light Optical Profiling (WLOP in the Vertical Scanning Interferometer (VSI mode. Representative height descriptive parameters of roughness Ra and Rz were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB dye solution. The antibacterial ability of the photocatalyst was examined by  Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2–5 µm and protruding hills (10–50 µm on Ti substrates were produced after electrochemical anodization with higher Ra and Rz surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization.

  18. Microstructure and magnetic properties of FePt:Ag nanocomposite films on SiO2/Si(1 0 0)

    International Nuclear Information System (INIS)

    Wang Hao; Yang, F.J.; Wang, H.B.; Cao, X.; Xue, S.X.; Wang, J.A.; Gao, Y.; Huang, Z.B.; Yang, C.P.; Chiah, M.F.; Cheung, W.Y.; Wong, S.P.; Li, Q.; Li, Z.Y.

    2006-01-01

    FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO 2 /Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 deg. C

  19. Pillar shape modulation in epitaxial BiFeO3–CoFe2O4 vertical nanocomposite films

    OpenAIRE

    Dong Hun Kim; Nicolas M. Aimon; C. A. Ross

    2014-01-01

    Self-assembled epitaxial CoFe2O4-BiFeO3 nanocomposite films, in which pillars of CoFe2O4 grow within a single crystal BiFeO3 matrix, show both ferrimagnetism and ferroelectricity. The pillars typically have a uniform cross-section, but here two methods are demonstrated to produce a width modulation during growth by pulsed laser deposition. This was achieved by growing a blocking layer of BiFeO3 to produce layers of separated pillars or pillars with constrictions, or by changing the temperatur...

  20. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  1. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Kiran, George Seghal; Jackson, Stephen A; Priyadharsini, Sethu; Dobson, Alan D W; Selvin, Joseph

    2017-08-22

    Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB:Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 °C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination.

  2. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  3. Pressure-viscosity coefficient of biobased lubricants

    Science.gov (United States)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  4. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film.

    Science.gov (United States)

    Yang, Changjun; Gong, Chuqing; Peng, Tianyou; Deng, Kejian; Zan, Ling

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO(2) nano-composite film was prepared by embedding VC modified nano-TiO(2) photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO(2) nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO(2) film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO(2) nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO(2) film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO(2) is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti(IV)-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Plasma-enhanced chemical-vapor deposition of titanium aluminum carbonitride/amorphous-carbon nanocomposite thin films

    Science.gov (United States)

    Shieh, Jiann; Hon, Min Hsiung

    2002-01-01

    A new nanocomposite, titanium aluminum carbonitride/amorphous-carbon thin film was prepared by radio-frequency (rf) plasma-enhanced chemical-vapor deposition using titanium tetrachloride, aluminum trichloride, methane, and nitrogen as reactants. Hydrogen was used as carrier gases. A substrate temperature of 500 °C and an rf power of 100 W were used in all depositions. The films were characterized by x-ray powder diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. The results show that nanograins of titanium aluminum carbonitride were embedded in an amorphous-carbon matrix. The nanograins had a (200) preferred orientation with columnar cross-section morphology. Mechanical properties were analyzed by nanoindentation and hardness was demonstrated to increase via this microstructure design approach. The effects of microstructure on mechanical properties were also determined.

  6. Plasma-enhanced chemical-vapor deposition of titanium aluminum carbonitride/amorphous-carbon nanocomposite thin films

    International Nuclear Information System (INIS)

    Shieh Jiann; Hon, M.H.

    2002-01-01

    A new nanocomposite, titanium aluminum carbonitride/amorphous-carbon thin film was prepared by radio-frequency (rf) plasma-enhanced chemical-vapor deposition using titanium tetrachloride, aluminum trichloride, methane, and nitrogen as reactants. Hydrogen was used as carrier gases. A substrate temperature of 500 deg. C and an rf power of 100 W were used in all depositions. The films were characterized by x-ray powder diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. The results show that nanograins of titanium aluminum carbonitride were embedded in an amorphous-carbon matrix. The nanograins had a (200) preferred orientation with columnar cross-section morphology. Mechanical properties were analyzed by nanoindentation and hardness was demonstrated to increase via this microstructure design approach. The effects of microstructure on mechanical properties were also determined

  7. Nonlinear optical activity in Ag-SiO{sub 2} nanocomposite thin films with different silver concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scalisi, A.A.; Compagnini, G.; D' Urso, L.; Puglisi, O

    2004-03-15

    Silica thin films ({approx}1 {mu}m) have been obtained with embedded Ag nanoparticles with a controlled size distribution, using a chemical approach. Our method is able to give Ag concentration in the range of 0-15% in weight. Several characterization techniques reveal that the particle average size is independent of silver concentration. In this paper, we report a detailed analysis of the nonlinear optical properties of these nanocomposite thin films as a function of the Ag cluster density. These analyses are made in the nanosecond regime at 532 nm. We find two different nonlinear regimes by changing the silver concentration. At low particle density we observe an optical limiting effect, while at higher density values the nonlinear absorption coefficient changes its sign due to a saturable absorption (SA) process. A tentative explanation of the observed phenomenology is given in terms of particle-particle interaction.

  8. Photoluminescence and electrochemical properties of transparent CeO2-ZnO nanocomposite thin films prepared by Pechini method

    Science.gov (United States)

    Sani, Z. Khosousi; Ghodsi, F. E.; Mazloom, J.

    2017-02-01

    Nanocomposite thin films of CeO2-ZnO with different molar ratios of Zn/Ce (=0, 0.25, 0.5, 0.75 and 1) were prepared by the Pechini sol-gel route. Various spectroscopic and electrochemical techniques were applied to investigate the films. XRD patterns of all the samples exhibited the peaks corresponding to cubic fluorite structure of ceria and the (101) and (103) peaks of ZnO with hexagonal structure was just observed in the sample with molar ratio of 1. EDS confirmed the presence of constituent of element in the samples. FESEM images of the films showed a surface composed of nanograins. AFM analysis revealed that root mean square roughness was enhanced as molar ratio of Zn/Ce increased. Moreover, fractal dimension of surfaces were calculated by cube counting approach. Optical measurements indicated that the film with molar ratio of 1 has the highest transmission and lowest reflectivity. The optical band gap values varied between 2.95 and 3.42 eV. The compositional dependence of refractive index and extinction coefficient were reported. The UV and blue emission appeared in PL spectra. The highest photoluminescence emission intensity was observed in the 1:1 molar ratio sample. The cyclic voltammetry measurements indicated the highest charge density (9.75 mC cm-2) and diffusion coefficient (3.507 × 10-17 cm2 s-1) belonged to the Ce/Zn (1:1) thin film.

  9. Hybrid Nanocomposite Films Comprising Dispersed VO2Nanocrystals: A Scalable Aqueous-Phase Route to Thermochromic Fenestration.

    Science.gov (United States)

    Fleer, Nathan A; Pelcher, Kate E; Zou, Jian; Nieto, Kelly; Douglas, Lacey D; Sellers, Diane G; Banerjee, Sarbajit

    2017-11-08

    Buildings consume an inordinate amount of energy, accounting for 30-40% of worldwide energy consumption. A major portion of solar radiation is transmitted directly to building interiors through windows, skylights, and glazed doors where the resulting solar heat gain necessitates increased use of air conditioning. Current technologies aimed at addressing this problem suffer from major drawbacks, including a reduction in the transmission of visible light, thereby resulting in increased use of artificial lighting. Since currently used coatings are temperature-invariant in terms of their solar heat gain modulation, they are unable to offset cold-weather heating costs that would otherwise have resulted from solar heat gain. There is considerable interest in the development of plastic fenestration elements that can dynamically modulate solar heat gain based on the external climate and are retrofittable onto existing structures. The metal-insulator transition of VO 2 is accompanied by a pronounced modulation of near-infrared transmittance as a function of temperature and can potentially be harnessed for this purpose. Here, we demonstrate that a nanocomposite thin film embedded with well dispersed sub-100-nm diameter VO 2 nanocrystals exhibits a combination of high visible light transmittance, effective near-infrared suppression, and onset of NIR modulation at wavelengths <800 nm. In our approach, hydrothermally grown VO 2 nanocrystals with <100 nm diameters are dispersed within a methacrylic acid/ethyl acrylate copolymer after either (i) grafting of silanes to constitute an amorphous SiO 2 shell or (ii) surface functionalization with perfluorinated silanes and the use of a perfluorooctanesulfonate surfactant. Homogeneous and high optical quality thin films are cast from aqueous dispersions of the pH-sensitive nanocomposites onto glass. An entirely aqueous-phase process for preparation of nanocrystals and their effective dispersion within polymeric nanocomposites allows

  10. Surface films and metallurgy related to lubrication and wear. Ph.D. Thesis - Tokyo Inst. of Technology

    Science.gov (United States)

    Buckley, D. H.

    1981-01-01

    The nature of the tribological surface is identified and characterized with respect to adhesion, friction, wear, and lubricating properties. Surface analysis is used to identify the role of environmental constituents on tribological behavior. The effect of solid to solid interactions for metals in contact with metals, ceramics, semiconductors, carbons, and polymers is discussed. The data presented indicate that the tribological surface is markedly different than an ideal solid surface. The environment is shown to affect strongly the behavior of two solids in contact. Results also show that small amounts of alloying elements in base metals can alter markedly adhesion, friction, and wear by segregating to the solid surface.

  11. Advanced Lubricants

    Science.gov (United States)

    1996-01-01

    Three Sun Coast Chemicals (SCC) of Daytona, Inc. products were derived from NASA technology: Train Track Lubricant, Penetrating Spray Lube, and Biodegradable Hydraulic Fluid. NASA contractor Lockheed Martin Space Operations contacted SCC about joining forces to develop an environmentally safe spray lubricant for the Shuttle Crawler. The formula was developed over an eight-month period resulting in new products which are cost effective and environmentally friendly. Meeting all Environmental Protection Agency requirements, the SCC products are used for applications from train tracks to bicycle chains.

  12. Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication

    Science.gov (United States)

    Herrera-Fierro, Pilar; Shogrin, Bradley A.; Jones, William R., Jr.

    1996-01-01

    The degradation of a branched perfluoropolyether (PFPE) under boundary lubrication conditions was studied using mu-FTIR and mu-Raman spectroscopies. Stainless steel (440C) discs coated with thin (600A), uniform films of the PFPE were tested in a ball-on-disc apparatus until various levels of friction coefficient were attained. Discs were then examined using the above techniques. When the friction coefficient surpassed the value obtained with an un-lubricated control, the lubricant film had either been physically displaced or partially transformed in to a 'friction polymer'. Infrared analysis of this 'friction polymer' indicated the presence of a polymeric fluorinated acid species (R(sub f)COOH). Raman spectroscopy indicated the presence of amorphous carbon in the wear track and in the friction polymer. Some reaction mechanisms are suggested to explain the results.

  13. A Biomimetic Approach to Lubricate Engineering Materials

    DEFF Research Database (Denmark)

    Røn, Troels

    , the coefficients of friction generally increased due to the decrease of water’s viscosity. This change was more clearly observed at the soft interfaces due to easier lubricating film formation of water at the lower contact pressure. Nevertheless, dominant lubrication mechanism appeared to be boundary and mixed...... lubrication characteristic is dominant via ‘selfhealing’ mechanism. The glycosylated FpHYD5 revealed a better lubrication than HFBI. Two type II hydrophobins function more favorably compared to synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount...

  14. Fluorine lubricated bearing technology

    Science.gov (United States)

    Mallaire, F. R.

    1973-01-01

    An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.

  15. Hydrodynamic Lubrication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Hydrodynamic Lubrication Experiment with 'Floating' Drops. Jaywant H Arakeri K R Sreenivas. General Article Volume 1 Issue 9 September 1996 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Lubrication Flows.

    Science.gov (United States)

    Papanastasiou, Tasos C.

    1989-01-01

    Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…

  17. Solid lubricants: A survey

    Science.gov (United States)

    Campbell, M. E.

    1972-01-01

    A survey is presented of the most recent developments and trends in the field of solid lubrication. Topics discussed include: a history of solid lubrication, lubricating solids, bonded lubricants, new developments, methods of evaluation, environmental effects, application methods, novel materials, and designs for the use of solid lubricants. Excerpts of solid lubricant specifications and a discussion of contact stresses imposed on specimens in three types of test machines used for the evaluation of solid lubricants are presented.

  18. Nanocomposite thin films of gold nanoparticles embedded in yttria-stabilized zirconia for plasmonic-based harsh environment gas detection

    Science.gov (United States)

    Rogers, Phillip H.

    Increased health concerns due to the emission of gases linked to the production of tropospheric ozone by petroleum based fuel burning engines has resulted in the codification of more stringent emissions regulations domestically. Emissions regulations on commercial jetliners are one of the areas to be met with stricter standards. Currently there is not a sensing technology that can detect the emissions gases in the exhaust stream of a jet turbine engine with lower detection limits that meet these standards. The localized surface plasmon resonance (LSPR) of noble metal nanoparticles embedded in dielectric matrices is an optical response that can be extremely sensitive to many environmental parameters. Nanocomposites of Au nanoparticles embedded in yttria-stabilized zirconia (Au-YSZ) are an ideal case study for these plasmonic materials. Using a metal oxide matrix with oxygen ion vacancies, such as YSZ, allows one to finely tune the local environmental charge of the embedded metal nanoparticles upon varying the oxygen and hydrogen content of the gas exposure mixture. After gas exposure data is collected in the form of optical absorption spectra, the LSPR spectra due to the Au nanoparticles embedded in the YSZ matrix undergo automated Lorentzian and Drude model fitting for calculating fundamental charge exchange and plasmonic dampening effects versus gas exposure concentration. These titration experiments have been performed for Au-YSZ nanocomposites exposed to O2, H2, NO 2, and CO in N2 backgrounds at 500°C and equilibrium data has been acquired for both the average charge per Au nanoparticle and the scattering frequency of the plasmons over a variety of exposure conditions. One paramount result made possible by this plasmonic based gas detection by Au-YSZ nanocomposite thin films was a repeatable 5 ppm lower detection limit towards NO2 in air at 500°C. In comparing the charge exchange observed using both the fitted exposure data and an electrochemical model

  19. Diamond-like nanocomposite: a novel promising carbon based thin film as antireflection and passivation coating for silicon solar cell

    Science.gov (United States)

    Jana, Sukhendu; Das, Sayan; De, Debasish; Mondal, Anup; Gangopadhyay, Utpal

    2018-02-01

    Presently, silicon nitride (SiN x ) is widely used as antireflection coating (ARC) on p-type silicon solar cell. But, two highly toxic gasses ammonia and silane are used. In the present study, the ARC and passivation properties of diamond-like nanocomposite (DLN) thin film on silicon solar cell have been investigated. The DLN thin film has been deposited by rf-PACVD process using liquid precursor HMDSO in argon plasma. The film has been characterized by FESEM, HRTEM, FTIR, and Raman spectroscopy. The optical properties have been estimated by UV–vis–NIR spectroscopy. The minimum reflection has been achieved to 0.75% at 630 nm. Both the short circuit current density and open circuit voltage has been increased significantly from 28.6 mA cm‑2 to 35.5 mA cm‑2 and 0.551 V to 0.613 V respectively. The field effect passivation has been confirmed by dark IV characterization of c-Si /DLN heterojunction structure. All these lead to enhancement of efficiency by almost 4% absolute, which is comparable to SiN x . The ammonia and silane free deposited DLN thin film has a great potential to use as ARC for silicon based solar cell.

  20. Light tuning DC and AC electrical properties of ZnO-rGO based hybrid nanocomposite film

    Science.gov (United States)

    Nath, Debarati; Mandal, S. K.; Deb, Debajit; Rakshit, J. K.; Dey, P.; Roy, J. N.

    2018-03-01

    We have investigated the electrical and optoelectrical properties of a zinc oxide (ZnO):reduced graphene oxide (rGO) nanocomposite film prepared through the sol gel process on a glass substrate under dark and illumination conditions of light. The bandgap of the composite film is decreased from the pure ZnO nanofilm due to the formation of a Zn-O-C bond in the composite film. The linear behavior in the Current-Voltage curve is attributed to Ohmic contact between ZnO and rGO grains. The photocurrent of the composite film is found to increase with an increase in light intensity having two different slopes, indicating an enhancement of the mobility of carriers and dissociation rate of excitons. The observed decrement of the impedance value with the intensity of light may be due to the flow of charge carriers and the presence of the light dependent relaxation process in the system. Nyquist plots have been fitted using a parallel combination of grain boundary resistances and grain boundary capacitance at different intensities of light. The relaxation frequency is observed to shift towards the high frequency regime. Carrier transit time has been calculated from relaxation frequency showing opposite behavior with the intensity of light. These results indicate the higher generations of photogenerated carriers at the interface between rGO and ZnO grains and an enhancement of the charge transport process due to the increment of the mobility of charge carriers in the system.

  1. PANI-Ag-Cu Nanocomposite Thin Films Based Impedimetric Microbial Sensor for Detection of E. coli Bacteria

    Directory of Open Access Journals (Sweden)

    Huda Abdullah

    2014-01-01

    Full Text Available PANI-Ag-Cu nanocomposite thin films were prepared by sol-gel method and deposited on the glass substrate using spin coating technique. Polyaniline was synthesized by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. The films were characterized using XRD, FTIR, and UV-Visible spectroscopy. The performance of the sensor was conducted using electrochemical impedance spectroscopy to obtain the change in impedance of the sensor film before and after incubation with E. coli bacteria in water. The peaks in XRD pattern confirm the presence of Ag and Cu nanoparticles in face-centered cubic structure. FTIR analysis shows the stretching of N–H in the polyaniline structure. The absorption band from UV-Visible spectroscopy shows high peaks between 400 nm and 500 nm which indicate the presence of Ag and Cu nanoparticles, respectively. Impedance analysis indicates that the change in impedance of the films decreases with the presence of E. coli. The sensitivity on E. coli increases for the sample with high concentration of Cu.

  2. Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties

    Science.gov (United States)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-09-01

    In the synthesis of polymer-graphene nanocomposites, for improving properties of nanocomposites, two factors dispersion and strong interfacial interactions between graphene and the polymer, are essential. In the present work, poly(vinyl alcohol) PVA/GO-Cu-alanine nanocomposite films were manufactured using concentrations 0, 1, 3 and 5 wt% of GO-Cu-alanine in water solution. For this purpose, L-alanine amino acid was located on the surface and edges of GO through copper(II) ion as a coordinating function. Then, flexible PVA/GO-Cu-alanine nanocomposite films were fabricated using GO-Cu-alanine as filler and PVA as matrix. Due to the existence of affective interaction between GO-Cu-alanine and PVA matrix, the acquired PVA/GO-Cu-alanine nanocomposites demonstrated great thermal and mechanical properties. Properties of manufactured materials were characterized by Fourier transform infrared, X-ray photoelectron spectroscopies (XPS), X-ray diffraction (XRD), Thermal gravimetric analysis, elemental analysis, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX).

  3. Structural Evolution Induced by Interfacial Lattice Mismatch in Self-Organized YBa2Cu3O7-δNanocomposite Film.

    Science.gov (United States)

    Horide, Tomoya; Kametani, Fumitake; Yoshioka, Satoru; Kitamura, Takanori; Matsumoto, Kaname

    2017-02-28

    Intriguing properties of self-organized nanocomposites of perovskite oxides are usually derived from the complex interface of constituent material phases. A sophisticated control of such a system is required for a broad range of energy and device applications, which demand a comprehensive understanding of the interface at the atomic scale. Here, we visualized and theoretically modeled the highly elastically strained nanorod, the interface region with misfit dislocations and heterointerface distortion, and the matrix with strain-induced oxygen vacancies in the self-organized YBa 2 Cu 3 O 7-δ nanocomposite films with Ba perovskite nanorods. Large misfit strain was elastically accommodated in the nanocomposites, but since the elastic strain was mainly accommodated by the nanorods, the concentration of strain-induced oxygen vacancies was small enough for the matrix to keep high critical temperature (>85 K). The interfacial bonding distorted the atomic structure of YBa 2 Cu 3 O 7-δ , but the thickness of distortion was limited to a few unit cells (less than the coherence length) due to the electron screening. The effect of volume fraction on elastic strain and the electron screening are crucial for strong vortex pinning without significant degradation of both the elementary pinning force and critical temperature in the nanocomposites. Thus, we comprehensively clarified the self-organized nanocomposite structure for on-demand control of superconductivity and oxide functionality in the nanocomposite engineering of perovskite oxides.

  4. Microstructural evolution of Au/TiO{sub 2} nanocomposite films: The influence of Au concentration and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Kubart, T.; Kumar, S.; Leifer, K. [Solid-State Electronics, Department of Engineering Sciences, Uppsala University, P.O. Box 534, Uppsala SE-751 21 (Sweden); Rodrigues, M.S. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Duarte, N.; Martins, B.; Dias, J.P. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Vaz, F. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-04-01

    Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO{sub 2}), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO{sub 2} matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ C{sub Au} ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO{sub 2} matrix. - Highlights: • Au:TiO{sub 2} films were produced by magnetron sputtering and post-deposition annealing. • The Au concentration in the films increases with the Au pellet area. • Annealing induced microstructural changes in the films. • The nanoparticle size evolution with temperature depends on the Au concentration.

  5. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    Directory of Open Access Journals (Sweden)

    David Thompson

    2016-10-01

    Full Text Available This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  6. Active nanocomposite films based on soy proteins-montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets.

    Science.gov (United States)

    Echeverría, Ignacio; López-Caballero, María Elvira; Gómez-Guillén, María Carmen; Mauri, Adriana Noemi; Montero, María Pilar

    2018-02-02

    This manuscript evaluates the potential application of active nanocomposite films based on soy protein isolate (SPI)-montmorillonite (MMT)-clove essential oil (CEO) to the preservation of muscle fillets of bluefin tuna (Thunnus thynnus) during refrigerated storage, and furthermore analyzes whether the clay diffuses from the package to food. SPI films with: CEO (SPI-CEO), MMT (SPI-MMT), or both CEO and MMT (SPI-MMT-CEO), were prepared and used to cover tuna fillets during 17days of storage at 2°C. Polyethylene films were also used as control. Protein films nanoreinforced with 10g MMT/100g SPI and activated with CEO were able to decrease microbial growth (evaluated by TVBN and microorganism counts) and lipid autooxidation (evaluated according to the TBA index, FTIR and color parameters) of tuna fillets during the storage period studied. The presence of clay seemed to favor the release of the active principles of clove oil by prolonging its antimicrobial (especially effective to inhibit Pseudomonas spp.) and antioxidant activity over time without observing the diffusion of the clay's own metals (Si and Al) from the nanocomposite materials to the muscle of fish. These results are encouraging for the use of nanocomposite films in food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. ArF excimer laser-induced deposition of Ag/C nanocomposite thin films in the presence of n-Hexane

    Science.gov (United States)

    Gondal, Mohammed Ashraf; Fajgar, Radek; Chang, Xiaofeng; Shen, Kai; Xu, Qingyu

    2014-08-01

    Ag/C nanocomposite thin films with different Ag/C molar ratios have been prepared using ArF excimer laser-induced ablation process and silver target under n-Hexane atmosphere. The morphology, crystal structure and composition of as-deposited Ag/C nanocomposite thin films were investigated with high resolution electronic microscopic techniques (including scanning electron microscopy and transmission electron microscopy) and energy-dispersive X-ray spectroscopy, respectively. Laser Raman spectroscopy and Fourier transform infrared spectroscopy techniques were also applied to characterize the final carbonaceous products generated from n-Hexane under laser ablation process. The optical emission of the plume caused by the interaction between excimer laser and silver target in the presence of n-Hexane was studied to understand the possible reaction process. The UV-vis absorption of as-deposited Ag/C thin films, which is attributed to the surface plasmonic excitation, was also investigated in the present work.

  8. Solid Lubrication Fundamentals and Applications. Chapter 6

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2000-01-01

    This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.

  9. Bio-based lubricants for numerical solution of elastohydrodynamic lubrication

    Science.gov (United States)

    Cupu, Dedi Rosa Putra; Sheriff, Jamaluddin Md; Osman, Kahar

    2012-06-01

    This paper presents a programming code to provide numerical solution of elastohydrodynamic lubrication problem in line contacts which is modeled through an infinite cylinder on a plane to represent the application of roller bearing. In this simulation, vegetable oils will be used as bio-based lubricants. Temperature is assumed to be constant at 40°C. The results show that the EHL pressure for all vegetable oils was increasing from inlet flow until the center, then decrease a bit and rise to the peak pressure. The shapes of EHL film thickness for all tested vegetable oils are almost flat at contact region.

  10. Structural, mechanical and biological comparison of TiC and TiCN nanocomposites films

    Czech Academy of Sciences Publication Activity Database

    Balázsi, K.; Lukácz, I.E.; Gurban, S.; Menyhard, M.; Bačáková, Lucie; Vandrovcová, Marta; Balázsi, C.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2217-2221 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP108/10/1858 Institutional support: RVO:67985823 Keywords : TiC * nanocomposite * biocompatibility Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.307, year: 2013

  11. Epoxy-based organic-inorganic nanocomposite coatings and films prepared by sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Brus, Jiří; Matějka, Libor

    2004-01-01

    Roč. 6, 3-4 (2004), s. 7-15 R&D Projects: GA ČR GA203/01/0735; GA AV ČR IAA4050008; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : sol-gel process * nanocomposites * solid-state NMR Subject RIV: CD - Macromolecular Chemistry

  12. Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films

    Czech Academy of Sciences Publication Activity Database

    Musil, Jindřich; Novák, P.; Čerstvý, R.; Soukup, Z.

    2010-01-01

    Roč. 28, č. 2 (2010), s. 244-248 ISSN 0734-2101 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10100522 Keywords : nc-TiC/a-C nanocomposite * friction * mechanical properties * magnetron sputtering * wear Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.291, year: 2010

  13. Structural and biocompatible characterization of TiC/a:C nanocomposite thin films

    Czech Academy of Sciences Publication Activity Database

    Balázsi, K.; Vandrovcová, Marta; Bačáková, Lucie; Balázsi, C.

    2013-01-01

    Roč. 33, č. 3 (2013), s. 1671-1675 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GAP108/10/1858 Institutional support: RVO:67985823 Keywords : TiC * nanocomposite * biocompatibility, * MG63 osteoblast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.736, year: 2013

  14. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose

  15. Investigation on the Optical and Surface Morphology of Conjugated Polymer MEH-PPV:ZnO Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    Nurul Zayana Yahya

    2012-01-01

    Full Text Available Thin films of red color poly(2-methoxy-5(2′-ethylhexyloxy-phenylene vinylene (MEH-PPV containing different weight percent of ZnO nanoparticles were obtained by spin-coating techniques. The MEH-PPV:ZnO solutions were spin coated onto silicon and glass substrates. The spun MEH-PPV:ZnO thin films were then used to investigate optical properties by using ultraviolet-visible spectrometer (UV-Vis and photoluminescence spectrophotometer (PL. The morphologies were investigated by using field emission scanning electron microscopy (FESEM, while the identification of ZnO in the final product was determined by using energy-dispersive X-ray spectroscopy (EDS. The UV-Vis absorption band increases, while the optical bandgap decreases when the amount of ZnO nanoparticles increases. ZnO nanoparticles apparently have no effect on the conjugation segments of MEH-PPV. PL spectra show that the emission peak increases and slightly red shift as ZnO concentration increases. Based on SEM images of MEH-PPV:ZnO nanocomposite thin films, ZnO nanoparticles form agglomerated regions.

  16. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  17. Fabrication and performance of polymer-nanocomposite anti-reflective thin films deposited by RIR-MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, S.; Mayo, D. C.; Park, H-. K.; Schriver, K. E.; Klopf, John M. [W& M, JLAB; Kelley, Michael J. [W& M; Haglund, R. F. [VANDERBILT

    2014-07-01

    Design of polymer anti-reflective (AR) optical coatings for plastic substrates is challenging because polymers exhibit a relatively narrow range of refractive indices. Here, we report synthesis of a four-layer AR stack using hybrid polymer: nanoparticle materials deposited by resonant infrared matrix-assisted pulsed laser evaporation. An Er: YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and poly(methylmethacrylate) (PMMA), alternating with a layer of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with transmission over 97 %, scattering <3 %, and a reflection coefficient below 0.5 % across the visible range, with a much smaller number of layers than would be predicted by a standard thin film calculation. The TiO2 nanoparticles contribute more to the enhanced refractive index of the high-index layers than can be accounted for by an effective medium model of the nanocomposite.

  18. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    Science.gov (United States)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  19. Traction and lubricant film temperature as related to the glass transition temperature and solidification. [using infrared spectroscopy on EHD contacts

    Science.gov (United States)

    Lauer, J. L.; Peterkin, M. E.

    1978-01-01

    Does a traction fluid have to be a glass or solid under operating conditions. Infrared spectra on dynamic EHD contacts of several types of fluid were used to determine the surface and oil-film temperatures. Polarized spectral runs were made to study molecular alignment. Static glass transition pressures at appropriate temperatures were between 0.1 and 2.0 GPa, with the traction fluid showing the highest. In the EHD contact region, the traction fluid showed both the highest film temperatures as well as the greatest degree of molecular alignment. A plot of the difference between the film and surface temperatures vs shear rate resulted in a master plot valid for all the fluids. From this work, the authors propose a model of 'fluid' traction, where friction between parallel rough molecules provides the traction.

  20. Mechanical Wear and Lubrication

    National Research Council Canada - National Science Library

    McConnell, Bobby

    1962-01-01

    .... The basic principles of lubrication are presented with emphasis on the journal bearing. Common lubrication techniques are described with particular reference to the selection of lubricants according to their physical and chemical properties...

  1. In situ observation of lubricant film formation in THR considering real conformity: The effect of diameter, clearance and material.

    Science.gov (United States)

    Nečas, D; Vrbka, M; Urban, F; Gallo, J; Křupka, I; Hartl, M

    2017-05-01

    The aim of the present study is to provide an analysis of protein film formation in hip joint replacements considering real conformity based on in situ observation of the contact zone. The main attention is focused on the effect of implant nominal diameter, diametric clearance and material. For this purpose, a pendulum hip joint simulator equipped with electromagnetic motors enabling to apply continuous swinging flexion-extension motion was employed. The experimental configuration consists of femoral component (CoCrMo, BIOLOX®forte, BIOLOX®delta) and acetabular cup from optical glass fabricated according to the dimensions of real cups. Two nominal diameters were studied, 28 and 36mm, respectively, while different diametric clearances were considered. Initially, a static test focused on the protein adsorption onto rubbing surfaces was performed with 36mm implants. It was found that the development of adsorbed layer is much more stable in the case of metal head, indicating that the adsorption forces are stronger compared to ceramic. A consequential swinging test revealed that the fundamental parameter influencing the protein film formation is diametric clearance. Independently of implant diameter, film was much thicker when a smaller clearance was considered. An increase of implant size from 28mm to 36mm did not cause a substantial difference in film formation; however, the total film thickness was higher for smaller implant. In terms of material, metal heads formed a thicker film, while this fact can be, among others, also attributed to clearance, which is more than two times higher in the case of ceramic implant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modulation of electrode performance and in situ observation of proton transport in Pt-RuO2 nanocomposite thin-film electrodes

    Science.gov (United States)

    Park, Kyung-Won; Sung, Yung-Eun

    2003-12-01

    The relationship between the properties of ruthenium oxide and its electrode performance with respect to methanol electro-oxidation was investigated using a Pt-RuO2 nanocomposite thin-film electrode fabricated by a cosputtering system. The performance of the nanocomposite electrode, consisting of a Pt nanophase and a RuO2, was modified by heat treatment at different temperatures (100, 250, and 400 °C) which altered the proton and electron contributions in the electrodes. The transport of protons produced during methanol electro-oxidation in the Pt-RuO2 nanocomposite electrode was directly observed during electrochemical reaction by means of the ectrochromism of RuO2. It is concluded that improved electrical conduction that maintains the transport of protons is responsible for the enhanced electro-oxidation of methanol for 250 °C Pt-RuO2.

  3. Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application

    International Nuclear Information System (INIS)

    Gupta, Bhavana; Mehta, Minisha; Melvin, Ambrose; Kamalakannan, R.; Dash, S.; Kamruddin, M.; Tyagi, A.K.

    2014-01-01

    Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq −1 and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes. - Highlights: • Single step synthesis of PEDOT and PEDOT-FWCNT nanocomposites films via in-situ oxidative polymerization. • Thermal, electrical and electrochemical properties of films show positive effect of FWCNT on PEDOT films. • Schottky diodes based on metal Al/PEDOT or PEDOT-FWCNT composites/ITO glass are fabricated. • Improved electrical characteristics with better reliability is achieved for PEDOT-FWCNT based diodes

  4. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field.

    Science.gov (United States)

    Wang, Zhuo; Wang, Tian; Wang, Chun; Xiao, Yujia; Jing, Panpan; Cui, Yongfei; Pu, Yongping

    2017-08-30

    Ba(Fe 0.5 Ta 0.5 )O 3 /poly(vinylidene fluoride) (BFT/PVDF) flexible nanocomposite films are fabricated by tape casting using dopamine (DA)-modified BFT nanopowders and PVDF as a matrix polymer. After a surface modification of installing a DA layer with a thickness of 5 nm, the interfacial couple interaction between BFT and PVDF is enhanced, resulting in less hole defects at the interface. Then the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity of nanocomposite films are reduced. Meanwhile, the value of the reduced dielectric constant (Δε') and the strength of interfacial polarization (k) are introduced to illustrate the effect of DA on the dielectric behavior of nanocomposite films. Δε' can be used to calculate the magnitude of interfacial polarization, and the strength of the dielectric constant contributed by the interface can be expressed as k. Most importantly, the energy-storage density and energy-storage efficiency of nanocomposite films with a small BFT@DA filler content of 1 vol % at a low electric field of 150 MV/m are enhanced by about 15% and 120%, respectively, after DA modification. The high energy-storage density of 1.81 J/cm 3 is obtained in the sample. This value is much larger than the reported polymer-based nanocomposite films. In addition, the outstanding cycle and bending stability of the nanocomposite films make it a promising candidate for future flexible portable energy devices.

  5. Stability Study of Flexible 6,13-Bis(triisopropylsilylethynylpentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol/Yttrium Oxide Nanocomposite Gate Insulator

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kwon

    2016-03-01

    Full Text Available We investigated the electrical and mechanical stability of flexible 6,13-bis(triisopropylsilylehtynylpentacene (TIPS-pentacene thin-film transistors (TFTs that were fabricated on polyimide (PI substrates using cross-linked poly(4-vinylphenol (c-PVP and c-PVP/yttrium oxide (Y2O3 nanocomposite films as gate insulators. Compared with the electrical characteristics of TIPS-pentacene TFTs with c-PVP insulators, the TFTs with c-PVP/Y2O3 nanocomposite insulators exhibited enhancements in the drain current and the threshold voltage due to an increase in the dielectric capacitance. In electrical stability experiments, a gradual decrease in the drain current and a negative shift in the threshold voltage occurred during prolonged bias stress tests, but these characteristic variations were comparable for both types of TFT. On the other hand, the results of mechanical bending tests showed that the characteristic degradation of the TIPS-pentacene TFTs with c-PVP/Y2O3 nanocomposite insulators was more critical than that of the TFTs with c-PVP insulators. In this study, the detrimental effect of the nanocomposite insulator on the mechanical stability of flexible TIPS-pentacene TFTs was found to be caused by physical adhesion of TIPS-pentacene molecules onto the rough surfaces of the c-PVP/Y2O3 nanocomposite insulator. These results indicate that the dielectric and morphological properties of polymeric nanocomposite insulators are significant when considering practical applications of flexible electronics operated at low voltages.

  6. Water barrier properties of starch-clay nanocomposite films Propriedades de barreira à água de filmes de nanocompósitos de amido e argila

    Directory of Open Access Journals (Sweden)

    Aníbal Marcelo Slavutsky

    2012-09-01

    Full Text Available The functional properties of corn starch based films were improved by incorporating nanoclay (Montmorillonite. Nanoclay was incorporated in the polymer matrix using two different methodologies and the films were formed by casting. The effect of film preparation methodology and of the nanoclay concentration on the physicochemical properties of the films was studied. Depending on film preparation method used, intercalated or exfoliated nanocomposite films were obtained. The FTIR spectra showed a strong interaction between the montmorillonite and the starch molecules. Opacity was dependent on the nanoclay dispersion method used. Water vapor solubility and permeability decreased with increasing montmorillonite content and were affected by the dispersion method. Water diffusion was only dependent on the nanoclay content due to the increase in tortuosity of the diffusion path, caused by the nanoparticles. The results showed that the incorporation of 5% of montmorillonite using an adequate dispersion method, improved the water resistance and barrier properties of corn starch based films. Nanoparticles reduced the damage caused to the properties of these hydrophilic films by the increase in moisture content.As propriedades funcionais de filmes à base de amido de milho foram melhoradas pela incorporação de nanoargila (montmorilonita. Nanoargila foi incorporada na matriz polimérica por meio de duas metodologias diferentes e os filmes foram produzidos por casting. Os efeitos da metodologia de preparação e da concentração de nanoargila nas propriedades físico-químicas dos filmes foram estudados. Conforme os métodos de elaboração, filmes intercalados e esfoliados de nanocompósitos foram obtidos. Os espectros FTIR mostraram uma forte interação entre a argila montmorilonita e as moléculas de amido. A opacidade foi dependente do método utilizado para a dispersão da nanoargila. A solubilidade e a permeabilidade ao vapor de água diminu

  7. Soft Matter Lubrication: Does Solid Viscoelasticity Matter?

    Science.gov (United States)

    Putignano, Carmine; Dini, Daniele

    2017-12-06

    Classical lubrication theory is unable to explain a variety of phenomena and experimental observations involving soft viscoelastic materials, which are ubiquitous and increasingly used in e.g. engineering and biomedical applications. These include unexpected ruptures of the lubricating film and a friction-speed dependence, which cannot be elucidated by means of conventional models, based on time-independent stress-strain constitutive laws for the lubricated solids. A new modeling framework, corroborated through experimental measurements enabled via an interferometric technique, is proposed to address these issues: Solid/fluid interactions are captured thanks to a coupling strategy that makes it possible to study the effect that solid viscoelasticity has on fluid film lubrication. It is shown that a newly defined visco-elasto-hydrodynamic lubrication (VEHL) regime can be experienced depending on the degree of coupling between the fluid flow and the solid hysteretic response. Pressure distributions show a marked asymmetry with a peak at the flow inlet, and correspondingly, the film thickness reveals a pronounced shrinkage at the flow outlet; friction is heavily influenced by the viscoelastic hysteresis which is experienced in addition to the viscous losses. These features show significant differences with respect to the classical elasto-hydrodynamic lubrication (EHL) regime response that would be predicted when solid viscoelasticity is neglected. A simple yet powerful criterion to assess the importance of viscoelastic solid contributions to soft matter lubrication is finally proposed.

  8. The investigation of the C–Si interface structure in diamond/Si nano-composite films with first principle method

    International Nuclear Information System (INIS)

    Liu, Xuejie; Yin, Yongjie; Ren, Yuan; Wei, Huai

    2014-01-01

    Highlights: • We investigate the stability of the monolayer Si interface on diamond (001) surface. • The adsorption energies of the four kinds of 8C8Si configurations on diamond (001) surface were calculated by DFT. • The stability of the monolayer SiC interface on diamond (001) surface is investigated. - Abstract: In order to improve the quality of nano-diamond films, a new type of diamond/Si nano-composite films was proposed. The monolayer Si interface and monolayer SiC interface were studied in this paper. The system total energies and adsorption energies of monolayer Si and monolayer SiC on diamond (001) surface were calculated with first principle method based on the density functional theory (DFT) to investigate the stability of the two kinds of interface structures in the Diamond/Si nano-composite films. Moreover, the variation of the configuration energy and structures when the hydrogen atom and CH 2 radical adsorbed on the two kinds of interfaces were researched to verify whether the diamond phase was able to nucleate and grow or not in the process of diamond/Si nano-composite films deposition. It turned out that (1) the diamond surface structure which is terminated by monolayer silicon atoms is not very stable. It is difficult to form the stable monolayer Si interface in diamond/Si nano-composite films; (2) the monolayer SiC interface with the carbon and silicon atomic ratio of 1:1in which the carbon and silicon atoms are located in the same row respectively is a more stable structure. The interface is conductive to the second nucleation in the process of diamond growth

  9. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  10. Preparation and Characterization of Chitosan/Soy Protein Isolate Nanocomposite Film Reinforced by Cu Nanoclusters

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-06-01

    Full Text Available Soy protein isolate (SPI based films have received considerable attention for use in packaging materials. However, SPI-based films exhibit relatively poor mechanical properties and water resistance ability. To tackle these challenges, chitosan (CS and endogenous Cu nanoclusters (NCs capped with protein were proposed and designed to modify SPI-based films. Attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray diffraction patterns of composite films demonstrated that interactions, such as hydrogen bonds in the film forming process, promoted the cross-linking of composite films. The surface microstructure of CS/SPI films modified with Cu NCs was more uniform and transmission electron microscopy (TEM showed that uniform and discrete clusters were formed. Compared with untreated SPI films, the tensile strength and elongation at break of composite films were simultaneously improved by 118.78% and 74.93%, respectively. Moreover, these composite films also exhibited higher water contact angle and degradation temperature than that of pure SPI film. The water vapor permeation of the modified film also decreased. These improved properties of functional bio-polymers show great potential as food packaging materials.

  11. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Erin M. Sullivan

    2015-12-01

    Full Text Available The focus of this study is to examine the effect of cellulose nanocrystals (CNC on the properties of polylactic acid (PLA films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region.

  12. A comparative study on CdS: PEO and CdS: PMMA nanocomposite solid films

    Energy Technology Data Exchange (ETDEWEB)

    Padmaja, S. [Thin film centre, PSG College of Technology, Coimbatore (India); Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore (India); Balaji, R.; Vaideki, K. [Thin film centre, PSG College of Technology, Coimbatore (India)

    2016-08-15

    Cadmium Sulphide (CdS) nanoparticles were reinforced in Poly(ethylene Oxide) (PEO) and Poly(methyl methacrylate) (PMMA) matrices by in situ technique. The presence of CdS in PEO and PMMA matrix was confirmed using X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared spectroscopy (FTIR) analysis disclosed the co-ordination of CdS in the matrices. Thermal analysis of the nanocomposites was carried out using Differential Scanning calorimetric studies (DSC). The optical studies using UV–vis spectroscopy were carried out to find the band gap of the materials and the absorption onset. The CdS particle size in the matrices was found by Effective Mass Approximation (EMA) model using the band gap values and was confirmed by TEM studies. The surface trapped emissions of the nanocomposites were observed from the photoluminescence (PL) spectra. The distribution of CdS particles in the polymer matrices were presented by Atomic force microscopic studies (AFM).

  13. A comparative study on CdS: PEO and CdS: PMMA nanocomposite solid films

    International Nuclear Information System (INIS)

    Padmaja, S.; Jayakumar, S.; Balaji, R.; Vaideki, K.

    2016-01-01

    Cadmium Sulphide (CdS) nanoparticles were reinforced in Poly(ethylene Oxide) (PEO) and Poly(methyl methacrylate) (PMMA) matrices by in situ technique. The presence of CdS in PEO and PMMA matrix was confirmed using X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared spectroscopy (FTIR) analysis disclosed the co-ordination of CdS in the matrices. Thermal analysis of the nanocomposites was carried out using Differential Scanning calorimetric studies (DSC). The optical studies using UV–vis spectroscopy were carried out to find the band gap of the materials and the absorption onset. The CdS particle size in the matrices was found by Effective Mass Approximation (EMA) model using the band gap values and was confirmed by TEM studies. The surface trapped emissions of the nanocomposites were observed from the photoluminescence (PL) spectra. The distribution of CdS particles in the polymer matrices were presented by Atomic force microscopic studies (AFM).

  14. Investigation of anticorrosion properties of nanocomposites of spray coated zinc oxide and titanium dioxide thin films on stainless steel (304L SS) in saline environment

    Science.gov (United States)

    P, Muhamed Shajudheen V.; S, Saravana Kumar; V, Senthil Kumar; Maheswari A, Uma; M, Sivakumar; Rani K, Anitha

    2018-01-01

    The present study reports the anticorrosive nature of nanocomposite thin films of zinc oxide and titanium dioxide on steel substrate (304L SS) using spray coating method. The morphology and chemical constituents of the nanocomposite thin film were characterized by field effect scanning electron microscopy and energy dispersive analysis of x-ray (EDAX) studies. From the EDAX studies, it was observed that nanocomposite coatings of desired stoichiometry can be synthesized using present coating technique. The cyclic voltametric techniques such as Tafel analysis and electrochemical impedance spectroscopy (EIS) analysis were conducted to study the anticorrosion properties of the coatings. The E corr values obtained from Tafel polarization curves of the sample coated with nanocomposites of ZnO and TiO2 in different ratios (5:1, 1:1 and 1:5) indicated that the corrosion resistance was improved compared to bare steel. The coating resistance values obtained from the Nyquist plot after fitting with equivalent circuit confirmed the improved anticorrosion performance of the coated samples. The sample coated with ZnO: TiO2 in the ratio 1:5 showed better corrosion resistance compared to other ratios. The Tafel and EIS studies were repeated after exposure to 5% NaCl for 390 h and the results indicated the anticorrosive nature of the coating in the aggressive environment. The root mean square deviation of surface roughness values calculated from the AFM images before and after salt spray indicated the stability of coating in the saline environment.

  15. CYLINDER AND SYSTEM LUBRICATING OILS

    Directory of Open Access Journals (Sweden)

    ION ADRIAN GIRBA

    2016-06-01

    Full Text Available Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical areas and the longer strokes of the piston leads to issues of spreading the oil. Adding here the new type of engines using gas or biofuel which requires different types of lubricating oils. Therefore, the success of new generation of engines will depend on lubricating oils quality. :

  16. Feasibility of Applying Controllable Lubrication Techniques to Reciprocating Machines

    DEFF Research Database (Denmark)

    Pulido, Edgar Estupinan

    The use of active lubrication in journal bearings helps to enhance the thin fluid films by increasing the fluid film thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically...... modified hydrostatic lubrication. In this case, the hydrostatic lubrication is modified by injecting oil at controllable pressures, through orifices circumferentially located around the bearing surface. In order to study the performance of journal bearings of reciprocating machines, operating under...... conventional lubrication conditions, a mathematical model of a reciprocating mechanism connected to a rigid / flexible rotor via thin fluid films was developed. The mathematical model involves the use of multibody dynamics theory for the modelling of the reciprocating mechanism (rigid bodies), finite elements...

  17. Epitaxial YBa2Cu3O7-x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions

    Science.gov (United States)

    Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.

    2018-04-01

    Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite

  18. Enhanced flux pinning in pulsed laser deposited Y Ba 2 Cu 3 O 7-δ : BaTiO 3 nanocomposite thin films

    Science.gov (United States)

    Jha, Alok K.; Khare, Neeraj; Pinto, R.

    2011-10-01

    The effect of incorporation of BaTiO 3(BTO) nanoparticles on the flux pinning properties of pulsed laser deposited YBCO:BTO thin films was studied. Substantial increase in the critical current density ( JC) and the pinning force density ( Fp) of the nanocomposite thin films was observed. At 77 K, and zero applied magnetic field, the value of JC for YBCO and YBCO:BTO (2%) thin films were 2.93 MA/cm 2 and 6.43 MA/cm 2, respectively. At the same temperature and an applied magnetic field of 4 T, the value of JC increases from 3.6×10 4 A/cm 2 for YBCO thin film to 2.7×10 5 A/cm 2 for YBCO:BTO (2%) nanocomposite thin film. The study of temperature and field dependence of J of YBCO and YBCO:BTO thin films indicates similar type of pinning. The lattice mismatch between YBCO and BTO seems to introduce more defects resulting in the improvement of flux pinning properties.

  19. Development of a flexible nanocomposite TiO{sub 2} film as a protective coating for bioapplications of superelastic NiTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aun, Diego Pinheiro, E-mail: diegoaun@yahoo.com.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil); Houmard, Manuel, E-mail: mhoumard@ufmg.br [Department of Materials and Construction Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil); Mermoux, Michel, E-mail: michel.mermoux@lepmi.grenoble-inp.fr [LEPMI, Grenoble INP, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Latu-Romain, Laurence, E-mail: laurence.latu-romain@simap.grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Joud, Jean-Charles, E-mail: jean-charles.joud@grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Berthomé, Gregory, E-mail: gregory.berthome@simap.grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Buono, Vicente Tadeu Lopes, E-mail: vbuono@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil)

    2016-07-01

    Highlights: • A NiTi alloy was coated with a flexible TiO{sub 2} protective layer via the sol–gel method. • Maximum flexibility was obtained with a nanocomposite crystalline/amorphous film. • The film reduces the Ni surface content, possibly improving the biocompatibility. - Abstract: An experimental procedure to coat superelastic NiTi alloys with flexible TiO{sub 2} protective nanocomposite films using sol–gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO{sub 2} at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.

  20. Impact of Sweet Potato Starch-Based Nanocomposite Films Activated With Thyme Essential Oil on the Shelf-Life of Baby Spinach Leaves

    Directory of Open Access Journals (Sweden)

    Aseel Issa

    2017-06-01

    Full Text Available Salmonella Typhimurium (S. Typhi and Escherichia coli (E. coli have been responsible for an increasing number of outbreaks linked to fresh produce, such as baby spinach leaves, in the last two decades. More recently, antimicrobial biodegradable packaging systems have been attracting much attention in the food packaging industry as eco-friendly alternatives to conventional plastic packaging. The objective of this study was to evaluate the effect of antibacterial nanocomposite films on inoculated spinach leaves and on the sensory properties of these leaves during eight days of refrigerated storage. In this study, an antibacterial film comprised of sweet potato starch (SPS, montmorillonite (MMT nanoclays and thyme essential oil (TEO as a natural antimicrobial agent was developed. Our results showed that the incorporation of TEO in the film significantly (p < 0.05 reduced the population of E. coli and S. Typhi on fresh baby spinach leaves to below detectable levels within five days, whereas the control samples without essential oil maintained approximately 4.5 Log colony forming unit (CFU/g. The sensory scores for spinach samples wrapped in films containing TEO were higher than those of the control. This study thus suggests that TEO has the potential to be directly incorporated into a SPS film to prepare antimicrobial nanocomposite films for food packaging applications.

  1. Bearing, gearing, and lubrication technology

    Science.gov (United States)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  2. Hydrodynamic Lubrication Analysis Of Slider Bearings Lubricated ...

    African Journals Online (AJOL)

    Hydrodynamic Lubrication Analysis Of Slider Bearings Lubricated With Micropolar Fluids. ... In this paper, a theoretical study of the effect of micropolar lubricants on the performance characteristics of wide inclined slider bearings is presented. The finite element method and Gauss Seidel iterative procedure have been used ...

  3. Fe-Modeling Of Starved Hydrodynamic Lubrication With Free Surface Effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Vølund, Anders; Klit, Peder

    2017-01-01

    This work concerns a new finite-element formulation for solving hydrody-namic lubrication problems that include partially flooded regions, where the lubricant film behavior is governed by free surface flow....

  4. Study of the Thermal Decomposition of PFPEs Lubricants on a Thin DLC Film Using Finitely Extensible Nonlinear Elastic Potential Based Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2014-01-01

    Full Text Available Perfluoropolyethers (PFPEs are widely used as hard disk lubricants for protecting carbon overcoat reducing friction between the hard disk interface and the head during the movement of head during reading and writing data in the hard disk. Due to temperature rise of PFPE Zdol lubricant molecules on a DLC surface, how polar end groups are detached from lubricant molecules during coating is described considering the effect of temperatures on the bond/break density of PFPE Zdol using the coarse-grained bead spring model based on finitely extensible nonlinear elastic potential. As PFPE Z contains no polar end groups, effects of temperature on the bond/break density (number of broken bonds/total number of bonds are not so significant like PFPE Zdol. Effects of temperature on the bond/break density of PFPE Z on DLC surface are also discussed with the help of graphical results. How bond/break phenomenonaffects the end bead density of PFPE Z and PFPE Zdol on DLC surface is discussed elaborately. How the overall bond length of PFPE Zdol increases with the increase of temperature which is responsible for its decomposition is discussed with the help of graphical results. At HAMR condition, as PFPE Z and PFPE Zdol are not suitable lubricant on a hard disk surface, it needs more investigations to obtain suitable lubricant. We study the effect of breaking of bonds of nonfunctional lubricant PFPE Z, functional lubricants such as PFPE Zdol and PFPE Ztetrao, and multidented functional lubricants such as ARJ-DS, ARJ-DD, and OHJ-DS on a DLC substrate with the increase of temperature when heating of all of the lubricants on a DLC substrate is carried out isothermally using the coarse-grained bead spring model by molecular dynamics simulations and suitable lubricant is selected which is suitable on a DLC substrate at high temperature.

  5. Enhancement of micro structural properties of PVA doped with MWCNT’s and metal oxide nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar N B, Rithin [Dept of Physics, Srinivas School of Engineering, Mukka, Mangalore, Karnataka (India); Crasta, Vincent, E-mail: vcrasta@yahoo.com [Dept of Physics, St. Joseph Engineering College, Vamanjoor, Mangalore, Karnataka (India); Praveen, B. M. [Dept of Chemistry, Srinivas School of Engineering, Mukka, Mangalore, Karnataka (India); B, Shreeprakash [Dept of Mechanical Engineering, Srinivas School of Engineering, Mangalore, Karnataka (India)

    2015-06-24

    WO{sub 3} nanoparticles were prepared by using precipitation method and the multiwall Carbon nanotubes (MWCNT’s) were functionalized to make Carboxylated MWCNTs. Further, prepared WO{sub 3} and carboxylated MWCNT were doped into PVA matrix by coagulation technique and PVA nanocomposites were prepared by simple solvent casting technique. The films were characterized by XRD, FTIR spectroscopy and AFM. FTIR spectroscopy reveals the intensity of absorption of radiation at 3624.55 cm{sup −1} corresponds to the OH group of PVA. It changes in accordance with dopant concentration causing inter/intra molecular hydrogen bonding between the dopants and PVA back bone which leads to the complex formation. XRD data explores the crystalline nature of the film. It is found that for doping concentration x= 7.5 wt% the percentage crystallinity and crystallite size increases whereas micro structural strain and dislocation density decreases. An atomic force microscopy topographic analysis proves that the doped particles have an average size less than 15 nm, as confirmed by XRD data. It was found that roughness of the sample varies with dopant concentration causing variation in crystallinity.

  6. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Almasi, Hadi; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-11-05

    In this study, ternary potato starch (PS) bionanocomposite films containing two types of nanoparticles, sodium montmorillonite (MMT), one-dimensional (1D) clay platelets, (3 and 5wt%) and TiO2, three-dimensional (3D) nanospheres, (0.5, 1 and 2wt%), are prepared using solvent casting method. X-ray diffraction (XRD) test confirms the completely exfoliated structure formed in the PS-MMT nanocomposites containing 3 and 5% MMT. The success of the formation of new hydrogen bonds between the hydroxyl groups of starch and nanofillers is confirmed by Fourier transform infrared (FTIR) spectroscopy. Tensile strength (TS), elongation at break (EB), glass transition temperature (Tg), and melting point (Tm) of the films are also enhanced after MMT and TiO2 incorporation. The water vapor permeability (WVP) and the visible, UVA, UVB and UVC lights transmittance decreases upon TiO2 and MMT content increasing. Generally, a synergistic effect is observed between MMT and TiO2 at lower concentrations of MMT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Paramagnetic moments in YBa{sub 2}Cu{sub 3}O{sub 7−δ} nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T.; Vieira, V.N.; Silva, D.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, C.P. 354, 96010-900 Pelotas, RS (Brazil); Albino Aguiar, J. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Valadão, D.R.B., E-mail: danielavaladao.ufpe@gmail.com [Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus U.A. Barcelona, 08193 Bellaterra (Spain); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, HZ Dresden-Rossendorf , 01314 Dresden (Germany)

    2014-08-15

    Highlights: • The paramagnetic Meissner effect was observed in a nanocomposite YBaCuO thin film. • The paramagnetic moments in FC experiments were observed up to 10 T. • The paramagnetic Meissner effect increases when the magnetic field is increased. • Results may be explained based on the flux compression scenario and vortex pinning. • An apparent saturation tendency of the paramagnetic moments could be observed. - Abstract: We report on magnetization studies in YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films with dispersed Ba{sub 2}YTaO{sub 6} nanoparticles. The magnetization measurements were made using a superconducting quantum interference device (SQUID) and a vibrating sample magnetometer (VSM). Magnetic moments were measured as functions temperature using zero-field cooling (ZFC) and field-cooled (FC) prescriptions for magnetic fields up to 10 T applied parallel and perpendicular to the ab planes. A paramagnetic response related to the superconducting state was observed during the FC experiments. This effect, known as paramagnetic Meissner effect (PME), apparently increases when the magnetic field is increased. We discuss our PME results in terms of the strong pinning scenario modulated by Ba{sub 2}YTaO{sub 6} nanoparticles dispersed into the superconducting matrix.

  8. Highly Transparent Poly(vinyl alcohol)(PVA)/TiO₂ Nanocomposite Films with Remarkable Photocatalytic Performance and Recyclability.

    Science.gov (United States)

    Yan, Wenwen; Chen, Qirong; Du, Mengfan; Yang, Kai Meng; Cai, Xinxin; Meng, Xiangfu; Wang, Lei

    2018-08-01

    Titanium dioxide (TiO2) has been regarded as an efficient photocatalyst for degradation of environmental pollutants. However, recovery of TiO2 nanoparticles from suspension limits its practical application. Herein, we reported a novel highly transparent poly(vinyl alcohol)(PVA)/TiO2 photocatalytic film via in-situ growth and solution casting method. TiO2 nanoparticles with average size of 10 nm were uniformly dispersed in transparent PVA matrix. The photocatalytic performance was investigated by photodegradation of methyl orange (MO) aqueous solution under solar light irradiation. PVA/TiO2 photocatalytic film exhibited remarkably high photocatalytic activity and excellent recyclable properties during multi-cycle use. PVA not only acted as a transparent supports for TiO2, but also worked as an efficient holes scavenger. The hydroxyl groups on PVA chains played a key role in separation of photo-generated electrons and holes, thus increased the photodegradation rate of MO. This work gives an easy and reliable way for polymer/TiO2 nanocomposites in practical environmental applications.

  9. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  10. Preparation of Polyaniline Multi-wall Carbon Nanotubes Nanocomposites Films/Discs and Characterization of their Electrical, Mechanical and Damping Properties

    Directory of Open Access Journals (Sweden)

    Weiwei LIN

    2015-04-01

    Full Text Available The purpose of this research was to create a sensor-actuator that could sense strain and also act similar to constrained viscoelastic material without corresponding weight addition. Frit compression method was first used to make controlled thickness of polyaniline/multi-wall carbon nanotube (PANI/MWCNT nanocomposite films/discs. MWCNT was found to enhance both the electrical conductivity and the thermal stability properties of the nanocomposite films, and the PANI increased the Young’s modulus and hardness of the films/discs as evidenced by the nanoindentation test. Simultaneous DSC-TGA measurements showed that the PANI/22%MWCNT nanocomposites improved their thermal stability by about 50 °C compared with their pure components. Cantilever beam free vibration tests were adopted to characterize the sample damping properties. It was found that location of the sample vis-á-vis the location of the cantilever beam’s fixed support played a very important part in the damping ratio, as expected. Preliminary tests showed that the damping ratio of PANI/11%MWCNT was 0.00656 when the aluminum beam was clamped to the free, uncovered end. However, the damping ratio nearly tripled when the beam was clamped at the PANI/MWCNT covered end. By covering both sides of aluminum beam with the sample, the damping ratio reached a value of 0.072, which is 18.85 times higher than for the single sided coverage.

  11. Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6-CdS nanocomposite film under visible light irradiation

    Science.gov (United States)

    Rajendran, Ranjith; Varadharajan, Krishnakumar; Jayaraman, Venkatesan; Singaram, Boobas; Jeyaram, Jayaprakash

    2018-02-01

    The enhanced photocatalytic performance of nanocomposite is synthesized via the hydrothermal method and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). Under visible light irradiation, PVA assisted Bi2WO6-CdS nanocomposite film displayed enhanced photocatalytic efficiency and inhibition of photocorrosion as compared with pure CdS, pure Bi2WO6 and Bi2WO6-CdS composite. The PVA assisted Bi2WO6-CdS composite film catalyst showed stable catalytic performance until seven successive runs with 92% of methylene blue(MB) degradation, and easy to recover after degradation of organic pollutant. PVA assisted Bi2WO6-CdS nanocomposite film has optimal band edge position for superior photocatalytic degradation. Furthermore, the trapping experiment was carried out using different scavenger for active species. Among the active species, OH· are the most responsive species which play a vital role in the degradation of metronidazole and MB.

  12. Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear

    OpenAIRE

    Wang, L

    2016-01-01

    In this paper, a novel interactive friction-lubricant thickness model was developed to predict the evolution of coefficient of friction and the useful life of lubricant film. The developed model was calibrated by experimental results determined from pin-on-disc tests. For these experiments, a grease lubricant was applied on a Tungsten Carbide ball which slides against a disc made from AA6082 Aluminium alloy. In the pin-on-disc tests, the lubricant film thickness decreased with time during sin...

  13. The effect of lubricant constituents on lubrication mechanisms in hip joint replacements.

    Science.gov (United States)

    Nečas, David; Vrbka, Martin; Urban, Filip; Křupka, Ivan; Hartl, Martin

    2015-03-01

    The aim of the present paper is to provide a novel experimental approach enabling to assess the thickness of lubricant film within hip prostheses in meaning of the contribution of particular proteins. Thin film colorimetric interferometry was combined with fluorescent microscopy finding that a combination of optical methods can help to better understand the interfacial lubrication processes in hip replacements. The contact of metal femoral head against a glass disc was investigated under various operating conditions. As a test lubricant, the saline solution containing the albumin and γ-globulin in a concentration 2:1 was employed. Two different mean speeds were applied, 5.7 and 22mm/s, respectively. The measurements were carried out under pure rolling, partial negative and partial positive sliding conditions showing that kinematic conditions substantially affects the formation of protein film. Under pure rolling conditions, an increasing tendency of lubricant film independently on rolling speed was detected, while the total thickness of lubricant film can be attributed mainly to albumin. When the ball was faster than the disc (negative sliding), a very thin lubricant film was observed for lower speed with no significant effect of particular proteins. The increase in sliding speed led to the increase of film thickness mainly caused due to the presence of γ-globulin. On the contrary, when the disc was faster than the ball (positive sliding), the film formation was very complex and time dependent while both of the studied proteins have shown any qualitative change during the test, however the effect of albumin seems to be much more important. Since a very good agreement of the results was obtained, it can be concluded that the approach consisting of two optical methods can provide the fundamental information about the lubricant film formation in meaning of particular proteins while the simultaneous presence of other constituents in model synovial fluid. Copyright

  14. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  15. Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3-CoFe2O4 nanocomposite thin films

    Science.gov (United States)

    Yan, Li; Xing, Zengping; Wang, Zhiguang; Wang, Tao; Lei, Guangyin; Li, Jiefang; Viehland, D.

    2009-05-01

    We report the direct measurement of a magnetoelectric (ME) exchange between magnetostrictive CoFe2O4 nanopillars in a piezoelectric BiFeO3 matrix for single-layer nanocomposite epitaxial thin films grown on (001) SrTiO3 substrates with SrRuO3 bottom electrodes. The ME coefficient was measured by a magnetic cantilever method and had a maximum value of ˜20 mV/cm Oe. The films possessed saturation polarization (60 μC/cm2) and magnetization (410 emu/cc) properties equivalent to bulk values, with typical hysteresis loops.

  16. Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication

    Science.gov (United States)

    Shirvani, Khosro A.; Mosleh, Mohsen; Smith, Sonya T.

    2016-08-01

    In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3-5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.

  17. Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Khosro A., E-mail: Khosro.asgharishir@bison.howard.edu; Mosleh, Mohsen; Smith, Sonya T. [Howard University, Department of Mechanical Engineering (United States)

    2016-08-15

    In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3–5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.

  18. Evolution of the surface plasmon resonance of Au:TiO{sub 2} nanocomposite thin films with annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Universidade do Minho, Centro/Departamento de Física (Portugal); Buljan, M.; Sancho-Parramon, J.; Bogdanovic-Radovic, I.; Siketic, Z. [Rudjer Boskovic Institute (Croatia); Scherer, T.; Kübel, C. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility - KNMF (Germany); Bernstorff, S. [Elettra-Sincrotrone Trieste (Italy); Cavaleiro, A. [University of Coimbra, SEG-CEMUC, Mechanical Engineering Department (Portugal); Vaz, F.; Rolo, A. G. [Universidade do Minho, Centro/Departamento de Física (Portugal)

    2014-12-15

    This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO{sub 2} dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 °C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 °C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 °C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

  19. Lubrication of sliding bearings for hydropower applications

    OpenAIRE

    McCarthy, Donald

    2005-01-01

    The term "sliding bearing" refers to types of bearing where two conformal surfaces (usually the stationary bearing and a moving shaft) slide relative to one another with load distributed directly across the interface. A suitable lubricant may be employed to reduce the friction between these two surfaces. In "fluid film" bearings, this lubricant builds up a layer of sufficient thickness such that the two surfaces are completely separated. Examples include journal and thrust bearings and shaft ...

  20. Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting

    Science.gov (United States)

    Mishra, Monali; Roy, Amritendu; Dash, Sukalyan; Mukherjee, Somdutta

    2018-03-01

    Owing to the persistent quest of renewable energy technology, piezoelectric energy harvesters are gathering considerable research interest due to their potential in driving microelectronic devices with small power requirement. Electrical energy (milli to microwatt range) is generated from mechanical counterparts such as vibrations of machines, human motion, flowing water etc. based on the principles of piezoelectricity. Flexible high piezoelectric constant (d33) ceramic/polymer composites are crucial components for fabricating these energy harvesters. The polymer composites composed of gallium ferrite nanoparticles and polyvinylidene fluoride (PVDF) as the matrix have been synthesized by solvent casting method. First, 8 wt. % PVDF was dissolved in DMF and then different compositions of GaFeO3 or GFO (10, 20, 30 wt. %) (with respect to PVDF only) nanocomposites were synthesized. The phase of the synthesized nanocomposites were studied by X- Ray diffraction which shows that with the increase in the GFO concentration, the intensity of diffraction peaks of PVDF steadily decreased and GFO peaks became increasingly sharp. As the concentration of GFO increases in the PVDF polymer matrix, band gap is also increased albeit to a small extent. The maximum measured output voltage and current during mechanical pressing and releasing conditions were found to be ~ 3.5 volt and 4 nA, respectively in 30 wt % GFO-PVDF composite, comparable to the available literature.