WorldWideScience

Sample records for nanochannel fabrication technique

  1. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate

    Science.gov (United States)

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-01

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type  silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559

  2. Fabrication and interfacing of nanochannel devices for single-molecule studies

    International Nuclear Information System (INIS)

    Hoang, H T; Berenschot, J W; De Boer, M J; Tas, N R; Haneveld, J; Elwenspoek, M C; Segers-Nolten, I M

    2009-01-01

    Nanochannel devices have been fabricated using standard micromachining techniques such as optical lithography, deposition and etching. 1D nanochannels with thin glass capping and through-wafer inlet/outlet ports were constructed. 2D nanochannels have been made transparent by oxidation of polysilicon channel wall for optical detection and these fragile channels were successfully connected to macro inlet ports. The interfacing from the macro world to the nanochannels was especially designed for optical observation of filling liquid inside nanochannels using an inverted microscope. Toward single-molecule studies, individual quantum dots were visualized in 150 nm height 1D nanochannels. The potential of 2D nanochannels for single-molecule studies was shown from a filling experiment with a fluorescent dye solution

  3. 1-D nanochannels fabricated in polyimide

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; Bomer, Johan G.; Tas, Niels Roelof; van den Berg, Albert

    2004-01-01

    A simple method using spin-deposition and sacrificial layer etching is used to fabricate all-polyimide nanochannels (100 and 500 nm channel height). Channels are characterized using spontaneous capillary filling with water, ethanol and isopropanol, and with electroosmotic flow. The channels can be

  4. Lithography-free centimeter-long nanochannel fabrication method using an electrospun nanofiber array

    International Nuclear Information System (INIS)

    Park, Suk Hee; Shin, Hyun-Jun; Lee, Sangyoup; Kim, Yong-Hwan; Yang, Dong-Yol; Lee, Jong-Chul

    2012-01-01

    Novel cost-effective methods for polymeric and metallic nanochannel fabrication have been demonstrated using an electrospun nanofiber array. Like other electrospun nanofiber-based nanofabrication methods, our system also showed high throughput as well as cost-effective performances. Unlike other systems, however, our fabrication scheme provides a pseudo-parallel nanofiber array a few centimeters long at a speed of several tens of fibers per second based on our unique inclined-gap fiber collecting system. Pseudo-parallel nanofiber arrays were used either directly for the PDMS molding process or for the metal lift-off process followed by the SiO 2 deposition process to produce the nanochannel array. While the PDMS molding process was a simple fabrication based on one-step casting, the metal lift-off process followed by SiO 2 deposition allowed finetuning on height and width of nanogrooves down to subhundred nanometers from a few micrometers. Nanogrooves were covered either with cover glass or with PDMS slab and nanochannel connectivity was investigated with a fluorescent dye. Also, nanochannel arrays were used to investigate mobility and conformations of λ-DNA. (paper)

  5. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Palmarelli, Anna Laura; Liang, Xiaogan

    2011-01-01

    In this work, we propose an innovative approach to the fabrication of a complete micro/nano fluidic system, based on direct nanoimprint lithography. The fabricated device consists of nanochannels connected to U-shaped microchannels by triangular tapered inlets, and has four large reservoirs for l...

  6. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  7. Fabrication of self-enclosed nanochannels based on capillary-pressure balance mechanism

    Science.gov (United States)

    Kou, Yu; Sang, Aixia; Li, Xin; Wang, Xudi

    2017-10-01

    Polymer-based micro/nano fluidic devices are becoming increasingly important to biological applications and fluidic control. In this paper, we propose a self-enclosure method for the fabrication of large-area nanochannels without external force by using a capillary-pressure balance mechanism. The melt polymer coated on the nanogrooves fills into the trenches inevitably and the air in the trenches is not excluded but compressed, which leads to an equilibrium state between pressure of the trapped air and capillary force of melt polymer eventually, resulting in the channels’ formation. A pressure balance model was proposed to elucidate the unique self-sealing phenomenon and the criteria for the design and construction of sealed channels was discussed. According to the bonding mechanism investigated using the volume of fluid (VOF) simulation and experiments, we can control the dimension of sealed channels by varying the baking condition. This fabrication technique has great potential for low-cost and mass production of polymeric-based micro/nano fluidic devices.

  8. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    Science.gov (United States)

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  9. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    Science.gov (United States)

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  10. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    International Nuclear Information System (INIS)

    Chen, Shih-Yung; Wang, Yuh-Lin; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi

    2011-01-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  11. Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.Q., E-mail: wangzhiqian@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiao, N.D. [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Tung, S. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Dong, Z.L. [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China)

    2011-02-01

    The atomic force microscopy (AFM)-based repeated nanomachining of nanochannels on silicon oxide surfaces is investigated both theoretically and experimentally. The relationships of the initial nanochannel depth vs. final nanochannel depth at a normal force are systematically studied. Using the derived theory and simulation results, the final nanochannel depth can be predicted easily. Meanwhile, if a nanochannel with an expected depth needs to be machined, a right normal force can be selected simply and easily in order to decrease the wear of the AFM tip. The theoretical analysis and simulation results can be effectively used for AFM-based fabrication of nanochannels.

  12. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Reisner, Walter

    2013-01-01

    Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and/or requi......Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and...... AT and GC variation along DNA sequences....

  13. Transient response of nonideal ion-selective microchannel-nanochannel devices

    Science.gov (United States)

    Leibowitz, Neta; Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2018-04-01

    We report evidence of variation in ion selectivity of a fabricated microchannel-nanochannel device resulting in the appearance of a distinct local maximum in the overlimiting chronopotentiometric response. In this system consisting of shallow microchannels joined by a nanochannel, viscous shear at the microchannel walls suppresses the electro-osmotic instability and prevents any associated contribution to the nonmonotonic response. Thus, this response is primarily electrodiffusive. Numerical simulations indicate that concentration polarization develops not only within the microchannel but also within the nanochannel itself, with a local voltage maximum in the chronopotentiometric response correlated with interfacial depletion and having the classic i-2 Sands time dependence. Furthermore, the occurrence of the local maxima is correlated with the change in selectivity due to internal concentration polarization. Understanding the transient nonideal permselective response is essential for obtaining fundamental insight and for optimizing efficient operation of practical fabricated nanofluidic and membrane devices.

  14. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    Science.gov (United States)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even

  15. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  16. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Gao, Lin; Korzeniewski, Carol; Matzke, Carolyn

    2005-07-01

    The apparent proton conductivity inside a nanochannel can be enhanced by orders of magnitude due to the electric double layer overlap. A nanochannel filled with an acidic solution is thus a micro super proton conductor, and an array of such nanochannels forms an excellent proton conductive membrane. Taking advantage of this effect, a new class of proton exchange membrane is developed for micro fuel cell applications.

  17. Nanochannels Photoelectrochemical Biosensor.

    Science.gov (United States)

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  18. Light-Induced Local Heating for Thermophoretic Manipulation of DNA in Polymer Micro- and Nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Larsen, Niels Bent; Kristensen, Anders

    2010-01-01

    We present a method for making polymer chips with a narrow-band near-infrared absorber layer that enables light-induced local heating of liquids inside fluidic micro- and nanochannels fabricated by thermal imprint in polymethyl methacrylate. We have characterized the resulting liquid temperature...... profiles in microchannels using the temperature dependent fluorescence of the complex [Ru(bpy)3]2+. We demonstrate thermophoretic manipulation of individual YOYO-1 stained T4 DNA molecules inside micro- and nanochannels....

  19. Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Klukowska, A.; Kristensen, Anders

    2008-01-01

    . The stamp is compatible with molecular vapor deposition ( MVD), used for applying a durable chlorosilane based antistiction coating, and allows for imprint up to a temperature of 270 degrees C. The extension of YOYO-1 stained T4 GT7 bacteriophage DNA inside the PMMA nanochannels has been experimentally...

  20. DNA nanochannels [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dianming Wang

    2017-04-01

    Full Text Available Transmembrane proteins are mostly nanochannels playing a highly important role in metabolism. Understanding their structures and functions is vital for revealing life processes. It is of fundamental interest to develop chemical devices to mimic biological channels. Structural DNA nanotechnology has been proven to be a promising method for the preparation of fine DNA nanochannels as a result of the excellent properties of DNA molecules. This review presents the development history and current situation of three different types of DNA nanochannel: tile-based nanotube, DNA origami nanochannel, and DNA bundle nanochannel.

  1. Self-organized titanium oxide nano-channels for resistive memory application

    Energy Technology Data Exchange (ETDEWEB)

    Barman, A.; Saini, C. P.; Dhar, S.; Kanjilal, A., E-mail: aloke.kanjilal@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201 314 (India); Sarkar, P. [Department of Physics, National Institute of Technology, Silchar, Assam 788 010 (India); Satpati, B.; Bhattacharyya, S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kabiraj, D.; Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2015-12-14

    Towards developing next generation scalable TiO{sub 2}-based resistive switching (RS) memory devices, the efficacy of 50 keV Ar{sup +}-ion irradiation to achieve self-organized nano-channel based structures at a threshold fluence of 5 × 10{sup 16} ions/cm{sup 2} at ambient temperature is presented. Although x-ray diffraction results suggest the amorphization of as-grown TiO{sub 2} layers, detailed transmission electron microscopy study reveals fluence-dependent evolution of voids and eventual formation of self-organized nano-channels between them. Moreover, gradual increase of TiO/Ti{sub 2}O{sub 3} in the near surface region, as monitored by x-ray photoelectron spectroscopy, establishes the upsurge in oxygen deficient centers. The impact of structural and chemical modification on local RS behavior has also been investigated by current-voltage measurements in conductive atomic force microscopy, while memory application is manifested by fabricating Pt/TiO{sub 2}/Pt/Ti/SiO{sub 2}/Si devices. Finally, the underlying mechanism of our experimental results has been analyzed and discussed in the light of oxygen vacancy migration through nano-channels.

  2. Fabrication of Nanostructures Using Self-Assembled Peptides as Templates

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    the advantages of diphenylalanine are explained step by step offering new alternatives to fabricate nanostructures in a simple and rapid way. The chapter is complemented with techniques to manipulate the self-assembled diphenylalanine nanostructures without changing its properties during the manipulation process.......This chapter evaluates the use of a short-aromatic dipeptide, diphenylalanine, as a template in the fabrication of new nanostructures (nanowires, coaxial nanocables, nanochannels) using materials such as silicon, conducting and non-conducting polymers. Diphenylalanine self...

  3. Polymer chain alignment and transistor properties of nanochannel-templated poly(3-hexylthiophene) nanowires

    Science.gov (United States)

    Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka

    2016-08-01

    Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.

  4. Electrokinetic motion of a rectangular nanoparticle in a nanochannel

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Saeid; Li Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2012-08-15

    This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson-Boltzmann equation and the Helmholtz-Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson-Nernst-Plank equation, the Navier-Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle's motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle's motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.

  5. Electrokinetic motion of a rectangular nanoparticle in a nanochannel

    International Nuclear Information System (INIS)

    Movahed, Saeid; Li Dongqing

    2012-01-01

    This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson–Boltzmann equation and the Helmholtz–Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson–Nernst–Plank equation, the Navier–Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle’s motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle’s motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.

  6. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  7. The Electrochemical Stability in NaCl Solution of Nanotubes and Nanochannels Elaborated on a New Ti-20Zr-5Ta-2Ag Alloy

    Directory of Open Access Journals (Sweden)

    Claudiu Constantin Manole

    2015-01-01

    Full Text Available Nanotubular and nanochannels structures were fabricated via anodizing on a new alloy Ti-20Zr-8Ta-2Ag. A continuous coating of connected tubes/channels can be observed in the SEM micrographs forming tubular structures with diameters in hundreds of nm, as well as smaller tubes, with diameters in tens of nm. In the case of nanochannels structure, the diameters are smaller and wall thicknesses significantly thinner than in nanotubes. Wettability measurements indicate a decrease of contact angles in both cases of nanotubes and nanochannels, but the increase of hydrophilic character is more significant in the case of nanochannels. The Tafel procedure and electrochemical impedance spectroscopy tests performed in NaCl 0.9% solution indicate a better stability for the nanostructured surfaces compared to untreated alloy, the surface with nanochannels offering higher corrosion resistance. Spectral UV-VIS determination has confirmed Ag metallic presence, opening the door for applications not only in tissue engineering but for water splitting and the photoreduction of CO2 as well.

  8. Proton-conductive nanochannel membrane for fuel-cell applications.

    Science.gov (United States)

    Oleksandrov, Sergiy; Lee, Jeong-Woo; Jang, Joo-Hee; Haam, Seungjoo; Chung, Chan-Hwa

    2009-02-01

    Novel design of proton conductive membrane for direct methanol fuel cells is based on proton conductivity of nanochannels, which is acquired due to the electric double layer overlap. Proton conductivity and methanol permeability of an array of nanochannels were studied. Anodic aluminum oxide with pore diameter of 20 nm was used as nanochannel matrix. Channel surfaces of an AAO template were functionalized with sulfonic groups to increase proton conductivity of nanochannels. This was done in two steps; at first -SH groups were attached to walls of nanochannels using (3-Mercaptopropyl)-trimethyloxysilane and then they were converted to -SO3H groups using hydrogen peroxide. Treatment steps were analyzed by Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy. Proton conductivity and methanol permeability were measured. The data show methanol permeability of membrane to be an order of magnitude lower, than that measured of Nafion. Ion conductivity of functionalized AAO membrane was measured by an impedance analyzer at frequencies ranging from 1 Hz to 100 kHz and voltage 50 mV to be 0.15 Scm(-1). Measured ion conductivity of Nafion membrane was 0.05 Scm(-1). Obtained data show better results in comparison with commonly used commercial available proton conductive membrane Nafion, thus making nanochannel membrane very promising for use in fuel cell applications.

  9. Porous Anodic Aluminum Oxide with Serrated Nanochannels

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Lu, Jia G.

    2010-03-01

    Self-assembled nanoporous anodic aluminum oxide (AAO) membrane with straight channels has long been an important tool in synthesizing highly ordered and vertically aligned quasi-1D nanostructures for various applications. Recently shape-selective nanomaterials have been achieved using AAO as a template. It is envisioned that nanowires with multi-branches will significantly increase the active functional sites for applications as sensors, catalysts, chemical cells, etc. Here AAO membranes with serrated nanochannels have been successfully fabricated via a two-step annodization method. The serrated channels with periodic intervals are aligned at an angle of ˜25^circ along the stem channels. The formation of the serrated channels is attributed to the evolution of oxygen gas bubbles and the resulted plastic deformation in oxide membrane. In order to reveal the inside channel structure, Platinum are electrodeposited into the AAO template. The as-synthesized serrated Pt nanowires demonstrate a superior electrocatalytic activity. This is attributed to the enhanced electric field strength around serrated tips as shown in the electric field simulation by COMOSL. Moreover, hierarchical serrated/straight hybrid structures can be constructed using this simple and novel self assembly technique.

  10. Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yakang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580 (China); College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Liu, Xuefeng, E-mail: liuxf@upc.edu.cn [College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Liu, Zilong [College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Lu, Shuangfang [Institute of Unconventional Oil & Gas and New Energy, China University of Petroleum, Qingdao 266580, Shandong (China); Xue, Qingzhong, E-mail: xueqingzhong@tsinghua.org.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580 (China); College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); National Production Equipment Research Center, Dongying 257064, Shandong (China)

    2016-04-15

    A novel interfacial model was proposed to understand water flow mechanism in nanochannels. Based on our pore-throat nanochannel model, the effect of interfacial layer on water flow in nanochannels was quantitatively studied using Lattice Boltzmann method (LBM). It is found that both the permeability of nanochannel and water velocity in the nanochannel dramatically decrease with increasing the thickness of interfacial layer. The permeability of nanochannel with pore radius of 10 nm decreases by about three orders of magnitude when the thickness of interfacial layer is changed from 0 nm to 3 nm gradually. Furthermore, it has been demonstrated that the cross-section shape has a great effect on the water flow inside nanochannel and the effect of interfacial layer on the permeability of nanochannel has a close relationship with cross-section shape when the pore size is smaller than 12 nm. Besides, both pore-throat ratio and throat length can greatly affect water flow in nanochannels, and the influence of interfacial layer on water flow in nanochannels becomes more evident with increasing pore-throat ratio and throat length. Our theoretical results provide a simple and effective method to study the flow phenomena in nano-porous media, particularly to quantitatively study the interfacial layer effect in nano-porous media.

  11. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  12. Static and Dynamic Properties of DNA Confined in Nanochannels

    Science.gov (United States)

    Gupta, Damini

    Next-generation sequencing (NGS) techniques have considerably reduced the cost of high-throughput DNA sequencing. However, it is challenging to detect large-scale genomic variations by NGS due to short read lengths. Genome mapping can easily detect large-scale structural variations because it operates on extremely large intact molecules of DNA with adequate resolution. One of the promising methods of genome mapping is based on confining large DNA molecules inside a nanochannel whose cross-sectional dimensions are approximately 50 nm. Even though this genome mapping technology has been commercialized, the current understanding of the polymer physics of DNA in nanochannel confinement is based on theories and lacks much needed experimental support. The results of this dissertation are aimed at providing a detailed experimental understanding of equilibrium properties of nanochannel-confined DNA molecules. The results are divided into three parts. In first part, we evaluate the role of channel shape on thermodynamic properties of channel confined DNA molecules using a combination of fluorescence microscopy and simulations. Specifically, we show that high aspect ratio of rectangular channels significantly alters the chain statistics as compared to an equivalent square channel with same cross-sectional area. In the second part, we present experimental evidence that weak excluded volume effects arise in DNA nanochannel confinement, which form the physical basis for the extended de Gennes regime. We also show how confinement spectroscopy and simulations can be combined to reduce molecular weight dispersity effects arising from shearing, photo-cleavage, and nonuniform staining of DNA. Finally, the third part of the thesis concerns the dynamic properties of nanochannel confined DNA. We directly measure the center-of-mass diffusivity of single DNA molecules in confinement and show that that it is necessary to modify the classical results of de Gennes to account for local chain

  13. A novel vertical fan-out platform based on an array of curved anodic alumina nanochannels

    International Nuclear Information System (INIS)

    Liu, Chih-Yi; Lai, Ming-Yu; Tsai, Kun-Tong; Chang, Hsuan-Hao; Wang, Yuh-Lin; He, Jr-Hau; Shiue, Jessie

    2013-01-01

    Focused ion beam lithography and a two-step anodization have been combined to fabricate a vertical fan-out platform containing an array of unique probes. Each probe comprises three anodic alumina nanochannels with a fan-out arrangement. The lithography is used to pattern an aluminum sheet with a custom-designed array of triangular ‘cells’ whose apexes are composed of nanoholes. The nanoholes grow into straight nanochannels under proper voltage in the first-step anodization. The second step uses a doubled voltage to induce lateral repulsion among the nanochannels’ growth fronts originating in the same cell. Therefore, the fronts fan out. The repulsion roots in the inter-front distance being shorter than the naturally favoured length, which increases with anodization voltage. The fan-out evolution continues until the growth fronts originating in all the cells evolve into a close-packed two-dimensional hexagonal lattice whose spacing is identical to the favoured one. The chemical and physical mechanisms behind the fan-out fabrication are discussed. This novel fan-out platform facilitates probing and handling of many signals from different areas on a sample’s surface and is therefore promising for applications in detection and manipulation at the nanoscale level. (paper)

  14. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  15. Electrophoresis in nanochannels: brief review and speculation

    Directory of Open Access Journals (Sweden)

    Santiago Juan G

    2006-11-01

    Full Text Available Abstract The relevant physical phenomena that dominate electrophoretic transport of ions and macromolecules within long, thin nanochannels are reviewed, and a few papers relevant to the discussion are cited. Sample ion transport through nanochannels is largely a function of their interaction with electric double layer. For small ions, this coupling includes the net effect of the external applied field, the internal field of the double layer, and the non-uniform velocity of the liquid. Adsorption/desorption kinetics and the effects of surface roughness may also be important in nanochannel electrophoresis. For macromolecules, the resulting motion is more complex as there is further coupling via steric interactions and perhaps polarization effects. These complex interactions and coupled physics represent a valuable opportunity for novel electrophoretic and chromatographic separations.

  16. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  17. Ion and electron beam assisted fabrication of nanostructures integrated in microfluidic chips

    International Nuclear Information System (INIS)

    Evstrapov, A.A.; Mukhin, I.S.; Bukatin, A.S.; Kukhtevich, I.V.

    2012-01-01

    In present work we have designed and fabricated microfluidic chips (MFC) with integrated nets of nanochannels and whisker nanostructures in microchannels for investigation of biological samples in their native environment. We have designed a number of MFC topologies: (a) hydrodynamic traps with nanoscale channels which link microchannels; (b) a structure with regular vertical nanorod (nanowhisker) array, which could be used as a sensitive element. These topologies were created by means of ion and electron beam assisted techniques. These MFCs allow to investigate biological objects by means of high resolution microscopy. Fabricated MFCs were investigated with emulator of biological objects in different buffer solutions.

  18. Helium retention in krypton ion pre-irradiated nanochannel W film

    Science.gov (United States)

    Qin, Wenjing; Ren, Feng; Zhang, Jian; Dong, Xiaonan; Feng, Yongjin; Wang, Hui; Tang, Jun; Cai, Guangxu; Wang, Yongqiang; Jiang, Changzhong

    2018-02-01

    Nanochannel tungsten (W) film is a promising candidate as an alternative to bulk W for use in fusion applications. In previous work it has been shown to have good radiation resistance under helium (He) irradiation. To further understand the influence of the irradiation-induced displacement cascade damage on helium retention behaviour in a fusion environment, in this work, nanochannel W film and bulk W were pre-irradiated by 800 keV Kr2+ ions to the fluence of 2.6  ×  1015 ions cm-2 and subsequently irradiated by 40 keV He+ ions to the fluence of 5  ×  1017 ions cm-2. The Kr2+ ion pre-irradiation greatly increases helium retention in the form of small clusters and retards the formation of large clusters. It can effectively inhibit surface helium blistering under high temperature annealing. Compared with bulk W, no cracks were found in the nanochannel W film post-irradiated by He+ ions at high fluence. The release of helium from the nanochannel W film is more than one order of magnitude higher than that of bulk W whether they are irradiated by single He+ ions or sequentially irradiated by Kr2+ and He+ ions. Moreover, swelling of the bulk W is more serious than that of the nanochannel film. Therefore, nanochannel W film has a higher radiation tolerance performance in the synergistic irradiation.

  19. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.

    Science.gov (United States)

    Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui

    2017-08-01

    In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Surface Effect on Oil Transportation in Nanochannel: a Molecular Dynamics Study.

    Science.gov (United States)

    Zheng, Haixia; Du, Yonggang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Lu, Shuangfang; Jin, Yakang

    2017-12-01

    In this work, we investigate the dynamics mechanism of oil transportation in nanochannel using molecular dynamics simulations. It is demonstrated that the interaction between oil molecules and nanochannel has a great effect on the transportation properties of oil in nanochannel. Because of different interactions between oil molecules and channel, the center of mass (COM) displacement of oil in a 6-nm channel is over 30 times larger than that in a 2-nm channel, and the diffusion coefficient of oil molecules at the center of a 6-nm channel is almost two times more than that near the channel surface. Besides, it is found that polarity of oil molecules has the effect on impeding oil transportation, because the electrostatic interaction between polar oil molecules and channel is far larger than that between nonpolar oil molecules and channel. In addition, channel component is found to play an important role in oil transportation in nanochannel, for example, the COM displacement of oil in gold channel is very few due to great interaction between oil and gold substrate. It is also found that nano-sized roughness of channel surface greatly influences the speed and flow pattern of oil. Our findings would contribute to revealing the mechanism of oil transportation in nanochannels and therefore are very important for design of oil extraction in nanochannels.

  1. DNA confinement in nanochannels: physics and biological applications

    DEFF Research Database (Denmark)

    Reisner, Walter; Pedersen, Jonas Nyvold; Austin, Robert H

    2012-01-01

    in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense...... direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined...... biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100μm range. (Some...

  2. Sustained Administration of Hormones Exploiting Nanoconfined Diffusion through Nanochannel Membranes

    Directory of Open Access Journals (Sweden)

    Thomas Geninatti

    2015-08-01

    Full Text Available Implantable devices may provide a superior means for hormone delivery through maintaining serum levels within target therapeutic windows. Zero-order administration has been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum concentration and bioavailability of released hormones. By exploiting surface-to-molecule interaction within nanochannel membranes, it is possible to achieve a long-term, constant diffusive release of agents from implantable reservoirs. In this study, we sought to demonstrate the controlled release of model hormones from a novel nanochannel system. We investigated the delivery of hormones through our nanochannel membrane over a period of 40 days. Levothyroxine, osteocalcin and testosterone were selected as representative hormones based on their different molecular properties and structures. The release mechanisms and transport behaviors of these hormones within 3, 5 and 40 nm channels were characterized. Results further supported the suitability of the nanochannels for sustained administration from implantable platforms.

  3. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  4. A light-powered bio-capacitor with nanochannel modulation.

    Science.gov (United States)

    Rao, Siyuan; Lu, Shanfu; Guo, Zhibin; Li, Yuan; Chen, Deliang; Xiang, Yan

    2014-09-03

    An artificial bio-capacitor system is established, consisting of the proton-pump protein proteorhodopsin and a modified alumina nanochannel, inspired by the capacitor-like behavior of plasma membranes realized through the cooperation of ion-pump and ion-channel proteins. Capacitor-like features of this simplified system are realized and identified, and the photocurrent duration time can be modulated by nanochannel modification to obtain favorable square-wave currents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrokinetic Analysis of Energy Harvest from Natural Salt Gradients in Nanochannels.

    Science.gov (United States)

    He, Yuhui; Huang, Zhuo; Chen, Bowei; Tsutsui, Makusu; Shui Miao, Xiang; Taniguchi, Masateru

    2017-10-13

    The Gibbs free energy released during the mixing of river and sea water has been illustrated as a promising source of clean and renewable energy. Reverse electrodialysis (RED) is one major strategy to gain electrical power from this natural salinity, and recently by utilizing nanochannels a novel mode of this approach has shown improved power density and energy converting efficiency. In this work, we carry out an electrokinetic analysis of the work extracted from RED in the nanochannels. First, we outline the exclusion potential effect induced by the inhomogeneous distribution of extra-counterions along the channel axis. This effect is unique in nanochannel RED and how to optimize it for energy harvesting is the central topic of this work. We then discuss two important indexes of performance, which are the output power density and the energy converting efficiency, and their dependence on the nanochannel parameters such as channel material and geometry. In order to yield maximized output electrical power, we propose a device design by stepwise usage of the saline bias, and the lengths of the nanochannels are optimized to achieve the best trade-off between the input thermal power and the energy converting efficiency.

  6. Fabrication of nanochannels on polyimide films using dynamic plowing lithography

    Science.gov (United States)

    Stoica, Iuliana; Barzic, Andreea Irina; Hulubei, Camelia

    2017-12-01

    Three distinct polyimide films were analyzed from the point of view of their morphology in order to determine if their surface features can be adapted for applications where surface anisotropy is mandatory. Channels of nanometric dimensions were created on surface of the specimens by using a less common atomic force microscopy (AFM) method, namely Dynamic Plowing Lithography (DPL). The changes generated by DPL procedure were monitored through the surface texture and other functional parameters, denoting the surface orientation degree and also bearing and fluid retention properties. The results revealed that in the same nanolithography conditions, the diamine and dianhydride moieties have affected the characteristics of the nanochannels. This was explained based on the aliphatic/aromatic nature of the monomers and the backbone flexibility. The reported data are of great importance in designing custom nanostructures with enhanced anisotropy on surface of polyimide films for liquid crystal orientation or guided cell growth purposes. At the end, to track the effect of the nanolithography process on the tip sharpness, degradation and contamination, the blind tip reconstruction was performed on AFM probe, before and after lithography experiments, using TGT1 test grating AFM image.

  7. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels

    International Nuclear Information System (INIS)

    Kim, Dong Kwon

    2011-01-01

    In this article, ion-selective nanochannels are numerically studied to investigate the power generation capability of a concentration gradient in conjunction with reverse electrodialysis. The generation of power from the nanochannel when it is placed between two reservoirs containing sodium chloride solutions with different concentrations is investigated. The current-potential characteristics of the nanochannel were calculated by solving the Poisson equation and the Nernst-Planck equation. The effects of engineering parameters on the power generation density are investigated

  8. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Kwon [Ajou University, Suwon (Korea, Republic of)

    2011-01-15

    In this article, ion-selective nanochannels are numerically studied to investigate the power generation capability of a concentration gradient in conjunction with reverse electrodialysis. The generation of power from the nanochannel when it is placed between two reservoirs containing sodium chloride solutions with different concentrations is investigated. The current-potential characteristics of the nanochannel were calculated by solving the Poisson equation and the Nernst-Planck equation. The effects of engineering parameters on the power generation density are investigated.

  9. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  10. Effects of water-channel attractions on single-file water permeation through nanochannels

    International Nuclear Information System (INIS)

    Xu, Yousheng; Zheng, Youqu; Tian, Xingling; Lv, Mei; He, Bing; Deng, Maolin; Xiu, Peng; Tu, Yusong

    2016-01-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single

  11. Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices

    Science.gov (United States)

    Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook

    2015-11-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.

  12. Concerted orientation induced unidirectional water transport through nanochannels.

    Science.gov (United States)

    Wan, Rongzheng; Lu, Hangjun; Li, Jinyuan; Bao, Jingdong; Hu, Jun; Fang, Haiping

    2009-11-14

    The dynamics of water inside nanochannels is of great importance for biological activities as well as for the design of molecular sensors, devices, and machines, particularly for sea water desalination. When confined in specially sized nanochannels, water molecules form a single-file structure with concerted dipole orientations, which collectively flip between the directions along and against the nanotube axis. In this paper, by using molecular dynamics simulations, we observed a net flux along the dipole-orientation without any application of an external electric field or external pressure difference during the time period of the particular concerted dipole orientations of the molecules along or against the nanotube axis. We found that this unique special-directional water transportation resulted from the asymmetric potential of water-water interaction along the nanochannel, which originated from the concerted dipole orientation of the water molecules that breaks the symmetry of water orientation distribution along the channel within a finite time period. This finding suggests a new mechanism for achieving high-flux water transportation, which may be useful for nanotechnology and biological applications.

  13. Microstructure and hardness evolution of nanochannel W films irradiated by helium at high temperature

    Science.gov (United States)

    Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong

    2018-04-01

    Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.

  14. Compressing a confined DNA: from nano-channel to nano-cavity

    Science.gov (United States)

    Sakaue, Takahiro

    2018-06-01

    We analyze the behavior of a semiflexible polymer confined in nanochannel under compression in axial direction. Key to our discussion is the identification of two length scales; the correlation length ξ of concentration fluctuation and what we call the segregation length . These length scales, while degenerate in uncompressed state in nanochannel, generally split as upon compression, and the way they compete with the system size during the compression determines the crossover from quasi-1D nanochannel to quasi-0D nanocavity behaviors. For a flexible polymer, the story becomes very simple, which corresponds to a special limit of our description, but a much richer behavior is expected for a semiflexible polymer relevant to DNA in confined spaces. We also briefly discuss the dynamical properties of the compressed polymer.

  15. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  16. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    Science.gov (United States)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  17. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    Science.gov (United States)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  18. Pressure calculations in nanochannel gas flows

    NARCIS (Netherlands)

    Kim, J.H.; Frijns, A.J.H.; Nedea, S.V.; Steenhoven, van A.A.; Frijns, A.J.H.; Valougeorgis, D.; Colin, S.; Baldas, L.

    2012-01-01

    In this research, pressure driven flow within a nanochannel is studied for argon in rarefied gas states. A Molecular Dynamics simulation is used to resolve the density and stress variations. Normal stress calculations are based on Irving-Kirkwood method, which divides the stress tensor into its

  19. Effect of air on water capillary flow in silica nanochannels

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2013-01-01

    , with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water...... in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show...... that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads...

  20. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.

    Science.gov (United States)

    Tian, Huanhuan; Zhang, Li; Wang, Moran

    2015-08-15

    Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew

    2011-01-01

    the surface reaction equilibrium constant for silica/hydronium reactions. The model describes our experimental data with aqueous potassium chloride solutions in 165-nm-high silica nanochannels well, and furthermore, by comparing model predictions with measurements in bulk and in nanochannels with hydrochloric...

  2. Experimental investigation of flow and slip transition in nanochannels

    Science.gov (United States)

    Li, Zhigang; Li, Long; Mo, Jingwen

    2014-11-01

    Flow slip in nanochannels is sought in many applications, such as sea water desalination and molecular separation, because it can enhance fluid transport, which is essential in nanofluidic systems. Previous findings about the slip length for simple fluids at the nanoscale appear to be controversial. Some experiments and simulations showed that the slip length is independent of shear rate, which agrees with the prediction of classic slip theories. However, there is increasing work showing that slip length is shear rate dependent. In this work, we experimentally investigate the Poiseuille flows in nanochannels. It is found that the flow rate undergoes a transition between two linear regimes as the shear rate is varied. The transition indicates that the non-slip boundary condition is valid at low shear rate. When the shear rate is larger than a critical value, slip takes place and the slip length increases linearly with increasing shear rate before approaching a constant value. The results reported in this work can help advance the understanding of flow slip in nanochannels. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant Nos. 615710 and 615312. J. Mo was partially supported by the Postgraduate Scholarship through the Energy Program at HKUST.

  3. Bioinspired smart asymmetric nanochannel membranes.

    Science.gov (United States)

    Zhang, Zhen; Wen, Liping; Jiang, Lei

    2018-01-22

    Bioinspired smart asymmetric nanochannel membranes (BSANM) have been explored extensively to achieve the delicate ionic transport functions comparable to those of living organisms. The abiotic system exhibits superior stability and robustness, allowing for promising applications in many fields. In view of the abundance of research concerning BSANM in the past decade, herein, we present a systematic overview of the development of the state-of-the-art BSANM system. The discussion is focused on the construction methodologies based on raw materials with diverse dimensions (i.e. 0D, 1D, 2D, and bulk). A generic strategy for the design and construction of the BSANM system is proposed first and put into context with recent developments from homogeneous to heterogeneous nanochannel membranes. Then, the basic properties of the BSANM are introduced including selectivity, gating, and rectification, which are associated with the particular chemical and physical structures. Moreover, we summarized the practical applications of BSANM in energy conversion, biochemical sensing and other areas. In the end, some personal opinions on the future development of the BSANM are briefly illustrated. This review covers most of the related literature reported since 2010 and is intended to build up a broad and deep knowledge base that can provide a solid information source for the scientific community.

  4. Field-effect pH Control in Nanochannels

    NARCIS (Netherlands)

    Veenhuis, R.B.H.; van der Wouden, E.J.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.; Kim, Tae Song; Lee, Yoon-Sik; Chung, Taek-Dong; Jeon, Noo Li; Lee, Sang-Hoon; Suh, Kaph-Yang; Choo, Jaebum; Kim, Yong-Kweon

    2009-01-01

    We demonstrate a novel capacitive method to change the pH in nanochannels. The device employs metal electrodes outside an insulating channel wall to change the electrical double layer potential by the field effect (‘voltage gating’). We demonstrate that this potential change is accompanied by a

  5. Fabrication and Characterization of Magnetic Nanowires in Anodic Alumina

    Science.gov (United States)

    Xiao, Z. L.; Han, Y. R.; Wang, H. H.; Welp, U.; Kwok, W. K.; Crabtree, G. W.

    2002-03-01

    Magnetic nanowires (cobalt, iron and nickel) with diameters down to 20 nm have been fabricated by electrodeposition. Both commercial and home-made anodized aluminum oxide (AAO) membranes with nanochannel arrays were used as templates. The structure and magnetization hysteresis of the specimens with nanowires were investigated with scanning electron microscope (SEM) and superconducting quantum interference device (SQUID), respectively. Growth of nanowires with both aqueous and dimethylsulfoxide (DMSO) solutions was conducted and better quality nanowires were obtained with the organic DMSO solution. The influence of the diameter, the length and the separation of the nanochannels on the magnetization orientation was investigated in detail. Work supported by the US Department of Energy (DOE), BES-Materials Science, Contract No. W-31-109-ENG-38.

  6. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  7. Nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology

    NARCIS (Netherlands)

    Dijkstra, Marcel; Berenschot, Johan W.; de Boer, Meint J.; van der Linden, H.J.; Hankemeier, T.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2012-01-01

    This article presents nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology. The main advantage of the technology is the ability to position freely suspended nanochannels anywhere on a microfluidic chip, where leak-tight delivery of fluid from a fluid reservoir can be

  8. Electricity resonance-induced fast transport of water through nanochannels.

    Science.gov (United States)

    Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun

    2014-09-10

    We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.

  9. Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis.

    Science.gov (United States)

    Park, Seung-Min; Huh, Yun Suk; Szeto, Kylan; Joe, Daniel J; Kameoka, Jun; Coates, Geoffrey W; Edel, Joshua B; Erickson, David; Craighead, Harold G

    2010-11-05

    Biomolecular transport in nanofluidic confinement offers various means to investigate the behavior of biomolecules in their native aqueous environments, and to develop tools for diverse single-molecule manipulations. Recently, a number of simple nanofluidic fabrication techniques has been demonstrated that utilize electrospun nanofibers as a backbone structure. These techniques are limited by the arbitrary dimension of the resulting nanochannels due to the random nature of electrospinning. Here, a new method for fabricating nanofluidic systems from size-reduced electrospun nanofibers is reported and demonstrated. As it is demonstrated, this method uses the scanned electrospinning technique for generation of oriented sacrificial nanofibers and exposes these nanofibers to harsh, but isotropic etching/heating environments to reduce their cross-sectional dimension. The creation of various nanofluidic systems as small as 20 nm is demonstrated, and practical examples of single biomolecular handling, such as DNA elongation in nanochannels and fluorescence correlation spectroscopic analysis of biomolecules passing through nanochannels, are provided.

  10. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    International Nuclear Information System (INIS)

    Pooja,; Ahluwalia, P. K.; Pathania, Y.

    2015-01-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow

  11. Slip flow in graphene nanochannels

    DEFF Research Database (Denmark)

    . Kannam, Sridhar; Billy, Todd; Hansen, Jesper Schmidt

    2011-01-01

    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev....... E 84, 016313 (2011)10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium...

  12. Diffusion transport of nanoparticles at nanochannel boundaries

    International Nuclear Information System (INIS)

    Mahadevan, T. S.; Milosevic, M.; Kojic, M.; Hussain, F.; Kojic, N.; Serda, R.; Ferrari, M.; Ziemys, A.

    2013-01-01

    The manipulation of matter at the nanoscale has unleashed a great potential for engineering biomedical drug carriers, but the transport of nanoparticles (NPs) under nanoscale confinement is still poorly understood. Using colloidal physics to describe NP interactions, we have computationally studied the passive transport of NPs using experimentally relevant conditions from bulk into a nanochannel of 60–90 nm height. NP size, channel height, and the Debye length are comparable so that changes in nanoscale dimensions may induce substantial changes in NP transport kinetics. We show that subtle changes in nanochannel dimensions may alter the energy barrier by about six orders of magnitude resulting in different NP penetration depths and diffusion mechanisms: ballistic, first-order and quasi zero-order transport regimes. The analysis of NP diffusion by continuum methods reveals that apparent diffusivity is reduced by decreasing channel size. The continuum finite element (FE) numerical method reproduced the colloidal model results only when surface interactions were accounted for. These results give a new insight into NP passive transport at the boundaries of nanoconfined domains, and have implications on the design of nanoscale fluidics and NP systems for biomedical and engineering applications.

  13. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  14. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis.

    Science.gov (United States)

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-12-07

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.

  15. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis

    Science.gov (United States)

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-11-01

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.

  16. Evaluation of miniature tension specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1993-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  17. Evaluation of miniature tensile specimen fabrication techniques and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L. (Pacific Northwest Lab., Richland, WA (United States)); Blotter, M.A.; Edwards, D.J. (Missouri Univ., Rolla, MO (United States))

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed.

  18. Evaluation of miniature tensile specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  19. Development of fabrication technique of bulk high superconductor

    International Nuclear Information System (INIS)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil.

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs

  20. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  1. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    Science.gov (United States)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  2. Cathodoluminescence study of anodic nanochannel alumina

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q.X. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)]. E-mail: guoq@cc.saga-u.ac.jp; Hachiya, Y. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Nishio, M. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Ogawa, H. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)

    2006-07-15

    Nanochannel alumina (NCA) templates with highly ordered pore arrays were prepared by anodizing pure aluminum foil in acid solutions. Cathodoluminescence measurements reveal that a blue emission band appears at around 2.8 eV and its energy position depends on measurement temperature and pore size of NCA. The shift of the blue emission band energy with temperature is ascribed to the variations of electron-phonon interactions. X-ray absorption near-edge fine structure results show that the blue emission band shift with pore size is due to the local environment change of atoms in NCA.

  3. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    International Nuclear Information System (INIS)

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-01-01

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  4. Nanoimprinted polymer chips for light induced local heating of liquids in micro- and nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Pedersen, Jonas Nyvold; Flyvbjerg, Henrik

    2010-01-01

    A nanoimprinted polymer chip with a thin near-infrared absorber layer that enables light-induced local heating (LILH) of liquids inside micro- and nanochannels is presented. An infrared laser spot and corresponding hot-spot could be scanned across the device. Large temperature gradients yield...... a 785 nm laser diode was focused from the backside of the chip to a spot diameter down to 5 ..m in the absorber layer, yielding a localized heating (Gaussian profile) and large temperature gradients in the liquid in the nanochannels. A laser power of 38 mW yielded a temperature of 40°C in the center...

  5. Concentration Polarization in Translocation of DNA through Nanopores and Nanochannels

    NARCIS (Netherlands)

    Das, S.; Dubsky, P.; van den Berg, Albert; Eijkel, Jan C.T.

    2012-01-01

    In this Letter we provide a theory to show that high-field electrokinetic translocation of DNA through nanopores or nanochannels causes large transient variations of the ionic concentrations in front and at the back of the DNA due to concentration polarization (CP). The CP causes strong local

  6. Microspectroscopic analysis of green fluorescent proteins infiltrated into mesoporous silica nanochannels

    NARCIS (Netherlands)

    Ma, Yujie; Rajendran, Prayanka; Blum, Christian; Cesa, Yanina; Gartmann, Nando; Brühwiler, Dominik; Subramaniam, Vinod

    2011-01-01

    The infiltration of enhanced green fluorescent protein (EGFP) into nanochannels of different diameters in mesoporous silica particles was studied in detail by fluorescence microspectroscopy at room temperature. Silica particles from the MCM-41, ASNCs and SBA-15 families possessing nanometer-sized

  7. Fabrication techniques of X-ray spiral zone plates

    International Nuclear Information System (INIS)

    Gao Nan; Zhu Xiaoli; Li Hailiang; Xie Changqing

    2010-01-01

    The techniques to make X-ray spiral zone plates using electron beam and X-ray lithography were studied. A master mask was fabricated on polyimide membrane by E-beam lithography and micro-electroplating. Spiral zone plates were efficiently replicated by X-ray lithography and micro-electroplating. By combining the techniques, spiral zone plates at 1 keV were successfully fabricate. With an outermost zone width of the 200 nm, and the gold absorbers thickness of 700 nm, the high quality zone plates can be used for X-ray phase contrast microscopy.(authors)

  8. Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials

    Science.gov (United States)

    Le Boulbar, E. D.; Chausse, P. J. P.; Lis, S.; Shields, P. A.

    2017-06-01

    Nanostructured materials are essential for many recent electronic, magnetic and optical devices. Lithography is the most common step used to fabricate organized and well calibrated nanostructures. However, feature sizes less than 200 nm usually require access to deep ultraviolet photolithography, e-beam lithography or soft lithography (nanoimprinting), which are either expensive, have low-throughput or are sensitive to defects. Low-cost, high-throughput and low-defect-density techniques are therefore of interest for the fabrication of nanostructures. In this study, we investigate the potential of displacement Talbot lithography for the fabrication of specific structures of interest within plasmonic and metamaterial research fields. We demonstrate that nanodash arrays and `fishnet'-like structures can be fabricated by using a double exposure of two different linear grating phase masks. Feature sizes can be tuned by varying the exposure doses. Such lithography has been used to fabricate metallic `fishnet'-like structures using a lift-off technique. This proof of principle paves the way to a low-cost, high-throughput, defect-free and large-scale technique for the fabrication of structures that could be useful for metamaterial and plasmonic metasurfaces. With the development of deep ultraviolet displacement Talbot lithography, the feature dimensions could be pushed lower and used for the fabrication of optical metamaterials in the visible range.

  9. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    Science.gov (United States)

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  10. Streaming current and wall dissolution over 48h in silica nanochannels

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; Bruus, Henrik; Bardhan, Jaydeep P.

    2011-01-01

    We present theoretical and experimental studies of the streaming current induced by a pressure-driven flow in long, straight, electrolyte-filled nanochannels. The theoretical work builds on our recent one-dimensional model of electro-osmotic and capillary flow, which self-consistently treats both...

  11. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  12. Nanowire and microwire fabrication technique and product

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Zach, Michael; Marten, Alan David

    2018-02-27

    A continuous or semi-continuous process for fabricating nanowires or microwires makes use of the substantially planar template that may be moved through electrochemical solution to grow nanowires or microwires on exposed conductive edges on the surface of that template. The planar template allows fabrication of the template using standard equipment and techniques. Adhesive transfer may be used to remove the wires from the template and in one embodiment to draw a continuous wire from the template to be wound around the drum.

  13. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    International Nuclear Information System (INIS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-01-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future. (paper)

  14. Antenna Fabrication using 3D printing techniques

    OpenAIRE

    Elibiary, Ahmed

    2017-01-01

    This thesis focuses to explore the use of additive manufacturing (AM) techniques to fabricate various radio frequency (RF) devices. 3D printing, a term used for AM has evolved to the point where it is being introduced into various industries, one of these, discussed in this thesis is the fabrication of antennas for the aim to reduce manufacturing costs and time.\\ud The aim is to investigate the performance and reliability of a modified low-cost 3D printer to print plastic and metal simultaneo...

  15. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2017-03-01

    In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d 0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d 0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Multifunctional Core-Shell and Nano-channel Design for Nano-sized Thermo-sensor

    Science.gov (United States)

    2015-04-01

    based on the filling of metals into a nanochannel design. Particularly, different metal alloys with tunable metlingpoints were used to created...nanowires in nanopores of anodic aluminium oxide by mechanical pressure injection. These nanowires inside AAO channels can behave as effective thermal

  17. Slip divergence of water flow in graphene nanochannels: the role of chirality

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Oyarzua, Elton; Walther, Jens Honore

    2017-01-01

    Graphene has attracted considerable attention due to its characteristics as a 2D material and its fascinating properties, providing a potential building block for nanofabrication. In nanochannels the solid-liquid interface plays a non-negligible role in determining the fluid dynamics. Therefore, ...

  18. Ultra-high optical responsivity of semiconducting asymmetric nano-channel diodes for photon detection

    Science.gov (United States)

    Akbas, Y.; Plecenik, T.; Durina, P.; Plecenik, A.; Jukna, A.; Wicks, G.; Sobolewski, Roman

    2017-05-01

    The asymmetric nano-channel diode (ANCD) is the 2-dimensional electron gas (2DEG) semiconductor nanodevice that, unlike a conventional diode, relies on the device nanostructure and field-controlled transport in a ballistic nanometerwidth channel instead of barriers to develop its asymmetric, diode-like current-voltage (I-V) characteristics. We focus on ANCD optoelectronic properties, and demonstrate that the devices can act as very sensitive, single-photon-level, visiblelight photodetectors. Our test structures consist of 2-μm-long and 230-nm-wide channels and were fabricated using electron-beam lithography on a GaAs/AlGaAs heterostructure with a 2DEG layer, followed by reactive ion etching. The I-V curves were collected by measuring the transport current under the voltage-source biasing condition, both in the dark and under light illumination. The experiments were conducted inside a cryostat, in a temperature range from 300 K to 78 K. As an optical excitation, we used a 800-nm-wavelength, generated by a commercial Ti:sapphire laser operated either at a quasi-continuous-wave mode or as a source of 100-fs-wide pulses. The impact of the light illumination was very clear, and at low temperatures we observed a significant photocurrent Iph 0.25 μA at temperature 78 K for the incident optical power as low as 1 nW, with a limited dark-current background. The magnitude of the device optical responsivity increased linearly with the decrease of the optical power, reaching for 1-nW optical excitation the value as high as 400 A/W at room temperature and >800 A/W at 78K. The physics of the photoresponse gain mechanism in the ANCD arises from a vast disparity between the sub-picosecond transit time of photo-excited electrons travelling in the 2DEG nanochannel and the up to microsecond lifetime of photo-excited holes pushed towards the device substrate.

  19. Fabrication and characterisation of embedded metal nanostructures by ion implantation with nanoporous anodic alumina masks

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Wei [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Peng, Nianhua, E-mail: n.peng@surrey.ac.uk [Surrey Ion Beam Centre, Surrey University, Guildford GU2 7XH (United Kingdom); Jeynes, Christopher [Surrey Ion Beam Centre, Surrey University, Guildford GU2 7XH (United Kingdom); Ghatak, Jay [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Peng, Yong [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Physical Science and Technology, Lanzhou University, 222 Tianshui Road, Lanzhou 730000 (China); Ross, Ian M. [Department of Electronic and Electric Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Bhatta, Umananda M.; Inkson, Beverley J.; Möbus, Günter [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-07-15

    Lateral ordered Co, Pt and Co/Pt nanostructures were fabricated in SiO{sub 2} and Si{sub 3}N{sub 4} substrates by high fluence metal ion implantation through periodic nanochannel membrane masks based on anodic aluminium oxides (AAO). The quality of nanopatterning transfer defined by various AAO masks in different substrates was examined by transmission electron microscopy (TEM) in both imaging and spectroscopy modes.

  20. Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels.

    Science.gov (United States)

    Liu, Chien-Liang; Chen, Hsin-Lung

    2018-06-18

    The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.

  1. EDITORIAL: Designer fabrication: nanotemplates get in shape Designer fabrication: nanotemplates get in shape

    Science.gov (United States)

    Demming, Anna

    2013-02-01

    People working in device design rarely see something that works without thinking how it could be made to work better. The work on anodic aluminum oxide materials in this issue provides a case in point [1]. Over the past century researchers have observed, manipulated and exploited the porous structures that result when anodizing aluminum in for example oxalic, sulfuric, and phosphoric acid solutions [1, 2]. The self-organized pore arrays have demonstrated the potential to facilitate high through-put, low-cost fabrication of nanocomposites as well as other nanostructures. The straight self-aligned nanochannels in porous anodic aluminum oxide (AAO) have long been accepted as an inherent property of these films and for many applications they are an attractive attribute. However, researchers in Taiwan have considered a novel manifestation of AAO materials which may enhance their natural attributes by generating arrays that bend [3]. Their work is an example of how even well studied systems continue to harbour surprises and scope for creative innovation. As the authors point out, 'This novel fan-out platform facilitates probing and handling many signals from different areas on a sample's surface and is therefore promising for applications in detection and manipulation at the nanoscale level'. It has long been recognized that the inter-pore distance, pore diameter and pore depth in AAO can be controlled by changing the anodization conditions. These accommodating features have motivated researchers to seek a better understanding of how to optimize fabrication conditions. A collaboration of researchers in Sweden, Chile and Uruguay studied the structural and optical properties of silver nanowires electrodeposited in commercially available nanoporous alumina templates, with a nominal pore diameter of 20 nm [4]. Their results revealed a decrease in the uniformity of pore filling with increasing deposition overpotential and suggested that overpotentials were preferred for the

  2. A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides

    International Nuclear Information System (INIS)

    Nordström, Maria; Hübner, Jörg; Boisen, Anja; Calleja, Montserrat

    2008-01-01

    We present a novel bonding technique developed for the fabrication of a cantilever-based biosensing system with integrated optical read-out. The read-out mechanism is based on single-mode waveguides fabricated monolithically in SU-8. For optimal operation of the read-out mode, the cantilever waveguides should be homogenous and this bonding technique ensures free-hanging cantilevers that are surrounded by the same material for bottom and top claddings. The bonding step is necessary because SU-8 is a negative resist where free-hanging structures cannot be fabricated directly. This paper gives details on the processing aspects and the parameters of the fabrication steps

  3. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels

    DEFF Research Database (Denmark)

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We...... also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all...... the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise....

  4. Probing electron density across Ar{sup +} irradiation-induced self-organized TiO{sub 2−x} nanochannels for memory application

    Energy Technology Data Exchange (ETDEWEB)

    Barman, A.; Saini, C. P.; Ghosh, S. K.; Dhar, S.; Kanjilal, A., E-mail: aloke.kanjilal@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314 (India); Sarkar, P. K.; Roy, A. [Department of Physics, National Institute of Technology, Silchar, Assam 788010 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2016-06-13

    The variation of electron density in TiO{sub 2−x} nanochannels, exhibiting resistive switching phenomenon, produced by Ar{sup +} ion-irradiation at the threshold fluence of 5 × 10{sup 16} ions/cm{sup 2} is demonstrated by X-ray reflectivity (XRR). The transmission electron microscopy reveals the formation of nanochannels, while the energy dispersive X-ray spectroscopy confirms Ti enrichment near the surface due to ion-irradiation, in consistent with the increase in electron density by XRR measurements. Such a variation in Ti concentration indicates the evolution of oxygen vacancies (OVs) along the TiO{sub 2−x} nanochannels, and thus paves the way to explain the operation and performance of the Pt/TiO{sub 2−x}/Pt-based memory devices via OV migration.

  5. Different techniques in fabrication of ocular prosthesis.

    Science.gov (United States)

    Cevik, Pinar; Dilber, Erhan; Eraslan, Oguz

    2012-11-01

    Loss of an eye caused by cancer, trauma, or congenital defect creates a deep psychological impact on an individual's life especially social and professional life. Custom-made prosthesis, compared to stock prosthesis, provides a better fit to the eye socket, better cosmetic results, and less discomfort to the patient in the long term. The main objective of this article was to describe 3 different alternative and practical techniques of fabricating custom-made ocular prosthesis. An impression of anophthalmic socket was made with the addition of cured silicone-based precision impression material in all techniques. A master cast was prepared and duplicated with condensation silicone. A self-cure acrylic resin was polymerized in the silicone model and was fitted into the patient's eye socket. A digital photograph of the patient's iris was made using a digital camera and printed on good-quality photo paper in various shades and sizes in the first and the second techniques. Then the photo paper was coated with PVC so as not to allow any color flowing. The proper iris was then inserted to the acrylic base. The prosthesis was final processed using orthodontic heat polymerizing clear acrylic resin.In the other technique, after the trying-in process with wax pattern, an acrylic base was fabricated using heat polymerizing scleral acrylic resin. The prosthetic iris was fabricated from a transparent contact lens by painting the lens with watercolor paints and attaching it to an acrylic resin with tissue conditioner. The final process was made with heat polymerizing transparent acrylic resin. Custom-made prosthesis allows better esthetic and functional results to the patient in comparison to stock prosthesis. Further follow-up is necessary to check the condition and fit of the ocular prosthesis in such patients.

  6. Review on recent Developments on Fabrication Techniques of Distributed Feedback (DFB) Based Organic Lasers

    Science.gov (United States)

    Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling

    2017-10-01

    To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.

  7. Two-beam laser fabrication technique and the application for fabricating conductive silver nanowire on flexible substrate

    Directory of Open Access Journals (Sweden)

    Gui-Cang He

    2017-03-01

    Full Text Available In this study, a two-beam laser fabrication technique is proposed to fabricate silver nanowire (AgNW on the polyethylene terephthalate (PET substrate. The femtosecond pulse laser in the technique plays a role in generating Ag nanoparticles from the silver aqueous solution by multiphoton photoreduction. The continuous wave (CW laser of the technique works as optical tweezers, and make the Ag nanoparticles gather to a continuous AgNW by the optical trapping force. The optical trapping force of the CW laser was calculated under our experimental condition. The flexibility and the resistance stability of the AgNW that fabricated by this technique are very excellent. Compared to the resistance of the AgNW without bending, the decreasing rate of the AgNW resistance is about 16% under compressed bending condition at the radius of 1 mm, and the increasing rate of the AgNW resistance is only 1.3% after the AgNW bended about 3500 times at the bending radius of 1 mm. The study indicates that the AgNW is promising for achieving flexible device and would promote the development of the flexible electronics.

  8. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  9. Functionalization of nanochannels by radio-induced grafting polymerization on PET track-etched membranes

    International Nuclear Information System (INIS)

    Soto Espinoza, S.L.; Arbeitman, C.R.; Clochard, M.C.; Grasselli, M.

    2014-01-01

    The application of swift-heavy ion bombardment to polymers is a well-established technique to manufacture micro- and nanopores onto polymeric films to obtain porous membranes. A few years ago, it was realized that, during ion bombardment, the high energy deposition along the ion path through the polymer reached cylindrical damage regions corresponding to the core trace and the penumbra. After the etching procedure, there are still enough active sites left in the penumbra that can be used to initiate a polymerization process selectively inside the membrane pores. In this study, we report the grafting polymerization of glycidyl methacrylate onto etched PET foils to obtain functionalized nanochannels. Grafted polymers were labeled with a fluorescent tag and analyzed by different fluorescence techniques such as direct fluorescence, fluorescence microscopy and confocal microscopy. These techniques allowed identifying and quantifying the grafted regions on the polymeric foils. - Highlights: • Irradiated PET foils with swift-heavy ions were etched and grafted in a step-by-step process. • Grafting polymerization was performed on the remaining active sites after etching. • Track-etched PET membranes were fluorescently labeled by chemical functionalization. • Functionalized track-etched PET membranes were analyzed by fluorescence and confocal microscopy

  10. New fabrication techniques for the nuclear fuels of tomorrow

    International Nuclear Information System (INIS)

    Babelot, J.F.; Bokelund, H.; Gerontopoulos, P.; Gueugnon, J.F.; Richter, K.

    1995-01-01

    The shift of the emphasis of the work at the Institute for Transuranium Elements (ITU) from the development of fuels based on uranium and plutonium to safety aspects concerning the use of plutonium and other of actinides, necessitates the production of targets containing appreciable amounts of minor actinides for irradiation experiments. The handling of minor actinides requires additional protective measures, combined with improved fuel fabrication techniques. The boundary conditions for a suitable process are flexibility, adaptability to remote control, and minimization of dust formation. A method based on the sol-gel fabrication technique meets these criteria, and was selected for the present developments at ITU. (author)

  11. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, R., E-mail: sachanr@ornl.gov; Pakarinen, O. H.; Chisholm, M. F. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Liu, P. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Patel, M. K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Wang, X. L. [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Weber, W. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 × 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ∼180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ∼2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  12. A new fabrication technique for back-to-back varactor diodes

    Science.gov (United States)

    Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.

    1992-01-01

    A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.

  13. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

    Science.gov (United States)

    Toghraie, Davood; Mokhtari, Majid; Afrand, Masoud

    2016-10-01

    In this paper, simulation of Poiseuille flow within nanochannel containing Copper and Platinum particles has been performed using molecular dynamic (MD). In this simulation LAMMPS code is used to simulate three-dimensional Poiseuille flow. The atomic interaction is governed by the modified Lennard-Jones potential. To study the wall effects on the surface tension and density profile, we placed two solid walls, one at the bottom boundary and the other at the top boundary. For solid-liquid interactions, the modified Lennard-Jones potential function was used. Velocity profiles and distribution of temperature and density have been obtained, and agglutination of nanoparticles has been discussed. It has also shown that with more particles, less time is required for the particles to fuse or agglutinate. Also, we can conclude that the agglutination time in nanochannel with Copper particles is faster that in Platinum nanoparticles. Finally, it is demonstrated that using nanoparticles raises thermal conduction in the channel.

  14. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  15. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  16. Evaluation of a radioisotope labelling technique for measuring bacterial adherence on fabrics

    International Nuclear Information System (INIS)

    Youlo Hsieh; Timm, Debra; Merry, Joanne

    1986-01-01

    A technique utilizing tritiated thymidine labelled bacteria to quantify bacteria on fabrics has been evaluated. Quenching or self-absorption of isotope solution and labelled bacteria suspension by some of the fabrics has been observed. The extents of self-absorption of both isotope and labelled bacteria solutions on various fabrics was found to be dependent upon the fiber contents, i.e. the chemical compositions, of the substrata. This observation confirms that reduction of scintillation efficiency or self-absorption does occur when radio-labelled substances in suspensions were measured with the presence of some fabrics. Cautions should be taken when radio-labelling techniques are applied to detect isotope-labelled micro-organisms or other substances which are in contact with fabrics in the form of solutions. However, when there is no excess and nonattached labelled bacteria in the aqueous surrounding of the fabric, scintillation counting efficiency of the labelled bacteria on all fabrics studied remained constant over a period of 8 h. This indicates that the application of the described isotope labelling procedure is appropriate for quantifying adherent bacteria on fibrous substrate. (author)

  17. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  18. In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques.

    Science.gov (United States)

    Ural, Cağri; Burgaz, Yavuz; Saraç, Duygu

    2010-01-01

    To compare in vitro the marginal adaptation of crowns manufactured using ceramic restoration fabricating techniques. Fifty standardized master steel dies simulating molars were produced and divided into five groups, each containing 10 specimens. Test specimens were fabricated with CAD/CAM, heat-press, glass-infiltration, and conventional lost-wax techniques according to manufacturer instructions. Marginal adaptation of the test specimens was measured vertically before and after cementation using SEM. Data were statistically analyzed by one-way ANOVA with Tukey HSD tests (a = .05). Marginal adaptation of ceramic crowns was affected by fabrication technique and cementation process (P cementation (P cementation. Marginal adaptation values obtained in the compared systems were within clinically acceptable limits. Cementation causes a significant increase in the vertical marginal discrepancies of the test specimens.

  19. A comparison of enhancement techniques for footwear impressions on dark and patterned fabrics.

    Science.gov (United States)

    Farrugia, Kevin J; Bandey, Helen; Dawson, Lorna; Daéid, Niamh Nic

    2013-11-01

    The use of chemical enhancement techniques on porous substrates, such as fabrics, poses several challenges predominantly due to the occurrence of background staining and diffusion as well as visualization difficulties. A range of readily available chemical and lighting techniques were utilized to enhance footwear impressions made in blood, soil, and urine on dark and patterned fabrics. Footwear impressions were all prepared at a set force using a specifically built footwear rig. In most cases, results demonstrated that fluorescent chemical techniques were required for visualization as nonfluorescent techniques provided little or no contrast with the background. Occasionally, this contrast was improved by oblique lighting. Successful results were obtained for the enhancement of footwear impressions in blood; however, the enhancement of footwear impressions in urine and soil on dark and patterned fabrics was much more limited. The results demonstrate that visualization and fluorescent enhancement on porous substrates such as fabrics is possible. © 2013 American Academy of Forensic Sciences.

  20. A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides

    DEFF Research Database (Denmark)

    Nordström, M.; Calleja, M.; Hübner, Jörg

    2008-01-01

    We present a novel bonding technique developed for the fabrication of a cantilever-based biosensing system with integrated optical read-out. The read-out mechanism is based on single-mode waveguides fabricated monolithically in SU-8. For optimal operation of the read-out mode, the cantilever...

  1. Science of Water Leaks: Validated Theory for Moisture Flow in Microchannels and Nanochannels.

    Science.gov (United States)

    Lei, Wenwen; Fong, Nicole; Yin, Yongbai; Svehla, Martin; McKenzie, David R

    2015-10-27

    Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.

  2. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  3. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Lund Jensen, Kristian; Kristensen, Jesper Toft; Crumrine, Andrew Michael

    2011-01-01

    the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall...

  4. Technique for fabrication of gradual standards of radiographic image blachening density

    International Nuclear Information System (INIS)

    Borovin, I.V.; Kondina, M.A.

    1987-01-01

    The technique of fabrication of gradual standards of blackening density for industrial radiography by contact printing from a negative is described. The technique is designed for possibilities of industrial laboratoriesof radiation defectoscopy possessing no special-purpose sensitometric equipment

  5. A Fabrication Technique for Nano-gap Electrodes by Atomic Force Microscopy Nano lithography

    International Nuclear Information System (INIS)

    Jalal Rouhi; Shahrom Mahmud; Hutagalung, S.D.; Kakooei, S.

    2011-01-01

    A simple technique is introduced for fabrication of nano-gap electrodes by using nano-oxidation atomic force microscopy (AFM) lithography with a Cr/ Pt coated silicon tip. AFM local anodic oxidation was performed on silicon-on-insulator (SOI) surfaces by optimization of desired conditions to control process in contact mode. Silicon electrodes with gaps of sub 31 nm were fabricated by nano-oxidation method. This technique which is simple, controllable, inexpensive and fast is capable of fabricating nano-gap structures. The current-voltage measurements (I-V) of the electrodes demonstrated very good insulating characteristics. The results show that silicon electrodes have a great potential for fabrication of single molecule transistors (SMT), single electron transistors (SET) and the other nano electronic devices. (author)

  6. Study on the Filament Yarns Spreading Techniques and Assessment Methods of the Electronic Fiberglass Fabric

    Science.gov (United States)

    Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei

    2018-03-01

    The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.

  7. Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia.

    Science.gov (United States)

    Zhao, Xi; Huang, Xiaomeng; Wang, Xinmei; Wu, Yun; Eisfeld, Ann-Kathrin; Schwind, Sebastian; Gallego-Perez, Daniel; Boukany, Pouyan E; Marcucci, Guido I; Lee, Ly James

    2015-12-01

    A living cell interrogation platform based on nanochannel electroporation is demonstrated with analysis of RNAs in single cells. This minimally invasive process is based on individual cells and allows both multi-target analysis and stimulus-response analysis by sequential deliveries. The unique platform possesses a great potential to the comprehensive and lysis-free nucleic acid analysis on rare or hard-to-transfect cells.

  8. Small-angle X-ray scattering investigations of biomolecular confinement, loading, and release from liquid-crystalline nanochannel assemblies

    Czech Academy of Sciences Publication Activity Database

    Angelova, A.; Angelov, Borislav; Garamus, V. M.; Couvreur, P.; Lesieur, S.

    2012-01-01

    Roč. 3, č. 3 (2012), s. 445-457 ISSN 1948-7185 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanochannels * biomolecular nanostructures * SAXS Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.585, year: 2012

  9. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  10. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    Science.gov (United States)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  11. Fit Analysis of Different Framework Fabrication Techniques for Implant-Supported Partial Prostheses.

    Science.gov (United States)

    Spazzin, Aloísio Oro; Bacchi, Atais; Trevisani, Alexandre; Farina, Ana Paula; Dos Santos, Mateus Bertolini

    2016-01-01

    This study evaluated the vertical misfit of implant-supported frameworks made using different techniques to obtain passive fit. Thirty three-unit fixed partial dentures were fabricated in cobalt-chromium alloy (n = 10) using three fabrication methods: one-piece casting, framework cemented on prepared abutments, and laser welding. The vertical misfit between the frameworks and the abutments was evaluated with an optical microscope using the single-screw test. Data were analyzed using one-way analysis of variance and Tukey test (α = .05). The one-piece casted frameworks presented significantly higher vertical misfit values than those found for framework cemented on prepared abutments and laser welding techniques (P Laser welding and framework cemented on prepared abutments are effective techniques to improve the adaptation of three-unit implant-supported prostheses. These techniques presented similar fit.

  12. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    Science.gov (United States)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  13. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study.

    Science.gov (United States)

    Arora, Aman; Yadav, Avneet; Upadhyaya, Viram; Jain, Prachi; Verma, Mrinalini

    2018-01-01

    The purpose of this study was to compare the marginal and internal adaptation of cobalt-chromium (Co-Cr) copings fabricated from conventional wax pattern, three-dimensional (3D)-printed resin pattern, and laser sintering technique. A total of thirty copings were made, out of which ten copings were made from 3D-printed resin pattern (Group A), ten from inlay wax pattern (Group B), and ten copings were obtained from direct metal laser sintering (DMLS) technique (Group C). All the thirty samples were seated on their respective dies and sectioned carefully using a laser jet cutter and were evaluated for marginal and internal gaps at the predetermined areas using a stereomicroscope. The values were then analyzed using one-way ANOVA test and post hoc Bonferroni test. One-way ANOVA showed lowest mean marginal discrepancy for DMLS and highest value for copings fabricated from inlay wax. The values for internal discrepancy were highest for DMLS (169.38) and lowest for 3D-printed resin pattern fabricated copings (133.87). Post hoc Bonferroni test for both marginal and internal discrepancies showed nonsignificant difference when Group A was compared to Group B ( P > 0.05) and significant when Group A was compared with Group C ( P < 0.05). Group B showed significant difference ( P < 0.05) when compared with Group C. Marginal and internal discrepancies of all the three casting techniques were within clinically acceptable values. Marginal fit of DMLS was superior as compared to other two techniques, whereas when internal fit was evaluated, conventional technique showed the best internal fit.

  14. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  15. Development of nano-fabrication technique utilizing self-organizational behavior of point defects induced by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Noriko [Department of Environmental Systems Engineering, Kochi University of Technology, Tosayamada-Cho, Kochi-Prefecture 782-8502 (Japan); Taniwaki, Masafumi [Department of Environmental Systems Engineering, Kochi University of Technology, Tosayamada-Cho, Kochi-Prefecture 782-8502 (Japan)]. E-mail: taniwaki.masafumi@kochi-tech.ac.jp

    2006-04-01

    The present authors proposed a novel nano-fabrication technique that is able to arrange the fine cells orderly, based on their finding in GaSb implanted at a low temperature. In this article, first the experimental results that anomalous cellular structure was formed in GaSb by ion implantation is introduced and the self-organizational formation mechanism of the structure is described. Next a nano-fabrication technique that utilizes focused ion beam is described. This technique consists of two procedures, i.e. the formation process of the voids array and the development of the initial array to ordered cellular structure. Finally, the nano-fabrication is actually performed by this technique and their results are reported. Fabrication succeeded in structures where the dot (cell) interval was 100 nm or larger. The minimum ion dose for initial voids which develops to the ordered cellular structure is evaluated. It is also shown that the substrate temperature during implantation is an essential parameter for this technique.

  16. Development of nano-fabrication technique utilizing self-organizational behavior of point defects induced by ion irradiation

    International Nuclear Information System (INIS)

    Nitta, Noriko; Taniwaki, Masafumi

    2006-01-01

    The present authors proposed a novel nano-fabrication technique that is able to arrange the fine cells orderly, based on their finding in GaSb implanted at a low temperature. In this article, first the experimental results that anomalous cellular structure was formed in GaSb by ion implantation is introduced and the self-organizational formation mechanism of the structure is described. Next a nano-fabrication technique that utilizes focused ion beam is described. This technique consists of two procedures, i.e. the formation process of the voids array and the development of the initial array to ordered cellular structure. Finally, the nano-fabrication is actually performed by this technique and their results are reported. Fabrication succeeded in structures where the dot (cell) interval was 100 nm or larger. The minimum ion dose for initial voids which develops to the ordered cellular structure is evaluated. It is also shown that the substrate temperature during implantation is an essential parameter for this technique

  17. A Flexible Ascorbic Acid Fuel Cell with a Microchannel Fabricated using MEMS Techniques

    Science.gov (United States)

    Mogi, Hiroshi; Fukushi, Yudai; Koide, Syohei; Sano, Ryohei; Sasaki, Tsubasa; Nishioka, Yasushiro

    2013-12-01

    We fabricated a miniature ascorbic acid fuel cells equipped with a microchannel for the circulation of ascorbic acid (AA) solution using micro electronic mechanical system techniques. The fuel cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminium (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen-printing techniques. The porous carbon was deposited by screen-printing of carbon-black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the cathode surface. The microchannel with a depth of 200 μm was fabricated using a hot-embossing technique. A maximum power of 0.60 μW at 0.58 V that corresponds to a power density of 1.83 μW/cm2 was realized by introducing a 200 mM concentrated AA solution at room temperature.

  18. Electroosmotic Flow in Mixed Polymer Brush-Grafted Nanochannels

    Directory of Open Access Journals (Sweden)

    Qianqian Cao

    2016-12-01

    Full Text Available Mixed polymer brush-grafted nanochannels—where two distinct species of polymers are alternately grafted on the inner surface of nanochannels—are an interesting class of nanostructured hybrid materials. By using a coarse-grained molecular dynamics simulation method, we are able to simulate the electrokinetic transport dynamics of the fluid in such nanochannels as well as the conformational behaviors of the mixed polymer brush. We find that (1 the brush adopts vertically-layered and longitudinally-separated structures due to the coupling of electroosmotic flow (EOF and applied electric field; (2 the solvent quality affects the brush conformations and the transport properties of the EOF; (3 the EOF flux non-monotonically depends on the grafting density, although the EOF velocity in the central region of the channel monotonically depends on the grafting density.

  19. Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes

    Science.gov (United States)

    Zhang, Beining; Wang, Zhenyu; Cao, Yunshan; Yan, Peng; Wang, X. R.

    2018-03-01

    One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave nanochannels formed by a magnetic domain wall with a width of 10-100 nm [Wagner et al., Nat. Nano. 11, 432 (2016), 10.1038/nnano.2015.339]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave. Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel, which guarantees the information security to some extent. In this work, we theoretically propose a scheme to detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes. We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall, where kb is parallel with the domain-wall channel defined as the z ̂ axis. Two kinds of three-magnon processes, i.e., confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω (k ) =ωi+ωb and (ki+kb-k ) .z ̂=0 , while the momentum perpendicular to the domain wall is not necessary to be conserved due to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or "magnon laser") effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the incident wave into two modes, one is ω1=ωb,k1=kb identical to the bound mode in the channel, and the other one is ω2=ωi-ωb with (ki-kb-k2) .z ̂=0 propagating in the opposite magnetic domain. Micromagnetic simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely

  20. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  1. Techniques of Fabrication of Provisional Restoration: An Overview

    Directory of Open Access Journals (Sweden)

    K. M. Regish

    2011-01-01

    Full Text Available A properly fabricated provisional restoration is important in achieving a successful indirect restoration. The importance of provisional restorations as an integral part of fixed prosthodontic treatment is evident from the abundance of the literature pertaining to their importance regarding margin fidelity, function, occlusion, and esthetics. There are a variety of techniques available to suit the individual needs of the clinician and of the clinical situation, from a single unit to a complete-arch provisional fixed prostheses.

  2. Photoelectrode Fabrication of Dye-Sensitized Nanosolar Cells Using Multiple Spray Coating Technique

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2013-01-01

    Full Text Available This paper presents a spray coating technique for fabricating nanoporous film of photoelectrode in dye-sensitized nanosolar cells (DSSCs. Spray coating can quickly fabricate nanoporous film of the photoelectrode with lower cost, which can further help the DSSCs to be commercialized in the future. This paper analyzed photoelectric conversion efficiency of the DSSCs using spray coated photoelectrode in comparison with the photoelectrode made with the doctor blade method. Spray coating can easily control transmittance of the photoelectrode through the multiple spray coating process. This work mainly used a dispersant with help of ultrasonic oscillation to prepare the required nano-TiO2 solution and then sprayed it on the ITO glasses. In this work, a motor-operated conveyor belt was built to transport the ITO glasses automatically for multiple spray coating and drying alternately. Experiments used transmittance of the photoelectrode as a fabrication parameter to analyze photoelectric conversion efficiency of the DSSCs. The influencing factors of the photoelectrode transmittance during fabrication are the spray flow rate, the spray distance, and the moving speed of the conveyor belt. The results show that DSSC with the photoelectrode transmittance of ca. 68.0 ± 1.5% and coated by the spray coating technique has the best photoelectric conversion efficiency in this work.

  3. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.

    Science.gov (United States)

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens H; Zambrano, Harvey A

    2016-11-30

    Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.

  4. Characteristics of a single-channel superconducting flux flow transistor fabricated by an AFM modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seokcheol [Jeonnam Regional Innovation Agency, 1000 Namak-Ri, Samhyang-Myun, Muan-Gun, Jeollanam-Do 534-700 (Korea, Republic of)], E-mail: suntrac@jina.re.kr; Kim, Seong-Jong [Mokpo Maritime University, Chukkyo-Dong, Mokpo City, Cheonnam 530-729 (Korea, Republic of)

    2007-11-01

    The demand for high performance, integrity, and miniaturization in the area of electronic and mechanic devices has drawn interest in the fabrication of nanostructures. However, it is difficult to fabricate the channel with nano-scale using a conventional photography techniques. AFM anodization technique is a maskless process and effective method to overcome the difficulty in fabricating a nano-scale channel. In this paper, we first present a new fabrication of a single-channel SFFT using a selective oxidation process induced by an AFM probe. The modified channel was investigated by electron probe microanalyzer (EPMA) to find the compositional variation of the transformed region. In order to confirm the operation of a single-channel SFFT, we measured the voltage-current characteristics at the temperature of liquid nitrogen by an I-V automatic measurement system. Our results indicate that the single-channel SFFT having effect as a weak link is effectively fabricated by an AFM lithography process.

  5. Characteristics of a single-channel superconducting flux flow transistor fabricated by an AFM modification technique

    International Nuclear Information System (INIS)

    Ko, Seokcheol; Kim, Seong-Jong

    2007-01-01

    The demand for high performance, integrity, and miniaturization in the area of electronic and mechanic devices has drawn interest in the fabrication of nanostructures. However, it is difficult to fabricate the channel with nano-scale using a conventional photography techniques. AFM anodization technique is a maskless process and effective method to overcome the difficulty in fabricating a nano-scale channel. In this paper, we first present a new fabrication of a single-channel SFFT using a selective oxidation process induced by an AFM probe. The modified channel was investigated by electron probe microanalyzer (EPMA) to find the compositional variation of the transformed region. In order to confirm the operation of a single-channel SFFT, we measured the voltage-current characteristics at the temperature of liquid nitrogen by an I-V automatic measurement system. Our results indicate that the single-channel SFFT having effect as a weak link is effectively fabricated by an AFM lithography process

  6. FY-87 packing fabrication techniques (commercial waste form) results

    International Nuclear Information System (INIS)

    Werry, E.V.; Gates, T.E.; Cabbage, K.S.; Eklund, J.D.

    1988-04-01

    This report covers the investigation of fabrication techniques associated with the development of suitable materials and methods to provide a prefabricated packing for waste packages for the Basalt Waste Isolation Project (BWIP). The principal functions of the packing are to minimize container corrosion during the 300 to 1000 years following repository closure and provide long-term control of the release of radionuclides from the waste package. The investigative work, discussed in this report, was specifically conceived to develop the design criteria for production of full-scale prototypical packing rings. The investigative work included the preparation of procedures, the preparation of fabrication materials, physical properties, and the determination of the engineering properties. The principal activities were the preparation of the materials and the determination of the physical properties. 21 refs., 20 figs., 14 tabs

  7. Current status on detail design and fabrication techniques development of ITER blanket shield block in Korea

    International Nuclear Information System (INIS)

    Kim, Duck Hoi; Cho, Seungyon; Ahn, Mu-Young; Lee, Eun-Seok; Jung, Ki Jung

    2007-01-01

    The allocation of components and systems to be delivered to ITER on an in-kind basis, was agreed between the ITER Parties. Among parties, Korea agreed to procure inboard blanket modules 1, 2 and 6, which consists of FW and shield block. Regarding shield block the detail design and Fabrication techniques development have been undertaken in Korea. Especially manufacturing feasibility study on shield block had been performed and some technical issues for the fabrication were selected. Based on these results, fabrication techniques using EB welding are being developed. Meanwhile, the detail design of inboard standard module has been carried out. The optimization of flow driver design to improve the cooling performance was executed. And, thermo-hydraulic analysis on half block of inboard standard module was performed. In this study, current status and some results from Fabrication techniques development on ITER blanket shield block are described. The detail design activity and results on shield block are also introduced herein. (orig.)

  8. Fabrication of piezoresistive microcantilever using surface micromachining technique for biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kwang-Ho [Department of Electrical Engineering and Nano-Bio Research Center, Myongji University, Yongin, Gyeonggido 449-728 (Korea, Republic of); Kim, Yong-Sang [Department of Electrical Engineering and Nano-Bio Research Center, Myongji University, Yongin, Gyeonggido 449-728 (Korea, Republic of); Kang, C.J. [Department of Physics and Nano-Bio Research Center, Myongji University, San38-2 Namdong, Yongin, Gyeonggido 449-728 (Korea, Republic of)]. E-mail: cjkang@mju.ac.kr

    2005-11-15

    A microcantilever-based biosensor with piezoresistor has been fabricated using surface micromachining technique, which is cost effective and simplifies a fabrication procedure. In order to evaluate the characteristics of the cantilever, the cystamine terminated with thiol was covalently immobilized on the gold-coated side of the cantilever and glutaraldehyde that would be bonded with amine group in the cystamine was injected subsequently. This process was characterized by measuring the deflection of the cantilever in real time monitoring. Using a piezoresistive read-out and a well-known optical beam deflection method as well, the measurement of deflection was carried out. The sensitivity of piezoresistive method is good enough compared with that of optical beam deflection method.

  9. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique.

    Science.gov (United States)

    Pissis, P

    1995-01-01

    This article presents a new technique which utilizes a porcelain core/crown unit, fabricated in the laboratory as a single component. The monobloc technique was developed by the author to replace the traditional metal post and core which prevents the transmission of light through porcelain crowns, creating a dark color effect. Between 1989 and 1992, a number of cases were successfully treated with several variations of the monobloc technique. Approximately 50 cases were completed with vitro-ceramic and followed up. The learning objective of this article is to introduce this novel technique. The article discusses the development of the technique, its advantages, disadvantages, and the potential failures. The clinical procedure is illustrated with several case presentations.

  10. Analysis of single quantum-dot mobility inside 1D nanochannel devices

    Science.gov (United States)

    Hoang, H. T.; Segers-Nolten, I. M.; Tas, N. R.; van Honschoten, J. W.; Subramaniam, V.; Elwenspoek, M. C.

    2011-07-01

    We visualized individual quantum dots using a combination of a confining nanochannel and an ultra-sensitive microscope system, equipped with a high numerical aperture lens and a highly sensitive camera. The diffusion coefficients of the confined quantum dots were determined from the experimentally recorded trajectories according to the classical diffusion theory for Brownian motion in two dimensions. The calculated diffusion coefficients were three times smaller than those in bulk solution. These observations confirm and extend the results of Eichmann et al (2008 Langmuir 24 714-21) to smaller particle diameters and more narrow confinement. A detailed analysis shows that the observed reduction in mobility cannot be explained by conventional hydrodynamic theory.

  11. Analysis of single quantum-dot mobility inside 1D nanochannel devices

    International Nuclear Information System (INIS)

    Hoang, H T; Tas, N R; Van Honschoten, J W; Elwenspoek, M C; Segers-Nolten, I M; Subramaniam, V

    2011-01-01

    We visualized individual quantum dots using a combination of a confining nanochannel and an ultra-sensitive microscope system, equipped with a high numerical aperture lens and a highly sensitive camera. The diffusion coefficients of the confined quantum dots were determined from the experimentally recorded trajectories according to the classical diffusion theory for Brownian motion in two dimensions. The calculated diffusion coefficients were three times smaller than those in bulk solution. These observations confirm and extend the results of Eichmann et al (2008 Langmuir 24 714-21) to smaller particle diameters and more narrow confinement. A detailed analysis shows that the observed reduction in mobility cannot be explained by conventional hydrodynamic theory.

  12. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    Science.gov (United States)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  13. Molecular Dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J.W., E-mail: tringe2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Ileri, N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Levie, H.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Stroeve, P.; Ustach, V.; Faller, R. [Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Renaud, P. [Swiss Federal Institute of Technology, Lausanne, (EPFL) (Switzerland)

    2015-08-18

    Highlights: • WGA proteins in nanochannels modeled by Molecular Dynamics and Monte Carlo. • Protein surface coverage characterized by atomic force microscopy. • Models indicate transport characteristics depend strongly on surface coverage. • Results resolve of a four orders of magnitude difference in diffusion coefficient values. - Abstract: We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  14. The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis.

    Science.gov (United States)

    Doménech, José David; Muñoz, Pascual; Capmany, José

    2009-11-09

    In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.

  15. Robotic UV-Vis apparatus for long-term characterization of drug release from nanochannels

    International Nuclear Information System (INIS)

    Geninatti, T; Grattoni, A; Small, E

    2014-01-01

    Reliable monitoring of the kinetics of molecular release from drug delivery devices is crucial for their therapeutic success. Commercially available UV-Vis spectrophotometers provide reliable quantification of analyte concentrations directly correlated to the absorbance of fluids. However, they are not suitable for long-term measurements requiring high frequency of sampling from a large number of replicates and continuous fluid mixing, all of which are necessary for evaluation of drug delivery devices. To address this need, we developed a novel robotic apparatus serially connected to a commercial UV-Vis spectrophotometer. The robotic apparatus enables us to automatically and reliably acquire long-term data for up to 48 samples with high frequency of measurements and independent magnetic stirring. We equipped the robotic apparatus with independent connectors that allowed us to apply an electric potential to each sample for electrokinetic studies. The apparatus repeatability and accuracy was demonstrated in comparison to a commercial UV-Vis spectrophotometer. The system was successfully employed to characterize the diffusion kinetics of acetone and doxorubicin through nanochannel membranes (nDS) designed for long-term drug delivery. Dendritic fullerene 1 was used to show that the robotic apparatus routes the electric potential to nanochannel membranes enabling us to investigate the actively controlled release of molecules. Our results demonstrate that the robotic apparatus could widely broaden the range of applications of UV-Vis spectrophotometry, especially in the case of large sample processing and for long-term diffusive and electrokinetic studies in drug delivery. (technical design note)

  16. Effect of meniscus constact angle during early regimes of spontaneous capillarity in nanochannels

    DEFF Research Database (Denmark)

    Karna, N.K.; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    4 and 18 nm. We alsofind that the meniscus contact angle remains constant during the inertial regime and its value depends upon the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of themeniscus contact angle....... Moreover, after the inertial regime, the meniscus contactangle is found to be time dependent for all the channels under study. We propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated in Bosanquets equation, satisfactorily explains the initial...

  17. Correlation between inter-spin interaction and molecular dynamics of organic radicals in organic 1D nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hirokazu [Department of Chemistry, College of Humanities and Sciences, Nihon University 3-25-40, Sakura-jo-sui, Setagaya-ku, Tokyo, 156-8550 (Japan)

    2015-12-31

    One-dimensional (1D) molecular chains of 4-substituted-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) radicals were constructed in the crystalline 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) used as a template. The ESR spectra of CLPOT inclusion compounds (ICs) using 4-X-TEMPO were examined on the basis of spectral simulation using EasySpin program package for simulating and fitting ESR spectra. The ESR spectra of [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC were isotropic in the total range of temperatures. The peak-to-peak line width (ΔB{sub pp}) became monotonically narrower from 2.8 to 1.3 mT with increase in temperature in the range of 4.2–298 K. The effect of the rotational diffusion motion of TEMPO radicals in the CLPOT nanochannels for the inter-spin interaction of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC was found to be smaller than the case of [(TPP){sub 2}−(TEMPO){sub 1.0}] IC (TPP = tris(o-phenylenedioxy)cyclotriphosphazene) reported in our previous study. The ΔB{sub pp} of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC in the whole range of temperatures was much narrower than the estimation to be based on the Van Vleck’s formula for the second moment of the rigid lattice model where the electron spin can be considered as fixed; 11 mT of Gaussian line-width component. This suggests the possibility of exchange narrowing in the 1D organic-radical chains of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC. On the other hand, the ESR spectra of [(CLPOT){sub 2}-(MeO-TEMPO){sub 0.41}] IC (MeO-TEMPO = 4-methoxy-TEMPO) were reproduced by a superposition of major broad isotropic adsorption line and minor temperature-dependent modulated triplet component. This suggests that the IC has the part of 1D organic-radical chains and MeO-TEMPO molecules isolated in the CLPOT nanochannels.

  18. Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques.

    Science.gov (United States)

    Goodacre, Brian J; Goodacre, Charles J; Baba, Nadim Z; Kattadiyil, Mathew T

    2018-01-01

    Data comparing the denture tooth movement of computer-aided design and computer-aided manufacturing (CAD-CAM) and conventional denture processing techniques are lacking. The purpose of this in vitro study was to compare the denture tooth movement of pack-and-press, fluid resin, injection, CAD-CAM-bonded, and CAD-CAM monolithic techniques for fabricating dentures to determine which process produces the most accurate and reproducible prosthesis. A total of 50 dentures were evaluated, 10 for each of the 5 groups. A master denture was fabricated and milled from prepolymerized poly(methyl methacrylate). For the conventional processing techniques (pack-and-press, fluid resin, and injection) a polyvinyl siloxane putty mold of the master denture was made in which denture teeth were placed and molten wax injected. The cameo surface of each wax-festooned denture was laser scanned, resulting in a standard tessellation language (STL) format file. The CAD-CAM dentures included 2 subgroups: CAD-CAM-bonded teeth in which the denture teeth were bonded into the milled denture base and CAD-CAM monolithic teeth in which the denture teeth were milled as part of the denture base. After all specimens had been fabricated, they were hydrated for 24 hours, and the cameo surface laser scanned. The preprocessing and postprocessing scan files of each denture were superimposed using surface-matching software. Measurements were made at 64 locations, allowing evaluation of denture tooth movement in a buccal, lingual, mesial-distal, and occlusal direction. The use of median and interquartile range values was used to assess accuracy and reproducibility. Levene and Kruskal-Wallis analyses of variance were used to evaluate differences between processing techniques (α=.05). The CAD-CAM monolithic technique was the most accurate, followed by fluid resin, CAD-CAM-bonded, pack-and-press, and injection. CAD-CAM monolithic technique was the most reproducible, followed by pack-and-press, CAD

  19. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  20. Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels

    NARCIS (Netherlands)

    Nedea, S.V.; Frijns, A.J.H.; Steenhoven, van A.A.; Markvoort, Albert. J.; Hilbers, P.A.J.

    2005-01-01

    We combine molecular dynamics (MD) and Monte Carlo (MC) simulations to study the properties of gas molecules confined between two hard walls of a microchannel or nanochannel. The coupling between MD and MC simulations is introduced by performing MD near the boundaries for accuracy and MC in the bulk

  1. Advanced accounting techniques in automated fuel fabrication facilities

    International Nuclear Information System (INIS)

    Carlson, R.L.; DeMerschman, A.W.; Engel, D.W.

    1977-01-01

    The accountability system being designed for automated fuel fabrication facilities will provide real-time information on all Special Nuclear Material (SNM) located in the facility. It will utilize a distributed network of microprocessors and minicomputers to monitor material movement and obtain nuclear materials measurements directly from remote, in-line Nondestructive Assay instrumentation. As SNM crosses an accounting boundary, the accountability computer will update the master files and generate audit trail records. Mass balance accounting techniques will be used around each unit process step, while item control will be used to account for encapsulated material, and SNM in transit

  2. Geometrical control of ionic current rectification in a configurable nanofluidic diode.

    Science.gov (United States)

    Alibakhshi, Mohammad Amin; Liu, Binqi; Xu, Zhiping; Duan, Chuanhua

    2016-09-01

    Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.

  3. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques.

    Science.gov (United States)

    Papadiochou, Sofia; Pissiotis, Argirios L

    2018-04-01

    The comparative assessment of computer-aided design and computer-aided manufacturing (CAD-CAM) technology and other fabrication techniques pertaining to marginal adaptation should be documented. Limited evidence exists on the effect of restorative material on the performance of a CAD-CAM system relative to marginal adaptation. The purpose of this systematic review was to investigate whether the marginal adaptation of CAD-CAM single crowns, fixed dental prostheses, and implant-retained fixed dental prostheses or their infrastructures differs from that obtained by other fabrication techniques using a similar restorative material and whether it depends on the type of restorative material. An electronic search of English-language literature published between January 1, 2000, and June 30, 2016, was conducted of the Medline/PubMed database. Of the 55 included comparative studies, 28 compared CAD-CAM technology with conventional fabrication techniques, 12 contrasted CAD-CAM technology and copy milling, 4 compared CAD-CAM milling with direct metal laser sintering (DMLS), and 22 investigated the performance of a CAD-CAM system regarding marginal adaptation in restorations/infrastructures produced with different restorative materials. Most of the CAD-CAM restorations/infrastructures were within the clinically acceptable marginal discrepancy (MD) range. The performance of a CAD-CAM system relative to marginal adaptation is influenced by the restorative material. Compared with CAD-CAM, most of the heat-pressed lithium disilicate crowns displayed equal or smaller MD values. Slip-casting crowns exhibited similar or better marginal accuracy than those fabricated with CAD-CAM. Cobalt-chromium and titanium implant infrastructures produced using a CAD-CAM system elicited smaller MD values than zirconia. The majority of cobalt-chromium restorations/infrastructures produced by DMLS displayed better marginal accuracy than those fabricated with the casting technique. Compared with copy

  4. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Yeonhee Lee

    2013-05-01

    Full Text Available Time-of-flight secondary ion mass spectrometry (TOF-SIMS and X-ray photoelectron spectroscopy (XPS are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric.

  5. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Science.gov (United States)

    Lee, Jihye; Kang, Min Hwa; Lee, Kang-Bong; Lee, Yeonhee

    2013-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR) measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric. PMID:28809257

  6. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P.O.1236909. Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design

  7. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P. O. 1236909. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design.

  8. Selection of micro-fabrication techniques on stainless steel sheet for skin friction

    NARCIS (Netherlands)

    Zhang, Sheng; Zeng, Xiangqiong; Matthews, David Thomas Allan; Igartua, A.; Rodriguez Vidal, E.; Contreras Fortes, J.; Saenz de Viteri, V.; Pagano, F.; Wadman, B.; Wiklund, E.D.; van der Heide, Emile

    2016-01-01

    This review gives a concise introduction to the state-of-art techniques used for surface texturing, e.g., wet etching, plasma etching, laser surface texturing (LST), 3D printing, etc. In order to fabricate deterministic textures with the desired geometric structures and scales, the innovative

  9. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.

    Science.gov (United States)

    Tan, J Y; Chua, C K; Leong, K F

    2013-02-01

    Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.

  10. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    Science.gov (United States)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  11. Fabrication of flex sensors through direct ink write technique and its electrical characterization

    Science.gov (United States)

    Abas, Muhammad; Rahman, Khalid

    2016-11-01

    The present work is intended to fabricate low-cost flex sensor from conductive carbon paste using direct ink write (DIW) technique. DIW method is one of the additive manufacturing processes, which is capable to deposit a variety of material on a variety of substrates by a different mechanism to feature resolution at a microns level. It is widely used in the electronic industry for fabrication of PCBS and electrodes for different electronic devices. The DIW system in present study extrudes material stored in the syringe barrel through nozzle using compressed air. This mechanism will assist in creating patterns on a variety of substrates. Pneumatic controller is employed to control deposition of material, while computer-controlled X-Y stage is employed to control pattern generation. For effective and control patterning, printing parameters were optimized using Taguchi design optimization technique. The conductive carbon paste is used as ink for pattern generation on flexible PET substrate. Samples of flex sensor having different dimensions are prepared through DIW. The fabricated sensors were used as flexion sensor, and its electrical characteristic was evaluated. The obtained sensors are stable and reliable in performance.

  12. High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process.

    Directory of Open Access Journals (Sweden)

    Ratthasart Amarit

    Full Text Available The need of mobile microscope is escalating as well as the demand of high quality optical components in low price. We report here a novel needle moving technique to fabricate milli-size lens together with thermal assist moldless method. Our proposed protocol is able to create a high tensile strength structure of the lens and its base which is beneficial for exploiting in convertinga smart phone to be a digital microscope. We observe that no bubble trapped in a lens when this technique is performed which can overcome a challenge problem found in a typical dropping technique. We demonstrate the symmetry, smoothness and micron-scale resolution of the fabricated structure. This proposed technique is promising to serve as high quality control mass production without any expensive equipment required.

  13. A simple approach to hollow maxillary complete denture fabrication: An innovative technique

    Directory of Open Access Journals (Sweden)

    Kathleen Manuela D'souza

    2017-01-01

    Full Text Available A severely atrophic maxillary arch exhibits reduced denture bearing area and increased inter-ridge distance, thus, affecting retention of the complete denture. Such clinical situations necessitate the fabrication of a hollow complete denture to reduce the weight of the prosthesis and increase retention. This article describes a simple technique to fabricate a hollow maxillary complete denture using salt and thermoplastic poly (methyl methacrylate sheet. The vacuum-formed thermoplastic matrix regulates the quantity of salt and determines its placement in the unpolymerized denture base material during the denture packing stage. The matrix lining the hollow cavity also aids to reinforce the hollow denture base.

  14. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    International Nuclear Information System (INIS)

    Wee, Wei Hong; Kadri, Nahrizul Adib; Pingguan-Murphy, Belinda; Li, Zedong; Hu, Jie; Xu, Feng; Li, Fei

    2015-01-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells. (paper)

  15. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    Science.gov (United States)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  16. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication

    Science.gov (United States)

    Bilgin, Mehmet Selim; Baytaroğlu, Ebru Nur; Erdem, Ali; Dilber, Erhan

    2016-01-01

    The aim of this review was to investigate usage of computer-aided design/computer-aided manufacture (CAD/CAM) such as milling and rapid prototyping (RP) technologies for removable denture fabrication. An electronic search was conducted in the PubMed/MEDLINE, ScienceDirect, Google Scholar, and Web of Science databases. Databases were searched from 1987 to 2014. The search was performed using a variety of keywords including CAD/CAM, complete/partial dentures, RP, rapid manufacturing, digitally designed, milled, computerized, and machined. The identified developments (in chronological order), techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication are summarized. Using a variety of keywords and aiming to find the topic, 78 publications were initially searched. For the main topic, the abstract of these 78 articles were scanned, and 52 publications were selected for reading in detail. Full-text of these articles was gained and searched in detail. Totally, 40 articles that discussed the techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication and the articles were incorporated in this review. Totally, 16 of the papers summarized in the table. Following review of all relevant publications, it can be concluded that current innovations and technological developments of CAD/CAM and RP allow the digitally planning and manufacturing of removable dentures from start to finish. As a result according to the literature review CAD/CAM techniques and supportive maxillomandibular relationship transfer devices are growing fast. In the close future, fabricating removable dentures will become medical informatics instead of needing a technical staff and procedures. However the methods have several limitations for now. PMID:27095912

  17. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Neal, E-mail: neal.hartman@cern.ch; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-21

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”)

  18. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    Science.gov (United States)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  19. Recent advances in fuel fabrication techniques and prospects for the nineties

    International Nuclear Information System (INIS)

    Frain, R.G.; Caudill, H.L.; Faulhaber, R.

    1987-01-01

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF 6 to UO 2 powder, and increased use of automated and computerized inspection techniques. (author)

  20. Titanium. Properties, raw datum surface, physicochemical basis and fabrication technique

    International Nuclear Information System (INIS)

    Garmata, V.A.; Petrun'ko, A.N.; Galitskij, N.V.; Olesov, Yu.G.; Sandler, R.A.

    1983-01-01

    On the nowadays science and technology achievements the complex of titanium metallurgy problems comprising raw material base, physico-chemical basis and fabrication technique, properties and titanium usage fields is considered for the first time. A particular attention is given to raw material base, manufacturing titanium concentrates and titanium tetrachloride, metallothermal reduction, improvement of metal quality. Data on titanium properties are given, processes of titanium powder metallurgy, scrap and waste processing, problems of economics and complex raw material use are considered

  1. Electrokinetics of nanochannels and porous membranes with dynamic surface charges

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo

    . Notably, we find that the conductance minimum is mainly caused by hydronium ions, and in our case almost exclusively due to carbonic acid generated from the dissolution of CO2 from the atmosphere. We carry out delicate experiments and measure the conductance of silica nanochannels as a function...... and consider strong out-of-equilibrium transport across the membrane. Our model predicts large pH variations in the electrodialysis system that in turn lowers the ion-selectivity of the membrane by protonation reactions. This opens up for significant over-limiting current. We use our model to investigate...... procedure that requires much attention to the comparability between the conditions in the model and in the experiment. Finally, we make a small digression and study induced-charge electro-osmosis (ICEO) and the validity of common EO slip formulae as a function of a finite Debye screening length...

  2. Fabrication of different pore shapes by multi-step etching technique in ion-irradiated PET membranes

    Science.gov (United States)

    Mo, D.; Liu, J. D.; Duan, J. L.; Yao, H. J.; Latif, H.; Cao, D. L.; Chen, Y. H.; Zhang, S. X.; Zhai, P. F.; Liu, J.

    2014-08-01

    A method for the fabrication of different pore shapes in polyethylene terephthalate (PET)-based track etched membranes (TEMs) is reported. A multi-step etching technique involving etchant variation and track annealing was applied to fabricate different pore shapes in PET membranes. PET foils of 12-μm thickness were irradiated with Bi ions (kinetic energy 9.5 MeV/u, fluence 106 ions/cm2) at the Heavy Ion Research Facility (HIRFL, Lanzhou). The cross-sections of fundamental pore shapes (cylinder, cone, and double cone) were analyzed. Funnel-shaped and pencil-shaped pores were obtained using a two-step etching process. Track annealing was carried out in air at 180 °C for 120 min. After track annealing, the selectivity of the etching process decreased, which resulted in isotropic etching in subsequent etching steps. Rounded cylinder and rounded cone shapes were obtained by introducing a track-annealing step in the etching process. Cup and spherical funnel-shaped pores were fabricated using a three- and four-step etching process, respectively. The described multi-step etching technique provides a controllable method to fabricate new pore shapes in TEMs. Introduction of a variety of pore shapes may improve the separation properties of TEMs and enrich the series of TEM products.

  3. Fabrication Techniques of Stretchable and Cloth Electroadhesion Samples for Implementation on Devices with Space Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this study is to determine materials and fabrication techniques for efficient space-rated electroadhesion (EA) samples. Liquid metals, including...

  4. Predicting the Mechanical Properties of Viscose/Lycra Knitted Fabrics Using Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Ismail Hossain

    2016-01-01

    Full Text Available The main objective of this research is to predict the mechanical properties of viscose/lycra plain knitted fabrics by using fuzzy expert system. In this study, a fuzzy prediction model has been built based on knitting stitch length, yarn count, and yarn tenacity as input variables and fabric mechanical properties specially bursting strength as an output variable. The factors affecting the bursting strength of viscose knitted fabrics are very nonlinear. Hence, it is very challenging for scientists and engineers to create an exact model efficiently by mathematical or statistical model. Alternatively, developing a prediction model via ANN and ANFIS techniques is also difficult and time consuming process due to a large volume of trial data. In this context, fuzzy expert system (FES is the promising modeling tool in a quality modeling as FES can map effectively in nonlinear domain with minimum experimental data. The model derived in the present study has been validated by experimental data. The mean absolute error and coefficient of determination between the actual bursting strength and that predicted by the fuzzy model were found to be 2.60% and 0.961, respectively. The results showed that the developed fuzzy model can be applied effectively for the prediction of fabric mechanical properties.

  5. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching....... The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20 wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events...

  6. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  7. Fabrication of SERS Substrate by Multilayered Nanosphere Deposition Technique

    International Nuclear Information System (INIS)

    Fu, Chit Yaw; Dinish, U. S.; Praveen, Thoniyot; Koh, Zhen Yu; Kho, Khiang Wei; Malini, Olivo

    2010-01-01

    Metal film over nanosphere (MFON) has been employed as a reproducible and predictable SERS-active device in biosensing applications. In addition to its economic fabrication process, such substrate can be further processed to a prism-structure with increased SERS enhancement and wider Plasmon tunability. In this work, we investigate an alternative coating method to deposit a larger area of well-ordered PS beads with different sizes (oe = 100nm and 400 nm) onto a glass. The result suggests that the proposed well-coating technique can be suitably used to form closely-packed PS beads with diameter less than 100 nm for developing MFON substrates.

  8. Novel in-situ lamella fabrication technique for in-situ TEM.

    Science.gov (United States)

    Canavan, Megan; Daly, Dermot; Rummel, Andreas; McCarthy, Eoin K; McAuley, Cathal; Nicolosi, Valeria

    2018-03-29

    In-situ transmission electron microscopy is rapidly emerging as the premier technique for characterising materials in a dynamic state on the atomic scale. The most important aspect of in-situ studies is specimen preparation. Specimens must be electron transparent and representative of the material in its operational state, amongst others. Here, a novel fabrication technique for the facile preparation of lamellae for in-situ transmission electron microscopy experimentation using focused ion beam milling is developed. This method involves the use of rotating microgrippers during the lift-out procedure, as opposed to the traditional micromanipulator needle and platinum weld. Using rotating grippers, and a unique adhesive substance, lamellae are mounted onto a MEMS device for in-situ TEM annealing experiments. We demonstrate how this technique can be used to avoid platinum deposition as well as minimising damage to the MEMS device during the thinning process. Our technique is both a cost effective and readily implementable alternative to the current generation of preparation methods for in-situ liquid, electrical, mechanical and thermal experimentation within the TEM as well as traditional cross-sectional lamella preparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    Science.gov (United States)

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  10. Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique

    Science.gov (United States)

    Lu, Yuan; Xiao, Xiudi; Cao, Ziyi; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2017-12-01

    The monoclinic phase vanadium dioxide VO2 (M) based transparent thermochromic smart films were firstly fabricated through heat treatment of opaque VO2-based composite nanofibrous mats, which were deposited on the glass substrate via electrospinning technique. Noteworthily, the anti-oxidation property of VO2 smart film was improved due to inner distribution of VO2 in the polymethylmethacrylate (PMMA) nanofibers, and the composite mats having water contact angle of 165° determined itself good superhydrophobic property. Besides, PMMA nanofibrous mats with different polymer concentrations demonstrated changeable morphology and fiber diameter. The VO2 nanoparticles having diameter of 30-50 nm gathered and exhibited ellipse-like or belt-like structure. Additionally, the solar modulation ability of PMMA-VO2 composite smart film was 6.88% according to UV-Vis-NIR spectra. The research offered a new notion for fabricating transparent VO2 thermochromic material.

  11. Comparative evaluation of marginal fit and axial wall adaptability of copings fabricated by metal laser sintering and lost-wax technique: An in vitro study.

    Science.gov (United States)

    Gaikwad, Bhushan Satish; Nazirkar, Girish; Dable, Rajani; Singh, Shailendra

    2018-01-01

    The present study aims to compare and evaluate the marginal fit and axial wall adaptability of Co-Cr copings fabricated by metal laser sintering (MLS) and lost-wax (LW) techniques using a stereomicroscope. A stainless steel master die assembly was fabricated simulating a prepared crown; 40 replicas of master die were fabricated in gypsum type IV and randomly divided in two equal groups. Group A coping was fabrication by LW technique and the Group B coping fabrication by MLS technique. The copings were seated on their respective gypsum dies and marginal fit was measured using stereomicroscope and image analysis software. For evaluation of axial wall adaptability, the coping and die assembly were embedded in autopolymerizing acrylic resin and sectioned vertically. The discrepancies between the dies and copings were measured along the axial wall on each halves. The data were subjected to statistical analysis using unpaired t -test. The mean values of marginal fit for copings in Group B (MLS) were lower (24.6 μm) than the copings in Group A (LW) (39.53 μm), and the difference was statistically significant ( P adaptability in comparison with copings fabricated by the LW technique. However, the values of marginal fit of copings fabricated that the two techniques were within the clinically acceptable limit (<50 μm).

  12. Fabrication and Characterization of Surrogate Glasses Aimed to Validate Nuclear Forensic Techniques

    Science.gov (United States)

    2017-12-01

    the glass formed during a nuclear event, trinitite [14]. The SiO2 composition is generally greater than 50% for trinitite and can vary appreciably...CHARACTERIZATION OF SURROGATE GLASSES AIMED TO VALIDATE NUCLEAR FORENSIC TECHNIQUES by Ken G. Foos December 2017 Thesis Advisor: Claudia...December 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FABRICATION AND CHARACTERIZATION OF SURROGATE GLASSES AIMED TO

  13. A novel fabrication method of silicon nano-needles using MEMS TMAH etching techniques

    International Nuclear Information System (INIS)

    Yan Sheping; Xu Yang; Yang Junyi; Wang Huiquan; Jin Zhonghe; Wang Yuelin

    2011-01-01

    Nano-needles play important roles in nanoscale operations. However, current nano-needle fabrication is usually expensive and controling the sizes and angles is complicated. We have developed a simple and low cost silicon nano-needle fabrication method using traditional microelectromechanical system (MEMS) tetramethyl ammonium hydroxide (TMAH) etching techniques. We take advantage of the fact that the decrease of the silicon etch rate in TMAH solutions exhibits an inverse fourth power dependence on the boron doping concentration in our nano-needle fabrication. Silicon nano-needles, with high aspect ratio and sharp angles θ as small as 2.9 deg., are obtained, which could be used for bio-sensors and nano-handling procedures, such as penetrating living cells. An analytic model is proposed to explain the etching evolution of the experimental results, which is used to predict the needle angle, length, and etching time. Based on our method, nano-needles with small acute angle θ can be obtained.

  14. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    Science.gov (United States)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  15. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Rogers, J E; Ramadoss, R; Ozmun, P M; Dean, R N

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52

  16. Fabrication of BN/Al(-Mg) metal matrix composite (MMC) by pressureless infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.G.; Kwon, H. [School of Advanced Materials Eng., Kookmin Univ., Seoul (Korea)

    2004-07-01

    BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg{sub 3}N{sub 2} and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg{sub 3}N{sub 2}, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg) MMC was derived from the phase analysis results and the thermodynamic investigation. (orig.)

  17. Comparative Accuracy of Facial Models Fabricated Using Traditional and 3D Imaging Techniques.

    Science.gov (United States)

    Lincoln, Ketu P; Sun, Albert Y T; Prihoda, Thomas J; Sutton, Alan J

    2016-04-01

    The purpose of this investigation was to compare the accuracy of facial models fabricated using facial moulage impression methods to the three-dimensional printed (3DP) fabrication methods using soft tissue images obtained from cone beam computed tomography (CBCT) and 3D stereophotogrammetry (3D-SPG) scans. A reference phantom model was fabricated using a 3D-SPG image of a human control form with ten fiducial markers placed on common anthropometric landmarks. This image was converted into the investigation control phantom model (CPM) using 3DP methods. The CPM was attached to a camera tripod for ease of image capture. Three CBCT and three 3D-SPG images of the CPM were captured. The DICOM and STL files from the three 3dMD and three CBCT were imported to the 3DP, and six testing models were made. Reversible hydrocolloid and dental stone were used to make three facial moulages of the CPM, and the impressions/casts were poured in type IV gypsum dental stone. A coordinate measuring machine (CMM) was used to measure the distances between each of the ten fiducial markers. Each measurement was made using one point as a static reference to the other nine points. The same measuring procedures were accomplished on all specimens. All measurements were compared between specimens and the control. The data were analyzed using ANOVA and Tukey pairwise comparison of the raters, methods, and fiducial markers. The ANOVA multiple comparisons showed significant difference among the three methods (p 3D-SPG showed statistical difference in comparison to the models fabricated using the traditional method of facial moulage and 3DP models fabricated from CBCT imaging. 3DP models fabricated using 3D-SPG were less accurate than the CPM and models fabricated using facial moulage and CBCT imaging techniques. © 2015 by the American College of Prosthodontists.

  18. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    International Nuclear Information System (INIS)

    Duan Li; He Qiang; Yan Xuehai; Cui Yue; Wang Kewei; Li Junbai

    2007-01-01

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabrication remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules

  19. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique.

    Science.gov (United States)

    Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos

    2018-02-01

    The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

  20. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  1. A new RFQ linac fabrication technique

    International Nuclear Information System (INIS)

    Schrage, D.; Roybal, P.; Young, L.; Clark, W.; DePaula, R.; Martinez, F.

    1994-01-01

    The use of hydrogen furnace brazing has been applied as a joining technology to the fabrication of a Radio-Frequency-Quadrupole (RFQ) linac for the Los Alamos Accelerator Performance Demonstration Facility (APDF). The design concept provides a monolithic cavity with no longitudinal rf, vacuum, or mechanical joints. A 530 MHz, 0.46 meter long engineering model RFQ has been fabricated and tested at the Los Alamos National Laboratory as a technical demonstration of this concept. It is planned that two funneled RFQ's for the APDF (7 MeV, 350 MHz, 100 mAmp CW, each eight meters in length) will be manufactured by this method

  2. Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels

    International Nuclear Information System (INIS)

    Wood, Jeffery A; Benneker, Anne M; Lammertink, Rob G H

    2016-01-01

    A non-isothermal formulation of the Poisson–Nernst–Planck with Navier–Stokes equations is used to study the influence of heating effects in the form of Joule heating and viscous dissipation and imposed temperature gradients on a microchannel/nanochannel system. The system is solved numerically under various cases in order to determine the influence of temperature-related effects on ion-selectivity, flux and fluid flow profiles, as well as coupling between these phenomena. It is demonstrated that for a larger reservoir system, the effects of Joule heating and viscous dissipation only become relevant for higher salt concentrations and electric field strengths than are compatible with ion-selectivity due to Debye layer overlap. More interestingly, it is shown that using different temperature reservoirs can have a strong influence on ion-selectivity, as well as the induced electrohydrodynamic flows. (paper)

  3. Communication methods and production techniques in fixed prosthesis fabrication: a UK based survey. Part 2: Production techniques

    Science.gov (United States)

    Berry, J.; Nesbit, M.; Saberi, S.; Petridis, H.

    2014-01-01

    Aim The aim of this study was to identify the communication methods and production techniques used by dentists and dental technicians for the fabrication of fixed prostheses within the UK from the dental technicians' perspective. This second paper reports on the production techniques utilised. Materials and methods Seven hundred and eighty-two online questionnaires were distributed to the Dental Laboratories Association membership and included a broad range of topics, such as demographics, impression disinfection and suitability, and various production techniques. Settings were managed in order to ensure anonymity of respondents. Statistical analysis was undertaken to test the influence of various demographic variables such as the source of information, the location, and the size of the dental laboratory. Results The number of completed responses totalled 248 (32% response rate). Ninety percent of the respondents were based in England and the majority of dental laboratories were categorised as small sized (working with up to 25 dentists). Concerns were raised regarding inadequate disinfection protocols between dentists and dental laboratories and the poor quality of master impressions. Full arch plastic trays were the most popular impression tray used by dentists in the fabrication of crowns (61%) and bridgework (68%). The majority (89%) of jaw registration records were considered inaccurate. Forty-four percent of dental laboratories preferred using semi-adjustable articulators. Axial and occlusal under-preparation of abutment teeth was reported as an issue in about 25% of cases. Base metal alloy was the most (52%) commonly used alloy material. Metal-ceramic crowns were the most popular choice for anterior (69%) and posterior (70%) cases. The various factors considered did not have any statistically significant effect on the answers provided. The only notable exception was the fact that more methods of communicating the size and shape of crowns were utilised for

  4. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Sirirak, Reungruthai [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Medhesuwakul, Min [Plasma & Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  5. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    International Nuclear Information System (INIS)

    Sirirak, Reungruthai; Sarakonsri, Thapanee; Medhesuwakul, Min

    2015-01-01

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  6. Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography

    KAUST Repository

    Kwak, Rhokyun

    2009-04-06

    Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold was placed on a spin-coated UV-curable resin on a substrate. The polymer then moved into the cavity of the mold by capillary action and then solidified after exposure to UV radiation. The uncured resin was forced to migrate into the cavity of a micropatterned PDMS mold by capillarity, and then exposed to UV radiation under a high-energy mercury lamp with intensity. A rotary pump was then turned on, decreasing the air pressure in the chamber. SEM images were taken with a high-resolution SEM at an acceleration voltage greater than 15 kV. It was observed that when the air pressure was rapidly reduced to a low vacuum, the top layer moved into the nanochannels with a meniscus at the interface between the nanoscale PUA and the base structure.

  7. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    International Nuclear Information System (INIS)

    Moslehi, M.M.; Davis, C.

    1989-01-01

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/Ge x Si 1 - x /Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  8. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  9. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    Science.gov (United States)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  10. Advanced accountability techniques for breeder fuel fabrication facilities

    International Nuclear Information System (INIS)

    Bennion, S.I.; Carlson, R.L.; DeMerschman, A.W.; Sheely, W.F.

    1978-01-01

    The United States Department of Energy (DOE) has assigned the Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, the project lead in developing a uniform nuclear materials reporting system for all contractors on the Hanford Reservation. The Hanford Nuclear Inventory System (HANISY) is based upon HEDL's real-time accountability system, originally developed in 1968. The HANISY system will receive accountability data either from entry by process operators at remote terminals or from nondestructive assay instruments connected to the computer network. Nuclear materials will be traced from entry, through processing to final shipment through the use of minicomputer technology. Reports to DOE will be formed directly from the realtime files. In addition, HEDL has established a measurement program that will complement the HANISY system, providing direct interface to the computer files with a minimum of operator intervention. This technology is being developed to support the High Performance Fuels Laboratory (HPFL) which is being designed to assess fuel fabrication techniques for proliferation-resistant fuels

  11. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    Science.gov (United States)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  12. Applications of ultrasonic phased array technique during fabrication of nuclear tubing and other components for the Indian nuclear power program

    International Nuclear Information System (INIS)

    Kapoor, K.

    2015-01-01

    Ultrasonic phased array technique has been applied in fabrication of nuclear fuel and structural at NFC. The integrity of the nuclear fuel and structural components is most crucial as they are exposed to severe environment during operation leading to rapid degradation of its properties during its lifecycle. Nuclear Fuel Complex has mandate for the fabrication of the nuclear fuel and core structurals for Indian PHWRs/BWR, sub-assemblies for the PFBR and steam generator tubing for PFBR and PHWRs which are the most critical materials for the Indian Nuclear Power program. NDE during fabrication of these materials is thus most crucial as it provides the confidence to the designer for safe operation during its lifetime. Many of these techniques have to be developed in-house to meet unique requirements of high sensitivity, resolution and shape of the components. Some of the advancements in the NDE during the fabrication include use of ultrasonic phased array which is detailed in this paper

  13. Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique.

    Directory of Open Access Journals (Sweden)

    Qiongyu Guo

    Full Text Available Surface topography of medical implants provides an important biophysical cue on guiding cellular functions at the cell-implant interface. However, few techniques are available to produce polymeric coatings with controlled microtopographies onto surgical implants, especially onto implant devices of small dimension and with complex structures such as drug-eluting stents. Therefore, the main objective of this study was to develop a new strategy to fabricate polymeric coatings using an electrospraying technique based on the uniqueness of this technique in that it can be used to produce a mist of charged droplets with a precise control of their shape and dimension. We hypothesized that this technique would allow facile manipulation of coating morphology by controlling the shape and dimension of electrosprayed droplets. More specifically, we employed the electrospraying technique to coat a layer of biodegradable polyurethane with tailored microtopographies onto commercial coronary stents. The topography of such stent coatings was modulated by controlling the ratio of round to stretched droplets or the ratio of round to crumped droplets under high electric field before deposition. The shape of electrosprayed droplets was governed by the stability of these charged droplets right after ejection or during their flight in the air. Using the electrospraying technique, we achieved conformal polymeric coatings with tailored microtopographies onto conductive surgical implants. The approach offers potential for controlling the surface topography of surgical implant devices to modulate their integration with surrounding tissues.

  14. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    Science.gov (United States)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  15. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  16. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices

    Science.gov (United States)

    Rana, Bivas; Otani, YoshiChika

    2018-01-01

    Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.

  17. Toward the Physical Basis of Complex Systems: Dielectric Analysis of Porous Silicon Nanochannels in the Electrical Double Layer Length Range

    Directory of Open Access Journals (Sweden)

    Radu Mircea Ciuceanu

    2011-01-01

    Full Text Available Dielectric analysis (DEA shows changes in the properties of
    a materials as a response to the application on it of a time dependent electric field. Dielectric measurements are extremely sensitive to small changes in materials properties, that molecular relaxation, dipole changes, local motions that involve the reorientation of dipoles, and so can be observed by DEA. Electrical double layer (EDL, consists in a shielding layer that is naturally created within the liquid near a charged surface. The thickness of the EDL is given by the characteristic Debye length what grows less with the ionic strength defined by half summ products of concentration with square of charge for all solvent
    ions (co-ions, counterions, charged molecules. The typical length scale for the Debye length is on the order of 1 nm, depending on the ionic contents in the solvent; thus, the EDL becomes significant for nano-capillaries that nanochannels. The electrokinetic e®ects in the nanochannels depend essentialy on the distribution of charged species in EDL, described by the Poisson-Boltzmann equation those solutions require the solvent dielectric permittivity. In this work we propose a model for solvent low-frequency permittivity and a DEA profile taking into account both the porous silicon electrode and aqueous solvent properties in the Debye length range.

  18. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  19. Fabrication and Characterization of three dimensional Scaffolds for tissue engineering application via microstereolithography technique

    International Nuclear Information System (INIS)

    Marina Talib; Covington, J.A.; Dove, A.; Bolarinwa, A.; Grover, L.

    2012-01-01

    Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer-per-layer fabrication curing a liquid resin with UV-light or laser source. However, the use of stereo lithography in tissue engineering has not been significantly explored possibly due to the lack of commercially available implantable or biocompatible materials from the SL industry. This study seeks to develop a range of new bio-compatible/degradable materials that are compatible with a commercial 3D direct manufacture system (envisionTEC Desktop). Firstly, a selection of multifunctional polymer and calcium phosphate were studied in order to formulate biodegradable photo polymer resin for specific tissue engineering applications. A 3D structure was successfully fabricated from the formulated photo curable resins. The photo polymer of ceramic suspension was prepared with the addition of 50-70 wt % of calcium pyrophosphate (CPP) and hydroxyapatite (HA). They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. Mechanical properties, morphology and calcium phosphate content of the sintered polymers were characterised and investigated with SEM and XRD, respectively. The addition of calcium phosphate coupled with high temperature sintering, had a significant effect on the mechanical properties exhibited by the bio ceramic. The successful fabrication of novel bio ceramic polymer composite with MSL technique offers the possibility of designing complex tissue scaffolds with optimum mechanical properties for specific tissue engineering applications. (author)

  20. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.

    Science.gov (United States)

    Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P

    2008-09-01

    One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications.

  1. A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2011-08-15

    This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.

  2. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  3. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  4. AlGaInAs EML having high extinction ratios fabricated by identical epitaxial layer technique

    Science.gov (United States)

    Deng, Qiufang; Guo, Lu; Liang, Song; Sun, Siwei; Xie, Xiao; Zhu, Hongliang; Wang, Wei

    2018-04-01

    AlGaInAs electroabsorption-modulated lasers (EMLs) fabricated by identical epitaxial layer technique are demonstrated. The EML device shows an infinite characteristic temperature when the temperature ranges from 20 oC to 30 oC. The integrated modulator has static extinction ratios of larger than 20 dB at a reverse bias voltage of - 2 V. The small signal modulation bandwidth of the modulator is larger than 11 GHz. At 10 Gb/s data modulation, the dynamic extinction ratio is about 9.5 dB in a back to back test configuration. Because only a simple fabrication procedure is needed, our EMLs are promising low cost light sources for optical fiber transmission applications.

  5. Development and fabrication of patient-specific knee implant using additive manufacturing techniques

    Science.gov (United States)

    Zammit, Robert; Rochman, Arif

    2017-10-01

    Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.

  6. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  7. Fabric based supercapacitor

    International Nuclear Information System (INIS)

    Yong, S; Tudor, M J; Beeby, S P; Owen, J R

    2013-01-01

    Flexible supercapacitors with electrodes coated on inexpensive fabrics by the dipping technique. This paper present details of the design, fabrication and characterisation of fabric supercapacitor. The sandwich structured supercapacitors can achieve specific capacitances of 11.1F/g, area capacitance 105 mF.cm −2 and maintain 95% of the initial capacitance after cycling the device for more than 15000 times

  8. Study and fabrication of tunnel diodes made on germanium using a collective planar technique

    International Nuclear Information System (INIS)

    Vrahides, Michel

    1973-01-01

    The main results of the theory on tunnel diodes are presented in the first chapter. From these results are deduced the technological requirements that any fabrication process should meet to make tunnel diodes. These requirements show up that, among the three techniques for junction making (thermal diffusion of impurities, epitaxy, alloying), the last one is presently the best fitted to the fabrication of tunnel junctions. By analyzing the defects created by various alloying technologies presently used, together with a study of the benefits due to a use of chemical photolithography, evaporation under vacuum and masking by deposited oxide, it is possible to design a tentative scheme of a 0.5 ns tunnel diode. Then, in a second chapter, is presented the collective process for fabrication that has been used on monocrystalline, P-type, germanium wafers. 8 000 tunnel diodes may be positioned on a 1.5 inch diameter wafer by using that process. A description of the various apparatus used is also given. The experimental results are described in the third chapter. The influence of the various fabrication parameters on the electrical characteristics of the diodes are discussed. It is shown, by studying the fabrication yields and parameter spreading, that 80 per cent of the diodes exhibit a standard tunnel diode behaviour and that 90 per cent of these present a peak current dispersion less than ± 25 per cent. When measuring at the peak current drifts under temperature stresses, a good analogy with conventional tunnel diode is found. Some measurements of switching times have led to values as low as 0.6 nanoseconds. (author) [fr

  9. Shadow edge lithography for nanoscale patterning and manufacturing

    International Nuclear Information System (INIS)

    Bai, John G; Chang, C-L; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2007-01-01

    We demonstrate a wafer-scale nanofabrication method using the shadow effect in physical vapor deposition. An analytical model is presented to predict the formation of nanoscale gaps created by the shadow effect of a prepatterned edge on a deposition plane. The theoretical prediction agrees quantitatively with the widths of the fabricated nanogaps and nanochannels. In the diffusion experiments, both λ-DNA and fluorescein molecules were successfully introduced into the nanochannels. The proposed shadow edge lithography has potential to be a candidate for mass-producing nanostructures

  10. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    Science.gov (United States)

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  11. OLED Fabrication by Using a Novel Planar Evaporation Technique

    Directory of Open Access Journals (Sweden)

    Fu-Ching Tung

    2014-01-01

    Full Text Available Organic light-emitting diode fabrication is suffering from extremely high material wasting during deposition especially using a typical point or even line source. Moreover, the need of depositing a high number of emitters and host(s with a precise composition control in a single layer makes traditional vapor codeposition systems nearly impossible, unless otherwise with a very low yield. To improve, we have developed a novel thin-film deposition system with a planar source loadable with any premetered solvent-mixed organic compounds, plausibly with no component number limitation. We hence demonstrate experimentally, along with a Monte Carlo simulation, in the report the feasibility of using the technique to deposit on a large area-size substrate various organic materials with a relatively high material utilization rate coupling with high film uniformity. Specifically, nonuniformity of less than ±5% and material utilization rate of greater than 70% have been obtained for the studied films.

  12. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique

    International Nuclear Information System (INIS)

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Cho, Dong-Woo; Shim, Jung Hee; Choi, Tae Hyun

    2015-01-01

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL–gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering. (paper)

  13. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.

    Science.gov (United States)

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Shim, Jung Hee; Choi, Tae Hyun; Cho, Dong-Woo

    2015-11-03

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL-gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering.

  14. MFM observation of spin structures in nano-magnetic-dot arrays fabricated by damascene technique

    International Nuclear Information System (INIS)

    Sato, K.; Yamamoto, T.; Tezuka, T.; Ishibashi, T.; Morishita, Y.; Koukitu, A.; Machida, K.; Yamaoka, T.

    2006-01-01

    Regularly aligned arrays of magnetic nano dots buried in silicon wafers have been fabricated using damascene technique with the help of electron beam lithography. Arrays of square, rectangular, cross-shaped and Y-shaped structures of submicron size have been obtained. Spin distributions have been observed by means of magnetic force microscopy and analyzed by a micromagnetic simulation with Landau-Lifshitz-Gilbert equations. Importance of magnetostatic interactions working between adjacent dots has been elucidated

  15. Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique

    Directory of Open Access Journals (Sweden)

    Hyeong-Ho Park, Xin Zhang, Seon-Yong Hwang, Sang Hyun Jung, Semin Kang, Hyun-Beom Shin, Ho Kwan Kang, Hyung-Ho Park, Ross H Hill and Chul Ki Ko

    2012-01-01

    Full Text Available We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol–gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL. The resulting Zn-containing architectures were then converted to ZnO architectures with reduced feature sizes by thermal annealing at 400 °C for 1 h. The imprinted and annealed ZnO architectures were also used as new masters for the size reduction technique. ZnO pillars of 400 nm diameter were obtained from a silicon master with pillars of 1000 nm diameter by simply repeating the size reduction technique. The photosensitivity and contrast of the Zn-containing precursor were measured as 6.5 J cm−2 and 16.5, respectively. Interesting complex ZnO patterns, with both microscale pillars and nanoscale holes, were demonstrated by the combination of dose-controlled UV exposure and a two-step UV-NIL.

  16. Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Hwang, Seon-Yong; Jung, Sang Hyun; Kang, Semin; Shin, Hyun-Beom; Kang, Ho Kwan; Ko, Chul Ki; Zhang Xin; Hill, Ross H; Park, Hyung-Ho

    2012-01-01

    We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO) architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol–gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL). The resulting Zn-containing architectures were then converted to ZnO architectures with reduced feature sizes by thermal annealing at 400 °C for 1 h. The imprinted and annealed ZnO architectures were also used as new masters for the size reduction technique. ZnO pillars of 400 nm diameter were obtained from a silicon master with pillars of 1000 nm diameter by simply repeating the size reduction technique. The photosensitivity and contrast of the Zn-containing precursor were measured as 6.5 J cm −2 and 16.5, respectively. Interesting complex ZnO patterns, with both microscale pillars and nanoscale holes, were demonstrated by the combination of dose-controlled UV exposure and a two-step UV-NIL.

  17. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  18. Fabrication and optical properties of TiO sub 2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    CERN Document Server

    Lin, Y; Yuan, X Y; Xie, T; Zhang, L D

    2003-01-01

    Ordered TiO sub 2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO sub 2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO sub 2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO sub 2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO sub 2 owing to the quantum size effect.

  19. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

    Science.gov (United States)

    McHugh, Kevin J; Tao, Sarah L; Saint-Geniez, Magali

    2013-07-01

    Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe "pore casting," a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture.

  20. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques.

    Science.gov (United States)

    Liang, Shanshan; Yuan, Fusong; Luo, Xu; Yu, Zhuoren; Tang, Zhihui

    2018-04-05

    Marginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. The purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Six standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the "virtual seating" iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. The absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). The digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were

  1. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  2. The development of lab-on-a-chip fabricated from two molds

    Science.gov (United States)

    Pramuanjaroenkij, A.; Bunta, J.; Thiangpadung, J.; Sansaradee, S.; Kamsopa, P.; Sodsai, S.; Vichainsan, S.; Wongpanit, K.; Maturos, T.; Lomas, T.; Tuantranont, A.; Cetin, B.; Phankhoksoong, S.; Tongkratoke, A.

    2018-01-01

    Development of diagnostic technique of microfluidic or lab-on-a-chip (LOCs) is currently of great interest for researchers and inventors for their many advantages. It can be used as a real laboratory was many ways to help to the diagnosis faster. This research aims to develop Polydimethylsiloxane (PDMS) lab-on-a-chip (LOCs) which were produced from different molds; the silicon wafer mold and the stainless mold to investigate the flow of the biological sample as the flow in nanochannels. In addition, this research proposes a means to leakage and the blockage of the channel flow. The experimental results were found that the LOCs casted from the silicon wafer mold sandwiched by both the plasma cleaner machine and H shaped acrylic sheets showed leakages around the electrode areas because the first new electrodes were too thick, the proper thickness of the nickel electrode was at 0.05 millimeters. The LOCs casted from the stainless mold were inserted by the nickel electrodes produced by the from the prototype shaped electroplating process; this LOCs using nickel plated electrodes 2 times to make a groove on the nickel electrode backsides when pouring the PDMS into the LOCs casted from the stainless mold. It was found that PDMS was able to flow under the nickel electrode and the PDMS sheet could stick with the glass slide smoothly. In conclusion, it was possible to develop these LOC designs and new electrode fabrications continually under helps from Micro-Electro-Mechanical system, Thailand National Electronics and Computer Technology Center, since causes of the LOC problems were found, and demonstrated the feasibility of developing the LOCs for chemical detection and disease diagnostics.

  3. Outcomes of Orbital Floor Reconstruction After Extensive Maxillectomy Using the Computer-Assisted Fabricated Individual Titanium Mesh Technique.

    Science.gov (United States)

    Zhang, Wen-Bo; Mao, Chi; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin

    2015-10-01

    Orbital floor defects after extensive maxillectomy can cause severe esthetic and functional deformities. Orbital floor reconstruction using the computer-assisted fabricated individual titanium mesh technique is a promising method. This study evaluated the application and clinical outcomes of this technique. This retrospective study included 10 patients with orbital floor defects after maxillectomy performed from 2012 through 2014. A 3-dimensional individual stereo model based on mirror images of the unaffected orbit was obtained to fabricate an anatomically adapted titanium mesh using computer-assisted design and manufacturing. The titanium mesh was inserted into the defect using computer navigation. The postoperative globe projection and orbital volume were measured and the incidence of postoperative complications was evaluated. The average postoperative globe projection was 15.91 ± 1.80 mm on the affected side and 16.24 ± 2.24 mm on the unaffected side (P = .505), and the average postoperative orbital volume was 26.01 ± 1.28 and 25.57 ± 1.89 mL, respectively (P = .312). The mean mesh depth was 25.11 ± 2.13 mm. The mean follow-up period was 23.4 ± 7.7 months (12 to 34 months). Of the 10 patients, 9 did not develop diplopia or a decrease in visual acuity and ocular motility. Titanium mesh exposure was not observed in any patient. All patients were satisfied with their postoperative facial symmetry. Orbital floor reconstruction after extensive maxillectomy with an individual titanium mesh fabricated using computer-assisted techniques can preserve globe projection and orbital volume, resulting in successful clinical outcomes. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Electrochemical performances of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques

    International Nuclear Information System (INIS)

    Asamoto, Makiko; Miyake, Shinji; Yonei, Yuka; Yamaura, Hiroyuki; Yahiro, Hidenori

    2009-01-01

    The electrochemical performances of Proton-conducting SOFC with La 0.7 Sr 0.3 FeO 3 (LSF) cathode fabricated by the electrophoretic deposition (EPD) technique were investigated. The EPD technique provided the uniform layer of LSF cathode with constant thickness and can easily control the thickness by changing an applied voltage. The power density of the SOFC cell was dependent on the thickness of LSF cathode. The activation energy was measured to elucidate the rate-determining step for LSF cathode reaction. (author)

  5. Comparative study on structural and optical properties of CdS films fabricated by three different low-cost techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K. [P.G. and Research Department of Physics, AVVM. Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)], E-mail: kkr1365@yahoo.com; Philominathan, P. [P.G. and Research Department of Physics, AVVM. Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)

    2009-03-15

    Highly crystalline and transparent cadmium sulphide films were fabricated at relatively low temperature by employing an inexpensive, simplified spray technique using perfume atomizer (generally used for cosmetics). The structural, surface morphological and optical properties of the films were studied and compared with that prepared by conventional spray pyrolysis using air as carrier gas and chemical bath deposition. The films deposited by the simplified spray have preferred orientation along (1 0 1) plane. The lattice parameters were calculated as a = 4.138 A and c = 6.718 A which are well agreed with that obtained from the other two techniques and also with the standard data. The optical transmittance in the visible range and the optical band gap were found as 85% and 2.43 eV, respectively. The structural and optical properties of the films fabricated by the simplified spray are found to be desirable for opto-electronic applications.

  6. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  7. Wire electric-discharge machining and other fabrication techniques

    Science.gov (United States)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  8. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    Science.gov (United States)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  9. Distribution of distances between DNA barcode labels in nanochannels close to the persistence length

    Science.gov (United States)

    Reinhart, Wesley F.; Reifenberger, Jeff G.; Gupta, Damini; Muralidhar, Abhiram; Sheats, Julian; Cao, Han; Dorfman, Kevin D.

    2015-02-01

    We obtained experimental extension data for barcoded E. coli genomic DNA molecules confined in nanochannels from 40 nm to 51 nm in width. The resulting data set consists of 1 627 779 measurements of the distance between fluorescent probes on 25 407 individual molecules. The probability density for the extension between labels is negatively skewed, and the magnitude of the skewness is relatively insensitive to the distance between labels. The two Odijk theories for DNA confinement bracket the mean extension and its variance, consistent with the scaling arguments underlying the theories. We also find that a harmonic approximation to the free energy, obtained directly from the probability density for the distance between barcode labels, leads to substantial quantitative error in the variance of the extension data. These results suggest that a theory for DNA confinement in such channels must account for the anharmonic nature of the free energy as a function of chain extension.

  10. Laser-assisted fabrication of materials

    CERN Document Server

    Manna, Indranil

    2013-01-01

    Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ´Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.

  11. Engineering Non-Wetting Antimicrobial Fabrics

    Science.gov (United States)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  12. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    Science.gov (United States)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  13. Fabrication technique of U-siliscide solution crucible

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chull Koo; Kim, Joon Soo; Ha, Ho Gwan; Kang, Hwan Gui; Kim, Jung Goo; Yun, Jong Yong [Dongsuh Ceramic Institute, Seoul (Korea, Republic of)

    1997-07-01

    The objective of this study is to establish ZrO{sub 2} crucibel fabrication technology preventing the infiltration by foreign substances. This study was established and practiced technology of formation and sintering of dense zirconia crucible was established at the second year. 21 refs., 10 tabs., 21 figs. (author)

  14. Fabrication of microlens arrays using a CO2-assisted embossing technique

    International Nuclear Information System (INIS)

    Huang, Tzu-Chien; Chan, Bin-Da; Ciou, Jyun-Kai; Yang, Sen-Yeu

    2009-01-01

    This paper reports a method to fabricate microlens arrays with a low processing temperature and a low pressure. The method is based on embossing a softened polymeric substrate over a mold with micro-hole arrays. Due to the effect of capillary and surface tension, microlens arrays can be formed. The embossing medium is CO 2 gas, which supplies a uniform pressing pressure so that large-area microlens arrays can be fabricated. CO 2 gas also acts as a solvent to plasticize the polymer substrates. With the special dissolving ability and isotropic pressing capacity of CO 2 gas, microlens arrays can be fabricated at a low temperature (lower than T g ) and free of thermal-induced residual stress. Such a combined mechanism of dissolving and embossing with CO 2 gas makes the fabrication of microlens arrays direct with complex processes, and is more compatible for optical usage. In the study, it is also found that the sag height of microlens changes when different CO 2 dissolving pressure and time are used. This makes it easy to fabricate microlens arrays of different geometries without using different molds. The quality, uniformity and optical property of the fabricated microlens arrays have been verified with measurements of the dimensions, surface smoothness, focal length, transmittance and light intensity through the fabricated microlens arrays

  15. Hierarchically porous carbon membranes containing designed nanochannel architectures obtained by pyrolysis of ion-track etched polyimide

    International Nuclear Information System (INIS)

    Muench, Falk; Seidl, Tim; Rauber, Markus; Peter, Benedikt; Brötz, Joachim; Krause, Markus; Trautmann, Christina; Roth, Christina; Katusic, Stipan; Ensinger, Wolfgang

    2014-01-01

    Well-defined, porous carbon monoliths are highly promising materials for electrochemical applications, separation, purification and catalysis. In this work, we present an approach allowing to transfer the remarkable degree of synthetic control given by the ion-track etching technology to the fabrication of carbon membranes with porosity structured on multiple length scales. The carbonization and pore formation processes were examined with Raman, Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements, while model experiments demonstrated the viability of the carbon membranes as catalyst support and pollutant adsorbent. Using ion-track etching, specifically designed, continuous channel-shaped pores were introduced into polyimide foils with precise control over channel diameter, orientation, density and interconnection. At a pyrolysis temperature of 950 °C, the artificially created channels shrunk in size, but their shape was preserved, while the polymer was transformed to microporous, amorphous carbon. Channel diameters ranging from ∼10 to several 100 nm could be achieved. The channels also gave access to previously closed micropore volume. Substantial surface increase was realized, as it was shown by introducing a network consisting of 1.4 × 10 10 channels per cm 2 of 30 nm diameter, which more than tripled the mass-normalized surface of the pyrolytic carbon from 205 m 2  g −1 to 732 m 2  g −1 . At a pyrolysis temperature of 3000 °C, membranes consisting of highly ordered graphite were obtained. In this case, the channel shape was severely altered, resulting in a pronounced conical geometry in which the channel diameter quickly decreased with increasing distance to the membrane surface. - Highlights: • Pyrolysis of ion-track etched polyimide yields porous carbon membranes. • Hierarchic porosity: continuous nanochannels embedded in a microporous carbon matrix. • Freely adjustable meso- or

  16. Hierarchically porous carbon membranes containing designed nanochannel architectures obtained by pyrolysis of ion-track etched polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Muench, Falk, E-mail: muench@ca.tu-darmstadt.de [Department of Material- and Geoscience, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Seidl, Tim; Rauber, Markus [Department of Material- and Geoscience, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Material Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Peter, Benedikt; Brötz, Joachim [Department of Material- and Geoscience, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Krause, Markus; Trautmann, Christina [Department of Material- and Geoscience, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Material Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Roth, Christina [Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin (Germany); Katusic, Stipan [Evonik Industries AG, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Ensinger, Wolfgang [Department of Material- and Geoscience, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany)

    2014-12-15

    Well-defined, porous carbon monoliths are highly promising materials for electrochemical applications, separation, purification and catalysis. In this work, we present an approach allowing to transfer the remarkable degree of synthetic control given by the ion-track etching technology to the fabrication of carbon membranes with porosity structured on multiple length scales. The carbonization and pore formation processes were examined with Raman, Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements, while model experiments demonstrated the viability of the carbon membranes as catalyst support and pollutant adsorbent. Using ion-track etching, specifically designed, continuous channel-shaped pores were introduced into polyimide foils with precise control over channel diameter, orientation, density and interconnection. At a pyrolysis temperature of 950 °C, the artificially created channels shrunk in size, but their shape was preserved, while the polymer was transformed to microporous, amorphous carbon. Channel diameters ranging from ∼10 to several 100 nm could be achieved. The channels also gave access to previously closed micropore volume. Substantial surface increase was realized, as it was shown by introducing a network consisting of 1.4 × 10{sup 10} channels per cm{sup 2} of 30 nm diameter, which more than tripled the mass-normalized surface of the pyrolytic carbon from 205 m{sup 2} g{sup −1} to 732 m{sup 2} g{sup −1}. At a pyrolysis temperature of 3000 °C, membranes consisting of highly ordered graphite were obtained. In this case, the channel shape was severely altered, resulting in a pronounced conical geometry in which the channel diameter quickly decreased with increasing distance to the membrane surface. - Highlights: • Pyrolysis of ion-track etched polyimide yields porous carbon membranes. • Hierarchic porosity: continuous nanochannels embedded in a microporous carbon matrix.

  17. Non-Gaussian Distribution of DNA Barcode Extension In Nanochannels Using High-throughput Imaging

    Science.gov (United States)

    Sheats, Julian; Reinhart, Wesley; Reifenberger, Jeff; Gupta, Damini; Muralidhar, Abhiram; Cao, Han; Dorfman, Kevin

    2015-03-01

    We present experimental data for the extension of internal segments of highly confined DNA using a high-­throughput experimental setup. Barcode­-labeled E. coli genomic DNA molecules were imaged at a high areal density in square nanochannels with sizes ranging from 40 nm to 51 nm in width. Over 25,000 molecules were used to obtain more than 1,000,000 measurements for genomic distances between 2,500 bp and 100,000 bp. The distribution of extensions has positive excess kurtosis and is skew­ left due to weak backfolding in the channel. As a result, the two Odijk theories for the chain extension and variance bracket the experimental data. We compared to predictions of a harmonic approximation for the confinement free energy and show that it produces a substantial error in the variance. These results suggest an inherent error associated with any statistical analysis of barcoded DNA that relies on harmonic models for chain extension. Present address: Department of Chemical and Biological Engineering, Princeton University.

  18. Comparison the Marginal and Internal Fit of Metal Copings Cast from Wax Patterns Fabricated by CAD/CAM and Conventional Wax up Techniques

    Science.gov (United States)

    Vojdani, M; Torabi, K; Farjood, E; Khaledi, AAR

    2013-01-01

    Statement of Problem: Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. Purpose: This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Materials and Method: Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student’s t- test was used for statistical analysis (α=0.05). Results: The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student’s t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (pmarginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um. PMID:24724133

  19. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Cai Kaiyong, E-mail: Kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Sui Xiaojing; Hu Yan [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Zhao Li [China National Centre for Biotechnology Development, No. 16, Xi Si Huan Zhong Lu, Haidian District, Beijing 100036 (China); Lai Min; Luo Zhong; Liu Peng; Yang Weihu [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2011-12-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: {yields} Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. {yields} The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. {yields} The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  20. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    International Nuclear Information System (INIS)

    Cai Kaiyong; Sui Xiaojing; Hu Yan; Zhao Li; Lai Min; Luo Zhong; Liu Peng; Yang Weihu

    2011-01-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: → Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. → The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. → The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  1. Characterization of fabricated three dimensional scaffolds of bio ceramic-polymer composite via microstereolithography technique

    International Nuclear Information System (INIS)

    Marina Talib; Covington, J.A.; Bolarinwa, A.

    2013-01-01

    Full-text: Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer per layer fabrication curing a liquid resin with UV-light or laser source. The aim of this project was to formulate photo curable polymer reinforced with synthesized calcium pyrophosphate (CPP), and to fabricate a 3D scaffolds with optimum mechanical properties for specific tissue engineering applications. The photo curable ceramic suspension was prepared with acrylate polyester, multifunctional acrylate monomer with the addition of 50-70 wt % of CPP, photo initiators and photo inhibitors. The 3D structure of disc (5 mm height x 4 mm diameter) was successfully fabricated using Envisiontec Perfactory3. They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. The density increased to more than 35 % and the dimensional shrinkage after sintering were 33 %. The discs were then subjected compressive measurement, biodegradation and bioactivity test. Morphology and CPP content of the sintered polymer was investigated with SEM and XRD, respectively. The addition of CPP coupled with high temperature sintering, had a significant effect on the compressive strength exhibited by the bio ceramic. The values are in the range of cancellous bone (2-4 MPa). In biodegradation and bioactivity test, the synthesized CPP induced the formation of apatite layer and its nucleation onto the composite surface. (author)

  2. Fabrication of ridge waveguide structure from photosensitive TiO2/ormosil hybrid films by using an ultraviolet soft imprint technique

    International Nuclear Information System (INIS)

    Zhang, Xuehua; Que, Wenxiu; Chen, Jing; Gao, Tianxi; Hu, Jiaxing; Liu, Weiguo

    2013-01-01

    Photosensitive TiO 2 /organically modified silane hybrid films were prepared by combining a low-temperature sol–gel process with a spin-coating technique. Optical properties and photochemical activities of the as-prepared hybrid sol–gel films under different UV irradiation time were characterized and monitored by prism coupling technique, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. Surface morphology of the hybrid films was also observed by an atomic force microscopy. Advantages for fabrication of ridge waveguide structure based on the photosensitive hybrid films were demonstrated by an ultraviolet soft imprint technique. Effects of imprint force, imprint time, and UV irradiation time on high replication fidelity of the ridge waveguide structure were also investigated. An altitude replication fidelity of 99.7% can be obtained when the imprint force of 2 MPa, imprint time of 30 min and UV irradiation time of 45 min were chosen. Scanning electron microscopy and surface profiler were used to characterize the morphological and surface profile properties of the as fabricated ridge waveguide structure. Results indicate that the as-prepared photosensitive hybrid materials have great applicability for the fabrication of micro-optical elements and advantage as the imprint layer under the ultraviolet soft imprint technique. - Highlights: ► Photosensitive TiO 2 /ormosil hybrid film is prepared by a sol–gel process. ► Optical properties of the films change a little with UV exposure time. ► Photo-chemical property of the film changes a lot with UV exposure time. ► The imprint force and time, and the UV exposure time affect the imprint fidelity. ► A fidelity value of 99.7% is obtained under an optimized condition

  3. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems

    Directory of Open Access Journals (Sweden)

    Kyowon Kang

    2018-05-01

    Full Text Available Recent progress in fabricating flexible electronics has been significantly developed because of the increased interest in flexible electronics, which can be applied to enormous fields, not only conventional in electronic devices, but also in bio/eco-electronic devices. Flexible electronics can be applied to a wide range of fields, such as flexible displays, flexible power storages, flexible solar cells, wearable electronics, and healthcare monitoring devices. Recently, flexible electronics have been attached to the skin and have even been implanted into the human body for monitoring biosignals and for treatment purposes. To improve the electrical and mechanical properties of flexible electronics, nanoscale fabrications using novel nanomaterials are required. Advancements in nanoscale fabrication methods allow the construction of active materials that can be combined with ultrathin soft substrates to form flexible electronics with high performances and reliability. In this review, a wide range of flexible electronic applications via nanoscale fabrication methods, classified as either top-down or bottom-up approaches, including conventional photolithography, soft lithography, nanoimprint lithography, growth, assembly, and chemical vapor deposition (CVD, are introduced, with specific fabrication processes and results. Here, our aim is to introduce recent progress on the various fabrication methods for flexible electronics, based on novel nanomaterials, using application examples of fundamental device components for electronics and applications in healthcare systems.

  4. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Ruixin [Institute of Medical Equipment, Academy of Military and Medical Sciences, No. 106, Wandong Street, Hedong District, Tianjin 300000 (China); Jiang, Wenxue, E-mail: jiangortholivea@sina.cn [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Sun, Yufu [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Hui [Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, TJ 300052 (China)

    2016-09-02

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  5. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    International Nuclear Information System (INIS)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue; Sun, Yufu; Li, Hui

    2016-01-01

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  6. Fit accuracy of metal partial removable dental prosthesis frameworks fabricated by traditional or light curing modeling material technique: An in vitro study

    Science.gov (United States)

    Anan, Mohammad Tarek M.; Al-Saadi, Mohannad H.

    2015-01-01

    Objective The aim of this study was to compare the fit accuracies of metal partial removable dental prosthesis (PRDP) frameworks fabricated by the traditional technique (TT) or the light-curing modeling material technique (LCMT). Materials and methods A metal model of a Kennedy class III modification 1 mandibular dental arch with two edentulous spaces of different spans, short and long, was used for the study. Thirty identical working casts were used to produce 15 PRDP frameworks each by TT and by LCMT. Every framework was transferred to a metal master cast to measure the gap between the metal base of the framework and the crest of the alveolar ridge of the cast. Gaps were measured at three points on each side by a USB digital intraoral camera at ×16.5 magnification. Images were transferred to a graphics editing program. A single examiner performed all measurements. The two-tailed t-test was performed at the 5% significance level. Results The mean gap value was significantly smaller in the LCMT group compared to the TT group. The mean value of the short edentulous span was significantly smaller than that of the long edentulous span in the LCMT group, whereas the opposite result was obtained in the TT group. Conclusion Within the limitations of this study, it can be concluded that the fit of the LCMT-fabricated frameworks was better than the fit of the TT-fabricated frameworks. The framework fit can differ according to the span of the edentate ridge and the fabrication technique for the metal framework. PMID:26236129

  7. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  8. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  9. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process is...

  10. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  11. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  12. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  13. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  14. New Fabrication Strategies for Polymer Electrolyte Batteries

    National Research Council Canada - National Science Library

    Shriver, D

    1997-01-01

    .... The objective of this research was to fabricate lithium-polymer batteries by techniques that may produce a thin electrolyte and cathode films and with minimal contamination during fabrication. One such technique, ultrasonic spray was used. Another objective of this research was to test lithium cells that incorporate the new polymer electrolytes and polyelectrolytes.

  15. Knotting dynamics of DNA chains of different length confined in nanochannels

    International Nuclear Information System (INIS)

    Suma, Antonio; Micheletti, Cristian; Orlandini, Enzo

    2015-01-01

    Langevin dynamics simulations are used to characterize the typical mechanisms governing the spontaneous tying, untying and the dynamical evolution of knots in coarse-grained models of DNA chains confined in nanochannels. In particular we focus on how these mechanisms depend on the chain contour length, L c , at a fixed channel width D = 56 nm corresponding to the onset of the Odijk scaling regime where chain backfoldings and hence knots are disfavoured but not suppressed altogether. We find that the lifetime of knots grows significantly with L c , while that of unknots varies to a lesser extent. The underlying kinetic mechanisms are clarified by analysing the evolution of the knot position along the chain. At the considered confinement, in fact, knots are typically tied by local backfoldings of the chain termini where they are eventually untied after a stochastic motion along the chain. Consequently, the lifetime of unknots is mostly controlled by backfoldings events at the chain ends, which is largely independent of L c . The lifetime of knots, instead, increases significantly with L c because knots can, on average, travel farther along the chain before being untied. The observed interplay of knots and unknots lifetimes underpins the growth of the equilibrium knotting probability of longer and longer chains at fixed channel confinement. (paper)

  16. Magnetic domain walls as reconfigurable spin-wave nano-channels

    Science.gov (United States)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  17. Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S; Choudhary, J N, E-mail: subhra-datta@iitd.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2013-10-01

    The effect of hydrodynamic slippage on the electro-osmotic flow in a nanochannel with thick electrical double layers whose wall surface potential has a periodic axial variation is studied. The equations of Stokes flow are solved exactly with the help of the Navier slip boundary condition and the Debye-Huckel linearization of the equation governing the potential of the electrical double layer. Each periodic cell of the flow field consists of four counter-rotating vortices. The cross-channel profile of the axial velocity at the center of the cell exhibits three extrema and a reversed velocity zone near the channel axis of symmetry. The size of the extrema and that of the reversed velocity zone increases with increase in the degree of slippage. In the limit when the wavelength of axial variation in surface potential is much larger than the channel width, the flow characteristics are interpreted in terms of the lubrication approximation. In the limit when the electrical double layer is much thinner than the channel height, the effect of slip is modeled by a Helmholtz-Smoluchowski apparent slip boundary condition that depends on the pattern wavelength. (paper)

  18. Fabrication of ridge waveguide structure from photosensitive TiO{sub 2}/ormosil hybrid films by using an ultraviolet soft imprint technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuehua [Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Chen, Jing; Gao, Tianxi; Hu, Jiaxing [Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Liu, Weiguo [Micro-optoelectronic Systems Laboratories, Xi' an Technological University, Xi' an 710032, Shaanxi (China)

    2013-03-01

    Photosensitive TiO{sub 2}/organically modified silane hybrid films were prepared by combining a low-temperature sol–gel process with a spin-coating technique. Optical properties and photochemical activities of the as-prepared hybrid sol–gel films under different UV irradiation time were characterized and monitored by prism coupling technique, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. Surface morphology of the hybrid films was also observed by an atomic force microscopy. Advantages for fabrication of ridge waveguide structure based on the photosensitive hybrid films were demonstrated by an ultraviolet soft imprint technique. Effects of imprint force, imprint time, and UV irradiation time on high replication fidelity of the ridge waveguide structure were also investigated. An altitude replication fidelity of 99.7% can be obtained when the imprint force of 2 MPa, imprint time of 30 min and UV irradiation time of 45 min were chosen. Scanning electron microscopy and surface profiler were used to characterize the morphological and surface profile properties of the as fabricated ridge waveguide structure. Results indicate that the as-prepared photosensitive hybrid materials have great applicability for the fabrication of micro-optical elements and advantage as the imprint layer under the ultraviolet soft imprint technique. - Highlights: ► Photosensitive TiO{sub 2}/ormosil hybrid film is prepared by a sol–gel process. ► Optical properties of the films change a little with UV exposure time. ► Photo-chemical property of the film changes a lot with UV exposure time. ► The imprint force and time, and the UV exposure time affect the imprint fidelity. ► A fidelity value of 99.7% is obtained under an optimized condition.

  19. HIP technologies for fusion reactor blankets fabrication

    International Nuclear Information System (INIS)

    Le Marois, G.; Federzoni, L.; Bucci, P.; Revirand, P.

    2000-01-01

    The benefit of HIP techniques applied to the fabrication of fusion internal components for higher performances, reliability and cost savings are emphasized. To demonstrate the potential of the techniques, design of new blankets concepts and mock-ups fabrication are currently performed by CEA. A coiled tube concept that allows cooling arrangement flexibility, strong reduction of the machining and number of welds is proposed for ITER IAM. Medium size mock-ups according to the WCLL breeding blanket concept have been manufactured. The fabrication of a large size mock-up is under progress. These activities are supported by numerical calculations to predict the deformations of the parts during HIP'ing. Finally, several HIP techniques issues have been identified and are discussed

  20. New Technique for Fabrication of Scanning Single-Electron Transistor Microscopy Tips

    Science.gov (United States)

    Goodwin, Eric; Tessmer, Stuart

    Fabrication of glass tips for Scanning Single-Electron Transistor Microscopy (SSETM) can be expensive, time consuming, and inconsistent. Various techniques have been tried, with varying levels of success in regards to cost and reproducibility. The main requirement for SSETM tips is to have a sharp tip ending in a micron-scale flat face to allow for deposition of a quantum dot. Drawing inspiration from methods used to create tips from optical fibers for Near-Field Scanning Optical Microscopes, our group has come up with a quick and cost effective process for creating SSETM tips. By utilizing hydrofluoric acid to etch the tips and oleic acid to guide the etch profile, optical fiber tips with appropriate shaping can be rapidly prepared. Once etched, electric leads are thermally evaporated onto each side of the tip, while an aluminum quantum dot is evaporated onto the face. Preliminary results using various metals, oxide layers, and lead thicknesses have proven promising.

  1. A Nanofluidic Mixing Device for High-throughput Fluorescence Sensing of Single Molecules

    NARCIS (Netherlands)

    Mathwig, Klaus; Fijen, C.; Fontana, M.; Lemay, S.G.; Hohlbein, J.C.

    2017-01-01

    We introduce a nanofluidic mixing device entirely fabricated in glass for the fluorescence detection of single molecules. The design consists of a nanochannel T-junction and allows the continuous monitoring of chemical or enzymatic reactions of analytes as they arrive from two independent inlets.

  2. Fabrication technique for a custom face mask for the treatment of obstructive sleep apnea.

    Science.gov (United States)

    Prehn, Ronald S; Colquitt, Tom

    2016-05-01

    The development of the positive airway pressure custom mask (TAP-PAP CM) has changed the treatment of obstructive sleep apnea. The TAP-PAP CM is used in continuous positive airway pressure therapy (CPAP) and is fabricated from the impression of the face. This mask is then connected to a post screwed into the mechanism of the TAP3 (Thornton Anterior Positioner) oral appliance. This strapless CPAP face mask features an efficient and stable CPAP interface with mandibular stabilization (Hybrid Therapy). A technique with a 2-stage polyvinyl siloxane face impression is described that offers improvements over the established single-stage face impression. This 2-stage impression technique eliminates problems inherent in the single-stage face impression, including voids, compressed tissue, inadequate borders, and a rushed experience due to the setting time of the single stage. The result is a custom mask with an improved seal to the CPAP device. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Fabrication of Nanoimprint stamps for photonic crystals

    International Nuclear Information System (INIS)

    Kouba, J; Kubenz, M; Mai, A; Ropers, G; Eberhardt, W; Loechel, B

    2006-01-01

    We report on fabrication of nanoimprint stamps for fabrication of two dimensional photonic crystals in visible range of spectra. Nanoimprint stamps made of silicon and/or nickel were successfully fabricated using electron beam lithography and advanced dry etching techniques. The quality of the stamps was evaluated using scanning electron microscopy. The fabricated stamps were also evaluated by imprinting them into suitable polymer materials

  4. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  5. Organic transistors fabricated by contact coating at liquid-solid interface for nano-structures

    Directory of Open Access Journals (Sweden)

    Yu-Wen Cheng

    2015-10-01

    Full Text Available A contact coating method is developed to cover the nano-channels with 100 nm or 200 nm diameter and 400 nm depth with a poly(4-vinylphenol (PVP. In such coating the nano-channels faces downwards and its vertical position is controlled by a motor. The surface is first lowered to be in immediate contact with the polyvinylpyrrolidone (PVPY water solution with concentration from 1 to 5 wt%, then pulled at the speed of 0.004 to 0.4 mm/s. By tuning the pulling speed and concentration we can realize conformal, filled, top-only, as well as floating film morphology. For a reproducible liquid detachment from the solid, the sample has a small tilt angle of 3 degree. Contact coating is used to cover the Al grid base of the vertical space-charge-limited transistor with PVPY. Poly(3-hexylthiophene-2,5-diyl (P3HT as the semiconductor. The transistor breakdown voltage is raised due to base coverage achieved by contact coating.

  6. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    Science.gov (United States)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  7. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  8. Fabrication of cryogenic inertial-confinement-fusion targets using target free-fall technique. Report No. 2-82

    International Nuclear Information System (INIS)

    Kim, K.; Murphy, M.J.

    1982-04-01

    Techniques for fabricating cryogenic inertial confinement fusion targets (i.e., spherical shells containing a uniform layer of DT ice) are investigated using target free-fall concept. Detection and characterization of the moving targets are effected by optoelectronic means, of which the principal is an RF ac-interferometer. This interferometer system demonstrates, for the first time, the speed capabilities of the phase-modulation ac-interferometry. New techiques developed for handling, holding, launching, and transporting targets are also described. Results obtained at both room and cryogenic temperatures are presented

  9. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B.

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si 3 N 4 . Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation

  10. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  11. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  12. Micro-fabricated all optical pressure sensors

    DEFF Research Database (Denmark)

    Havreland, Andreas Spandet; Petersen, Søren Dahl; Østergaard, Christian

    2017-01-01

    Optical pressure sensors can operate in certain harsh application areas where the electrical pressure sensors cannot. However, the sensitivity is often not as good for the optical sensors. This work presents an all optical pressure sensor, which is fabricated by micro fabrication techniques, where...... the sensitivity can be tuned in the fabrication process. The developed sensor design, simplifies the fabrication process leading to a lower fabrication cost, which can make the all optical pressure sensors more competitive towards their electrical counterpart. The sensor has shown promising results and a linear...... pressure response has been measured with a sensitivity of 0.6nm/bar....

  13. Fabrication of Orientation-Controlled 3D Tissues Using a Layer-by-Layer Technique and 3D Printed a Thermoresponsive Gel Frame.

    Science.gov (United States)

    Tsukamoto, Yoshinari; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru

    2017-06-01

    Herein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm. Based on this result, we fabricated 3D gel frames of various shapes, such as square, triangular, rectangular, and circular, for shape control of 3D tissue and then normal human cardiac fibroblasts (NHCFs) coated with extracellular matrix nanofilms were seeded in the frames. Observation of shape-controlled tissues after 1 day of cultivation showed that the orientation of fibroblasts was in one direction when a short-sided, thin, rectangular-shaped frame was used. Next, we tried to fabricate orientation-controlled tissue with a vascular network by coculturing NHCF and normal human cardiac microvascular endothelial cells. As a consequence of cultivation for 4 days, observation of cocultured tissue confirmed aligned cells and blood capillaries in orientation-controlled tissue. Our results clearly demonstrated that it would be possible to control the cell orientation by controlling the shape of the tissues by combining a cell accumulation technique and a 3D printing system. The results of this study suggest promising strategies for the fabrication of oriented 3D tissues in vitro. These tissues, mimicking native organ structures, such as muscle and nerve tissue with a cell alignment structure, would be useful for tissue engineering, regenerative medicine, and pharmaceutical applications.

  14. Smart fabric sensors and e-textile technologies: a review

    International Nuclear Information System (INIS)

    Castano, Lina M; Flatau, Alison B

    2014-01-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods. (topical review)

  15. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  16. Performance evaluation of WDXRF as a process control technique for MOX fuel fabrication

    International Nuclear Information System (INIS)

    Pandey, A.; Khan, F.A.; Das, D.K.; Behere, P.G.; Afzal, Mohd

    2015-01-01

    This paper presents studies on Wavelength Dispersive X-Ray Fluorescence (WDXRF), as a powerful non destructive technique (NDT) for the compositional analysis of various types of MOX fuels. The sample has come after mixing and milling of UO 2 and PuO 2 powder for the estimation of plutonium, as a process control step of fabrication of (U, Pu)O 2 mixed oxide (MOX) fuel. For the characterization for heavy metal in various MOX fuel, a WDXRF method was established as a process control technique. The attractiveness of our system is that it can analyze the samples in solid form as well as in liquid form. The system is adapted in a glove box for handling of plutonium based fuels. The glove box adapted system was optimized with Uranium and Thorium based MOX sample before introduction of Pu. Uranium oxide and thorium oxide have been estimated in uranium thorium MOX samples. Standard deviation for the analysis of U 3 O 8 and ThO 2 were found to be 0.14 and 0.15 respectively. The results are validated against the conventional wet chemical methods of analysis. (author)

  17. Examination of the ion-implantation route to fabrication of the Kane quantum computer using advanced imaging techniques

    International Nuclear Information System (INIS)

    Pakes, C.; Millar, V.; Peng, J.; Cimmino, A.; Prawer, S.; Jamieson, D.; Yang, C.; McKinnon, R.; Stanley, F.; Clark, R.; University of New South Wales, NSW; Dzurak, A.

    2002-01-01

    Full text: The Kane solid-state quantum computer employs as qubits an array of 31 P atoms embedded with nanoscale precision in a silicon matrix. One proposal for the fabrication of such an array is by phosphorous-ion implantation. We present an overview of a program of research aiming to develop advanced imaging techniques to address key issues relating to the fabrication of the Kane device by ion implantation, focusing particularly on the development of surface-resist technology to allow the registration of single implanted ions and an examination of the extent of damage imposed on the silicon matrix. Our surface resists take the form of a polymethylmethacrylate (PMMA) thin-films, which have been exposed both to MeV and keV ions. Registration of ion implantation is based on the development of localised chemical modification arising from latent damage caused within the PMMA layer by the passage of an implanted ion. On development of the resist, atomic force microscopy imaging demonstrates the formation of clearly defined etched holes, of typical diameter 30 nm, which are ascribed to single-ion impacts. The use of novel scanning probes, such as carbon nanotubes, for imaging complex PMMA resist structures will be illustrated. Potential applications to the fabrication of self-aligned gate structures will be discussed

  18. Fabrication and Testing of Deflecting Cavities for APS

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  19. Fabrication of ITO particles using a combination of a homogeneous precipitation method and a seeding technique and their electrical conductivity

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-09-01

    Full Text Available The present work proposes a method to fabricate indium tin oxide (ITO particles using precursor particles synthesized with a combination of a homogeneous precipitation method and a seeding technique, and it also describes their electronic conductivity properties. Seed nanoparticles were produced using a co-precipitation method with aqueous solutions of indium (III chloride, tin (IV chloride aqueous solution and sodium hydroxide. Three types of ITO nanoparticles were fabricated. The first type was fabricated using the co-precipitation method (c-ITO. The second and third types were fabricated using a homogeneous precipitation method with the seed nanoparticles (s-ITO and without seeds (n-ITO. The as-prepared precursor particles were annealed in air at 500 °C, and their crystal structures were cubic ITO. The c-ITO nanoparticles formed irregular-shaped agglomerates of nanoparticles. The n-ITO nanoparticles had a rectangular-parallelepiped or quasi-cubic structure. Most s-ITO nanoparticles had a quasi-cubic structure, and their size was larger than the n-ITO particles. The volume resistivities of the c-ITO, n-ITO and s-ITO powders decreased in that order because the regular-shaped particles were made to strongly contact with each other.

  20. Roles of Ag in fabricating Si nanowires by the electroless chemical etching technique

    International Nuclear Information System (INIS)

    Wan, X.; Wang, Q. K.; Wangyang, P. H.; Tao, H.

    2012-01-01

    Silicon wafers coated with a film of Ag pattern are used for investigating roles of Ag in the fabrication of silicon nanowire arrays (SiNWs) by the electroless chemical etching technique. The diameter of SiNWs grown in the mixed AgNO 3 /HF solution ranges from 20 to 250 nm. A growth mechanism for such obtained SiNWs is proposed and further experimentally verified. As a comparison as well as to better understand this chemical process, another popular topic on growing SiNWs in the H 2 O 2 /HF solution is also studied. Originating from different chemical reaction mechanisms, Ag film could protect the underneath Si in the AgNO 3 /HF solution and it could, on the contrary, accelerate etching of the underneath Si in the H 2 O 2 /HF solution.

  1. Replacement of a hopeless maxillary central incisor: a technique for the fabrication of an immediate implant-supported interim restoration.

    Science.gov (United States)

    Graiff, Lorenzo; Vigolo, Paolo

    2012-04-01

    Placement of a dental implant and an interim restoration in the esthetic zone immediately following tooth extraction is now a common procedure. However, in such clinical situations, the fabrication of an appropriate interim restoration may be challenging. The aim of this article is to present a technique for modifying the extracted tooth so it can be used as an implant-supported interim restoration.

  2. The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique.

    Science.gov (United States)

    Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam

    2017-11-01

    In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.

  3. Accuracy of CAD-CAM-fabricated removable partial dentures.

    Science.gov (United States)

    Arnold, Christin; Hey, Jeremias; Schweyen, Ramona; Setz, Jürgen M

    2018-04-01

    The conventional fabrication of removable partial dentures (RPDs) is a complex, error-prone, time-consuming, and expensive process. The use of computer-aided design and computer-aided manufacturing (CAD-CAM) techniques, especially rapid prototyping, promises a more effective method for fabricating RPD frameworks. The purpose of this in vitro study was to evaluate the fit of RPD clasps fabricated by means of 4 different CAD-CAM-systems and to compare those fittings with that of the conventional lost-wax casting technique (LWT). A master model of a partially edentulous maxilla with the canines and second molars as the remaining teeth was fabricated. After the model was optically scanned, we designed a quadrangularly supported RPD with 4 clasps and a palatal strap major connector. A standard tessellation language data set was used to fabricate 12 identical RPDs by using 4 different CAD-CAM techniques: indirect rapid prototyping (wax inject printing combined with LWT), direct rapid prototyping (selective laser melting), indirect milling (wax milling with LWT), and direct milling (resin milling [polyetheretherketone]). Three conventionally cast RPDs (LWT) served as the control group. The fit accuracy of the clasps (n=12 for each group) was determined in both the horizontal and vertical dimensions by using light microscopy. Indirectly milled RPDs (117 ±34 μm horizontal and 45 ±21 μm vertical) and directly milled RPDs (43 ±23 μm horizontal, and 38 ±21 μm vertical) showed significantly better (P<.05) fit than did conventionally fabricated LWT RPDs (133 ±59 μm horizontal; 73 ±25 μm vertical). The worst fit was found for RPDs fabricated using indirect rapid prototyping (323 ±188 μm horizontal and 112 ±60 μm vertical) or direct rapid prototyping (365 ±205 μm horizontal and 363 ±133 μm vertical), which were unstable on the master model, making them unsuitable for clinical use. Most RPDs exhibited smaller vertical measuring distances. Compared with the LWT

  4. Template-assisted fabrication of tin and antimony based nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  5. Fabrication of vanadium cans for neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chin man; Baik, Sung Hoon; Park, Sun Kyu

    1999-12-01

    The laser weld technique of vanadium developed to experiment for neutron diffraction of HANARO. The demands for this laser welding technique were applied to process control in vanadium film welding and to fabricate various sizing vanadium cans. The vanadium can had a advantage to have less coherent in neutron. KAERI developed the fabrication jig of 6-12 mm diameter cans using 0.125 mm vanadium thin film, and investigated the laser welding procedure for making the various diameter and length of vanadium cans using the fabricated jigs and Nd:YAG laser. (author)

  6. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  7. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Suh, Eric J. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  8. Innovative Application of Fabric Recycling in Fashion

    Directory of Open Access Journals (Sweden)

    Chenyang Lee

    2017-10-01

    Full Text Available With the continuous development of the socialist market economy, human aesthetic standards are constantly changing, the occurrence of this situation to the development of the garment industry challenges, that is a single fabric has long been unable to meet people's aesthetic needs, And then the art of fabric reengineering will be born. This paper elaborates the meaning of fabric reworking art. This paper systematically describes the meaning of fabric reengineering to garment designer and garment itself, and comprehensively summarizes the fabric recycling technique and its characteristics.

  9. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study.

    Science.gov (United States)

    Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi

    2017-01-01

    This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  10. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  11. Design and fabrication of Sn-Nb-Cu-Ta-C composites for multifilamentary superconducting Nb/sub 3/Sn wires by using the modified tube technique

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Kosek, Z M

    1987-10-01

    The factors determining the design and fabrication of Nb/sub 3/Sn multifilamentary wires by the tube technique are discussed. New improved methods of obtaining multifilamentary Nb/sub 3/Sn wires on the basis of both external diffusion and internal diffusion processes, by using the tube technique in a simpler and less expensive way, are presented.

  12. Fabrication of superconducting niobium radio frequency structures

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Amato, J.; Brawley, J.

    1983-01-01

    During the last several years a variety of superconducting radio frequency structures have been designed, fabricated and tested. The diverse structures and fabrication techniques are described. This paper is a description of the authors' experiences in this field

  13. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p Empress Esthetic/CAD groups. Monolithic core

  14. Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

    KAUST Repository

    Limongi, Tania; Miele, Ermanno; Shalabaeva, Victoria; Rocca, Rosanna La; Schipani, Rossana; Malara, Natalia; Angelis, Francesco de; Giugni, Andrea; Di Fabrizio, Enzo M.

    2014-01-01

    Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

  15. Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

    KAUST Repository

    Limongi, Tania

    2014-12-12

    Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

  16. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  17. LOFT fuel modules design, characterization, and fabrication program

    International Nuclear Information System (INIS)

    Russell, M.L.

    1977-06-01

    The loss-of-fluid test [LOFT) fuel modules have evolved from a comprehensive five-year design, characterization, and fabrication program which has resulted in the accomplishment of many technical activities of interest in pressurized water reactor fuel design development and safety research. Information is presented concerning: determination of fundamental high-temperature reactor material properties; design invention related to in-core instrumentation attachment; implementation of advanced and/or unique fuel bundle characterization techniques; implementation of improved fuel bundle fabrication techniques; and planning and execution of a multimillion dollar design, characterization, and fabrication program for pressurized water reactor fuel

  18. Science and technology on the nanoscale with swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Reinhard, E-mail: r.neumann@gsi.de

    2013-11-01

    Swift heavy ions have stimulated developments of science and technology on the nanoscale due to the specific manner of transferring their kinetic energy in a solid successively in small portions along their trajectories. They thus create absolutely straight, almost cylindrical, and very narrow damage trails of diameter 5–10 nm. In various materials, such as polymers, a suitable etchant can transform these tracks into narrow channels of cylindrical, conical, or other desired shapes. These channels represent a starting point particularly for two major fields: they can be chemically modified to control small species and act, e.g., as sensors and transmitters of specific biomolecules. Irradiation of a sample with only one heavy ion allows the fabrication of single-nanochannel devices enabling measurements of enormous sensitivity. Filling nanochannels with a material provides nanowires. These objects of restricted dimensions exhibit finite-size and quantum behavior and give rise to a broad range of fundamental and applied research. This contribution briefly recollects microtechnological achievements with swift heavy ions that began already in the 1970s, preparing the ground for gradual size decrease down to the nanoscopic objects now under study. Various examples of material modifications on the nanoscale are presented, including recent results obtained with nanochannels and nanowires. Emerging developments are addressed, encompassing in situ recording of processes in biological cells stimulated by well-aimed ion irradiation, the fabrication of three-dimensional nanowire architectures, and plasmonic effects in nanowires.

  19. A Review on Fabricating Tissue Scaffolds using Vat Photopolymerization.

    Science.gov (United States)

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018. Published by Elsevier Ltd.

  20. Semiconductors detectors: basics principals, fabrication and repair

    International Nuclear Information System (INIS)

    Souza Coelho, L.F. de.

    1982-05-01

    The fabrication and repairing techniques of semiconductor detectors, are described. These methods are shown in the way they are applied by the semiconductor detector laboratory of the KFA-Julich, where they have been developed during the last 15 years. The history of the semiconductor detectors is presented here, being also described the detector fabrication experiences inside Brazil. The key problems of manufacturing are raised. In order to understand the fabrication and repairing techniques the working principles of these detectors, are described. The cases in which worked during the stay in the KFA-Julich, particularly the fabrication of a plane Ge (Li) detector, with side entry, and the repair of a coaxial Ge (Li) is described. The vanguard problems being researched in Julich are also described. Finally it is discussed a timetable for the semiconductor detector laboratory of the UFRJ, which laboratory is in the mounting stage now. (Author) [pt

  1. Micromechanical Structures Fabrication; FINAL

    International Nuclear Information System (INIS)

    Rajic, S

    2001-01-01

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates

  2. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Directory of Open Access Journals (Sweden)

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  3. Fluorescence Microscopy of Nanochannel-Confined DNA.

    Science.gov (United States)

    Westerlund, Fredrik; Persson, Fredrik; Fritzsche, Joachim; Beech, Jason P; Tegenfeldt, Jonas O

    2018-01-01

    Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

  4. Quantum Bridge Fabrication Using Photolithography

    International Nuclear Information System (INIS)

    Quinones, R.

    2001-01-01

    The need for high-speed performance electronics in computers integrated circuits and sensors, require the fabrication of low energy consumption diodes. Nano fabrication methods require new techniques and equipment. We are currently developing a procedure to fabricate a diode based on quantum-effects. The device will act like a traditional diode, but the nanometer scale will allow it to reach high speeds without over heating. This new diode will be on a nano-bridge so it can be attenuated by an electromagnetic wave. The goal is to obtain similar current vs voltage response as in a silicon diode

  5. Hardware-Enabled Security Through On-Chip Reconfigurable Fabric

    Science.gov (United States)

    2016-02-05

    level language (SystemC) instead of in RTL such as Verilog and VHDL . To evaluate our approach, we implemented a set of monitors including soft...techniques can be implemented after chip fabrication. The study showed that such programmable architectures can indeed support a broad range of run- time...accelerators where security techniques can be implemented after chip fabrication. The study showed that such programmable architectures can indeed support a

  6. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  7. Fabrication of Nanohydroxyapatite/Poly(caprolactone Composite Microfibers Using Electrospinning Technique for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Mohd Izzat Hassan

    2014-01-01

    Full Text Available Tissue engineering fibrous scaffolds serve as three-dimensional (3D environmental framework by mimicking the extracellular matrix (ECM for cells to grow. Biodegradable polycaprolactone (PCL microfibers were fabricated to mimic the ECM as a scaffold with 7.5% (w/v and 12.5% (w/v concentrations. Lower PCL concentration of 7.5% (w/v resulted in microfibers with bead defects. The average diameter of fibers increased at higher voltage and the distance of tip to collector. Further investigation was performed by the incorporation of nanosized hydroxyapatite (nHA into microfibers. The incorporation of 10% (w/w nHA with 7.5% (w/v PCL solution produced submicron sized beadless fibers. The microfibrous scaffolds were evaluated using various techniques. Biodegradable PCL and nHA/PCL could be promising for tissue engineering scaffold application.

  8. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: an in vitro study.

    Science.gov (United States)

    Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad

    2014-01-01

    Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  9. Magnetic properties of nickel nanowires decorated with cobalt nanoparticles fabricated by two step electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Maaz, K., E-mail: maaz@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Duan, J.L. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Karim, S. [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Chen, Y.H.; Yao, H.J.; Mo, D.; Sun, Y.M. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Liu, J., E-mail: j.liu@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-10-01

    We demonstrate fabrication and magnetic characterization of novel nanostructures composed of Ni nanowires decorated with Co nanoparticles by two step etching and electrochemical deposition in polycarbonate template. Structural analysis confirmed the formation of nickel nanowires with diameter of 62 nm which are surrounded by cobalt nanoparticles of about 15 nm in diameter. By electron microscopy analyses it is evident that the nanoparticles are distributed on the surface of the nanowires. Analysis of magnetization data indicates that ferromagnetic Ni nanowires exhibit an easy axis of magnetization parallel to the wire long-axis while the angular dependence of coercivity indicates that magnetization reversal occurs through the curling process in these nanowires. An exchange bias accompanied by vertical shift in magnetization was observed below ∼20 K, measured under a cooling field of 1 kOe, which is attributed to the spin interactions between the spin-glass like surface layer and ferromagnetic core of the nanowires and nanoparticles. - Highlights: • Co-decorated Ni nanowires were fabricated by two-step electrodeposition technique. • The nanoparticles are distributed on the surface of nanowires. • Magnetization reversal occurs through the curling process in the nanowires. • Temperature dependent coercivity follows thermal activation model.

  10. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-01-01

    Fabrication of laser fusion targets requires a number of special techniques. We have developed both laser and spark erosion machining to produce minute parts of complex targets. A high repetition rate YAG laser at double frequency is used to etch various materials. For example, marks or patterns are often necessary on structured or advanced targets. The laser is also used to thin down plastic coated stalks. A spark erosion system has proved to be a versatile tool and we describe current fabrication processes like cutting, drilling, and ultra precise machining. Spark erosion has interesting features for target fabrication: it is a highly controllable and reproducible technique as well as relatively inexpensive

  11. Remote fabrication of breeder reactor fuel

    International Nuclear Information System (INIS)

    Gerber, E.W.; Hoitink, N.C.; Graham, R.A.

    1984-06-01

    The Secure Automated Fabrication (SAF) Line, a remotely operable plutonium fuel fabrication facility, incorporates advanced automation techniques. Included in the plant are 24 robots used to perform complex operations, and to enhance equipment standardization and ease of maintenance. Automated equipment is controlled remotely from centrally located supervisory computer control consoles or alternatively from control consoles dedicated to individual systems

  12. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    Science.gov (United States)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  13. CIS-Type PV Device Fabrication by Novel Techniques; Phase I Annual Technical Report, 1 July 1998 - 30 June 1999

    International Nuclear Information System (INIS)

    Basol, B.M.; Halani, A.; Kapur, V.K.; Leidholm, C.R.; Norsworthy, G.; Roe, R.

    1999-01-01

    This report describes work performed by International Solar Electric Technology, Inc. (ISET) during phase I of the R and D partnership subcontract titled ''CIS-Type PV Device Fabrication by Novel Techniques.'' The objective of this program is to bring ISET's novel non-vacuum CIS technology closer to commercialization by concentrating on issues such as device-efficiency improvement, larger-bandgap absorber growth, and module fabrication. Advances made in CIS and related compound solar cell fabrication processes have clearly shown that these materials and device structures can yield power conversion efficiencies in the 15%-20% range. However, many of the laboratory results on CIS-type devices have been obtained using relatively high-cost vacuum-based deposition techniques. The present project was specifically geared toward developing a low-cost, non-vacuum ''particle deposition'' method for CIS-type absorber growth. There are four major processing steps in this technique: i) preparation of a starting powder containing all or some of the chemical species constituting CIS, ii) preparation of an ink using the starting powder, iii) deposition of the ink on a substrate in the form of a thin precursor layer, and iv) conversion of the precursor layer into a fused photovoltaic absorber through annealing steps. During this Phase I program, ISET worked on tasks that were geared toward the following goals: i) elimination of back-contact problems, ii) growth of large-bandgap absorbers, and iii) fabrication of mini-modules. As a result of the Phase I research, a Mo back-contact structure was developed that eliminated problems that resulted in poor mechanical integrity of the absorber layers. Sulfur inclusion into CIS films through high-temperature sulfurization in H2S gas was also studied. It was determined that S diffusion was a strong function of the stoichiometry of the CIS layer. Sulfur was found to diffuse rapidly through the Cu-rich films, whereas the diffusion constant was

  14. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  15. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    Science.gov (United States)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  16. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  17. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  18. Fabrication and characterization of active nanostructures

    Science.gov (United States)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  19. Fabrication of off-axis parabolic mirrors

    International Nuclear Information System (INIS)

    Bezik, M.J.; Gerth, H.L.; Sladky, R.E.; Washington, C.A.

    1978-08-01

    The report describes the fabrication process, including metal preparation, copper electroplating, single-crystal-diamond turning, optical inspection, and polishing, used to manufacture the focusing mirrors for the 10-kJ laser fusion experiment being conducted by the Los Alamos Scientific Laboratory. Fabrication of these mirrors by the techniques described resulted in diffraction-limited optics at a 10.6 μm wavelength

  20. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study

    Directory of Open Access Journals (Sweden)

    Sujana Ullattuthodi

    2017-01-01

    Conclusions: Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  1. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  2. Solid-state ZnS quantum dot-sensitized solar cell fabricated by the Dip-SILAR technique

    International Nuclear Information System (INIS)

    Mehrabian, M; Mirabbaszadeh, K; Afarideh, H

    2014-01-01

    Solid-state quantum dot sensitized solar cells (QDSSCs) were fabricated with zinc sulfide quantum dots (ZnS QDs), which served as the light absorber and the recombination blocking layer simultaneously. ZnS QDs were prepared successfully by a novel successive ionic layer adsorption and reaction technique based on dip-coating (Dip-SILAR). The dependences of the photovoltaic parameters on the number of SILAR cycles (n) were investigated. The cell with n = 6 (particle average size ∼9 nm) showed an energy conversion efficiency of 2.72% under the illumination of one sun (AM 1.5, 100 mW cm −2 ). Here we investigate also the cohesion between ZnS QDs and ZnO film to obtain a well-covering QD layer. (paper)

  3. Meniscus-force-mediated layer transfer technique using single-crystalline silicon films with midair cavity: Application to fabrication of CMOS transistors on plastic substrates

    Science.gov (United States)

    Sakaike, Kohei; Akazawa, Muneki; Nakagawa, Akitoshi; Higashi, Seiichiro

    2015-04-01

    A novel low-temperature technique for transferring a silicon-on-insulator (SOI) layer with a midair cavity (supported by narrow SiO2 columns) by meniscus force has been proposed, and a single-crystalline Si (c-Si) film with a midair cavity formed in dog-bone shape was successfully transferred to a poly(ethylene terephthalate) (PET) substrate at its heatproof temperature or lower. By applying this proposed transfer technique, high-performance c-Si-based complementary metal-oxide-semiconductor (CMOS) transistors were successfully fabricated on the PET substrate. The key processes are the thermal oxidation and subsequent hydrogen annealing of the SOI layer on the midair cavity. These processes ensure a good MOS interface, and the SiO2 layer works as a “blocking” layer that blocks contamination from PET. The fabricated n- and p-channel c-Si thin-film transistors (TFTs) on the PET substrate showed field-effect mobilities of 568 and 103 cm2 V-1 s-1, respectively.

  4. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  5. Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies

    Directory of Open Access Journals (Sweden)

    Seniutinas Gediminas

    2017-06-01

    Full Text Available The evolution of optical microscopy from an imaging technique into a tool for materials modification and fabrication is now being repeated with other characterization techniques, including scanning electron microscopy (SEM, focused ion beam (FIB milling/imaging, and atomic force microscopy (AFM. Fabrication and in situ imaging of materials undergoing a three-dimensional (3D nano-structuring within a 1−100 nm resolution window is required for future manufacturing of devices. This level of precision is critically in enabling the cross-over between different device platforms (e.g. from electronics to micro-/nano-fluidics and/or photonics within future devices that will be interfacing with biological and molecular systems in a 3D fashion. Prospective trends in electron, ion, and nano-tip based fabrication techniques are presented.

  6. Piezoresistive effect in top-down fabricated silicon nanowires

    DEFF Research Database (Denmark)

    Reck, Kasper; Richter, Jacob; Hansen, Ole

    2008-01-01

    We have designed and fabricated silicon test chips to investigate the piezoresistive properties of both crystalline and polycrystalline nanowires using a top-down approach, in order to comply with conventional fabrication techniques. The test chip consists of 5 silicon nanowires and a reference...

  7. Fabrication of zein nanostructure

    Science.gov (United States)

    Luecha, Jarupat

    The concerns on the increase of polluting plastic wastes as well as the U.S. dependence on imported petrochemical products have driven an attention towards alternative biodegradable polymers from renewable resources. Zein protein, a co-product from ethanol production from corn, is a good candidate. This research project aims to increase zein value by adopting nanotechnology for fabricating advanced zein packaging films and zein microfluidic devices. Two nanotechnology approaches were focused: the polymer nanoclay nanocomposite technique where the nanocomposite structures were created in the zein matrix, and the soft lithography and the microfluidic devices where the micro and nanopatterns were created on the zein film surfaces. The polymer nanoclay nanocomposite technique was adopted in the commonly used zein film fabrication processes which were solvent casting and extrusion blowing methods. The two methods resulted in partially exfoliated nanocomposite structures. The impact of nanoclays on the physical properties of zein films strongly depended on the film preparation techniques. The impact of nanoclay concentration was more pronounced in the films made by extrusion blowing technique than by the solvent casting technique. As the processability limitation for the extrusion blowing technique of the zein sample containing hight nanoclay content, the effect of the nanoclay content on the rheological properties of zein hybrid resins at linear and nonlinear viscoelastic regions were further investigated. A pristine zein resin exhibited soft solid like behavior. On the other hand, the zein hybrid with nanoclay content greater than 5 wt.% showed more liquid like behavior, suggesting that the nanoclays interrupted the entangled zein network. There was good correspondence between the experimental data and the predictions of the Wagner model for the pristine zein resins. However, the model failed to predict the steady shear properties of the zein nanoclay nanocomposite

  8. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  9. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    Energy Technology Data Exchange (ETDEWEB)

    Nejman, Alicja, E-mail: anejman@iw.lodz.pl [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Cieślak, Małgorzata [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Gajdzicki, Bogumił [Textile Research Institute, Scientific Department of Textile Chemistry and Products Modification, 5/15 Brzezinska St., 92-103 Lodz (Poland); Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland)

    2014-08-10

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric.

  10. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    International Nuclear Information System (INIS)

    Nejman, Alicja; Cieślak, Małgorzata; Gajdzicki, Bogumił; Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka

    2014-01-01

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric

  11. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    Science.gov (United States)

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P  0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  12. Fabrication of prototype mockups of ITER shielding blanket with separable first wall

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Akiba, Masato

    2002-07-01

    Design of shielding blanket for ITER-FEAT applies the first wall which has the separable structure from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. This report summarizes the demonstrative fabrication of the ITER shielding blanket with separable first wall performed for the shielding blanket fabrication technology development, under the task agreement of G 16 TT 108 FJ (T420-2) in ITER Engineering Design Activity Extension Period. The objectives of the demonstrative fabrication are: to demonstrate the comprehensive fabrication technique in a large scale component (e.g the joining techniques for the beryllium armor/copper alloy and copper alloy/SS, and the slotting method of the FW and shield block); to develop an improved fabrication method for the shielding blanket based on the ITER-FEAT updated design. In this work, the fabrication technique of full scale separable first wall shield blanket was confirmed by fabricating full width Be armored first wall panel, full scale of 1/2 shield block with poloidal cooling channels. As the R and D for updated cooling channel configuration, the fabrication technique of the radial channel shield block was also demonstrated. Concluding to the all R and D results, it was demonstrated successfully that the fabrication technique and optimized conditions in the results obtained under the task agreement of G 16 TT 95 FJ (T420-1) was applicable to the prototype of the separable first wall blanket module. Additionally, basic echo data of ultra-sonic test method (UT) was obtained to show the applicability of UT method for in tube access detection of defect on the Cu alloy/SS tube interface. (author)

  13. Topological and metric properties of linear and circular DNA chains in nano-slits and nano-channels

    Science.gov (United States)

    Orlandini, Enzo; Micheletti, Cristian

    2014-03-01

    Motivated by recent advancements in single DNA molecule experiments, based on nanofluidic devices, we investigate numerically the metric and topological properties of a modelof open and circular DNA chains confined inside nano-slits and nano-channles. The results reveal an interesting characterization of the metric crossover behaviour in terms of the abundance, type and length of occuring knots. In particular we find that the knotting probability is nonmonotonic for increasing confinement and can be largely enhanced or suppressed, compared to the bulk case, by simply varying the slit or channel trasversal dimension. The observed knot population consists of knots that are far simpler than for DNA chains in spherical (i.e. cavities or capsids) confinement. These results suggest that nanoslits and nanochannels can be properly designed to produce open DNA chains hosting simple knots or to sieve DNA rings according to their knotted state. Finally we discuss the implications that the presence of knots may have on the dynamical properties of confined DNA chains such as chain elongation, injection/ejection processes and entanglement relaxation. We acknowledge financial support from the Italian ministry of education, grant PRIN 2010HXAW77.

  14. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    Science.gov (United States)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  15. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  16. Adaptive Robotic Fabrication for Conditions of Material Inconsistency

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Clausen Nørgaard, Esben

    2017-01-01

    This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin...... and the fabrication process? Here, two adaptive methods are presented that aim to increase forming accuracy with only a minimum increase in fabrication time, and that maintain ongoing input from the results of the fabrication process. The first method is an online sensor-based strategy and the second method...

  17. Fabricating plasmonic components for nanophotonics

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nielsen, Rasmus Bundgaard; Jeppesen, Claus

    2009-01-01

    We report on experimental realization of different metal-dielectric structures that are used as surface plasmon polariton waveguides and as plasmonic metamaterials. Fabrication approaches based on different lithographic and deposition techniques are discussed....

  18. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    Science.gov (United States)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  19. Effect of Coil Current on the Properties of Hydrogenated DLC Coatings Fabricated by Filtered Cathodic Vacuum Arc Technique

    Science.gov (United States)

    Liao, Bin; Ouyang, Xiaoping; Zhang, Xu; Wu, Xianying; Bian, Baoan; Ying, Minju; Jianwu, Liu

    2018-01-01

    We successfully prepared hydrogenated DLC (a-C:H) with a thickness higher than 25 μm on stainless steel using a filtered cathode vacuum arc (FCVA) technique. The structural and mechanical properties of DLC were systematically analyzed using different methods such as x-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, Vickers hardness, nanohardness, and friction and wear tests. The effect of coil current on the arc voltage, ion current, and mechanical properties of resultant films was systematically investigated. The novelty of this study is the fabrication of DLC with Vickers hardness higher than 1500 HV, in the meanwhile with the thickness higher than 30 μm through varying the coil current with FCVA technique. The results indicated that the ion current, deposition rate, friction coefficient, and Vickers hardness of DLC were significantly affected by the magnetic field inside the filtered duct.

  20. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  1. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    Science.gov (United States)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  2. Reflectance spectra characteristics from an SPR grating fabricated by nano-imprint lithography technique for biochemical nanosensor applications

    Science.gov (United States)

    Setiya Pradana, Jalu; Hidayat, Rahmat

    2018-04-01

    In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.

  3. Advanced nanoimprint patterning for functional electronics and biochemical sensing

    Science.gov (United States)

    Wang, Chao

    Nano-fabrication has been widely used for a variety of disciplines, including electronics, material science, nano-optics, and nano-biotechnology. This dissertation focuses on nanoimprint lithography (NIL) based novel nano-patterning techniques for fabricating functional structures, and discusses their applications in advanced electronics and high-sensitivity molecular sensing. In this dissertation, examples of using nano-fabricated structures for promising electronic applications are presented. For instance, 10 nm and 18 nm features are NIL-fabricated for Si/SiGe heterojunction tunneling transistors and graphene nano-ribbon transistors, using shadow evaporation and line-width shrinking techniques, respectively. An ultrafast laser melting based method is applied on flexible plastic substrates to correct defects of nano-features. Nano-texturing of sapphire substrate is developed to improve the light extraction of GaN light emitting diodes (LEDs) by 70 %. A novel multi-layer nano-patterned Si-mediated catalyst is discovered to grow straight and uniform Si nanowires with optimized properties in size, location, and crystallization on amorphous SiO2 substrate. Nano-structures are also functionalized into highly sensitive bio-chemical sensors. Plasmonic nano-bar antenna arrays are demonstrated to effectively sense infrared molecules >10 times better than conventional plasmonic sensors. As small as 20 nm wide nano-channel fluidic devices are developed to linearize and detect DNA molecules for potential DNA sequencing. An integrated fluidic system is built to incorporate plasmonic nano-structures for 30X-enhanced fluorescence detection of large DNA molecules.

  4. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  5. Emerging technology and techniques

    Directory of Open Access Journals (Sweden)

    Gopi Naveen Chander

    2015-01-01

    Full Text Available A technique of fabricating feldspathic porcelain pressable ingots was proposed. A 5 ml disposable syringe was used to condense the powder slurry. The condensed porcelain was sintered at 900΀C to produce porcelain ingots. The fabricated porcelain ingots were used in pressable ceramic machines. The technological advantages of pressable system improve the properties, and the fabricated ingot enhances the application of feldspathic porcelain.

  6. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    International Nuclear Information System (INIS)

    Jiang Yonggang; Fujita, Takayuki; Uehara, Minoru; Iga, Yuki; Hashimoto, Taichi; Hao, Xiuchun; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-μm-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 μm are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: → We demonstrate the fabrication of micro-magnets using silicon molding processes. → NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 μm. → The 12-μm-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. → Magnetic structures as narrow as 20 μm are fabricated using NdFeB magnetic powder. → VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  8. Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yonggang, E-mail: yonggangj@gmail.com [School of Mechanical Engineering and Automation, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100191 (China); Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Fujita, Takayuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uehara, Minoru [NEOMAX Co. Ltd., 2-15-17, Egawa, Shimamoto-Cho, Mishima-gun, Osaka 618-0013 (Japan); Iga, Yuki [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hashimoto, Taichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hao, Xiuchun; Higuchi, Kohei [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Maenaka, Kazusuke [Maenaka Human-Sensing Fusion project, Japan Science and Technology Agency, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2011-11-15

    The silicon molding technique is described for patterning of NdFeB/Ta multilayered magnetic films and NdFeB magnetic powder at the micron scale. Silicon trenches are seamlessly filled by 12-{mu}m-thick NdFeB/Ta multilayered magnetic films with a magnetic retentivity of 1.3 T. The topography image and magnetic field distribution image are measured using an atomic force microscope and a magnetic force microscope, respectively. Using a silicon molding technique complemented by a lift-off process, NdFeB magnetic powder is utilized to fabricate magnetic microstructures. Silicon trenches as narrow as 20 {mu}m are filled by a mixture of magnetic powder and wax powder. The B-H hysteresis loop of the patterned magnetic powder is characterized using a vibrating sample magnetometer, which shows a magnetic retentivity of approximately 0.37 T. - Highlights: > We demonstrate the fabrication of micro-magnets using silicon molding processes. > NdFeB/Ta films are well filled in silicon trenches with a thickness of 12 {mu}m. > The 12-{mu}m-thick NdFeB/Ta magnetic film shows a retentivity of 1.3 T. > Magnetic structures as narrow as 20 {mu}m are fabricated using NdFeB magnetic powder. > VSM measurement shows a retentivity of 0.37 T for patterned NdFeB magnetic powder.

  9. Fabrication and characterization of absorber pellets for FFTF irradiation testing

    International Nuclear Information System (INIS)

    Wilson, C.N.; Hollenberg, G.W.

    1981-01-01

    Methods used for characterization of B 4 C powder and fabricated pellets are summarized. Fabrication techniques used at HEDL for absorber test pellets are reviewed and selected powder and pellet characterization data are presented

  10. Fabrication of strain gauge based sensors for tactile skins

    Science.gov (United States)

    Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.

    2017-05-01

    Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.

  11. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der; Lin, Chao-Sung; Tikekar, Mukul; Chen, Ping-Hei

    2011-01-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  12. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der

    2011-07-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  13. A miniature rigid/flex salinity measurement device fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Broadbent, H A; Ketterl, T P; Reid, C S

    2010-01-01

    The design, fabrication and initial performance of a single substrate, miniature, low-cost conductivity, temperature, depth (CTD) sensor board with interconnects are presented. In combination these sensors measure ocean salinity. The miniature CTD device board was designed and fabricated as the main component of a 50 mm × 25 mm × 25 mm animal-attached biologger. The board was fabricated using printed circuit processes and consists of two distinct regions on a continuous single liquid crystal polymer substrate: an 18 mm × 28 mm rigid multi-metal sensor section and a 72 mm long flexible interconnect section. The 95% confidence intervals for the conductivity, temperature and pressure sensors were demonstrated to be ±0.083 mS cm −1 , 0.01 °C, and ±0.135 dbar, respectively.

  14. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  15. Deformation and Fabric in Compacted Clay Soils

    Science.gov (United States)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  16. PIGMI mechanical fabrication

    International Nuclear Information System (INIS)

    Hart, V.E.

    1976-01-01

    A prime goal of the mechanical design effort associated with the PIGMI (Pion Generator for Medical Irradiations) program is to investigate new materials and fabrication techniques in an effort to obtain increased machine efficiency and reliability at a reasonable cost. The following discussion deals with the modeling program that LASL is pursuing for 450-MHz and 1350-MHz PIGMI development. (author)

  17. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  18. Fabric protectors. Part II - Propane, 1,1,1-trichloroethane, and petroleum distillates levels in air after application of fabric protectors.

    Science.gov (United States)

    Otson, R; Williams, D T; Bothwell, P D

    1984-01-01

    Propane, 1,1,1-trichloroethane, and petroleum distillates levels in air which were generated during the use of aerosol type fabric protectors were monitored by means of the NIOSH charcoal tube, a glass bulb grab sampling, and the GASBADGE passive device techniques. Although 1982 ACGIH TLV-STEL were readily exceeded in an unventilated test room, when fabric was sprayed with 450 g of fabric protector in an unconfined area within a home the generated vapors quickly dispersed and STEL and 8-hour TWA-TLV were not exceeded.

  19. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  20. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    Science.gov (United States)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  1. Multiple simultaneous fabrication of molecular nanowires using nanoscale electrocrystallization

    International Nuclear Information System (INIS)

    Hasegawa, Hiroyuki; Ueda, Rieko; Kubota, Tohru; Mashiko, Shinro

    2006-01-01

    We carried out a multiple simultaneous fabrication based on the nanoscale electrocrystallization to simultaneously construct molecular nanowires at two or more positions. This substrate-independent nanoscale electrocrystallization process enables nanowires fabrication at specific positions using AC. We also succeeded in multiple fabrications only at each gap between the electrode tips. We found that π-stack was formed along the long axis of the nanowires obtained by analyzing the selected-area electron diffraction. We believe this technique has the potential for expansion to the novel low-cost and energy-saving fabrication of high-performance nanodevices

  2. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    International Nuclear Information System (INIS)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B.

    2013-01-01

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs

  3. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs.

  4. Fabrication of gas diffusion layer based on x-y robotic spraying technique for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Sitanggang, Ramli; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Kadhum, Abdul Amir H.; Iyuke, S.E.

    2009-01-01

    The x-y robotic spraying technique developed in the Universiti Kebangsaan Malaysia is capable of fabricating various sizes of thickness and porosity of gas diffusion layer (GDL) used in the proton exchange membrane fuel cell (PEMFC). These parameters are obtained by varying the characteristic spray numbers of the robotic spraying machine. This investigation results were adequately represented with mathematical equations for hydrogen gas distribution in GDL. Volumetric modulus (M) parameter is used to determine the value of current density produced on the electrode of a single cell PEMFC. Thus the M parameter can be employed as indicator for a successful GDL fabrication. GDL type 4 has three variables of layer design that can be optimized to function as gas distributor, gas storage, flooding preventer on GDL surface, to evacuate water from the electrode and to control the electrical conductivity. The gas distribution in GDL was mathematically represented with average error of 15.5%. The M value of GDL type 4 according to the model was 0.22 cm 3 /s and yielded a current density of 750 A/m 2 .

  5. Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol-Gel Technique

    Science.gov (United States)

    Mansour, Shehab A.; Ibrahim, Mervat M.

    2017-11-01

    Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.

  6. Design and fabrication of ZnO/TiO2-based thin-film inverter circuits using solution processing techniques

    International Nuclear Information System (INIS)

    Liau, Leo Chau-Kuang; Kuo, Juo-Wei; Chiang, Hsin-Ni

    2012-01-01

    Novel and cost-effective ceramic-based thin-film inverter circuits, based on two layers of TiO 2 and ZnO films to construct junction field-effect transistors (FETs), were designed and fabricated by solution coating techniques. The double layers of the sol–gel ZnO and TiO 2 films were coated and characterized as a diode according to the current–voltage performance. Two types of FETs, the p-channel (p-FET) and the n-channel (n-FET) devices, were produced using different coating sequences of ZnO and TiO 2 layers. Both of the transistor performances were evaluated by analyzing the source–drain current versus voltage (I ds –V ds ) data with the control of the gate voltage (V g ). The ZnO/TiO 2 -based inverter circuits, such as the complementary-FET device, were further fabricated using the integration of the p-FET and the n-FET. The voltage transfer characteristics of the inverters were estimated by the tests of the input voltage (V in ) versus the output voltage (V out ) for the thin-film inverter circuits. (paper)

  7. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  8. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  9. Fabrication of nanoplate resonating structures via micro-masonry

    International Nuclear Information System (INIS)

    Bhaswara, A; Legrand, B; Mathieu, F; Nicu, L; Leichle, T; Keum, H; Rhee, S; Kim, S

    2014-01-01

    Advantages of using nanoscale membrane and plate resonators over more common cantilever shapes include higher quality factor (Q factor) for an equivalent mass and better suitability to mass sensing applications in fluid. Unfortunately, the current fabrication methods used to obtain such membranes and plates are limited in terms of materials and thickness range, and can potentially cause stiction. This study presents a new method to fabricate nanoplate resonating structures based on micro-masonry, which is the advanced form of the transfer printing technique. Nanoplate resonators were fabricated by transfer printing 0.34 µm thick square-shaped silicon plates by means of polydimethylsiloxane microtip stamps on top of silicon oxide base structures displaying 20 µm diameter cavities, followed by a thermal annealing step to create a rigid bond. Typical resulting suspended structures display vibration characteristics, i.e. a resonance frequency of a few MHz and Q factors above 10 in air at atmospheric pressure, which are in accordance with theory. Moreover, the presented fabrication method enables the realization of multiple suspended structures in a single step and on the same single base, without mechanical crosstalk between the resonators. This work thus demonstrates the suitability and the advantages of the micro-masonry technique for the fabrication of plate resonators for mass sensing purpose. (paper)

  10. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    Science.gov (United States)

    Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Chattopadhyay, Goutam (Inventor); Perez, Jose Vicente Siles (Inventor); Lin, Robert H. (Inventor); Mehdi, Imran (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  11. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  12. Low temperature fabrication of conductive silver lines and dots via transfer-printing and nanoimprinting lithography techniques

    International Nuclear Information System (INIS)

    Wu, Chun-Chang; Hsu, Steve Lien-Chung; Chiu, Ching-Wei; Wu, Jung-Tang

    2013-01-01

    In this work, we have developed novel methods to fabricate conductive silver tracks and dots directly from silver nitrate solution by transfer-printing and nanoimprinting lithography techniques, which are inexpensive and can be scaled down to the nanometer scale. The silver nitrate precursor can be reduced in ethylene glycol vapor to form silver at low temperatures. Energy dispersive spectrometric analysis results indicate that the silver nitrate has been converted to silver completely. In order to obtain smooth and continuous conductive patterned silver features with high resolution, the silver lines with widths of a few tens of micrometers to nanometers were patterned by using a spin-coating approach. Using a 14 M silver nitrate solution, continuous silver conductive lines with a resistivity of 8.45 × 10 −5 Ω cm has been produced. (paper)

  13. Explosive-emission cathode fabricated using track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Korenev, S.A.

    1989-01-01

    Fabrication technique for large area multipoint cathodes is described. The technique is based on channels filling with metal in the ion-irradiated dielectric film producted after channel etching. It is shown, that cathode may be used under explosive emission conditions. Characteristics of diode with the mentioned type cathodes are measured

  14. Investigation of the effects of particle size on the mechanical properties of porous and tin infiltrated niobium rods fabricated by a thermoplastic-powder metallurgy technique

    International Nuclear Information System (INIS)

    Noman, A.

    1978-12-01

    An investigation was made of the influence of particle size on the properties of both porous and tin infiltrated niobium rods fabricated by a thermoplastic-powder metallurgy technique. The residual porosity, extrusion pressure, tensile strength, and ductility were found to be dependent on the particle size distribution. All of these parameters were found to increase with increasing particle size. The influence of sintering time at a temperature of 2250 0 C was also studied. With increasing sintering time, the residual porosity and tensile strength decreased, whereas the ductility increased. The procedures for fabricating infiltrated niobium rods and the various tests employed to determine their properties are described

  15. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  16. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    Science.gov (United States)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  17. A novel technique for synthesizing dense alumina nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pancholi, A [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Stoleru, V G [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Kell, C D [Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2007-05-30

    The formation of highly ordered nanoporous alumina membranes by anodizing high-purity aluminium under optimum conditions (i.e., anodization time, electrolyte temperature, and cell voltage) in various electrolyte solutions is a well established process. In this paper we report on the formation of a wide range of alumina nanostructures, including nanotubes/nanochannels, nanoplates, and nanofibres, by using a technique that involves anodization and etching processing steps similar to the ones that yield nanopores, under slightly modified experimental conditions. The effects of the anodization voltage, time, and temperature, as well as the effects of the etching time, on the formation and the properties of the alumina nanostructures are analysed. We propose a simple analytical model to describe the formation of different types of alumina nanostructures, as a result of irreversible breakage of the pore walls for long etching times. The geometry of the nanostructures and their dimensions, ranging between 10 and 100 nm, were found to be dependent on the pore dimensions and on the location of the cleavage/breakage of the pore walls.

  18. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  19. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study.

    Science.gov (United States)

    Örtorp, Anders; Jönsson, David; Mouhsen, Alaa; Vult von Steyern, Per

    2011-04-01

    This study sought to evaluate and compare the marginal and internal fit in vitro of three-unit FDPs in Co-Cr made using four fabrication techniques, and to conclude in which area the largest misfit is present. An epoxy resin master model was produced. The impression was first made with silicone, and master and working models were then produced. A total of 32 three-unit Co-Cr FDPs were fabricated with four different production techniques: conventional lost-wax method (LW), milled wax with lost-wax method (MW), milled Co-Cr (MC), and direct laser metal sintering (DLMS). Each of the four groups consisted of eight FDPs (test groups). The FDPs were cemented on their cast and standardised-sectioned. The cement film thickness of the marginal and internal gaps was measured in a stereomicroscope, digital photos were taken at 12× magnification and then analyzed using measurement software. Statistical analyses were performed with one-way ANOVA and Tukey's test. Best fit based on the means (SDs) in μm for all measurement points was in the DLMS group 84 (60) followed by MW 117 (89), LW 133 (89) and MC 166 (135). Significant differences were present between MC and DLMS (p<0.05). The regression analyses presented differences within the parameters: production technique, tooth size, position and measurement point (p < 0.05). Best fit was found in the DLMS group followed by MW, LW and MC. In all four groups, best fit in both abutments was along the axial walls and in the deepest part of the chamfer preparation. The greatest misfit was present occlusally in all specimens. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Transparent Substrates for Plasmonic Sensing by Lithography-Free Fabrication

    DEFF Research Database (Denmark)

    Thilsted, Anil Haraksingh

    This Ph.D. thesis presents fabrication and optimization of transparent plasmonic substrates that can be used for biological and chemical sensing by surface enhanced Raman spectroscopy (SERS) sensing and localized surface plasmon resonance refractive index (LSPR RI) sensing. These substrates are......-free fabrication methods, and resulted in large-area, high throughput and low cost production techniques. The fabrication techniques consisted of using aluminum patterned areas and reactive ion etching (RIE) to achieve nanopillars or nanocylinders in glass; using RIE to achieve nanopillars in silicon as a mould......, respectively. As the substrates were transparent, measurements from the backside were possible, showing a 44%, 1:7% and 71% Raman signal intensity in comparison to the measurements from the front, for the glass nanopillars, the polymer injected nanopillars and the transferred metal nanocaps, respectively...

  1. Fabrication of detectors and transistors on high-resistivity silicon

    International Nuclear Information System (INIS)

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 kΩ/centerreverse arrowdot/cm silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs

  2. A Solder Based Self Assembly Project in an Introductory IC Fabrication Course

    Science.gov (United States)

    Rao, Madhav; Lusth, John C.; Burkett, Susan L.

    2015-01-01

    Integrated circuit (IC) fabrication principles is an elective course in a senior undergraduate and early graduate student's curriculum. Over the years, the semiconductor industry relies heavily on students with developed expertise in the area of fabrication techniques, learned in an IC fabrication theory and laboratory course. The theory course…

  3. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    Science.gov (United States)

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  4. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    International Nuclear Information System (INIS)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W; Timmer, M; Hammer, J

    2011-01-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  5. Proceedings of the twelfth target fabrication specialists` meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  6. Proceedings of the twelfth target fabrication specialists' meeting

    International Nuclear Information System (INIS)

    1999-01-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research

  7. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  8. A novel bonding method for fabrication of PET planar nanofluidic chip with low dimension loss and high bonding strength

    International Nuclear Information System (INIS)

    Yin, Zhifu; Zou, Helin; Sun, Lei; Xu, Shenbo; Qi, Liping

    2015-01-01

    Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O 2 plasma and ethanol treatment was proposed. With the assistance of O 2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O 2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels. (paper)

  9. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  10. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    Science.gov (United States)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  11. Omni-directional reflectors for deep blue LED using symmetric autocloning method

    Science.gov (United States)

    Chen, Sheng-Hui; Chen, Chun-Ko; Huang, Yu-Chia; Lee, Cheng-Chung

    2013-03-01

    Omni-directional reflectors (ODRs) for deep blue LED were designed and fabricated using symmetric autocloning method. The symmetric stack multi-layers for the reflectors were designed by finite-difference time-domain simulation. The fabricating process of ODR is combined with the techniques of anodic aluminum oxide (AAO) process and autocloning method. The two-dimensional structure template of nano-channel array was grown using AAO with the period of 150 nm. Then the shaping layer was deposited on the AAO template by evaporation deposition. Besides, the ion etching was applied to modify the apex angle to the triangle shape at 100°. Finally, the sub/(0.5TiO2 SiO2 0.5TiO2)8 multi-layer stack was deposited on the shaping layer using autocloning method to achieve the ODR. The results show the reflective spectra of ODR at the incident angles of 0, 30, 45, and 60° had high values within the range 400-450 nm. Besides, the central wavelength shifting is not obvious which is very good for keeping the color of LED stable.

  12. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  13. Adaptive Robotic Fabrication for Conditions of Material Inconsistency

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Clausen Nørgaard, Esben

    2017-01-01

    This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin ...... is an offline predictive strategy based on machine learning. Rigidisation of thin metal skins......This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin...

  14. A practical technique for the fabrication of highly ordered macroporous structures of inorganic oxides

    International Nuclear Information System (INIS)

    Tang Fengqiu; Uchikoshi, Tetsuo; Sakka, Yoshio

    2006-01-01

    Well-defined macroporous ceramics consisting of SiO 2 , TiO 2 and ZrO 2 have been fabricated via a template-assisted colloidal processing technique. Close-packed polymer spheres were first prepared as a template using centrifugation or gravitational sedimentation, followed by infiltration with alkoxide precursors. The centrifugation should be preferred because it is a less time-consuming process and the materials are better ordered. The removal of the template beads was achieved by calcination of the organic-inorganic hybrids at appropriate temperatures, yielding well-ordered macroporous ceramics. The arrangement of the porous structures could be changing the preparation of the packed polymer templates. Some novel arrangements of macropores were obtained in these macroporous ceramics: a simple square-packed arrangement for SiO 2 , the coexistence of hexagonal close-packed and simple close-packed arrangements for TiO 2 , and face-centered cubic packed arrangement for ZrO 2 . The resulting highly structured ceramics could have applications in areas ranging from quantum electronics to photocatalysis and battery materials

  15. The fabrication and characterization of replicated and lacquer coated grazing

    International Nuclear Information System (INIS)

    Ulmer, M.P.; Haidle, R.; Altkorn, R.; Georgeopolos, P.; Rodricks, B.; Takacs, P.Z.

    1992-01-01

    This paper reports on work done over the past two years in our laboratory to produce X-ray optics. We also report on tests that we have made to evaluate the performance of pieces that we have produced. As we progress towards the 21st century, there is a growing need to understand fabrication techniques for grazing incidence optics. To this end we report our results of fabricating, testing, and measuring both Wolter I optics and flats. We have used the techniques of lacquer coating. We have made flats to determine our ability to coat surfaces with lacquer and gold, as well as to demonstrate reflectivity up to 40 keV. We also produced Wolter I optics nickel optics with a gold coated optical surface. Here we report and interpret results from X-ray reflectivity and Wyko profiler optical measurements. We also describe our fabrication process and provide a critique of the process and describe how we hope to further improve upon the basic technique

  16. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    Science.gov (United States)

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from

  17. Low-Cost, Silicon Carbide Replication Technique for LWIR Mirror Fabrication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG proposes an innovative optical manufacturing approach that will enable the low-cost fabrication of lightweighted, Long Wave Infrared (LWIR) Silicon Carbide (SiC)...

  18. Recent Progress of Fabrication of Cell Scaffold by Electrospinning Technique for Articular Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yingge Zhou

    2018-01-01

    Full Text Available As a versatile nanofiber manufacturing technique, electrospinning has been widely employed for the fabrication of tissue engineering scaffolds. Since the structure of natural extracellular matrices varies substantially in different tissues, there has been growing awareness of the fact that the hierarchical 3D structure of scaffolds may affect intercellular interactions, material transportation, fluid flow, environmental stimulation, and so forth. Physical blending of the synthetic and natural polymers to form composite materials better mimics the composition and mechanical properties of natural tissues. Scaffolds with element gradient, such as growth factor gradient, have demonstrated good potentials to promote heterogeneous cell growth and differentiation. Compared to 2D scaffolds with limited thicknesses, 3D scaffolds have superior cell differentiation and development rate. The objective of this review paper is to review and discuss the recent trends of electrospinning strategies for cartilage tissue engineering, particularly the biomimetic, gradient, and 3D scaffolds, along with future prospects of potential clinical applications.

  19. Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Kai He; Yan Yongnian; Zhang Renji; Wang Xiaohong [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xinluan; Madhukar, Kumta Shekhar; Qin Ling [Department of Orthoapedics and Traumatology, The Chinese University of Hong Kong. Shatin, NT (Hong Kong)], E-mail: wangxiaohong@tsinghua.edu.cn, E-mail: kumta@cuhk.edu.hk, E-mail: qin@ort.cuhk.edu.hk

    2009-06-01

    After the removal of the giant cell tumor (GCT) of bone, it is necessary to fill the defects with adequate biomaterials. A new functional bone repair material with both stimulating osteoblast growth and inhibiting osteoclast activity has been developed with phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) as the additives of poly(lactic acid-co-glycolic acid) (PLGA)/calcium phosphate (TCP) scaffolds based on a double-nozzle low-temperature deposition manufacturing technique. A computer-assisted design model was used and the optimal fabrication parameters were determined through the manipulation of a pure PLGA/TCP system. The microscopic structures, water absorbability and mechanical properties of the samples with different P-chitosan and S-chitosan concentrations were characterized correspondingly. The results suggested that this unique composite porous scaffold material is a potential candidate for the repair of large bone defects after a surgical removal of GCT.

  20. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique

    Science.gov (United States)

    Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert

    2018-01-01

    Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.

  1. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Science.gov (United States)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  2. Investigate the electrical and thermal properties of the low temperature resistant silver nanowire fabricated by two-beam laser technique

    Science.gov (United States)

    He, Gui-Cang; Dong, Xian-Zi; Liu, Jie; Lu, Heng; Zhao, Zhen-Sheng

    2018-05-01

    A two-beam laser fabrication technique is introduced to fabricate the single silver nanowire (AgNW) on polyethylene terephthalate (PET) substrate. The resistivity of the AgNW is (1.31 ± 0.05) × 10-7 Ω·m, which is about 8 times of the bulk silver resistivity (1.65 × 10-8 Ω·m). The AgNW electrical resistance is measured in temperature range of 10-300 K and fitted with the Bloch-Grüneisen formula. The fitting results show that the residue resistance is 153 Ω, the Debye temperature is 210 K and the electron-phonon coupling constant is (5.72 ± 0.24) × 10-8 Ω·m. Due to the surface scattering, the Debye temperature and the electron-phonon coupling constant are lower than those of bulk silver, and the residue resistance is bigger than that of bulk silver. Thermal conductivity of the single AgNW is calculated in the corresponding temperature range, which is the biggest at the temperature approaching the Debye temperature. The AgNW on PET substrate is the low temperature resistance material and is able to be operated stably at such a low temperature of 10 K.

  3. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Timmer, M; Hammer, J, E-mail: sunwei@drexel.edu [Advanced Technologies and Regenerative Medicine, Somerville, NJ (United States)

    2011-09-15

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  4. Fabrication and Multiprobe Electrical Characterization of Nanostructures

    DEFF Research Database (Denmark)

    Klarskov, Mikkel Buster

    2013-01-01

    techniques, such as colloidal lithography or block copolymers lithography, which covers the entire sample. This project presents graphene devices with periodic holes fabricated by electron beam lithography. Only partial coverage of holes are fabricated by making from one to many rows of holes perpendicular......, such as nanograss and silver nanowires. Furthermore, antidot lattice of dierent sizes are made in graphene, to investigating the dependence of number of holes needed for modifying the electronic properties of graphene....

  5. Fabrication of silicon based glass fibres for optical communication

    Indian Academy of Sciences (India)

    Silicon based glass fibres are fabricated by conventional fibre drawing process. First, preform fabrication is carried out by means of conventional MCVD technique by using various dopants such as SiCl4, GeCl4, POCl3, and FeCl3. The chemicals are used in such a way that step index single mode fibre can be drawn.

  6. Fabricating Complete Dentures with CAD/CAM and RP Technologies.

    Science.gov (United States)

    Bilgin, Mehmet Selim; Erdem, Ali; Aglarci, Osman Sami; Dilber, Erhan

    2015-06-01

    Two techological approaches for fabricating dentures; computer-aided design and computer-aided manufacturing (CAD/CAM) and rapid prototyping (RP), are combined with the conventional techniques of impression and jaw relation recording to determine their feasibility and applicability. Maxillary and mandibular edentulous jaw models were produced using silicone molds. After obtaining a gypsum working model, acrylic bases were crafted, and occlusal rims for each model were fabricated with previously determined standard vertical and centric relationships. The maxillary and mandibular relationships were recorded with guides. The occlusal rims were then scanned with a digital scanner. The alignment of the maxillary and mandibular teeth was verified. The teeth in each arch were fabricated in one piece, or set, either by CAM or RP. Conventional waxing and flasking was then performed for both methods. These techniques obviate a practitioner's need for technicians during design and provide the patient with an opportunity to participate in esthetic design with the dentist. In addition, CAD/CAM and RP reduce chair time; however, the materials and techniques need further improvements. Both CAD/CAM and RP techniques seem promising for reducing chair time and allowing the patient to participate in esthetics design. Furthermore, the one-set aligned artificial tooth design may increase the acrylic's durability. © 2015 by the American College of Prosthodontists.

  7. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rúben F. Pereira

    2015-03-01

    Full Text Available The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

  8. Tunable metamaterials fabricated by fiber drawing

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...

  9. The design and fabrication of two portal vein flow phantoms by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  10. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  11. FABRICATION AND CHARACTERIZATION OF FAST IGNITION TARGETS

    International Nuclear Information System (INIS)

    HILL, D.W; CASTILLO, E; CHEN, K.C; GRANT, S.E; GREENWOOD, A.L; KAAE, J.L; NIKROO, A; PAGUIO, S.P; SHEARER, C; SMITH, J.N Jr.; STEPHENS, R.B; STEINMAN, D.A; WALL, J.

    2003-09-01

    OAK-B135 Fast ignition is a novel scheme for achieving laser fusion. A class of these targets involves cone mounted CH shells. The authors have been fabricating such targets with shells with a wide variety of diameters and wall thicknesses for several years at General Atomics. In addition, recently such shells were needed for implosion experiments at Laboratory for Laser Energetics (LLE) that for the first time were required to be gas retentive. Fabrication of these targets requires producing appropriate cones and shells, assembling the targets, and characterization of the assembled targets. The cones are produced using micromachining and plating techniques. The shells are fabricated using the depolymerizable mandrel technique followed by micromachining a hole for the cone. The cone and the shell then need to be assembled properly for gas retention and precisely in order to position the cone tip at the desired position within the shell. Both are critical for the fast ignition experiments. The presence of the cone in the shell creates new challenges in characterization of the assembled targets. Finally, for targets requiring a gas fill, the cone-shell assembly needs to be tested for gas retention and proper strength at the glue joint. This paper presents an overview of the developmental efforts and technical issues addressed during the fabrication of fast ignition targets

  12. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  13. An electrostatic lower stator axial gap wobble motor: design and fabrication

    NARCIS (Netherlands)

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; van Baar, J.J.J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1995-01-01

    The fabrication, initial modelling and first results of an electrostatic lower stator axial gap wobble motor are presented. The four mask fabrication process is based on polysilicon surface micromachining techniques. Three to twelve stator pole wobble motor designs have been realized with rotor

  14. Positronium in the AEgIS experiment: study on its emission from nanochanneled samples and design of a new apparatus for Rydberg excitations

    CERN Document Server

    Di Noto, Lea

    This experimental thesis has been done in the framework of AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), an experiment installed at CERN, whose primary goal is the measurement of the Earth's gravitational acceleration on anti-hydrogen. The antiatoms will be produced by the charge exchange reaction, where a cloud of Ps in Rydberg states interacts with cooled trapped antiprotons. Since the charge exchange cross section depends on Ps velocity and quantum number, the velocity distribution of Ps emitted by a positron-positronium converter as well as its excitation in Rydberg states have to be studied and optimized. In this thesis Ps cooling and emission into vacuum from nanochannelled silicon targets was studied by performing Time of Flight measurements with a dedicated apparatus conceived to receive the slow positron beam as produced at the Trento laboratory or at the NEPOMUC facility at Munich. Measurements were done by varying the positron implantation energy, the sample temperature and ...

  15. [A new method of fabricating photoelastic model by rapid prototyping].

    Science.gov (United States)

    Fan, Li; Huang, Qing-feng; Zhang, Fu-qiang; Xia, Yin-pei

    2011-10-01

    To explore a novel method of fabricating the photoelastic model using rapid prototyping technique. A mandible model was made by rapid prototyping with computerized three-dimensional reconstruction, then the photoelastic model with teeth was fabricated by traditional impression duplicating and mould casting. The photoelastic model of mandible with teeth, which was fabricated indirectly by rapid prototyping, was very similar to the prototype in geometry and physical parameters. The model was of high optical sensibility and met the experimental requirements. Photoelastic model of mandible with teeth indirectly fabricated by rapid prototyping meets the photoelastic experimental requirements well.

  16. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ-DNA......Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano...... stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter. The determination of the extension ratio of the chip provides...

  17. Superhydrophobic nanofluidic channels for enhanced electrokinetic conversion

    Science.gov (United States)

    Checco, Antonio; Al Hossain, Aktaruzzaman; Rahmani, Amir; Black, Charles; Doerk, Gregory; Colosqui, Carlos

    2017-11-01

    We present current efforts in the development of novel slit nanofluidic channels with superhydrophobic nanostructured surfaces designed to enhance hydrodynamic conductivity and improve selective transport and electrokinetic energy conversion efficiencies (mechanical-electrical energy conversion). The nanochannels are fabricated on silicon wafers using UV lithography, and their internal surface is patterned with conical nanostructures (feature size and spacing 30 nm) defined by block copolymer self-assembly and plasma etching. These nanostructures are rendered superhydrophobic by passivation with a hydrophobic silane monolayer. We experimentally characterize hydrodynamic conductivity, effective zeta potentials, and eletrokinetic flows for the patterned nanochannels, comparing against control channels with bare surfaces. Experimental observations are rationalized using both continuum-based modeling and molecular dynamics simulations. Scientific and technical knowledge produced by this work is particularly relevant for sustainable energy conversion and storage, separation processes and water treatment using nanoporous materials. The ONR Contract # N000141613178 and NSF-CBET award# 1605809.

  18. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach

    International Nuclear Information System (INIS)

    Liu Lifeng; Alexe, Marin; Lee, Woo; Goesele, Ulrich; Lee, Seung-Woo; Li Jingbo; Rao Guanghui; Zhou Weiya; Lee, Jae-Jong

    2008-01-01

    AgI nanowires/anodic aluminum oxide (AgI NWs/AAO) composites have been fabricated by a simple approach, which involves the thermal melting of AgI powders on the surface of the AAO membrane, followed by the infiltration of the molten AgI inside the nanochannels. As-prepared AgI nanowires have corrugated outer surfaces and are polycrystalline according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. X-ray diffraction (XRD) shows that a considerable amount of 7H polytype AgI exists in the composites, which is supposed to arise from the interfacial interactions between the embedded AgI and the alumina. AC conductivity measurements for the AgI nanowires/AAO composites exhibit a notable conductivity enhancement by three orders of magnitude at room temperature compared with that of pristine bulk AgI. Furthermore, a large conductivity hysteresis and abnormal conductivity transitions were observed in the temperature-dependent conductivity measurements, from which an ionic conductivity as high as 8.0 x 10 2 Ω -1 cm -1 was obtained at around 70 deg. C upon cooling. The differential scanning calorimetry (DSC) result demonstrates a similar phase transition behavior as that found in the AC conductivity measurements. The enhanced ionic conductivity, as well as the abnormal phase transitions, can be explained in terms of the existence of the highly conducting 7H polytype AgI and the formation of well-defined conduction paths in the composites.

  19. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach.

    Science.gov (United States)

    Liu, Li-Feng; Lee, Seung-Woo; Li, Jing-Bo; Alexe, Marin; Rao, Guang-Hui; Zhou, Wei-Ya; Lee, Jae-Jong; Lee, Woo; Gösele, Ulrich

    2008-12-10

    AgI nanowires/anodic aluminum oxide (AgI NWs/AAO) composites have been fabricated by a simple approach, which involves the thermal melting of AgI powders on the surface of the AAO membrane, followed by the infiltration of the molten AgI inside the nanochannels. As-prepared AgI nanowires have corrugated outer surfaces and are polycrystalline according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. X-ray diffraction (XRD) shows that a considerable amount of 7H polytype AgI exists in the composites, which is supposed to arise from the interfacial interactions between the embedded AgI and the alumina. AC conductivity measurements for the AgI nanowires/AAO composites exhibit a notable conductivity enhancement by three orders of magnitude at room temperature compared with that of pristine bulk AgI. Furthermore, a large conductivity hysteresis and abnormal conductivity transitions were observed in the temperature-dependent conductivity measurements, from which an ionic conductivity as high as 8.0 × 10(2) Ω(-1) cm(-1) was obtained at around 70 °C upon cooling. The differential scanning calorimetry (DSC) result demonstrates a similar phase transition behavior as that found in the AC conductivity measurements. The enhanced ionic conductivity, as well as the abnormal phase transitions, can be explained in terms of the existence of the highly conducting 7H polytype AgI and the formation of well-defined conduction paths in the composites.

  20. Adhesion of perfume-filled microcapsules to model fabric surfaces.

    Science.gov (United States)

    He, Yanping; Bowen, James; Andrews, James W; Liu, Min; Smets, Johan; Zhang, Zhibing

    2014-01-01

    The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force-displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation.

  1. Fabrication challenges for indium phosphide microsystems

    International Nuclear Information System (INIS)

    Siwak, N P; Fan, X Z; Ghodssi, R

    2015-01-01

    From the inception of III–V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device. (topical review)

  2. Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K.; Philominathan, P. [PG and Research Department of Physics, AVVM, Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu (India)

    2008-11-15

    Good quality CdS films were fabricated by employing a simplified spray pyrolysis technique using perfume atomizer. CdS films have been deposited from aqueous solutions of sulphur and cadmium, keeping the molar concentrations of S:Cd = 0.01:0.01, 0.02:0.02, 0.04:0.04 and 0.06:0.06 in the starting solutions. The structural studies reveal that the S:Cd concentration has a strong influence on the microstructural characteristics of the sprayed CdS films. It was found that there is a transition in the preferred orientation from (0 0 2) plane to (1 0 1) plane when S:Cd molar concentration increases. The SEM images depict that the films are uniform and homogeneous. All the films have high optical transmittance (>80%) in the visible range. The optical band gap values are found to be in the range of 2.46-2.52 eV. CdS films fabricated by this simple and economic spray technique without using any carrier gas are found to be good in structural and optical properties which are desirable for photovoltaic applications. Hence, this simplified version of spray technique can be considered as an economic alternative to conventional spray pyrolysis (using carrier gas), for the mass production of low-cost, large area CdS coatings for solar cell applications. (author)

  3. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  4. Development of a coating technique for inertial confinement fusion plastic targets

    International Nuclear Information System (INIS)

    Kubo, U.; Tsubakihara, H.

    1986-01-01

    Deuterated polystyrene as a target material offers several advantages over other polymers because of the following: (1) it is chemically and physically stable at ordinary conditions, (2) it can be easily formed into spherical shells, and (3) it has a very high fraction of D 2 /H 2 (above approx.99%). As in our previous studies, the fabrication method was basically a utilization of the emulsion technique. This method is well suited to mass-producing the polymer targets without microprocessing techniques. We have developed a fabrication method for single shell targets and an extension of this technique also enables us to fabricate double shell targets. This new method is faster and less labor intensive than previous techniques. The development of ICF experiments requires multilayer structure targets; we have developed, moreover, a new fabrication technique called the multicoating method. The polymer coating can be fabricated by the application of an emulsion technique. On the other hand, with metal coating, a nonelectroplating method was used, and nickel was employed as the coating metal. The thickness of the polymer coating layer can be controlled with the rotational speed of a stirrer in the emulsion. In the case of nickel coating, it is achieved by controlling the plating bath temperature and immersion time during the plating process. The experiment resulted in the development of a new technique for the fabrication of multilayer targets and low density, thick polymer-layer-coated targets

  5. Fabrication of ultrashort niobium variable-thickness bridges

    International Nuclear Information System (INIS)

    Goto, T.

    1982-01-01

    A simple technique for the fabrication of niobium variable-thickness bridges of length approx.0.1 μm is described. The bridges are found to operate as ideal Josephson junctions over a wide temperature range

  6. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  7. THz Photonic Band-Gap Prisms Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Busch, Stefan F.; Xu, Lipeng; Stecher, Matthias

    2012-01-01

    We suggest a novel form of polymeric based 3D photonic crystal prisms for THz frequencies which could be fabricated using a standard fiber drawing technique. The structures are modeled and designed using a finite element analyzing technique. Using this simulation software we theoretically study...

  8. Fabrication of micro- and nano-structured materials using mask-less processes

    International Nuclear Information System (INIS)

    Roy, Sudipta

    2007-01-01

    Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid-liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The

  9. A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Seo, Kyeong Cheol; Byun, Joon Hyung

    2005-01-01

    Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed

  10. Fabrication of full high-T sub c superconducting YBa sub 2 Cu sub 3 O sub 7 sub - sub x trilayer junctions using a polishing technique

    CERN Document Server

    Kuroda, K; Takami, T; Ozeki, T

    2003-01-01

    We have successfully fabricated full high-T sub c superconducting YBa sub 2 Cu sub 3 O sub 7 sub - sub x (YBCO)/PrBa sub 2 Cu sub 3 O sub 7 sub - sub x (PBCO)/YBCO trilayer junctions, which have a simple device structure, such as a Pb-alloy-based Josephson tunneling junction. It has been demonstrated that a polishing technique is extremely useful in the fabrication process: it is effective in smoothing a coarse surface and gentling the slopes of the edges, or decreasing the slope angles. Owing to the polishing technique, the PBCO barrier layer and the upper YBCO layer have been notably thinned: the thicknesses of these layers are 10 nm and 250 nm, respectively. Junctions with the dimensions of 5 mu m x 5 mu m showed resistively shunted junction-like current-voltage curves with a typical critical current density of 110 A/cm sup 2 at 4.2 K. Furthermore, the operation of superconducting quantum interference devices has been demonstrated. (author)

  11. Resistless Fabrication of Nanoimprint Lithography (NIL Stamps Using Nano-Stencil Lithography

    Directory of Open Access Journals (Sweden)

    Juergen Brugger

    2013-10-01

    Full Text Available In order to keep up with the advances in nano-fabrication, alternative, cost-efficient lithography techniques need to be implemented. Two of the most promising are nanoimprint lithography (NIL and stencil lithography. We explore here the possibility of fabricating the stamp using stencil lithography, which has the potential for a cost reduction in some fabrication facilities. We show that the stamps reproduce the membrane aperture patterns within ±10 nm and we validate such stamps by using them to fabricate metallic nanowires down to 100 nm in size.

  12. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  13. Development of YBCO tape conductor fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G. and others

    2001-08-01

    Superconductor when fabricated into wire shape is applied for developing electric power transmission cable, transformer, generator and SMES. Such superconducting power devices are capable of maximizing the efficiency of electricity and are anticipated to contribute for solving the energy problem of humankind. Furthermore the high temperature oxide superconductor developed in late 1980s is superconducting above boiling temperature of liquid nitrogen temperature has strong potential to realize superconducting power device and a lot of researches are being done in this field. Superconducting wire is the most important core material for developing superconducting power device and thermo-mechanical powder in tube process was developed to fabricated Ag/Bi-2223 conductor in long length having high critical current carrying capacity. Several companies fabricate and sell Ag/Bi-2223 superconducting wire longer than km length and used for developed electrical power device. But because of its inherent property of sharp decrease in current carrying capacity when applying high magnetic field, the application of Bi-2223 sire is limited as low as 20 K when the power device is in operating under high magnetic field. The YBCO tape conductor has the advantages of maintaining high critical current applying high magnetic field and can be used to most of the power device without special limitation. The metal substrate having good crystallographic texture and deposition technique which can deposit the good quality superconducting thin film continuously in large area are need to fabricate coated conductor, and this technique can be applied to develop the superconducting current limiter or magnetic field shielding device. A superconducting wire for using in high magnetic field is play a critical role in developing maglev, MRI, SMES, transformer, generator and motor and the continuous film deposition technique can be applied in other industry very much.

  14. Brazing techniques for side-coupled electron accelerator structures

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Clark, W.L.; DePaula, R.A.; Martinez, F.A.; Roybal, P.L.; Wilkerson, L.C.; Young, L.M.

    1986-01-01

    The collaboration between the Los Alamos National Laboratory and the National Bureau of Standards (NBS), started in 1979, has led to the development of an advanced c-w microtron accelerator design. The four 2380-MHz NBS accelerating structures, containing a total of 184 accelerating cavities, have been fabricated and delivered. New fabrication methods, coupled with refinements of hydrogen-furnace brazing techniques described in this paper, allow efficient production of side-coupled structures. Success with the NBS RTM led to Los Alamos efforts on similar 2450-MHz accelerators for the microtron accelerator operated by the Nuclear Physics Department of the University of Illinois. Two accelerators (each with 17 cavities) have been fabricated; in 1986, a 45-cavity accelerator is being fabricated by private industry with some assistance from Los Alamos. Further private industry experience and refinement of the described fabrication techniques may allow future accelerators of this type to be completely fabricated by private industry

  15. Overview of MOX fuel fabrication achievements

    International Nuclear Information System (INIS)

    Bairiot, H.; Vliet, J. van; Chiarelli, G.; Edwards, J.; Nagai, S.H.; Reshetnikov, F.

    2000-01-01

    Such overview having been adequately covered in an OECD/NEA publication providing the situation as of end 1994, this paper is mainly devoted to an update as of end 1998. The Belgian plant, Belgonucleaire/Dessel, is now dedicated exclusively to the fabrication of MOX fuel and has operated consistently around its nameplate capacity (35tHM/a) through the 1990s involving a large variety of PWR and BWR fuels. The two French plants have also achieved routine operation during the 1990s. CFCa, historically the largest FBR MOX fuel manufacturer, is utilizing the genuine COCA process for that type of fuel and the MIMAS process for LWR fuel: a nominal capacity (40 tHM/a) has been gradually approached. MELOX has operated at 100 tHM/a, as defined in the operating licence granted originally. The British plant, MDF/Sellafield with 8tHM/a nameplate capacity is devoted to fuel and has manufactured several small fabrication campaigns. In Japan, JNC operates three facilities located at Tokai: PFDF, devoted to basic research and fabrication of test fuels, PFFF/ATR line, for the fabrication of Fugen fuel and of corresponding fuel for the critical facility DCA, and PFPF for the fabrication of FBR fuel. In Russia, fabrication techniques have been developed to fuel four BN-800 FBRs contemplated to be constructed and be fuelled with the civilian Pu stockpile. Two demonstration facilities Paket (Mayak) and RIAR (Dimitrovgrad) fabricated respectively pellet and vipac type FBR MOX fuel for BR-5, BOR-60, BN-350 and BN-600. The paper includes a brief description of each of the fabrication routes mentioned, as well as the production of respectively LWR and FBR MOX fuel in each fabrication facility, since the start-up of the plant, since 1 January 1993 and since 1 January 1998 up to 31 December 1998. (author)

  16. Fabrication and characterization of melt-processed YBCO

    International Nuclear Information System (INIS)

    Sengupta, S.; Corpus, J.; Gaines, J.R. Jr.; Todt, V.R.; Zhang, X.F.; Miller, D.J.; Varanasi, C.; McGinn, P.J.

    1996-01-01

    Large domain YBCO are fabricated by using a melt processing technique for magnetic levitation applications. A Nd 1+x Ba 2-x Cu 3 O y seed is used to initiate grain growth and to control the orientation of YBCO grains. Samples as large as 2 inch have been fabricated by utilizing this method. Microstructural studies reveals two distinct regions in these levitators due to different growth mechanism along a/b and c axis. Some initial results on the mass production of these levitators are also reported

  17. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  18. Fabrication of a three-dimensional micro-manipulator by laser irradiation and electrochemical techniques and the effect of electrolytes on its performance

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Akiyama, Y.; Ueda, M.; Sakairi, M.; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)

    2007-03-20

    Ribbon type and three-dimensional micro-actuators, consisting of three-layer structure of acrylic acid resin/Au/polypyrrole, were fabricated by aluminum anodizing, laser irradiation, and electrochemical techniques, and their performance was examined. Anodized aluminum specimens were irradiated with a pulsed Nd-YAG laser to remove anodic oxide films locally, and then an Au layer was deposited at the area where film had been removed. The subsequent electrophoretic deposition of acrylic acid resin on the Au layer, dissolution of anodic oxide film and the metal substrate, and deposition of polypyrrole on backside of Au layer by electro-polymerization enabled the fabrication of a three-layer actuator. Cyclic voltammetry of the ribbon type actuator in different electrolyte solutions showed that redox reactions of polypyrrole is accompanied with doping and dedoping of hydrated cations, and that the redox reaction strongly depends on the valency of cations in the solutions. The three-dimensional micro-actuator showed good performance as a manipulator, gripping and moving objects of several milligram in solutions. (author)

  19. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  20. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    Science.gov (United States)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  1. A simple gold nanoparticle-mediated immobilization method to fabricate highly homogeneous DNA microarrays having higher capacities than those prepared by using conventional techniques

    International Nuclear Information System (INIS)

    Jung, Cheulhee; Mun, Hyo Young; Li, Taihua; Park, Hyun Gyu

    2009-01-01

    A simple, highly efficient immobilization method to fabricate DNA microarrays, that utilizes gold nanoparticles as the mediator, has been developed. The fabrication method begins with electrostatic attachment of amine-modified DNA to gold nanoparticles. The resulting gold-DNA complexes are immobilized on conventional amine or aldehyde functionalized glass slides. By employing gold nanoparticles as the immobilization mediator, implementation of this procedure yields highly homogeneous microarrays that have higher binding capacities than those produced by conventional methods. This outcome is due to the increased three-dimensional immobilization surface provided by the gold nanoparticles as well as the intrinsic effects of gold on emission properties. This novel immobilization strategy gives microarrays that produce more intense hybridization signals for the complementary DNA. Furthermore, the silver enhancement technique, made possible only in the case of immobilized gold nanoparticles on the microarrays, enables simple monitoring of the integrity of the immobilized DNA probe.

  2. Laser cutting fabrication of magnetic components

    International Nuclear Information System (INIS)

    Neuenschwander, R.T.; Ricardo, A.; Rodrigues, D.; Talarico, F.W.B.; Goncalves da Silva, C.E.T.

    1992-01-01

    Dipole, quadrupole and sextupole prototypes for the LNLS storage ring have been fabricated using 1.5 mm thick, low carbon steel laminations, with the aid of CO 2 laser cutter, reaching an overall dimensional accuracy of ±0.02 mm (standard deviation). The relevant aspects of the technique are presented, together with the results of magnetic and dimensional measurements. The possibility of mass producing these components with the technique is also analyzed. (author) 2 refs.; 6 figs

  3. Textile for heart valve prostheses: fabric long-term durability testing.

    Science.gov (United States)

    Heim, Frederic; Durand, Bernard; Chakfe, Nabil

    2010-01-01

    The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.

  4. Fabrication and characterization of CuAlO2 transparent thin films prepared by spray technique

    International Nuclear Information System (INIS)

    Bouzidi, C.; Bouzouita, H.; Timoumi, A.; Rezig, B.

    2005-01-01

    CuAlO 2 thin films have been grown on glass substrates using spray technique; a low-cost method of thin films depositing. The deposition was carried out in a 450-525 deg. C range of substrate temperature. The solution and gas flow rates were kept constant at 5 cm 3 min -1 and 6.10 -3 m 3 min -1 , respectively. Compressed air was used as a carrier gas. The structural, morphological and optical properties of these thin films have been studied. These properties are strongly related to the substrate temperature and to the [Cu]/[Al] molar ratio r. X-ray diffraction analysis confirmed the initial amorphous nature of as-deposited films and phase transition into crystalline CuAlO 2 with the preferential orientation (1 0 1) upon annealing at 570 deg. C. The optical transmission of 80% has been achieved in the visible spectrum. CuAlO 2 band gap energy in the range of 3.34-3.87 eV has been found by optical measurement depending on fabrication parameters

  5. Biodegradable Poly(Lactic Acid/Multiwalled Carbon Nanotube Nanocomposite Fabrication Using Casting And Hot Press Techniques

    Directory of Open Access Journals (Sweden)

    Park S.G.

    2015-06-01

    Full Text Available Biodegradable advanced polymer composites have recently received a large amount of attention. The present study aimed to design poly(lactic acid multiwalled carbon nanotube nanocomposites (PLA/MWCNTs using a simple fabrication technique. A PLA sheet was first dissolved in dichloromethane, and MWCNTs were subsequently added at various concentrations (0.5, 1.5 and 5% while applying shear strain stirring to achieve dispersion of carbon nanotubes (CNTs. These solutions were then molded and a hot press was used to generate sheets free of voids with entrapped solvent. The prepared samples were characterized using field emission scanning electron microscopy (FE-SEM, x-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and thermogravimetric analysis (TGA. Our data showed composite samples free of defects and voids, indicating that the hot press is capable of generating sufficiently compact polymer matrices. Additionally, TGA and FTIR showed significant bonding interactions between the PLA matrix and the nano-fillers. Collectively, our results suggest that incorporation of CNTs as nano-fillers into biodegradable polymers may have multiple applications in many different sectors.

  6. Property-process relationships in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Nuclear fuels are fabricated using many different techniques as they come in a large variety of shapes and compositions. The design and composition of nuclear fuels are predominantly dictated by the engineering requirements necessary for their function in reactors of various designs. Other engineering properties requirements originate from safety and security concerns, and the easy of handling, storing, transporting and disposing of the radioactive materials. In this chapter, the more common of these fuels will be briefly reviewed and the methods used to fabricate them will be presented. The fuels considered in this paper are oxide fuels used in LWRs and FRs, metal fuels in FRs and particulate fuels used in HTGRs. Fabrication of alternative fuel forms and use of standard fuels in alternative reactors will be discussed briefly. The primary motivation to advance fuel fabrication is to improve performance, reduce cost, reduce waste or enhance safety and security of the fuels. To achieve optimal performance, developing models to advance fuel fabrication has to be done in concert with developing fuel performance models. The specific properties and microstructures necessary for improved fuel performance must be identified using fuel performance models, while fuel fabrication models that can determine processing variables to give the desired microstructure and materials properties must be developed. (author)

  7. Fabrication and buckling dynamics of nanoneedle AFM probes

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-04-29

    A new method for the fabrication of high-aspect-ratio probes by electron beam induced deposition is described. This technique allows the fabrication of cylindrical 'nanoneedle' structures on the atomic force microscope (AFM) probe tip which can be used for accurate imaging of surfaces with high steep features. Scanning electron microscope (SEM) imaging showed that needles with diameters in the range of 18-100 nm could be obtained by this technique. The needles were shown to undergo buckling deformation under large tip-sample forces. The deformation was observed to recover elastically under vertical deformations of up to {approx} 60% of the needle length, preventing damage to the needle. A technique of stabilizing the needle against buckling by coating it with additional electron beam deposited carbon was also investigated; it was shown that coated needles of 75 nm or greater total diameter did not buckle even under tip-sample forces of {approx} 1.5 {mu}N.

  8. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Ariga, Katsuhiko; Vinu, Ajayan [International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sivakumar, Thiripuranthagan [Department of Chemical Engineering, Anna University, Gundy, Chennai 600025 (India); Aldeyab, Salem S [Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, PO Box 2455 Riyadh 11451 (Saudi Arabia); Zaidi, Javaid S M, E-mail: vinu.ajayan@nims.go.jp [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-08-15

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g{sup -1} at a 20 mV s{sup -1} scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  9. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Science.gov (United States)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  10. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Directory of Open Access Journals (Sweden)

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    Full Text Available We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD, high-resolution scanning electron microscopy (HRSEM and high-resolution transmission electron microscopy (HRTEM. XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  11. The fabrication of millimeter-wavelength accelerating structures

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient (≥ 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented

  12. Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing

    International Nuclear Information System (INIS)

    Lu, Guo-Shin; You, Po-Chin; Lin, Kai-Lun; Hong, Chien-Chong; Liou, Tong-Miin

    2014-01-01

    This paper presents a self-aligning ink by integrating an inkjet printing technique and heterostructures to fabricate a black matrix with a micrometer-scale tunable thickness. The black matrix is a grid-like structure used in color filters. Traditionally, a black matrix has been fabricated using photolithography techniques, the disadvantages of which are high material consumption, less fabrication flexibility, complex processing procedures, and high chemical pollution. Inkjet printing technology has garnered attention because of its low material costs, high fabrication flexibility, and reduced processing procedures and pollution. In this study, a fabricating process combining an inkjet printing technique with heterostructures to form stripe-arranged and delta-arranged thickness-tunable black matrices has been demonstrated. The deformation and self-aligning process of ink droplet impingement onto gutters are driven by designed heterogeneous surface properties. The minimum track width attained is 10 µm, which is competitive for color filter resolutions for thin-film transistor liquid crystal displays. The developed technology surmounts the bottlenecks of inkjet printing resolution, and saves more than 75% black material than modern photolithography. (paper)

  13. Fabrication of an Open Microfluidic Device for Immunoblotting.

    Science.gov (United States)

    Abdel-Sayed, Philippe; Yamauchi, Kevin A; Gerver, Rachel E; Herr, Amy E

    2017-09-19

    Given the wide adoption of polydimethylsiloxane (PDMS) for the rapid fabrication of microfluidic networks and the utility of polyacrylamide gel electrophoresis (PAGE), we develop a technique for fabrication of PAGE molecular sieving gels in PDMS microchannel networks. In developing the fabrication protocol, we trade-off constraints on materials properties of these two polymer materials: PDMS is permeable to O 2 and the presence of O 2 inhibits the polymerization of polyacrylamide. We present a fabrication method compatible with performing PAGE protein separations in a composite PDMS-glass microdevice, that toggles from an "enclosed" microchannel for PAGE and blotting to an "open" PA gel lane for immunoprobing and readout. To overcome the inhibitory effects of O 2 , we coat the PDMS channel with a 10% benzophenone solution, which quenches the inhibiting effect of O 2 when exposed to UV, resulting in a PAGE-in-PDMS device. We then characterize the PAGE separation performance. Using a ladder of small-to-mid mass proteins (Trypsin Inhibitor (TI); Ovalbumin (OVA); Bovine Serum Albumin (BSA)), we observe resolution of the markers in TI, with comparable reproducibility to glass microdevice PAGE. We show that benzophenone groups incorporated into the gel through methacrylamide can be UV-activated multiple times to photocapture protein. PDMS microchannel network is reversibly bonded to a glass slide allowing direct access to separated proteins and subsequent in situ diffusion-driven immunoprobing and total protein Sypro red staining. We see this PAGE-in-PDMS fabrication technique as expanding the application and use of microfluidic PAGE without the need for a glass microfabrication infrastructure.

  14. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.

  15. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  16. Effect of fire retardants on cotton fabric grafted with acrylic acid by EB radiation: a thermal analysis study

    International Nuclear Information System (INIS)

    Mitra, D.; Sabharwal, S.; Majali, A.B.

    1998-01-01

    Electron beam irradiation technique has been utilized to graft acrylic acid to cotton fabric in order to provide suitable functional groups that can subsequently react with urea or borax for making the fabric fire resistant. Thermal analytical technique such as, DSC and TG have been utilized to investigate the flame retardency characteristic of the grafted and treated fabric. The result shows that decay curve of exothermic peak due to combustion of cotton fabric in case of urea treated fabric at 330 degC becomes broad and shifts to higher temperature in DSC analysis as compared to pure cotton fabric and char residue in TG analysis is 20% in both the case. In borax treated fabric, char residue is found to be 40% in TG analysis and DSC profile is similar to that of urea treated fabric. (author)

  17. The development of fabrication techniques for europia/iron cermet tips for coarse-control arms in DIDO and PLUTO

    International Nuclear Information System (INIS)

    Moore, D.A.; Tarrant, E.A.

    1980-11-01

    The applicability of cermet-fabrication techniques to the production of europia/iron cermets for use as coarse-control arm tips in the materials test reactors DIDO and PLUTO has been investigated. Spheroids of europia were prepared by a dry agglomeration process. These were sintered, dispersed in iron powder and pressed into plates; the plates were then sintered to densify the iron matrix. These stages were optimised to produce a strong cermet with a europia density of >= 2.75 g/cm 3 . The uniformity of distribution of the absorber particles was confirmed by radiography, and adequate neutron-absorption worth by measurements carried out in the GLEEP reactor. An outline flow sheet has been prepared for the manufacture of europia/iron cermet plates suitable for use in the tips of DIDO and PLUTO coarse-control arms. (author)

  18. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  19. Growth and characterization of bismuth telluride nanowires

    International Nuclear Information System (INIS)

    Picht, Oliver

    2010-01-01

    Polycrystalline Bi 2 Te 3 nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 μm. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi 2 Te 3 and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 μm thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  20. -Styrene)

    KAUST Repository

    Sutisna, Burhannudin

    2017-10-04

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m(-2) h(-1) bar(-1) , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

  1. Fabrication of ThO2, UO2, and PuO2-UO2 pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Jentzen, W.R.; McCord, R.B.

    1978-01-01

    Fabrication of ThO pellets for EBR-II irradiation testing and fabrication of UO 2 and PuO 2 -UO 2 pellets for United Kingdom Prototype Fast Reactor (PFR) irradiation testing is discussed. Effect of process parameters on density and microstructure of pellets fabricated by the cold press and sinter technique is reviewed

  2. The distal shoe space maintainer chairside fabrication and clinical performance.

    Science.gov (United States)

    Brill, Warren A

    2002-01-01

    The chairside-fabricated distal shoe appliance, with a stainless steel crown as the retainer, is an efficacious and cost-effective appliance for guiding the unerupted permanent first molar into position after premature loss or extraction of the second primary molar. The fabrication technique is illustrated in this case report and data is presented on the success rate of the appliance.

  3. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hwang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding (μTM), was developed by the Whitesides group in 1996. Although μTM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional μTM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-μTM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-μTM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed

  4. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  5. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  6. Understanding carbon nanotube channel formation in the lipid membrane

    Science.gov (United States)

    Choi, Moon-ki; Kim, Hyunki; Lee, Byung Ho; Kim, Teayeop; Rho, Junsuk; Kim, Moon Ki; Kim, Kyunghoon

    2018-03-01

    Carbon nanotubes (CNTs) have been considered a prominent nano-channel in cell membranes because of their prominent ion-conductance and ion-selectivity, offering agents for a biomimetic channel platform. Using a coarse-grained molecular dynamics simulation, we clarify a construction mechanism of vertical CNT nano-channels in a lipid membrane for a long period, which has been difficult to observe in previous CNT-lipid interaction simulations. The result shows that both the lipid coating density and length of CNT affect the suitable fabrication condition for a vertical and stable CNT channel. Also, simulation elucidated that a lipid coating on the surface of the CNT prevents the CNT from burrowing into the lipid membrane and the vertical channel is stabilized by the repulsion force between the lipids in the coating and membrane. Our study provides an essential understanding of how CNTs can form stable and vertical channels in the membrane, which is important for designing new types of artificial channels as biosensors for bio-fluidic studies.

  7. Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis

    Science.gov (United States)

    Su, Chung-Yi; Yang, Tung-Han; Gurylev, Vitaly; Huang, Sheng-Hsin; Wu, Jenn-Ming; Perng, Tsong-Pyng

    2015-10-01

    We fabricated a photocatalytic Au@ZnO@PC (polycarbonate) nanoreactor composed of monolayered Au nanoparticles chemisorbed on conformal ZnO nanochannel arrays within the PC membrane. A commercial PC membrane was used as the template for deposition of a ZnO shell into the pores by atomic layer deposition (ALD). Thioctic acid (TA) with sufficient steric stabilization was used as a molecular linker for functionalization of Au nanoparticles in a diameter of 10 nm. High coverage of Au nanoparticles anchored on the inner wall of ZnO nanochannels greatly improved the photocatalytic activity for degradation of Rhodamine B. The membrane nanoreactor achieved 63% degradation of Rhodamine B within only 26.88 ms of effective reaction time owing to its superior mass transfer efficiency based on Damköhler number analysis. Mass transfer limitation can be eliminated in the present study due to extremely large surface-to-volume ratio of the membrane nanoreactor.

  8. Superhydrophobic nanocoatings: from materials to fabrications and to applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang

    2015-04-14

    Superhydrophobic nanocoatings, a combination of nanotechnology and superhydrophobic surfaces, have received extraordinary attention recently, focusing both on novel preparation strategies and on investigations of their unique properties. In the past few decades, inspired by the lotus leaf, the discovery of nano- and micro-hierarchical structures has brought about great change in the superhydrophobic nanocoatings field. In this paper we review the contributions to this field reported in recent literature, mainly including materials, fabrication and applications. In order to facilitate comparison, materials are divided into 3 categories as follows: inorganic materials, organic materials, and inorganic-organic materials. Each kind of materials has itself merits and demerits, as well as fabrication techniques. The process of each technique is illustrated simply through a few classical examples. There is, to some extent, an association between various fabrication techniques, but many are different. So, it is important to choose appropriate preparation strategies, according to conditions and purposes. The peculiar properties of superhydrophobic nanocoatings, such as self-cleaning, anti-bacteria, anti-icing, corrosion resistance and so on, are the most dramatic. Not only do we introduce application examples, but also try to briefly discuss the principle behind the phenomenon. Finally, some challenges and potential promising breakthroughs in this field are also succinctly highlighted.

  9. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing.

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin

    2015-10-22

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  10. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-01-01

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties that simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.

  11. Fabrication of sub-wavelength photonic structures by nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kontio, J.

    2013-11-01

    Nanoimprint lithography (NIL) is a novel but already a mature lithography technique. In this thesis it is applied to the fabrication of nanophotonic devices using its main advantage: the fast production of sub-micron features in high volume in a cost-effective way. In this thesis, fabrication methods for conical metal structures for plasmonic applications and sub-wavelength grating based broad-band mirrors are presented. Conical metal structures, nanocones, with plasmonic properties are interesting because they enable concentrating the energy of light in very tight spots resulting in very high local intensities of electromagnetic energy. The nanocone formation process is studied with several metals. Enhanced second harmonic generation using gold nanocones is presented. Bridged-nanocones are used to enhance Raman scattering from a dye solution. The sub-wavelength grating mirror is an interesting structure for photonics because it is very simple to fabricate and its reflectivity can be extended to the far infrared wavelength range. It also has polarization dependent properties which are used in this thesis to stabilize the output beam of infrared semiconductor disk laser. NIL is shown to be useful a technique in the fabrication of nanophotonic devices in the novel and rapidly growing field of plasmonics and also in more traditional, but still developing, semiconductor laser applications (orig.)

  12. A novel method for the fabrication of freestanding PZT features on substrates

    NARCIS (Netherlands)

    van Bennekom, Joost G.; van Bennekom, J.G.; Winnubst, Aloysius J.A.; Nijdam, W.; Wessling, Matthias; Lammertink, Rob G.H.

    2009-01-01

    A simple and cheap micromoulding fabrication route was developed to prepare freestanding piezo active features. Dimensions as small as 200 μm by 200 μm and 40 μm high were successfully fabricated via a replication technique. The lead zirconate titanate features were thoroughly characterized using

  13. Fabrication of dense wavelength division multiplexing filters with large useful area

    Science.gov (United States)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  14. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  15. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography.

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Kamyab, Lobna; Rostami, Ali; Capolino, Filippo; Boyraz, Ozdal

    2015-03-09

    We demonstrate a novel technique to fabricate sub-micron silicon nitride waveguides using conventional contact lithography with MEMS-grade photomasks. Potassium hydroxide anisotropic etching of silicon facilitates line reduction and roughness smoothing and is key to the technique. The fabricated waveguides is measured to have a propagation loss of 0.8dB/cm and nonlinear coefficient of γ = 0.3/W/m. A low anomalous dispersion of <100ps/nm/km is also predicted. This type of waveguide is highly suitable for nonlinear optics. The channels naturally formed on top of the waveguide also make it promising for plasmonics and quantum efficiency enhancement in sensing applications.

  16. Rapsodie first core manufacture. 1. part: processing plant; Fabrication du premier coeur de rapsodie. Premiere partie: l'atelier de fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Masselot, Y; Bataller, S; Ganivet, M; Guillet, H; Robillard, A; Stosskopf, F [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [French] Ce rapport est le premier d'une serie de trois qui decrivent les procedes, les resultats et les problemes techniques particuliers de la fabrication du du premier coeur de la pile a neutrons rapides Rapsodie. Il comporte une etude detaillee des procedes de fabrication (pastilles, aiguilles, assemblages combustibles) et des methodes de controle associees (matieres premieres, pastilles et aiguilles en cours de fabrication, assemblages fissiles avant livraison), ainsi qu'une decription complete des installations de l'atelier de fabrication et les modifications apportees pour une deuxieme campagne. (auteur)

  17. Design and fabrication of diffractive optical elements with MATLAB

    National Research Council Canada - National Science Library

    Bhattacharya, Shanti (Professor in Optics); Vijayakumar, Anand

    2017-01-01

    ... their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented...

  18. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    Science.gov (United States)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  19. Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l`Energie Atomique, Saclay, Gif-sur-Yvette (France)

    1998-09-01

    The design of the ITER primary first wall incorporates a multi-layered structure consisting of a layer of beryllium bonded to a layer of copper alloy with embedded stainless steel tubes which in turn is bonded to a stainless steel structure. In this configuration, the stainless steel provides structural support, the copper alloy improved resistance to high heat loads, and the beryllium layer a low Z metal interface with plasma. Fabrication, testing and control of this multi-layered structure, and indeed the entire blanket shield module, calls for advanced methods. Several associations in the four home teams and their industrial partners have been involved in various fabrication and joining tasks now grouped under L4 blanket project. In this paper, an overview of the work done so far for joining stainless steel to stainless steel, stainless steel to copper alloy, copper alloy to copper alloy, and copper alloy to beryllium is presented. Specialised papers dealing with most of the topics treated here are scheduled in this symposium. The fabrication and joining methods presented here, other than the conventional welding and brazing, follow four main routes. Two of them make extensive use of hot-isostatic pressing (HIP); (a) solid to solid; (b) solid or powder to powder, with or without a prior cold or hot isostatic pressing of one of the products. The third combines advantages of casting and HIPping for fabricating large and complex parts. The fourth investigates the possibility of using explosive welding for joining copper alloys to stainless steel. Other methods, including friction welding, are investigated for specific parts. (orig.) 34 refs.

  20. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.