WorldWideScience

Sample records for nanoantenna array-induced fluorescence

  1. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes

    DEFF Research Database (Denmark)

    Bakker, R. M.; Drachev, V. P.; Liu, Z.

    2008-01-01

    Enhanced fluorescence is observed from dye molecules interacting with optical nanoantenna arrays. Elliptical gold dimers form individual nanoantennae with tunable plasmon resonances depending upon the geometry of the two particles and the size of the gap between them. A fluorescent dye, Rhodamine...... 800, is uniformly embedded in a dielectric host that coats the nanoantennae. The nanoantennae act to enhance the dye absorption. In turn, emission from the dye drives the plasmon resonance of the antennae; the nanoantennae act to enhance the fluorescence signal and change the angular distribution...... of emission. These effects depend upon the overlap of the plasmon resonance with the excitation wavelength and the fluorescence emission band. A decreased fluorescence lifetime is observed along with highly polarized emission that displays the characteristics of the nanoantenna's dipole mode. Being able...

  2. Enhanced localized fluorescence in plasmonic nanoantennae

    DEFF Research Database (Denmark)

    Bakker, R.M.; Yuan, H.-K.; Liu, Z.

    2008-01-01

    in fluorescence that reaches 100 times enhancement. Near-field excitation shows enhanced fluorescence from a single nanoantenna localized in a subwavelength area of similar to 0.15 mu m(2). The polarization of enhanced emission is along the main antenna axis. These observed experimental results are important...

  3. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  4. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Paul [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr; Jaeck, Julien; Lauwick, Diane; Kattnig, Alain [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Bardou, Nathalie; Pardo, Fabrice [Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Haïdar, Riad [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); École Polytechnique, Département de Physique, 91128 Palaiseau (France)

    2015-12-21

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  5. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    International Nuclear Information System (INIS)

    Chevalier, Paul; Bouchon, Patrick; Jaeck, Julien; Lauwick, Diane; Kattnig, Alain; Bardou, Nathalie; Pardo, Fabrice; Haïdar, Riad

    2015-01-01

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material

  6. Exploring plasmonic nanoantenna arrays as a platform for biosensing

    Science.gov (United States)

    Toussaint, Kimani C.

    2017-08-01

    In recent years, the PROBE Lab at the University of Illinois at Urbana-Champaign has made significant developments in plasmonic nanoantenna technology by more closely exploring the rich parameter space associated with these structures including geometry and material composition, as well as the optical excitation conditions. Indeed, plasmonic nanoantennas are attractive for a variety of potential applications in nanotechnology, biology, and photonics due to their ability to tightly confine and strongly enhance optical fields. This talk will discuss our work with arrays of Au bowtie nanoantennas (BNAs) with an emphasis on how their field enhancement properties could be harnessed for particle manipulation and sensing. We also present our work with pillar-supported BNAs (p-BNAs) and discuss their potential for sensing applications, particularly when adapted for response in the near-IR. The talk will conclude with a brief discussion of some of the future work pursued by the PROBE lab, including adapting BNAs for lab-on-a-chip applications.

  7. Gap Nanoantennas toward Molecular Plasmonic Devices

    Directory of Open Access Journals (Sweden)

    Aude L. Lereu

    2012-01-01

    Full Text Available Recently we have demonstrated that single fluorescent molecules can be used as non-perturbative vectorial probes of the local field. Here, we expand on such experiments exploiting fluorescence lifetime of single molecules to probe various types of gap nanoantennas. First, studies of the nanoantennas are carried out to evaluate the electric field. We then investigate hybrid systems composed by nanoantennas and randomly positioned fluorescent molecules. Finally, we present a fabrication scheme for the controlled placement of fluorescent molecules at welldefined positions with respect to the dimer nanoantenna, which is a more direct route to probe the local field in an a priori determined way.

  8. Nanoantenna using mechanical resonance

    KAUST Repository

    Chang Hwa Lee,

    2010-11-01

    Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  9. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    Science.gov (United States)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  10. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  11. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  12. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    Science.gov (United States)

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  13. Nanoantenna using mechanical resonance

    KAUST Repository

    Chang Hwa Lee,; Seok Woo Lee,; Lee, Seung S

    2010-01-01

    nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  14. Photothermal heating enabled by plasmonic nanoantennas for electrokinetic manipulation and sorting of submicron particles

    DEFF Research Database (Denmark)

    Ndukaife, Justus C.; Mishra, Avanish; Guler, Urcan

    2014-01-01

    The photo-induced collective heating enabled by a plasmonic nanoantenna array is for the first time harnessed for rapid concentration, manipulation and sorting of particles, with high throughput. This work could find application in biosensing, and surface enhanced spectroscopies © 2014 OSA....

  15. Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials

    International Nuclear Information System (INIS)

    Monticone Francesco; Alù Andrea

    2014-01-01

    The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level. To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing. (topical review - plasmonics and metamaterials)

  16. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    Science.gov (United States)

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  17. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells

    Science.gov (United States)

    Regmi, Raju; Winkler, Pamina M.; Flauraud, Valentin; Borgman, Kyra J. E.; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.

    2017-10-01

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 {\\mu}s. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  18. Optical spins and nano-antenna array for magnetic therapy.

    Science.gov (United States)

    Thammawongsa, N; Mitatha, S; Yupapin, P P

    2013-09-01

    Magnetic therapy is an alternative medicine practice involving the use of magnetic fields subjected to certain parts of the body and stimulates healing from a range of health problems. In this paper, an embedded nano-antenna system using the optical spins generated from a particular configuration of microrings (PANDA) is proposed. The orthogonal solitons pairs corresponding to the left-hand and right-hand optical solitons (photons) produced from dark-bright soliton conversion can be simultaneously detected within the system at the output ports. Two possible spin states which are assigned as angular momentum of either +ħ or -ħ will be absorbed by an object whenever this set of orthogonal solitons is imparted to the object. Magnetic moments could indeed arise from the intrinsic property of spins. By controlling some important parameters of the system such as soliton input power, coupling coefficients and sizes of rings, output signals from microring resonator system can be tuned and optimized to be used as magnetic therapy array.

  19. Probing Contaminant-Induced Alterations in Chlorophyll Fluorescence by AC-Dielectrophoresis-Based 2D-Algal Array

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2018-02-01

    Full Text Available The investigation of contaminant impact on algae requires rapid and reliable cell collection and optical detection. The capability of alternative current (AC dielectrophoresis (DEP collection of whole cell arrays with combined fluorescence microscopy detection to follow the alterations of chlorophyll fluorescence during environmental contaminant exposure was explored. The application of an AC-field of 100 V cm−1, 100 Hz for 30 min to capture and immobilize the cells of green alga Chlamydomonas reinhardtii in two-dimensional (2D arrays does not induce changes in chlorophyll fluorescence. The results demonstrate that DEP-based 2D-arrays allow non-invasive detection of chlorophyll fluorescence change upon exposure to high concentrations of copper oxide nanoparticles and ionic copper. These results were in agreement with data obtained by flow cytometry used as a comparative method. The tool was also applied to follow the effect of a number of ubiquitous contaminants such as inorganic mercury, methylmercury, and diuron. However, a statistically significant short-term effect was observed only for mercury. Overall, DEP-based 2D-arrays of algal cells with fluorescence detection appear to be suitable for stain-free probing the effects on the photosynthetic microorganisms in highly polluted environment.

  20. Direct measurement of bull's-eye nanoantenna metal loss

    Science.gov (United States)

    Hassani Nia, Iman; Jang, Sung J.; Memis, Omer G.; Gelfand, Ryan; Mohseni, Hooman

    2013-09-01

    The loss in optical antennas can affect their performance for their practical use in many branches of science such as biological and solar cell applications. However the big question is that how much loss is due to the joule heating in the metals. This would affect the efficiency of solar cells and is very important for single photon detection and also for some applications where high heat generation in nanoantennas is desirable, for example, payload release for cancer treatment. There are few groups who have done temperature measurements by methods such as Raman spectroscopy or fluorescence polarization anisotropy. The latter method, which is more reliable than Raman spectroscopy, requires the deposition of fluorescent molecules on the antenna surface. The molecules and the polarization of radiation rotate depending upon the surface temperature. The reported temperature measurement accuracy in this method is about 0.1° C. Here we present a method based on thermo-reflectance that allows better temperature accuracy as well as spatial resolution of 500 nm. Moreover, this method does not require the addition of new materials to the nanoantenna. We present the measured heat dissipation from bull's-eye nanoantennas and compare them with 3D simulation results.

  1. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  2. Functionalizing large nanoparticles for small gaps in dimer nanoantennas

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P.; Tinnefeld, Philip

    2016-04-01

    The process of functionalizing gold nanoparticles with DNA commonly competes with nanoparticle aggregation, especially for larger particles of more than 80 nm diameter. Longer DNA strands reduce the tendency for aggregation but commonly lead to larger gaps when applied in certain geometrical arrangements such as gap nanoantennas. Here, we demonstrate that reversing the polarization of one of the strands for hybridization (yielding a zipper-like geometry) is sterically possible with uncompromised yields. Using the single dye molecule’s fluorescence lifetime as an indicator of the proximity of the nanoparticle in combination with electrodynamic simulations, we determine the distance between the nanoparticle and the dye placed in a DNA origami pillar. Importantly, compared to the common shear geometry smaller distances between the connected structures are obtained which are independent of the length of the DNA connector. Using the zipper geometry, we then arranged nanoparticles of 100 and 150 nm diameter on DNA origami and formed gap nanoantennas. We find that the previously reported trend of increased fluorescence enhancement of ATTO647N with increasing particle size for 20-100 nm nanoparticles is stopped. Gap nanoantennas built with 150 nm nanoparticles exhibit smaller enhancement than those with 100 nm nanoparticles. These results are discussed with the aid of electrodynamic simulations.

  3. Numerical conversion efficiency of thermally isolated Seebeck nanoantennas

    Directory of Open Access Journals (Sweden)

    Edgar Briones

    2016-11-01

    Full Text Available In this letter, we evaluate the conversion efficiency of thermally isolated Seebeck nanoantennas by numerical simulations and discuss their uses and scope for energy harvesting applications. This analysis includes the simple case of titanium-nickel dipoles suspended in air above the substrate by a 200 nm silicon dioxide membrane to isolate the heat dissipation. Results show that substantially thermal gradients are induced along the devices leading to a harvesting efficiency around 10-4 %, 400 % higher than the previously reported Seebeck nanoantennas. In the light of these results, different optimizing strategies should be considered in order to make the Seebeck nanoantennas useful for harvesting applications.

  4. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    Science.gov (United States)

    Rindorf, Lars; Glückstad, Jesper

    2013-03-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations that the nanoantenna can be made to operate in a bandstop mode around its resonant wavelength where there is a very high evanescent strong electrical probing field close to the antennas, and additionally the fluorescence or Raman excitations will be be unpolluted by stray light from the WOW due to the band-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas.

  5. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  6. Nanometers to centimeters: novel optical nano-antennas, with an eye to scaled production

    Science.gov (United States)

    James, Timothy D.; Cadusch, Jasper J.; Earl, Stuart K.; Panchenko, Evgeniy; Mulvaney, Paul; Davis, Timothy J.; Roberts, Ann

    2016-03-01

    Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.

  7. Directional Emission from Dielectric Leaky-Wave Nanoantennas

    Science.gov (United States)

    Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan

    2017-07-01

    An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

  8. Investigation of logarithmic spiral nanoantennas at optical frequencies

    Science.gov (United States)

    Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.

    2013-12-01

    The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.

  9. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  10. Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links

    Directory of Open Access Journals (Sweden)

    Maciej Klemm

    2012-01-01

    Full Text Available Optical nanoantennas are emerging as one of the key components in the future nanophotonic and plasmonic circuits. The first optical nanoantennas were in a form of simple spherical nanoparticles. Recently more complex Yagi-Uda nanoantenna structures were demonstrated. These nanoantennas enhance radiation of single emitters and provide well-defined directional radiation. In this contribution, we present the novel design of the directional nanoantenna, which is excited from the propagating mode of the plasmonic waveguide. The nanoantenna design is based on the travelling wave principle, well known at RF/microwave frequencies. By properly designing the propagating parts of the nanoantenna, a very efficient coupling to free space wave impedance can be achieved. Furthermore, the control over the radiation direction and beam width is relatively easy with this nanoantenna. Compared to the previously published Yagi-Uda designs, the new nanoantenna presented in this work has directivity three times higher.

  11. Magneto-plasmonic nanoantennas: Basics and applications

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2016-11-01

    Full Text Available Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.

  12. Electrochemical Design of Optical Nanoantennas

    Directory of Open Access Journals (Sweden)

    Vasilchenko V.E.

    2015-01-01

    Full Text Available Electrochemical techniques for fabricating tapered gold nanoantennas (tips are discussed. In the paper, the tunable design of nanoantennas is demonstrated. Tip parameters such as a tip apex curvature, mesoscopic morphology, aspect ratio and enhancement factor can be varied with etching electrolyte and applied voltage. The low-cost method makes tipehnahced optical spectroscopy and microscopy feasible for routine optical measurements beyond the diffraction limit.

  13. Unidirectional emission in an all-dielectric nanoantenna.

    Science.gov (United States)

    Feng, Tianhua; Zhang, Wei; Liang, Zixian; Xu, Yi

    2018-03-28

    All-dielectric nanoantennas are a promising alternative to plasmonic optical antennas for engineering light emission because of their low-loss nature in the optical spectrum. Nevertheless, it is still challenging to manipulate directional light emission with subwavelength all-dielectric nanoantennas. Here, we propose and numerically demonstrate that a hollow silicon nanodisk can serve as a versatile antenna for directing and enhancing the emission from either an electric or magnetic dipole emitter. When primarily coupled to both electric and magnetic dipole modes of a nanoantenna, broadband nearly-unidirectional emission can be realized by the interference of two modes, which can be spectrally tuned via the geometric parameters in an easy way. More importantly, the emission directions for the magnetic and electric dipole emitters are shown as opposite to each other through control of the phase difference between the induced magnetic and electric dipole modes of the antenna. Meanwhile, the Purcell factors can be enhanced by more than one order of magnitude and high quantum efficiencies can be maintained at the visible spectrum for both kinds of dipole emitters. We further show that these unidirectional emission phenomena can withstand small disorder effects of in-plane dipole orientation and location. Our study provides a simple yet versatile platform that can shape the emission of both magnetic and electric dipole emitters.

  14. Controlling the near-field excitation of nano-antennas with phase-change materials.

    Science.gov (United States)

    Kao, Tsung Sheng; Chen, Yi Guo; Hong, Ming Hui

    2013-01-01

    By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.

  15. Controlling the shapes and sizes of metallic nanoantennas for detection of biological molecules using hybridization phase of plasmon resonances and photonic lattice modes

    Science.gov (United States)

    Gutha, Rithvik R.; Sharp, Christina; Wing, Waylin J.; Sadeghi, Seyed M.

    2018-02-01

    Chemical sensing based on Localized Surface Plasmonic Resonances (LSPR) and the ultra-sharp optical features of surface lattice resonances (SLR) of arrays of metallic nanoantennas have attracted much attention. Recently we studied biosensing based on the transition between LSPR and SLR (hybridization phase), demonstrating significantly higher refractive index sensitivity than each of these resonances individually. In this contribution we study the impact of size and shape of the metallic nanoantennas on the hybridization process and the way they influence application of this process for biosensing, wherein miniscule variation of the refractive index of the environment leads to dramatic changes in the spectral properties of the arrays.

  16. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  17. Impedance Conjugate Matching of Plasmonic Nanoantenna in Optical Nanocircuits

    DEFF Research Database (Denmark)

    Sachkou, Yauhen; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    -shaped optical nanoantenna on its geometrical parameters. We show that several parameters – an arm length of the T-shaped nanoantenna, nanoantenna width and a width of the front facet of the connector – can influence on the impedance conjugate matching which gives flexibility in impedance tuning for coupling......Optical antennas are a state-of-the-art concept in modern plasmonics. Nanoantennas can be advantageously used to localize, enhance and detect radiation in nanoscale volumes. These abilities unlock an enormous potential applications ranging from optoelectronics engineering and integrated optical...... nanocircuitry to nanoscale optical microscopy and ultra-sensing. The coupling efficiency between nanoantenna and other elements in integrated optical nanocircuit strongly depends on its properties where the impedance matching plays a crucial role. We investigate the dependence of impedance of the T...

  18. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.

    Science.gov (United States)

    Savaliya, Priten B; Thomas, Arun; Dua, Rishi; Dhawan, Anuj

    2017-10-02

    We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO 2 ) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO 2 film inside or around the nanoantennas, as the VO 2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries - nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk - and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

  19. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10-11 M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  20. Infrared nanoantenna apparatus and method for the manufacture thereof

    Science.gov (United States)

    Peters, David W.; Davids, Paul; Leonhardt, Darin; Kim, Jin K.; Wendt, Joel R.; Klem, John F.

    2014-06-10

    An exemplary embodiment of the present invention is a photodetector comprising a semiconductor body, a periodically patterned metal nanoantenna disposed on a surface of the semiconductor body, and at least one electrode separate from the nanoantenna. The semiconductor body comprises an active layer in sufficient proximity to the nanoantenna for plasmonic coupling thereto. The nanoantenna is dimensioned to absorb electromagnetic radiation in at least some wavelengths not more than 12 .mu.m that are effective for plasmonic coupling into the active layer. The electrode is part of an electrode arrangement for obtaining a photovoltage or photocurrent in operation under appropriate stimulation.

  1. Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.

    Science.gov (United States)

    Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2017-06-14

    Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

  2. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    Science.gov (United States)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  3. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  4. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano

    2013-04-23

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna\\'s surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  5. Nanodiamond arrays on glass for quantification and fluorescence characterisation.

    Science.gov (United States)

    Heffernan, Ashleigh H; Greentree, Andrew D; Gibson, Brant C

    2017-08-23

    Quantifying the variation in emission properties of fluorescent nanodiamonds is important for developing their wide-ranging applicability. Directed self-assembly techniques show promise for positioning nanodiamonds precisely enabling such quantification. Here we show an approach for depositing nanodiamonds in pre-determined arrays which are used to gather statistical information about fluorescent lifetimes. The arrays were created via a layer of photoresist patterned with grids of apertures using electron beam lithography and then drop-cast with nanodiamonds. Electron microscopy revealed a 90% average deposition yield across 3,376 populated array sites, with an average of 20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy fluorescence collection, revealed a broad distribution of fluorescent lifetimes in agreement with literature. This method for statistically quantifying fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.

  6. Identification of catecholamine neurotransmitters using fluorescence sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Forough [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahmoudi, Morteza, E-mail: mahmoudi@stanford.edu [Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551 (Iran, Islamic Republic of); Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101 (United States)

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and L-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L{sup −1}. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. - Highlights: • We have proposed a fluorescence sensor array to detect catecholamine neurotransmitters. • Visual differentiation of catecholamines is provided by fluorescence array fingerprints. • Discrimination of catecholamines from each other, and from their mixture is obtained on a PCA plot. • Proposed sensor array can be used for detection of catecholamines in urine samples.

  7. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano; Bochterle, Jö rg; Toma, Andrea; Huck, Christian W.; Neubrech, Frank; Messina, Elena; Fazio, Barbara; Maragó , Onofrio M.; Di Fabrizio, Enzo M.; Lamy De La Chapelle, Marc L.; Gucciardi, Pietro Giuseppe; Pucci, Annemarie

    2013-01-01

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna's surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  8. New Frontiers in Passive and Active Nanoantennas

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2017-01-01

    The articles included in this special section focus on several recent advances in the field of passive and active nanoantennas that employ not only traditional based realizations but also their new frontiers.......The articles included in this special section focus on several recent advances in the field of passive and active nanoantennas that employ not only traditional based realizations but also their new frontiers....

  9. Bidirectional waveguide coupling with plasmonic Fano nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui; Decker, Manuel, E-mail: manuel.decker@anu.edu.au; Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-08-04

    We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.

  10. Quantum Effects in Nanoantennas and Their Applications in Tunability, Mixing, and Rectification

    KAUST Repository

    Chen, Pai-Yen

    2015-08-04

    It has been recently shown that optical nanoantennas made of single or paired metallic nanoparticles can efficiently couple the propagating light into and from deeply subwavelength volumes. The strong light-matter interaction mediated by surface plasmons in metallic nanostructures allows for localizing optical fields to a subdiffraction-limited region, thereby enhancing emission of nanoemitters and offering the flexible control of nanofocused radiation. Here we theoretically study the nanodipole antennas with submicroscopic gaps, i.e. a few nanometers, for which there exists linear and high-order nonlinear quantum conductivities due to the photon-assisted tunneling effect. Noticeably, these quantum conductivities induced at the nanogap are enhanced by several orders of magnitude, due to the strongly localized optical fields associated with the plasmonic resonance.In this talk, we will show that by tailoring the geometry of nanoantennas and the quantum well structure, a quantum nanodipole antenna with a gap size of few nanometers can induce linear, high-order quantum conductivities that are considerably enhanced by the surface plasmon resonance. We envisage here a number of intriguing nanophotonic applications of these quantum nanoantennas, including (i) modulatable and switchable radiators and metamaterials, with electronic and all-optical tuning (which is related to the two photon absorption), (ii) optical rectification for detection and energy harvesting of infrared and visible light, which are related to the relevant second-order quantum conductivity, (iii) harmonic sensing for the work function and the optical index of nanoparticle, e.g. DNA and molecules, loaded inside the nanogap, and (iv) high harmonic generation and wave mixing with nonlinear quantum conductivities.

  11. Impedance of a nanoantenna

    International Nuclear Information System (INIS)

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-01-01

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  12. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  13. Nanoantennas for surface enhanced infrared spectroscopy: Effects of interaction and higher order resonant excitations

    Directory of Open Access Journals (Sweden)

    J. Aizpurua

    2011-09-01

    Full Text Available The sensitivity in surface enhanced infrared spectroscopy (SEIRS strongly depends on where the resonant excitation is spectrally located compared to the molecular vibration that is to be enhanced. In this contribution, we study the effect of coupling in the electromagnetic properties of 2D gold nanorod arrays in the IR. We also study the SEIRS activity of higher order resonant excitations in long nanoantennas to identify polaritonic signals of a supporting SiO2 layer with nanometer thickness (3 nm on a silicon substrate.

  14. On site calibration for new fluorescence detectors of the telescope array experiment

    International Nuclear Information System (INIS)

    Tokuno, H.; Murano, Y.; Kawana, S.; Tameda, Y.; Taketa, A.; Ikeda, D.; Udo, S.; Ogio, S.; Fukushima, M.; Azuma, R.; Fukuda, M.; Inoue, N.; Kadota, K.; Kakimoto, F.; Sagawa, H.; Sakurai, N.; Shibata, T.; Takeda, M.; Tsunesada, Y.

    2009-01-01

    The Telescope Array experiment is searching for the origin of ultra-high energy cosmic rays using a ground array of particle detectors and three fluorescence telescope stations. The precise calibration of the fluorescence detectors is important for small systematic errors in shower reconstruction. This paper details the process of calibrating cameras for two of the fluorescence telescope stations. This paper provides the operational results of these camera calibrations.

  15. Laser-induced fluorescence in the detection of esophageal carcinoma

    Science.gov (United States)

    Wang, Kenneth K.; Gutta, Kumar; Laukka, Mark A.; Densmore, John

    1995-01-01

    Laser induced fluorescence (LIF) is a technique which can perform an 'optical biopsy' of gastrointestinal mucosa. LIF was performed in resected specimens using a pulsed N2-laser coupled fiberoptically to a probe. Fluorescence was measured using a 0.2 meter spectroscope with an intensified photodiode array. Measurements were made on fresh (esophagus, and adenocarcinoma. Each tissue section was examined using an optical probe consisting of a central fiber for delivering the excitation energy and a 6 fiber bundle surrounding the central fiber for detection of the fluorescence. An excitation wavelength of 337 nm was used which generated 3-ns pulses while fluorescence intensities were acquired from 300-800 nm. Spectra were obtained from each section in a standardized fashion and background spectra subtracted. Fluorescence readings were taken from 54 normal esophageal sections and 32 sections of adenocarcinoma. A fluorescence index obtained from the tumor sections was 0.68+/- 0.01 compared with 0.51+/- 0.01 for the normal sections (pesophagus with good accuracy.

  16. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  17. Optical characterization of Jerusalem cross-shaped nanoaperture antenna arrays

    Science.gov (United States)

    Turkmen, Mustafa; Aslan, Ekin; Aslan, Erdem

    2014-03-01

    Recent advances in nanofabrication and computational electromagnetic design techniques have enabled the realization of metallic nanostructures in different shapes and sizes with adjustable resonance frequencies. To date, many metamaterial designs in various geometries with the used of different materials have been presented for the applications of surface plasmons, cloaking, biosensing, and frequency selective surfaces1-5. Surface plasmons which are collective electron oscillations on metal surfaces ensure that plasmonic nanoantennas can be used in many applications like biosensing at infrared (IR) and visible regions. The nanostructure that we introduce has a unit cell that consists of Jerusalem crossshaped nanoaperture on a gold layer, which is standing on suspended SiNx, Si or glass membranes. The proposed nanoaperture antenna array has a regular and stable spectral response. In this study, we present sensitivity of the resonance characteristics of Jerusalem cross-shaped nanoaperture antenna arrays to the changes in substrate parameters and metal thickness. We demonstrate that resonance frequency values can be adjusted by changing the thicknesses and types of the dielectric substrate and the metallic layer. Numerical calculations on spectral response of the nanoantenna array are performed by using Finite Difference Time Domain (FDTD) method6. The results of the simulations specify that resonance frequencies, the reflectance and transmittance values at resonances, and the band gap vary by the change of substrate parameters and metal thicknesses. These variations is a sign of that the proposed nanoantenna can be employed for sensing applications.

  18. Nanoantennas for visible and infrared radiation

    International Nuclear Information System (INIS)

    Biagioni, Paolo; Huang, Jer-Shing; Hecht, Bert

    2012-01-01

    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-of-states engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of metallic optical antennas based on the background of both well-developed radiowave antenna engineering and plasmonics. In particular, we discuss the role of plasmonic resonances on the performance of nanoantennas and address the influence of geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.

  19. Nanoantennas for visible and infrared radiation

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, Paolo [CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Huang, Jer-Shing [Department of Chemistry and Frontier Research Center on Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hecht, Bert [Nano-Optics and Biophotonics Group, Department of Experimental Physics 5, Wilhelm Conrad Roentgen Research Center for Complex Material Systems (RCCM), Physics Institute, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)

    2012-02-15

    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-of-states engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of metallic optical antennas based on the background of both well-developed radiowave antenna engineering and plasmonics. In particular, we discuss the role of plasmonic resonances on the performance of nanoantennas and address the influence of geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.

  20. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Glückstad, Jesper

    2013-01-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding......-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.......In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding...... light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations...

  1. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  2. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  3. Reporter-Based Synthetic Genetic Array Analysis: A Functional Genomics Approach for Investigating Transcript or Protein Abundance Using Fluorescent Proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Göttert, Hendrikje; Mattiazzi Usaj, Mojca; Rosebrock, Adam P; Andrews, Brenda J

    2018-01-01

    Fluorescent reporter genes have long been used to quantify various cell features such as transcript and protein abundance. Here, we describe a method, reporter synthetic genetic array (R-SGA) analysis, which allows for the simultaneous quantification of any fluorescent protein readout in thousands of yeast strains using an automated pipeline. R-SGA combines a fluorescent reporter system with standard SGA analysis and can be used to examine any array-based strain collection available to the yeast community. This protocol describes the R-SGA methodology for screening different arrays of yeast mutants including the deletion collection, a collection of temperature-sensitive strains for the assessment of essential yeast genes and a collection of inducible overexpression strains. We also present an alternative pipeline for the analysis of R-SGA output strains using flow cytometry of cells in liquid culture. Data normalization for both pipelines is discussed.

  4. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  5. Nanoantenna couplers for metal-insulator-metal waveguide interconnects

    Science.gov (United States)

    Onbasli, M. Cengiz; Okyay, Ali K.

    2010-08-01

    State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.

  6. Demultiplexing Surface Waves With Silicon Nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Bogdanov, A.; Komissarenko, F.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin gold film with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation within extremely narrow spectral hand (! 50 nm), which is driven...... by the mutual interference of magnetic and electric dipole moments supported by the dielectric nanoantenna....

  7. Modulatable optical radiators and metasurfaces based on quantum nanoantennas

    KAUST Repository

    Chen, Pai-Yen

    2015-01-20

    We investigate the tunable and switchable optical radiators and metamaterials formed by metallic nanodipole antennas with submicroscopic gaps (1.2 nm), of which linear and third-order nonlinear quantum conductivities are observed due to the photon-assisted tunneling effect. The quantum conductivities induced at the nanogap are relevant to power dissipations, which can be enhanced by the strongly localized optical fields associated with the plasmonic resonance. We demonstrate that the scattering property of an individual quantum nanoantenna and the transparency of a metamasurface constituted of it can be tuned by electrostatically controlling the linear conductivity (electronic tuning) or by adjusting the irradiation intensity that varies the nonlinear quantum conductivity (all-optical tuning).

  8. Modulatable optical radiators and metasurfaces based on quantum nanoantennas

    KAUST Repository

    Chen, Pai-Yen; Farhat, Mohamed

    2015-01-01

    We investigate the tunable and switchable optical radiators and metamaterials formed by metallic nanodipole antennas with submicroscopic gaps (1.2 nm), of which linear and third-order nonlinear quantum conductivities are observed due to the photon-assisted tunneling effect. The quantum conductivities induced at the nanogap are relevant to power dissipations, which can be enhanced by the strongly localized optical fields associated with the plasmonic resonance. We demonstrate that the scattering property of an individual quantum nanoantenna and the transparency of a metamasurface constituted of it can be tuned by electrostatically controlling the linear conductivity (electronic tuning) or by adjusting the irradiation intensity that varies the nonlinear quantum conductivity (all-optical tuning).

  9. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.; Theodorou, I. G.; Centeno, A.; Petrov, P. K.; Alford, N. M.; Ryan, M. P.; Xie, F.

    2016-01-01

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  10. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.

    2016-12-28

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  11. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements

    International Nuclear Information System (INIS)

    Saito, Toshiro; Takahashi, Satoshi; Obara, Takayuki; Itabashi, Naoshi; Imai, Kazumichi

    2011-01-01

    We fabricated platinum bowtie nanostructure arrays producing fluorescence enhancement and evaluated their performance using two-photon photoluminescence and single-molecule fluorescence measurements. A comprehensive selection of suitable materials was explored by electromagnetic simulation and Pt was chosen as the plasmonic material for visible light excitation near 500 nm, which is preferable for multicolor dye-labeling applications like DNA sequencing. The observation of bright photoluminescence (λ = 500-600 nm) from each Pt nanostructure, induced by irradiation at 800 nm with a femtosecond laser pulse, clearly indicates that a highly enhanced local field is created near the Pt nanostructure. The attachment of a single dye molecule was attempted between the Pt triangles of each nanostructure by using selective immobilization chemistry. The fluorescence intensities of the single dye molecule localized on the nanostructures were measured. A highly enhanced fluorescence, which was increased by a factor of 30, was observed. The two-photon photoluminescence intensity and fluorescence intensity showed qualitatively consistent gap size dependence. However, the average fluorescence enhancement factor was rather repressed even in the nanostructure with the smallest gap size compared to the large growth of photoluminescence. The variation of the position of the dye molecule attached to the nanostructure may influence the wide distribution of the fluorescence enhancement factor and cause the rather small average value of the fluorescence enhancement factor.

  12. Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS

    KAUST Repository

    Kessentini, Sameh

    2014-02-13

    We focus on improving the surface-enhanced Raman scattering (SERS) of dimer nanoantenna by tailoring the shape of the coupled nanoantennas extremities from rounded to straight or slanted ones. A numerical model based on the discrete dipole approximation method-taking into account periodicity, adhesion layer, and roughness-is first validated by comparison with localized surface plasmon resonance (LSPR) and SERS experiments on round-edged dimer nanoantennas and then used to investigate the effect of the straight or slanted gap in the dimer antenna. Simulations show that both LSPR and SERS can be tuned by changing the gap slanting angle. The SERS enhancement factor can also be improved by 2 orders of magnitude compared to the one reached using a rounded gap. Therefore, the slanting angle can be used as a new control parameter in the design of SERS substrates to guarantee stronger field confinement and higher sensitivity, especially as its feasibility is demonstrated. © 2014 American Chemical Society.

  13. Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS

    KAUST Repository

    Kessentini, Sameh; Barchiesi, Dominique; D'Andrea, Cristiano; Toma, Andrea; Guillot, Nicolas; Di Fabrizio, Enzo M.; Fazio, Barbara; Maragó , Onofrio M.; Gucciardi, Pietro Giuseppe; Lamy De La Chapelle, Marc L.

    2014-01-01

    We focus on improving the surface-enhanced Raman scattering (SERS) of dimer nanoantenna by tailoring the shape of the coupled nanoantennas extremities from rounded to straight or slanted ones. A numerical model based on the discrete dipole approximation method-taking into account periodicity, adhesion layer, and roughness-is first validated by comparison with localized surface plasmon resonance (LSPR) and SERS experiments on round-edged dimer nanoantennas and then used to investigate the effect of the straight or slanted gap in the dimer antenna. Simulations show that both LSPR and SERS can be tuned by changing the gap slanting angle. The SERS enhancement factor can also be improved by 2 orders of magnitude compared to the one reached using a rounded gap. Therefore, the slanting angle can be used as a new control parameter in the design of SERS substrates to guarantee stronger field confinement and higher sensitivity, especially as its feasibility is demonstrated. © 2014 American Chemical Society.

  14. Copper spherical cavity arrays: Fluorescence enhancement in PFO films

    Energy Technology Data Exchange (ETDEWEB)

    Spada, Edna R., E-mail: edspada@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Valente, Gustavo T.; Pereira-da-Silva, Marcelo A. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Sartorelli, Maria L. [Departamento de Física, Universidade Federal de Santa Catarina, Caixa Postal 476, 88040-900, Florianópolis, SC (Brazil); Guimarães, Francisco E.G.; Faria, Roberto M. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil)

    2017-01-15

    This manuscript addresses the use of a well-ordered antidot copper nanostructure as a active substrate for surface enhancement fluorescence (SEF). The antidot array was produced by electrodeposition and nanosphere lithography and characterized by microscopy technique, its successful application as SEF-active substrates was verified using polyfluorene (PFO) as a probe layer. Atomic force microscopy (AFM) was used to evaluate the regularity of the metal surface as well PFO coated process and confocal laser fluorescence microscopy (CLSM) to determine the behavior exhibited by the fluorescent layer due to the existence of the nanostructured surface. No accumulation PFO in the cavities was detected and the more intense emission regions coincides with the position of the cavities and is at about one order of magnitude higher.

  15. Fiber optical assembly for fluorescence spectrometry

    Science.gov (United States)

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  16. Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yukun [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn; Li, Yufeng; Feng, Lungang; Ding, Wen [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Huang, Yi [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Wu, Zhaoxin; Jiao, Bo; Li, Sanfeng [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Ye [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-07-04

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio is suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.

  17. Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities

    International Nuclear Information System (INIS)

    Zhao, Yukun; Yun, Feng; Li, Yufeng; Feng, Lungang; Ding, Wen; Huang, Yi; Wu, Zhaoxin; Jiao, Bo; Li, Sanfeng; Zhang, Ye

    2016-01-01

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm"2, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio is suppressed from 43.6% to 25.9% at 250 mA/cm"2, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.

  18. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NARCIS (Netherlands)

    Vesseur, P.C.

    2011-01-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide

  19. Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas

    Science.gov (United States)

    Soavi, Giancarlo; Valle, Giuseppe Della; Biagioni, Paolo; Cattoni, Andrea; Longhi, Stefano; Cerullo, Giulio; Brida, Daniele

    Ultrafast thermalization of electrons in metal nanostructures is studied by means of pump-probe spectroscopy. We track in real-time the plasmon resonance evolution, providing a tool for understanding and controlling gold nanoantennas non-linear optical response.

  20. Comparison between fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis in translocation carriers.

    Science.gov (United States)

    Lee, Vivian C Y; Chow, Judy F C; Lau, Estella Y L; Yeung, William S B; Ho, P C; Ng, Ernest H Y

    2015-02-01

    To compare the pregnancy outcome of the fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis of translocation carriers. Historical cohort. A teaching hospital in Hong Kong. All preimplantation genetic diagnosis treatment cycles performed for translocation carriers from 2001 to 2013. Overall, 101 treatment cycles for preimplantation genetic diagnosis in translocation were included: 77 cycles for reciprocal translocation and 24 cycles for Robertsonian translocation. Fluorescent in-situ hybridisation and array comparative genomic hybridisation were used in 78 and 11 cycles, respectively. The ongoing pregnancy rate per initiated cycle after array comparative genomic hybridisation was significantly higher than that after fluorescent in-situ hybridisation in all translocation carriers (36.4% vs 9.0%; P=0.010). The miscarriage rate was comparable with both techniques. The testing method (array comparative genomic hybridisation or fluorescent in-situ hybridisation) was the only significant factor affecting the ongoing pregnancy rate after controlling for the women's age, type of translocation, and clinical information of the preimplantation genetic diagnosis cycles by logistic regression (odds ratio=1.875; P=0.023; 95% confidence interval, 1.090-3.226). This local retrospective study confirmed that comparative genomic hybridisation is associated with significantly higher pregnancy rates versus fluorescent in-situ hybridisation in translocation carriers. Array comparative genomic hybridisation should be the technique of choice in preimplantation genetic diagnosis cycles in translocation carriers.

  1. Identification of catecholamine neurotransmitters using fluorescence sensor array.

    Science.gov (United States)

    Ghasemi, Forough; Hormozi-Nezhad, M Reza; Mahmoudi, Morteza

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25-30 μmol L(-1). Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Rosema, A.; Verhoef, W.; Schroote, J.; Snel, J.F.H.

    1991-01-01

    In the Netherlands an operational field instrument for the measurement of laser induced fluorescence of vegetation (LEAF) is developed. In addition, plant physiological and remote sensing research is done to support this new remote sensing instrument. This paper presents a general introduction on the subject of laser-induced fluorescence, including the relation between chlorophyll fluorescence and photosynthesis, spectral characteristics, and previous research. Also the LEAF system is briefly described. Subsequently, the development of a leaf fluorescence model (KMF) and a canopy fluorescence model (FLSAIL) are reported. With these simulation models a sensitivity study is carried out. Fluorescence of 685 nm appears to be most suitable to obtain information on photosynthesis and stress, but is also influenced by canopy structure. Separation of these two effects is studied

  3. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer.

    Science.gov (United States)

    Ou, Yu-Chuan; Webb, Joseph A; Faley, Shannon; Shae, Daniel; Talbert, Eric M; Lin, Sharon; Cutright, Camden C; Wilson, John T; Bellan, Leon M; Bardhan, Rizia

    2016-08-31

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.

  4. SEIRS with gold nanoantennas towards health diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Neubrech, Frank; Weber, Daniel; Bochterle, Joerg; Petrich, Wolfgang; Pucci, Annemarie [Kirchhoff Institute for Physics, Heidelberg (Germany); Aizpurua, Javier [Donostia International Physics Center, Donostia-San Sebastian (Spain); Di Fabrizio, Enzo [Italian Institute of Technology, Genoa (Italy); La Chapelle, Marc Lamy de [University Paris 13, Bobigny (France)

    2011-07-01

    It is well established, that plasmonic oscillations in metal nanorods efficiently enhance near-field under resonant conditions. In the infrared, fundamental antenna-like resonance can be used for surface-enhanced infrared spectroscopic (SEIRS) studies. In the project NANOANTENNA we optimize such system for application of SEIRS to the detection of rare biomolecular disease indicators in the human blood. Accordingly, as first step, a biocompatible material combination was identified and secondly, the resonance condition is optimized.

  5. Enantioseparations of amino acids by capillary array electrophoresis with 532 nm laser induced fluorescence detection.

    Science.gov (United States)

    Liu, Kaiying; Wang, Li

    2013-06-21

    Capillary array electrophoresis (CAE) is a promising technique for multiple enantiomeric separations. Carboxytetramethylrhodamine succinimidyl ester (TAMRA SE), a rhodamine-core fluorescent probe, has rarely been applied as an original precolumn derivatization reagent for chiral amino acid (AA) analysis so far. For these purposes, high-throughput enantiomeric separations of 12 TAMRA SE-AAs by a home-made 532 nm CAE-LIF scanner are presented. The effect of cyclodextrins (CDs) and a variety of organic modifiers was quickly investigated. Baseline separations were achieved in 100 mM Tris-borate buffer (pH 10.0) containing 2 mM β-CD and 10 mM hexamethylenediamine (HDA). Multiple determination of the enantiomeric excess (ee) in non-racemic mixtures of alanine is successfully presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    International Nuclear Information System (INIS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-01-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  7. Cylindrical and Spherical Active Coated Nanoparticles as Nanoantennas: Active nanoparticles as nanoantennas

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2017-01-01

    In this article, we review the fundamental properties of several spherical and cylindrical, passive, and active coated nanoparticles (CNPs) with an emphasis on their potential for nanoantenna and nanoamplifier synthesis. For the spherical geometries, the nanoparticles are excited by an electric...... Hertzian dipole (EHD), which represents, e.g., a stimulated atom or molecule. The cylindrical nanoparticles are excited by a magnetic line source (MLS). In the active cases, gain is added to the core region of the particle. For simplicity, it is represented by a canonical, frequency-independent gain model....... We demonstrate that specific CNPs can be designed to be resonant and well matched to their respective excitation sources. With active cores, these designs can lead to extremely large total radiated powers. For both configurations, insights into the effects of the nanoparticle material composition...

  8. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect...... and electric dipole moments supported by the dielectric nanoantenna....

  9. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Chou, R. Yuanying; Lu, Guowei, E-mail: guowei.lu@pku.edu.cn; Shen, Hongming; He, Yingbo; Cheng, Yuqing [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Perriat, Pascal [MATEIS, UMR 5510 CNRS, INSA-Lyon, Université de Lyon, Villeurbanne Cedex 69621 (France); Martini, Matteo; Tillement, Olivier [ILM, UMR 5306 CNRS, Université de Lyon, Villeurbanne Cedex 69622 (France); Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-28

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO{sub 2} thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  10. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    International Nuclear Information System (INIS)

    Chou, R. Yuanying; Lu, Guowei; Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang

    2014-01-01

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO 2 thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  11. Nanoantenna enhanced terahertz spectroscopy of a monolayer of cadmium selenide quantum dots

    KAUST Repository

    Razzari, Luca; Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco De; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo M.

    2014-01-01

    Exploiting the localization and enhancement capabilities of terahertz resonant dipole nanoantennas coupled through nanogaps, we present an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  12. Apparatuses and method for converting electromagnetic radiation to direct current

    Science.gov (United States)

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  13. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  14. Reconfigurable c-Si/Au hybrid nanoantenna

    Science.gov (United States)

    Chebykin, A. V.; Zalogina, A. S.; Zuev, D. A.; Makarov, S. V.

    2017-09-01

    We have performed numerical optimization of hybrid c-Si/Au nanoantenna's geometry to improve efficiency of NV-centers radiation. We have shown that Purcell factor at the wavelength 635 nm can be as much as 4550 for point light emitter placed in the gap between gold spherical nanoparticle and truncated silicon nanocone. We have demonstrated that electric field enhancement can reach a value of 12.9 at the wavelength of NV-center pumping, 532 nm. Our results can be useful for the development of more efficient sources of single photons based on NV-centers in nanodiamonds.

  15. Design of remote laser-induced fluorescence system's acquisition circuit

    Science.gov (United States)

    Wang, Guoqing; Lou, Yue; Wang, Ran; Yan, Debao; Li, Xin; Zhao, Xin; Chen, Dong; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence system(LIfS) has been found its significant application in identifying one kind of substance from another by its properties even it's thimbleful, and becomes useful in plenty of fields. Many superior works have reported LIfS' theoretical analysis , designs and uses. However, the usual LIPS is always constructed in labs to detect matter quite closely, for the system using low-power laser as excitation source and charge coupled device (CCD) as detector. Promoting the detectivity of LIfS is of much concern to spread its application. Here, we take a high-energy narrow-pulse laser instead of commonly used continuous wave laser to operate sample, thus we can get strong fluorescent. Besides, photomultiplier (PMT) with high sensitivity is adopted in our system to detect extremely weak fluorescence after a long flight time from the sample to the detector. Another advantage in our system, as the fluorescence collected into spectroscopy, multiple wavelengths of light can be converted to the corresponding electrical signals with the linear array multichannel PMT. Therefore, at the cost of high-powered incentive and high-sensitive detector, a remote LIFS is get. In order to run this system, it is of importance to turn light signal to digital signal which can be processed by computer. The pulse width of fluorescence is deeply associated with excitation laser, at the nanosecond(ns) level, which has a high demand for acquisition circuit. We design an acquisition circuit including, I/V conversion circuit, amplifying circuit and peak-holding circuit. The simulation of circuit shows that peak-holding circuit can be one effective approach to reducing difficulty of acquisition circuit.

  16. Spatially Controlled Fabrication of Brightly Fluorescent Nanodiamond-Array with Enhanced Far-Red Si-V Luminescence

    Science.gov (United States)

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2014-01-01

    We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286

  17. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Science.gov (United States)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  18. Remote sensing vegetation status by laser-induced fluorescence

    International Nuclear Information System (INIS)

    Günther, K.P.; Dahn, H.G.; Lüdeker, W.

    1994-01-01

    In November 1989 the EUREKA project LASFLEUR (EU 380) started as an European research effort to investigate the future application of far-field laser-induced plant fluorescence for synoptic, airborne environmental monitoring of vegetation. This report includes a brief introduction in a theoretically approach for the laser-induced fluorescence signals of leaves and their spectral and radiometric behaviour. In addition, a detailed description of the design and realization of the second generation of the far-field fluorescence lidar (DLidaR-2) is given with special regard to the optical and electronical setup, followed by a short explanation of the data processing. The main objectives of the far field measurements are to demonstrate the link between laser-induced fluorescence data and plant physiology and to show the reliability of remote single shot lidar measurements. The data sets include the typical daily cycles of the fluorescence for different global irradiation. As expected from biophysical models, the remotely sensed chlorophyll fluorescence is highly correlated with the carbon fixation rate, while the fluorescence ratio F685 / F730 is only dependent on the chlorophyll concentration. Drought stress measurement of evergreen oaks Quercus pubescens confirm the findings of healthy plants with regard to the fluorescence ratio F685 / F730 while the fluorescence signals of stressed plants show a different behavior than nonstressed plants. Additionally, the corresponding physiological data (porometer and PAM data) are presented. (author)

  19. Optical antennas for far and near field metrology

    NARCIS (Netherlands)

    Silvestri, F.; Bernal Arango, F.; Vendel, K.J.A.; Gerini, G.; Bäumer, S.M.B.; Koenderink, A.F.

    2016-01-01

    This paper presents the use of optical antennas in metrology scenarios. Two design concepts are presented: dielectric nanoresonator arrays and plasmonic nanoantennas arrays. The first ones are able to focus an incident light beam at an arbitrary focal plane. The nanoantennas arrays can be employed

  20. Detection system of capillary array electrophoresis microchip based on optical fiber

    Science.gov (United States)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  1. SERS investigations and electrical recording of neuronal networks with three-dimensional plasmonic nanoantennas (Conference Presentation)

    Science.gov (United States)

    De Angelis, Francesco

    2017-06-01

    SERS investigations and electrical recording of neuronal networks with three-dimensional plasmonic nanoantennas Michele Dipalo, Valeria Caprettini, Anbrea Barbaglia, Laura Lovato, Francesco De Angelis e-mail: francesco.deangelis@iit.it Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova Biological systems are analysed mainly by optical, chemical or electrical methods. Normally each of these techniques provides only partial information about the environment, while combined investigations could reveal new phenomena occurring in complex systems such as in-vitro neuronal networks. Aiming at the merging of optical and electrical investigations of biological samples, we introduced three-dimensional plasmonic nanoantennas on CMOS-based electrical sensors [1]. The overall device is then capable of enhanced Raman Analysis of cultured cells combined with electrical recording of neuronal activity. The Raman measurements show a much higher sensitivity when performed on the tip of the nanoantenna in respect to the flat substrate [2]; this effect is a combination of the high plasmonic field enhancement and of the tight adhesion of cells on the nanoantenna tip. Furthermore, when plasmonic opto-poration is exploited [3] the 3D nanoelectrodes are able to penetrate through the cell membrane thus accessing the intracellular environment. Our latest results (unpublished) show that the technique is completely non-invasive and solves many problems related to state-of-the-art intracellular recording approaches on large neuronal networks. This research received funding from ERC-IDEAS Program: "Neuro-Plasmonics" [Grant n. 616213]. References: [1] M. Dipalo, G. C. Messina, H. Amin, R. La Rocca, V. Shalabaeva, A. Simi, A. Maccione, P. Zilio, L. Berdondini, F. De Angelis, Nanoscale 2015, 7, 3703. [2] R. La Rocca, G. C. Messina, M. Dipalo, V. Shalabaeva, F. De Angelis, Small 2015, 11, 4632. [3] G. C. Messina et al., Spatially, Temporally, and Quantitatively Controlled Delivery of

  2. Laser-induced fluorescence detection platform for point-of-care testing

    Science.gov (United States)

    Berner, Marcel; Hilbig, Urs; Schubert, Markus B.; Gauglitz, Günter

    2017-08-01

    Point-of-care testing (POCT) devices for continuous low-cost monitoring of critical patient parameters require miniaturized and integrated setups for performing quick high-sensitivity analyses, away from central clinical laboratories. This work presents a novel and promising laser-induced fluorescence platform for measurements in direct optical test formats that leads towards such powerful POCT devices based on fluorescence-labeled immunoassays. Ultimate sensitivity of thin film photodetectors, integrated with microfluidics, and a comprehensive optimization of all system components aim at low-level signal detection in the targeted biosensor application. The setup acquires fluorescence signals from the volume of a microfluidic channel. An innovative sandwiching process forms a flow channel in the microfluidic chips by embedding laser-cut double-sided adhesive tapes. The custom fit of amorphous silicon based photodiode arrays to the geometry of the flow channel enables miniaturization, fully adequate for POCT devices. A free-beam laser excitation with line focus provides excellent alignment stability, allows for easy and reliable swapping of the disposable microfluidic chips, and therewith greatly improves the ease of use of the resulting integrated device. As a proof-of-concept of this novel in-volume measurement approach, the limit of detection for the dye DY636-COOH in pure water as a model fluorophore is examined and found to be 26 nmol l-1 .

  3. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  4. Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules

    Science.gov (United States)

    Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik

    2018-02-01

    We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.

  5. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Periodic Arrays of Film-Coupled Cubic Nanoantennas as Tunable Plasmonic Metasurfaces

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that a two-dimensional periodic array of metallic nanocubes in close proximity to a metallic film acts as a metasurface with tunable absorbance. The presence of a metallic film underneath the array of plasmonic nanocubes leads to an impedance matched plasmonic metasurface enhancing up to 4 times the absorbance of incident radiation, in the spectral region below 500 nm. The absorbance spectrum is weakly dependent on the angle of incidence and state of polarization of incident light a functionality which can find application in thermo-photovoltaics. Our calculations are based on a hybrid layer-multiple-scattering (hLMS method based on a discrete-dipole approximation (DDA/T-matrix point matching method.

  7. Realistic full wave modeling of focal plane array pixels.

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Jorgenson, Roy E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Davids, Paul [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.; Peters, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.

    2017-11-01

    Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

  8. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence.

    Science.gov (United States)

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A

    2014-01-31

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.

  9. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  10. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    Science.gov (United States)

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  11. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated....... The fabrication was based on electron beam lithography and lift-off processes. The measurements were performed with scattering scanning near-field microscope and allowed the retrieval of both amplitude and phase of the propagating plasmon. The obtained values agree very well with the theoretically predicted ones...

  12. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  13. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    Science.gov (United States)

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  14. Time-resolved laser-induced fluorescence system

    Science.gov (United States)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  15. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  16. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; di Matteo, A.; Fujii, T.; Fujita, K.; Fukushima, M.; Furlich, G.; Goto, T.; Hanlon, W.; Hayashi, M.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jeong, H. M.; Jeong, S. M.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kuznetsov, M.; Kwon, Y. J.; Lee, K. H.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuyama, T.; Matthews, J. N.; Mayta, R.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, R.; Nakamura, T.; Nonaka, T.; Oda, H.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Okuda, T.; Omura, Y.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sahara, R.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Seki, T.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takagi, Y.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamamoto, M.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhezher, Y.; Zundel, Z.; Telescope Array Collaboration

    2018-05-01

    The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed {X}\\max distributions with Monte Carlo {X}\\max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data {X}\\max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic {X}\\max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.

  17. Laser induced fluorescence of some plant leaves

    International Nuclear Information System (INIS)

    Helmi, M.S.; Mohamed, M.M.; Amer, R.; Elshazly, O.; Elraey, M.

    1992-01-01

    Laser induced fluorescence (LIF) is successfully used as a technique for remote detection of spectral characteristics of some plants. A pulsed nitrogen laser at 337.1 nm is used to excite cotton, corn and rice leaves. The fluorescence spectrum is detected in the range from 340 nm to 820 nm. It is found that, these plant leaves have common fluorescence maxima at 440 nm, 685 nm and 740 nm. plant leaves are also found to be identifiable by the ratio of the fluorescence intensity at 440 nm to that at 685 nm. The present technique can be further used as a means of assessing, remotely, plant stresses. 5 fig

  18. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence

    International Nuclear Information System (INIS)

    Singh, Sonal; Thomas, Vinoy; Kharlampieva, Eugenia; Catledge, Shane A; Martyshkin, Dmitry; Kozlovskaya, Veronika

    2014-01-01

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe ‘dip-pen’ nanolithography technique using electrostatically driven transfer of nanodiamonds from ‘inked’ cantilevers to a UV-treated hydrophilic SiO 2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (∼738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications. (paper)

  19. Investigation of a slot nanoantenna in optical frequency range

    Science.gov (United States)

    Dinesh kumar, V.; Asakawa, Kiyoshi

    2009-11-01

    Following the analogy of radio frequency slot antenna and its complementary dipole, we propose the implementation of a slot nanoantenna (SNA) in the optical frequency range. Using finite-difference time-domain (FDTD) method, we investigate the electromagnetic (EM) properties of a SNA formed in a thin gold film and compare the results with the properties of a gold dipole nanoantenna (DNA) of the same dimension as the slot. It is found that the response of the SNA is very similar to the DNA, like their counterparts in the radio frequency (RF) range. The SNA can enhance the near field intensity of incident field which strongly depends on its feedgap dimension. The resonance of the SNA is influenced by its slot length; for the increasing slot length, resonant frequency decreases whereas the sharpness of resonance increases. Besides, the resonance of the SNA is found sensitive to the thickness of metal film, when the latter is smaller than the skin depth. The effect of polarization of incident field on the EM response of the SNA was examined; the field enhancement is optimum when polarization is parallel to the feedgap. Finally, we calculate the radiation patterns of the DNA and SNA and compare them with those of the RF dipole antenna. The radiation pattern of the SNA is found to be independent of its slot length when excited at resonant frequency. To the best of our knowledge, this is the first study on a slot antenna in the optical frequency.

  20. UV-transmission and fluorescence properties of polymer thin foils for use in microlens array fabrication

    International Nuclear Information System (INIS)

    Silvano, Donati; Wei, Mao-Kuo; Cai, Jhih-Hao; Lee, Jiun-Haw

    2010-01-01

    There is a report of measurements of optical transmission and fluorescence of thin foils of polyethylene terephthalate polymer, data that are unavailable in literature to the best of our knowledge. The foils are those commonly used as substrate and lens material in microlens arrays designed for use in multi-pixel image photodetectors with the purpose of fill-factor recovery. The wavelength range covered by the measurements is 200 to 800 nm and the thickness of polyethylene terephthalate foils is 40-80 μm. It was found a UV-transmission cutoff of 320 nm for polyethylene terephthalate and 330 nm for cured epoxy on polyethylene terephthalate. Fluorescence of the samples is peaked at 385 nm and the wavelength of most effective fluorescence is 340 nm

  1. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  2. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  3. The surface detector array of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  4. The surface detector array of the Telescope Array experiment

    International Nuclear Information System (INIS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  5. Direct determination of the resonance properties of metallic conical nanoantennas

    KAUST Repository

    Tuccio, Salvatore; Razzari, Luca; Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; De Angelis, Francesco De; Candeloro, Patrizio; Das, Gobind; Giugni, Andrea; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2014-01-01

    We present a simple method that is able to predict the resonant frequencies of a metallic conical nanoantenna. The alculation is based on an integral relation that takes into account the dependence of the effective refractive index of the plasmonic mode on the cone radius. Numerical simulations retrieving the near field properties of nanocones with different lengths are also performed for comparison. The fine agreement between the two approaches demonstrates the validity of our method. © 2014 Optical Society of America.

  6. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  7. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.

    Science.gov (United States)

    Marinica, D C; Lourenço-Martins, H; Aizpurua, J; Borisov, A G

    2013-01-01

    Coupling molecular excitons and localized surface plasmons in hybrid nanostructures leads to appealing, tunable optical properties. In this respect, the knowledge about the excitation dynamics of a quantum emitter close to a plasmonic nanoantenna is of importance from fundamental and practical points of view. We address here the effect of the excited electron tunneling from the emitter into a metallic nanoparticle(s) in the optical response. When close to a plasmonic nanoparticle, the excited state localized on a quantum emitter becomes short-lived because of the electronic coupling with metal conduction band states. We show that as a consequence, the characteristic features associated with the quantum emitter disappear from the optical absorption spectrum. Thus, for the hybrid nanostructure studied here and comprising quantum emitter in the narrow gap of a plasmonic dimer nanoantenna, the quantum tunneling might quench the plexcitonic states. Under certain conditions the optical response of the system approaches that of the individual plasmonic dimer. Excitation decay via resonant electron transfer can play an important role in many situations of interest such as in surface-enhanced spectroscopies, photovoltaics, catalysis, or quantum information, among others.

  8. Theranostic Gold Nanoantennas for Simultaneous Multiplexed Raman Imaging of Immunomarkers and Photothermal Therapy.

    Science.gov (United States)

    Webb, Joseph A; Ou, Yu-Chuan; Faley, Shannon; Paul, Eden P; Hittinger, Joseph P; Cutright, Camden C; Lin, Eugene C; Bellan, Leon M; Bardhan, Rizia

    2017-07-31

    In this study, we demonstrate the theranostic capability of actively targeted, site-specific multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. By utilizing multiplexed surface-enhanced Raman scattering (SERS) imaging, enabled by the narrow peak widths of Raman signatures, we simultaneously targeted immune checkpoint receptor programmed death ligand 1 (PDL1) and the epidermal growth factor receptor (EGFR) overexpressed in TNBC cells. A 1:1 mixture of MGNs functionalized with anti-PDL1 antibodies and Raman tag 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and MGNs functionalized with anti-EGFR antibodies and Raman tag para -mercaptobenzoic acid ( p MBA) were incubated with the cells. SERS imaging revealed a cellular traffic map of MGN localization by surface binding and receptor-mediated endocytosis, enabling targeted diagnosis of both biomarkers. Furthermore, cells incubated with anti-EGFR- p MBA-MGNs and illuminated with an 808 nm laser for 15 min at 4.7 W/cm 2 exhibited photothermal cell death only within the laser spot (indicated by live/dead cell fluorescence assay). Therefore, this study not only provides an optical imaging platform that can track immunomarkers with spatiotemporal control but also demonstrates an externally controlled light-triggered therapeutic approach enabling receptor-specific treatment with biocompatible theranostic nanoprobes.

  9. 5-ALA induced fluorescent image analysis of actinic keratosis

    Science.gov (United States)

    Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo

    2010-02-01

    In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.

  10. Hyperspectral solar-induced chlorophyll fluorescence of urban tree leaves: Analyses and applications

    Science.gov (United States)

    Van Wittenberghe, Shari

    Solar energy is the primary energy source for life on Earth which is converted into chemical energy through photosynthesis by plants, algae and cyanobacteria, releasing fuel for the organisms' activities. To dissipate excess of absorbed light energy, plants emit chlorophyll (Chl) fluorescence (650-850 nm) from the same location where photosynthesis takes place. Hence, it provides information on the efficiency of primary energy conversion. From this knowledge, many applications on vegetation and crop stress monitoring could be developed, a necessity for our planet under threat of a changing global climate. Even though the Chl fluorescence signal is weak against the intense reflected radiation background, methods for retrieving the solar-induced Chl fluorescence have been refined over the last years, both at leaf and airborne scale. However, a lack of studies on solar-induced Chl fluorescence gives difficulties for the interpretation of the signal. Within this thesis, hyperspectral upward and downward solar-induced Chl fluorescence is measured at leaf level. Fluorescence yield (FY) is calculated as well as different ratios characterizing the emitted Chl fluorescence shape. The research in this PhD dissertation illustrates the influence of several factors on the solar-induced Chl fluorescence signal. For instance, both the intensity of FY and its spectral shape of urban tree leaves are able to change under influence of stress factors such as traffic air pollution. This shows how solar-induced Chl fluorescence could function as an early stress indicator for vegetation. Further, it is shown that the signal contains information on the ultrastructure of the photosynthetic apparatus. Also, it is proven that the leaf anatomical structure and related light scattering properties play a role in the partitioning between upward and downward Chl fluorescence emission. All these findings indicate how the Chl fluorescence spectrum is influenced by factors which also influence

  11. Multicolor Fluorescence Writing Based on Host-Guest Interactions and Force-Induced Fluorescence-Color Memory.

    Science.gov (United States)

    Matsunaga, Yuki; Yang, Jye-Shane

    2015-06-26

    A new strategy is reported for multicolor fluorescence writing on thin solid films with mechanical forces. This concept is illustrated by the use of a green-fluorescent pentiptycene derivative 1, which forms variably colored fluorescent exciplexes: a change from yellow to red was observed with anilines, and fluorescence quenching (a change to black) occurred in the presence of benzoquinone. Mechanical forces, such as grinding and shearing, induced a crystalline-to-amorphous phase transition in both the pristine and guest-adsorbed solids that led to a change in the fluorescence color (mechanofluorochromism) and a memory of the resulting color. Fluorescence drawings of five or more colors were created on glass or paper and could be readily erased by exposure to air and dichloromethane fumes. The structural and mechanistic aspects of the observations are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  13. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.

    Science.gov (United States)

    Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P

    2011-11-21

    Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.

  14. Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.; Velazquez-Salazar, J.; José Yacaman, M.; Ponce, A. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio 78249 (United States); González, F. J. [Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210 (Mexico); Diaz de Leon, R. [Instituto Tecnológico de San Luis Potosí, San Luis Potosi 78437 (Mexico)

    2015-01-21

    In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of the radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.

  15. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    Science.gov (United States)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  16. Trigger electronics of the new Fluorescence Detectors of the Telescope Array Experiment

    International Nuclear Information System (INIS)

    Tameda, Yuichiro; Taketa, Akimichi; Smith, Jeremy D.; Tanaka, Manobu; Fukushima, Masaki; Jui, Charles C.H.; Kadota, Ken'ichi; Kakimoto, Fumio; Matsuda, Takeshi; Matthews, John N.; Ogio, Shoichi; Sagawa, Hiroyuki; Sakurai, Nobuyuki; Shibata, Tatsunobu; Takeda, Masahiro; Thomas, Stanton B.; Tokuno, Hisao; Tsunesada, Yoshiki

    2009-01-01

    The Telescope Array Project is an experiment designed to observe Ultra High Energy Cosmic Rays via a 'hybrid' detection technique utilizing both fluorescence light detectors (FDs) and scintillator surface particle detectors (SDs). We have installed three FD stations and 507 SDs in the Utah desert, and initiated observations from March 2008. The northern FD station reuses 14 telescopes from the High Resolution Fly's Eye, HiRes-I station. Each of the two southern FD stations contains 12 new telescopes utilizing new FADC electronics. Each telescope is instrumented with a camera composed of 256 PMTs. Since the detectors are composed of many PMTs and each PMT detects fluorescence photons together with the vast amount of night sky background, a sophisticated triggering system is required. In this paper, we describe the trigger electronics of these new FD stations. We also discuss performance of the FDs with this triggering system, in terms of efficiencies and apertures for various detector configurations.

  17. Impurity monitoring by laser-induced fluorescence techniques

    International Nuclear Information System (INIS)

    Gelbwachs, J.A.

    1984-01-01

    Laser-induced fluorescence spectroscopy can provide a highly sensitive and selective means of detecting atomic and ionic impurities. Because the photodetector can be physically isolated from the laser-excited region, these techniques can be applied to monitoring in hostile environments. The basic concepts behind fluorescence detection are reviewed. Saturated optical excitation is shown to maximize impurity atom emission yield while mitigating effects of laser intensity fluctuations upon absolute density calibration. Monitoring in high- and low-pressure monitoring environments is compared. Methods to improve detection sensitivity by luminescence background suppression are presented

  18. Metalenses based on the non-parallel double-slit arrays

    Science.gov (United States)

    Shao, Hongyan; Chen, Chen; Wang, Jicheng; Pan, Liang; Sang, Tian

    2017-09-01

    Metalenses based on surface plasmon polaritons have played an indispensable role in ultra-thin devices designing. The amplitude, phase and polarization of electromagnetic waves all can be controlled easily by modifying the metasurface structures. Here we propose and investigate a new type of structure with Babinet-inverted nano-antennas which can provide a series of unit-cells with phase-shifts covering 2π and ensure almost same transmittance simultaneously. As a result, the wavefront can be manipulated by arraying the units in course. Metalenses with the linear asymmetrical double slit unit-cell arrays are designed and the simulative results exhibit their perfect focusing characteristics, including single-focus lenses and multi-focus lenses. The small focus size and high numerical aperture make them stand out from the traditional counterparts in application of precision sensing devices. We expect our designs will provide new insights in the practical applications for metasurfaces in data storages, optical information processing and optical holography.

  19. Laser-induced fluorescence for medical diagnostics

    International Nuclear Information System (INIS)

    Andersson Engels, S.

    1989-12-01

    Laser-induced fluorescence as a tool for tissue diagnostics is discussed. Both spectrally and time-resolved fluorescence signals are studied to optimize the demarcation of diseased lesions from normal tissue. The presentation is focused on two fields of application: the identification of malignant tumours and atherosclerotic plaques. Tissue autofluorescence as well as fluorescence from administered drugs have been utilized in diseased tissue diagnosis. The fluorescence criterion for tissue diagnosis is, as far as possible, chosen to be independent of unknown fluorescence parameters, which are not correlated to the type of tissue investigated. Both a dependence on biological parameters, such as light absorption in blood, and instrumental characteristics, such as excitation pulse fluctuations and detection geometry, can be minimized. Several chemical compounds have been studied in animal experiments after intraveneous injection to verify their capacity as malignant tumour marking drugs under laser excitation and fluorescence detection. Another objective of these studies was to improve our understanding of the mechanism and chemistry behind the retention of the various drugs in tissue. The properties of a chemical which maximize its selective retention in tumours are discussed. In order to utilize this diagnostic modality, three different clinically adapted sets of instrumentation have been developed and are presented. Two of the systems are nitrogen-laser-based fluorosensors; one is a point-monitoring system with full spectral resolution and the other one is an imaging system with up to four simultaneously recorded images in different spectral bands. The third system is a low-cost point-monitoring mercury-lamp-based fluoroscence emission as well as reflection characteristics of tissue. (author)

  20. Development of a novel ozone- and photo-stable HyPer5 red fluorescent dye for array CGH and microarray gene expression analysis with consistent performance irrespective of environmental conditions

    Directory of Open Access Journals (Sweden)

    Kille Peter

    2008-11-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (CGH and gene expression profiling have become vital techniques for identifying molecular defects underlying genetic diseases. Regardless of the microarray platform, cyanine dyes (Cy3 and Cy5 are one of the most widely used fluorescent dye pairs for microarray analysis owing to their brightness and ease of incorporation, enabling high level of assay sensitivity. However, combining both dyes on arrays can become problematic during summer months when ozone levels rise to near 25 parts per billion (ppb. Under such conditions, Cy5 is known to rapidly degrade leading to loss of signal from either "homebrew" or commercial arrays. Cy5 can also suffer disproportionately from dye photobleaching resulting in distortion of (Cy5/Cy3 ratios used in copy number analysis. Our laboratory has been active in fluorescent dye research to find a suitable alternative to Cy5 that is stable to ozone and resistant to photo-bleaching. Here, we report on the development of such a dye, called HyPer5, and describe its' exceptional ozone and photostable properties on microarrays. Results Our results show HyPer5 signal to be stable to high ozone levels. Repeated exposure of mouse arrays hybridized with HyPer5-labeled cDNA to 300 ppb ozone at 5, 10 and 15 minute intervals resulted in no signal loss from the dye. In comparison, Cy5 arrays showed a dramatic 80% decrease in total signal during the same interval. Photobleaching experiments show HyPer5 to be resistant to light induced damage with 3- fold improvement in dye stability over Cy5. In high resolution array CGH experiments, HyPer5 is demonstrated to detect chromosomal aberrations at loci 2p21-16.3 and 15q26.3-26.2 from three patient sample using bacterial artificial chromosome (BAC arrays. The photostability of HyPer5 is further documented by repeat array scanning without loss of detection. Additionally, HyPer5 arrays are shown to preserve sensitivity and

  1. Laser induced fluorescence of dental caries

    Science.gov (United States)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  2. Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy

    International Nuclear Information System (INIS)

    Lozano, Gabriel; Barten, Tommy; Grzela, Grzegorz; Rivas, Jaime Gómez

    2014-01-01

    We demonstrate that an ordered array of aluminum nanopyramids, behaving as a phased array of optical antennae, strongly modifies light absorption in thin layers of dye molecules. Photoluminescence measurements as a function of the illumination angle are performed using a time-reversed Fourier microscope. This technique enables a variable-angle plane-wave illumination of nanostructures in a microscope-based setup. Our measurements reveal an enhancement of the light conversion in certain directions of illumination, which indicate the efficient diffractive coupling between the free space radiation and the surface plasmons. Numerical simulations confirm that surface modes supported by the periodic array enhance the intensity of the pump field in the space between particles, where the dye molecules are located, yielding a directional plasmonic-mediated enhancement of the optical absorption. This combined experimental and numerical characterization of the angular dependence of light absorption in nanostructures can be beneficial for the design and optimization of devices in which the harvesting of light plays a major role. (paper)

  3. Applying fluorescence correlation spectroscopy to investigate peptide-induced membrane disruption

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2017-01-01

    to quantify leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles, thereby providing a tool for estimating the size of peptide-induced membrane disruptions. If fluorescently labeled lipids are incorporated into the membranes of the vesicles, FCS can also be used to obtain...

  4. Laser induced fluorescence of biochemical for UV LIDAR application.

    Science.gov (United States)

    Gupta, L; Sharma, R C; Razdan, A K; Maini, A K

    2014-05-01

    Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm.

  5. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    Science.gov (United States)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect

  6. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    International Nuclear Information System (INIS)

    Woll, Arthur R; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Hallin, Emil; Finnefrock, Adam C; Gordon, Robert; Mass, Jennifer

    2014-01-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  7. Fluorescent-light-induced lethality and DNA repair in normal and xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Ritter, M.A.; Williams, J.R.

    1981-01-01

    Cell survival and induction of endonuclease-sensitive sites in DNA were measured in human fibroblast cells exposed to fluorescent light or germicidal ultraviolet light. Cells from a xeroderma pigmentosum patient were hypersensitive to cell killing by fluorescent light, although less so than for germicidal ultraviolet light. Xeroderma pigmentosum cells were deficient in the removal of fluorescent light-induced endonuclease sites that are probably pyrimidine dimers, and both the xeroderma pigmentosum and normal cells removed these sites with kinetics indistinguishable from those for ultraviolet light-induced sites. A comparison of fluorescent with ultraviolet light data demonstrates that there are markedly fewer pyrimidine dimers per lethal event for fluorescent than for ultraviolet light, suggesting a major role for non-dimer damage in fluorescent lethality. (Auth.)

  8. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.

    Science.gov (United States)

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Many fluorescent proteins (FPs) exhibit fluorescence quenching at a low pH. This pH-induced non-fluorescent state of an FP serves as a useful indicator of the cellular pH. ZsYellow is widely used as an optical marker in molecular biology, but its pH-induced non-fluorescent state has not been characterized. Here, we report the pH-dependent spectral properties of ZsYellow, which exhibited the pH-induced non-fluorescence state at a pH below 4.0. We determined the crystal structures of ZsYellow at pH 3.5 (non-fluorescence state) and 8.0 (fluorescence state), which revealed the cis-configuration of the chromophore without pH-induced isomerization. In the non-fluorescence state, Arg95, which is involved in stabilization of the exited state of the chromophore, was found to more loosely interact with the carbonyl oxygen atom of the chromophore when compared to the interaction at pH 8.0. In the fluorescence state, Glu221, which is involved in the hydrogen bonding network around the chromophore, stably interacted with Gln42 and His202. By contrast, in the non-fluorescence state, the protonated conserved Glu221 residue exhibited a large conformational change and was separated from His202 by 5.46 Å, resulting in breakdown of the hydrogen bond network. Our results provide insight into the critical role of the conserved Glu221 residue for generating the pH-induced non-fluorescent state. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    Science.gov (United States)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  10. Design and analyses of an ultra-thin flat lens for wave front shaping in the visible

    International Nuclear Information System (INIS)

    Huang, Kai; Li, Yiyan; Tian, Xuelong; Zeng, Dajun; Gao, Xueli

    2015-01-01

    An ultra-thin flat lens is proposed for focusing circularly polarized light in the visible range. Anisotropic C-shaped nanoantennas with phase discontinuities are used to form the metasurface of the lens. The phase response of the C-shaped nanoantennas can be manipulated by simply rotating the angle of the unit nanoantenna. A 600 nm incident circularly polarized light is focused by the proposed techniques. Good agreements are observed by using our MoM and a commercial FDTD software package. The computation time spent by using MoM is approximately 10–100 times smaller than using FDTD. All the results show the proposed nanoantenna array has a great potential for nanoscale optical microscopy, solar cell energy conversion enhancement, as well as integrated optical circuits. - Highlights: • Successfully focusing a 600 nm light using a circularly C-shaped nanoantenna array. • The computation time spent by using MoM is approximately 10–100 times smaller than FDTD. • A good agreement is observed using our MoM to the classic FDTD method.

  11. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays.

    Science.gov (United States)

    Yifat, Yuval; Eitan, Michal; Iluz, Zeev; Hanein, Yael; Boag, Amir; Scheuer, Jacob

    2014-05-14

    We demonstrate wide-angle, broadband, and efficient reflection holography by utilizing coupled dipole-patch nanoantenna cells to impose an arbitrary phase profile on the reflected light. High-fidelity images were projected at angles of 45 and 20° with respect to the impinging light with efficiencies ranging between 40-50% over an optical bandwidth exceeding 180 nm. Excellent agreement with the theoretical predictions was found at a wide spectral range. The demonstration of such reflectarrays opens new avenues toward expanding the limits of large-angle holography.

  12. Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed

  13. Laser-induced fluorescence of oral mucosa cancer

    Science.gov (United States)

    Jaliashvili, Z. V.; Medoidze, T. D.; Melikishvili, Z. G.; Gogilashvili, K. T.

    2017-10-01

    The laser-induced fluorescence (LIF) spectra have been measured for cancer-infused and control mice mucosa tissues. It was established that there is quite a difference between their LIF spectral shapes. These spectral shapes are used to express the diagnostic of different states of tissues: from normal to cancer.

  14. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP...

  15. Recognition of edible oil by using BP neural network and laser induced fluorescence spectrum

    Science.gov (United States)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Guo, Pan; Chen, He; Zhang, Hong-yan; Liu, Xiao-hua; Wang, Yuan; Bu, Zhi-chao

    2013-09-01

    In order to accomplish recognition of the different edible oil we set up a laser induced fluorescence spectrum system in the laboratory based on Laser induced fluorescence spectrum technology, and then collect the fluorescence spectrum of different edible oil by using that system. Based on this, we set up a fluorescence spectrum database of different cooking oil. It is clear that there are three main peak position of different edible oil from fluorescence spectrum chart. Although the peak positions of all cooking oil were almost the same, the relative intensity of different edible oils was totally different. So it could easily accomplish that oil recognition could take advantage of the difference of relative intensity. Feature invariants were extracted from the spectrum data, which were chosen from the fluorescence spectrum database randomly, before distinguishing different cooking oil. Then back propagation (BP) neural network was established and trained by the chosen data from the spectrum database. On that basis real experiment data was identified by BP neural network. It was found that the overall recognition rate could reach as high as 83.2%. Experiments showed that the laser induced fluorescence spectrum of different cooking oil was very different from each other, which could be used to accomplish the oil recognition. Laser induced fluorescence spectrum technology, combined BP neural network,was fast, high sensitivity, non-contact, and high recognition rate. It could become a new technique to accomplish the edible oil recognition and quality detection.

  16. Beta-induced fluorescence detection in liquid chromatography

    International Nuclear Information System (INIS)

    Malcolme-Lawes, D.J.; Massey, S.; Warwick, P.

    1981-01-01

    A theoretical analysis of beta-induced fluorescence is used to determine the factors which influence the sensitivity of the technique as applied to liquid chromatography. Equations are presented for detector response and for signal-to-noise ratios and the theoretical response for a typical detector is compared with experimentally determined values. (author)

  17. Characterisation of estuarine intertidal macroalgae by laser-induced fluorescence

    DEFF Research Database (Denmark)

    Gameiro, Carla; Utkin, Andrei B.; Sousa Dias Cartaxana, Paulo Jorge

    2015-01-01

    The article reports the application of laser-induced fluorescence (LIF) for the assessment of macroalgae communities of estuarine intertidal areas. The method was applied for the characterisation of fifteen intertidal macroalgae species of the Tagus estuary, Portugal, and adjacent coastal area...... spectra were determined by differences in the main fluorescing pigments: phycoerythrin, phycocyanin and chlorophyll a (Chl a). In the green and brown macroalgae groups, the relative significance of the two emission maxima seems to be related to the thickness of the photosynthetic layer. In thick...... macroalgae, like Codium tomentosum or Fucus vesiculosus, the contribution of the far-red emission fluorescence peak was more significant, most probably due to re-absorption of the emitted red Chl a fluorescence within the dense photosynthetic layer. Similarly, an increase in the number of layers of the thin...

  18. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single-shot, volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...acquisition; (110.6955) Tomographic imaging ; (110.6960) Tomography; (280.2490) Flow diagnostics; (300.2530) Fluorescence , laser-induced...84 (1983). 2. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence ,” Exp

  19. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    Science.gov (United States)

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  20. Laser induced fluorescence spectroscopy for FTU

    International Nuclear Information System (INIS)

    Hughes, T.P.

    1995-07-01

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  1. Methotrexate-Induced Accumulation of Fluorescent Annexin V in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Andreas Wunder

    2005-01-01

    Full Text Available We examined the accumulation of Cy5.5-labeled annexin V in the paws of mice with and without collagen-induced arthritis, with and without methotrexate (MTX treatment, by near-infrared fluorescence imaging. Fluorescence reflectance imaging (FRI of paws was performed 48 hr after MTX injection and at 10 min and 3 hr after the injection of Cy5.5-annexin V (1 nmol dye per mouse. With arthritic paws, MTX treatment caused a 7-fold increase in fluorescence intensity compared with the paws of untreated mice and a 4-fold increase compared to nonarthritic paws of MTX-treated mice (p < .001 each. Tissue samples of paws were examined histologically for Cy5.5 fluorescence and by TUNEL staining for apoptosis. Cy5.5-annexin V was seen in the hyperplastic synovia of MTX-treated mice, and TUNEL staining for apoptosis showed apoptotic cells in the hyperplastic synovia. Monitoring the uptake of Cy5.5-annexin V in arthritic paws by FRI provided a method of assessing a response to MTX, a response that was readily quantitated with simple instrumentation and that occurred before conventional measurements of treatment response.

  2. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy

    International Nuclear Information System (INIS)

    Anglos, D.; Nevin, A.

    2006-01-01

    Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to auto fluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.

  3. Studying electron-PAG interactions using electron-induced fluorescence

    Science.gov (United States)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ostrander, Jonathan; Schad, Jonathon; Rebeyev, Eliran; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Gregory; Brainard, Robert L.

    2016-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Typical EUV resists are organic-based and chemically amplified using photoacid generators (PAGs). Upon exposure, PAGs produce acids which catalyze reactions that result in changes in solubility. In EUV lithography, photo- and secondary electrons (energies of 10- 80 eV) play a large role in PAG acid-production. Several mechanisms for electron-PAG interactions (e.g. electron trapping, and hole-initiated chemistry) have been proposed. The aim of this study is to explore another mechanism - internal excitation - in which a bound PAG electron can be excited by receiving energy from another energetic electron, causing a reaction that produces acid. This paper explores the mechanism of internal excitation through the analogous process of electron-induced fluorescence, in which an electron loses energy by transferring that energy to a molecule and that molecule emits a photon rather than decomposing. We will show and quantify electron-induced fluorescence of several fluorophores in polymer films to mimic resist materials, and use this information to refine our proposed mechanism. Relationships between the molecular structure of fluorophores and fluorescent quantum yield may aid in the development of novel PAGs for EUV lithography.

  4. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  5. Development of Laser-Induced Fluorescence Diagnostic for the Paul Trap Simulator Experiment

    CERN Document Server

    Chung, Moses; Efthimion, Philip; Gilson, Erik P; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. For the in-situ measurement of the transverse ion density profile in the PTSX device, which is essential for the study of beam mismatch and halo particle production, a laser-induced fluorescence diagnostic system is being developed. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. The installation of the barium ion source and the characterization of the tunable dye laser system are discussed. The design of the collection optics with an intensified CCD camera system is also discussed. Finally, initial test results using the laser-induced fluorescence diagnostic will be presented.

  6. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    NARCIS (Netherlands)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, G.; Ortolani, Michele

    2016-01-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film

  7. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  8. Fluorescence and Four-Wave Mixing in Electromagnetically Induced Transparency Windows

    International Nuclear Information System (INIS)

    Wang Zhi-Guo; Li Cheng; Zhang Zhao-Yang; Che Jun-Ling; Qin Meng-Zhe; He Jia-Nan; Zhang Yan-Peng

    2013-01-01

    We simultaneously compare the probe transmission, Four-Wave Mixing (FWM) and fluorescence signals with dressing effects in a four-level atomic system. The variation rules of three types of signals are exhibited by changing the frequency detuning and power of incident laser beams. The interplay between two ladder subsystems is investigated in the Y-type atomic system. In particular, the fluorescence signal with ultra-narrow linewidth is obtained due to being sheared twice by the electromagnetically induced transparency window. Such fluorescence with very high coherence and monochromaticity can be used for the quantum correlation and narrow linewidth laser

  9. Visualization of Two-Phase Fluid Distribution Using Laser Induced Exciplex Fluorescence

    Science.gov (United States)

    Kim, J. U.; Darrow, J.; Schock, H.; Golding, B.; Nocera, D.; Keller, P.

    1998-03-01

    Laser-induced exciplex (excited state complex) fluorescence has been used to generate two-dimensional images of dispersed liquid and vapor phases with spectrally resolved two-color emissions. In this method, the vapor phase is tagged by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. A new exciplex visualization system consisting of DMA and 1,4,6-TMN in an isooctane solvent was developed.(J.U. Kim et al., Chem. Phys. Lett. 267, 323-328 (1997)) The direct ca

  10. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  11. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  12. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  13. Kr II laser-induced fluorescence for measuring plasma acceleration.

    Science.gov (United States)

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  14. [Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].

    Science.gov (United States)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei

    2013-09-01

    In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.

  15. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, Jeffrey W., E-mail: jeff.guthrie@emich.edu; Limmer, Robert T.; Brooks, Eric A.; Wisnewski, Chelsea C.; Loggins-Davis, Nnekia D.; Bouzid, Abderraouf

    2015-01-01

    Highlights: • CE–LIF was developed for simultaneous detection of UV-induced DNA photoproducts. • Fluorescent quantum dot reporters enabled detection of small amounts of photoproducts. • Photoproducts were detected after 65 J m{sup −2} of fluence from a UVB lamp in ∼6 ng of DNA. • Natural sunlight induced cyclobutane pyrimidine dimers after only 15 min of exposure. - Abstract: An immunoassay based on CE–LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL{sup −1}) of DNA under a low UVB fluence of 65 J m{sup −2} for CPDs or 195 J m{sup −2} for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight.

  16. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence

    International Nuclear Information System (INIS)

    Guthrie, Jeffrey W.; Limmer, Robert T.; Brooks, Eric A.; Wisnewski, Chelsea C.; Loggins-Davis, Nnekia D.; Bouzid, Abderraouf

    2015-01-01

    Highlights: • CE–LIF was developed for simultaneous detection of UV-induced DNA photoproducts. • Fluorescent quantum dot reporters enabled detection of small amounts of photoproducts. • Photoproducts were detected after 65 J m −2 of fluence from a UVB lamp in ∼6 ng of DNA. • Natural sunlight induced cyclobutane pyrimidine dimers after only 15 min of exposure. - Abstract: An immunoassay based on CE–LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL −1 ) of DNA under a low UVB fluence of 65 J m −2 for CPDs or 195 J m −2 for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight

  17. Development of laser-induced fluorescence detection to assay DNA damage

    International Nuclear Information System (INIS)

    Sharma, M.; Freund, H.G.

    1991-01-01

    A precolumn derivation method has been developed for high performance liquid chromatographic (HPLC) analysis of DNA damage using fluorescence detection. The modified nucleotide, having excised enzymatically from the exposed DNA, is enriched from the normal nucleotides and labeled with a fluorescent reagent. The labeling procedure involves phosphoramidation of the nucleotide with ethylenediamine (EDA) followed by conjugation of the free amino end of the phosphoramidate with 5-dimethylaminonaphthalene 1-sulfonyl chloride, commonly known as Dansyl chloride. The dansylated nucleotide can be analyzed with a sub-picomole limit of detection (LOD) by conventional HPLC using a conventional fluorescence detector. By combining microbore HPLC with laser-induced fluorescence (LIF) detection, the authors present the development of an analytical system that has sub-femtomole LOD for real-time analysis of the dansylated nucleotide. In this paper the application of the developed system in fluorescence postlabeling assay of a small alkyl-modified nucleotide (5-methyl CMP) in calf-thymus DNA is discussed

  18. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  19. Laser-Induced Fluorescence Measurements within a Laboratory Hall Thruster (Postprint)

    National Research Council Canada - National Science Library

    Hargus, Jr., W. A; Cappelli, M. A

    1999-01-01

    In this paper, we describe the results of a study of laser induced fluorescence velocimetry of ionic xenon in the plume and interior acceleration channel of a laboratory Hall type thruster operating...

  20. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  1. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    International Nuclear Information System (INIS)

    Chin, William WL; Thong, Patricia SP; Bhuvaneswari, Ramaswamy; Soo, Khee Chee; Heng, Paul WS; Olivo, Malini

    2009-01-01

    Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer

  2. Laser induced fluorescence technique for detecting organic matter in East China Sea

    Science.gov (United States)

    Chen, Peng; Wang, Tianyu; Pan, Delu; Huang, Haiqing

    2017-10-01

    A laser induced fluorescence (LIF) technique for fast diagnosing chromophoric dissolved organic matter (CDOM) in water is discussed. We have developed a new field-portable laser fluorometer for rapid fluorescence measurements. In addtion, the fluorescence spectral characteristics of fluorescent constituents (e.g., CDOM, chlorophyll-a) were analyzed with a spectral deconvolution method of bi-Gaussian peak function. In situ measurements by the LIF technique compared well with values measured by conventional spectrophotometer method in laboratory. A significant correlation (R2 = 0.93) was observed between fluorescence by the technique and absorption by laboratory spectrophotometer. Influence of temperature variation on LIF measurement was investigated in lab and a temperature coefficient was deduced for fluorescence correction. Distributions of CDOM fluorescence measured using this technique in the East China Sea coast were presented. The in situ result demonstrated the utility of the LIF technique for rapid detecting dissolved organic matter.

  3. Led induced chlorophyll fluorescence transient imager for measurements of health and stress status of whole plants

    NARCIS (Netherlands)

    Jalink, H.; Schoor, van der R.

    2011-01-01

    We have developed LED (light emitting diode) induced fluorescence transient imaging instrumentation to image the plant health/stress status by calculation of two images: Fv/Fm (variable fluorescence over saturation level of fluorescence) and the time response, tTR, of the fluorescence time curve.

  4. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Science.gov (United States)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  5. Fluorescence-based bioassays for the detection and evaluation of food materials.

    Science.gov (United States)

    Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti

    2015-10-13

    We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.

  6. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials

    Directory of Open Access Journals (Sweden)

    Kentaro Nishi

    2015-10-01

    Full Text Available We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.

  7. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Hubschmid, W; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  8. Solvent induced fluorescence enhancement of graphene oxide studied by ultrafast spectroscopy

    Science.gov (United States)

    Zhao, Litao; Chen, Jinquan; He, Xiaoxiao; Yu, Xiantong; Yan, Shujun; Zhang, Sanjun; Pan, Haifeng; Xu, Jianhua

    2018-05-01

    Femtosecond transient absorption (TA) spectroscopy combined with picosecond time resolved fluorescence (TRF) were used to reveal the fluorescence kinetics of graphene oxide (GO) in water, ethanol and water-ethanol mixtures. Size-independent fluorescence of GO were observed in water, and pH-dependent fluorescence spectra could be fitted well by a triple emission relaxation with peaks around 440 nm, 500 nm, and 590 nm respectively. The results indicate that polycyclic aromatic hydrocarbons (PAHs) linked by oxygen-containing functional groups dominate GO's fluorescence emission. GO's fluorescence quantum yield was measured to be 2.8% in ethanol but 1.2% in water. The three decay components fluorescence decay, as well as the transient absorption dynamics with an offset, confirmed this solvent induced fluorescence enhancement. GO's Raman spectral signals showed that GO in ethanol has a smaller average size of PAHs than that of GO in water. Therefore, besides other enhancement effects reported in literatures, we proposed that solvents could also change the size of PAHs, resulting in a photoluminescence enhancement. Our experimental data demonstrates that GO's quantum yield could be up to 2.8% in water and 8.4% in ethanol and this observation may help ones to improve GO's photoluminescence efficiency as well as its applications in solution.

  9. Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation

    Science.gov (United States)

    van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.

    2014-05-01

    Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references

  10. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  11. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang

    2013-05-23

    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR "biological window" as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  12. Development of a new light collection and detection system optimized for ion beam induced fluorescence microscopy

    International Nuclear Information System (INIS)

    Vanga, Sudheer Kumar; Mi, Zhaohong; Koh, Long Cheng; Tao, Ye; Bettiol, Andrew A.; Watt, Frank

    2015-01-01

    Ion beam induced fluorescence microscopy is a new imaging technique which has the potential to achieve sub-50 nm spatial resolution fluorescence images. Currently the resolution of the technique has been limited to around 150 nm mainly because of inefficient collection and detection of emitted photons from the sample. To overcome this limitation, a new light collection system based on a custom made parabolic mirror is employed to enhance the fluorescence collection. The custom made mirror is designed so as to obtain both structural (scanning transmission ion microscopy) and ion beam induced fluorescence imaging simultaneously. The design and characterization of the parabolic mirror is discussed in detail

  13. Laser-induced fluorescences due to quadrupole moment transition and Stark effect in a He glow discharge

    International Nuclear Information System (INIS)

    Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.

    1993-01-01

    The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)

  14. Detection of vegetation stress from laser-induced fluorescence signatures

    International Nuclear Information System (INIS)

    Subhash, N.

    1995-01-01

    The in vivo laser-induced fluorescence (LIF) signatures of UV irradiated Salvia splendens plants were measured using an Optical Multichannel Analyser (OMA) system with Nitrogen laser excitation. The LIF spectra which consisted of the blue-green and the red chlorophyll bands were analysed with a non-linear interactive procedure using Gaussian spectral functions. The fluorescence intensity ratios of the various bands obtained from curve fitted parameters were found to be more sensitive to changes in the photosynthetic activity of the plant. The variation in the intensity ratio for the chlorophyll bands for nutrient stressed sunflower, cotton and groundnut plants as well as the nutrient and water stressed rice plants are also presented. It is observed that vegetation stress not only changes the fluorescence intensity ratios and the vitality index of the plant but also changes the peak position of the emission bands, in some cases. It is also seen that analysis of the fluorescence spectra in vegetation remote sensing applications would require a deconvolution procedure to evaluate the exact contribution of each band in the total spectra. (author). 23 refs, 8 figs, 5 tabs

  15. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  16. Characterization of SPAD Array for Multifocal High-Content Screening Applications

    Directory of Open Access Journals (Sweden)

    Anthony Tsikouras

    2016-10-01

    Full Text Available Current instruments used to detect specific protein-protein interactions in live cells for applications in high-content screening (HCS are limited by the time required to measure the lifetime. Here, a 32 × 1 single-photon avalanche diode (SPAD array was explored as a detector for fluorescence lifetime imaging (FLIM in HCS. Device parameters and characterization results were interpreted in the context of the application to determine if the SPAD array could satisfy the requirements of HCS-FLIM. Fluorescence lifetime measurements were performed using a known fluorescence standard; and the recovered fluorescence lifetime matched literature reported values. The design of a theoretical 32 × 32 SPAD array was also considered as a detector for a multi-point confocal scanning microscope.

  17. Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay

    Science.gov (United States)

    He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong

    2017-09-01

    A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.

  18. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant.

    Science.gov (United States)

    Rascher, U; Alonso, L; Burkart, A; Cilia, C; Cogliati, S; Colombo, R; Damm, A; Drusch, M; Guanter, L; Hanus, J; Hyvärinen, T; Julitta, T; Jussila, J; Kataja, K; Kokkalis, P; Kraft, S; Kraska, T; Matveeva, M; Moreno, J; Muller, O; Panigada, C; Pikl, M; Pinto, F; Prey, L; Pude, R; Rossini, M; Schickling, A; Schurr, U; Schüttemeyer, D; Verrelst, J; Zemek, F

    2015-12-01

    Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.

  19. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  20. Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light

    KAUST Repository

    Farhat, Mohamed

    2015-09-25

    The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule–silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the \\'Internet of Nano-Things\\'.

  1. Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light

    KAUST Repository

    Farhat, Mohamed; Cheng, Mark M C; Le, Khai Q; Chen, Pai-Yen

    2015-01-01

    The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule–silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.

  2. Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light

    International Nuclear Information System (INIS)

    Farhat, Mohamed; Cheng, Mark M C; Chen, Pai-Yen; Le, Khai Q

    2015-01-01

    The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule–silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the ‘Internet of Nano-Things’. (paper)

  3. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2015-06-01

    Full Text Available An alternative current (AC dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D close-packed arrays. An electric field of 100 V·cm−1, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs, and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10−5 M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.

  4. Controllable ultra-narrow fluorescence and six-wave mixing under double electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Wang, Z G; Zhang, Z Y; Che, J L; Zhang, Y Z; Li, C B; Zheng, H B; Zhang, Y P

    2013-01-01

    We report the first observation of six-wave mixing (SWM) and fluorescence signals in an electromagnetically induced transparency (EIT) window. Several remarkable advantages are described. First, multiple bright and dark states are simultaneously observed due to enhancement or suppression of the SWM signal. Second, ultra-narrow fluorescence, much narrower than the EIT window, is experimentally obtained. Third, the ultra-narrow fluorescence can also generate Autler–Townes splitting on scanning the coupling beam. Fourth, a double-peak EIT window is obtained using the nest-dressing scheme. Such studies concerning SWM and fluorescence have applications in optical switching, multi-channel communication and narrowband and long-range quantum communication. (letter)

  5. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  6. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  7. Experimental Research of Reliability of Plant Stress State Detection by Laser-Induced Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yury Fedotov

    2016-01-01

    Full Text Available Experimental laboratory investigations of the laser-induced fluorescence spectra of watercress and lawn grass were conducted. The fluorescence spectra were excited by YAG:Nd laser emitting at 532 nm. It was established that the influence of stress caused by mechanical damage, overwatering, and soil pollution is manifested in changes of the spectra shapes. The mean values and confidence intervals for the ratio of two fluorescence maxima near 685 and 740 nm were estimated. It is presented that the fluorescence ratio could be considered a reliable characteristic of plant stress state.

  8. Screening for Selective Protein Inhibitors by Using the IANUS Peptide Array.

    Science.gov (United States)

    Erdmann, Frank; Prell, Erik; Jahreis, Günther; Fischer, Gunter; Malešević, Miroslav

    2018-04-16

    Finding new road blacks: A peptidic inhibitor of calcineurin (CaN)-mediated nuclear factor of activated T cells (NFAT) dephosphorylation, which is developed through a template-assisted IANUS (Induced orgANisation of strUcture by matrix-assisted togethernesS) peptide array, is cell permeable and able to block the translocation of green fluorescent protein-NFAT fusion protein (GFP-NFAT) into the nucleus after stimulation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    Science.gov (United States)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  10. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  11. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  12. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  13. In-vivo cancer diagnosis of the esophagus using laser-induced fluorescence

    Science.gov (United States)

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.; Buckley, Paul F., II; Edwards, Donna H.

    1995-04-01

    Laser-induced fluorescence (LIF) was used for direct in-vivo cancer diagnosis of the esophagus without requiring biopsy. The methodology was applied to differentiate normal and malignant tumors of the esophagus. Endogenous fluorescence of normal and malignant tissues were measured directly using a fiberoptic probe inserted through an endoscope. The measurements were performed in vivo during routine endoscopy. Detection of the fluorescence signal from the tissue was performed using laser excitation. The results of this LIF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal and malignant tumors for the samples investigated. The LIF procedure could lead to the development of a rapid and cost-effective technique for cancer diagnosis.

  14. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  15. Experimentally studied laser fluorescence method for remote sensing of plant stress situation induced by improper plants watering

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2014-01-01

    Full Text Available Stressful situations of plants can be caused by a lack of nutrients; mechanical damages; diseases; low or high temperatures; lack of illumination; insufficient or excess humidity of the soil; soil salinization; soil pollution by oil products or heavy metals; the increased acidity of the soil; use of pesticides, herbicides, insecticides, etc.At early stages it is often difficult to detect seemingly that the plants are in stressful situations caused by adverse external factors. However, the fluorescent analysis potentially allows detection of the stressful situations of plants by deformation of laser-induced fluorescence spectra. The paper conducts experimental investigations to learn the capabilities of the laser fluorescent method to monitor plant situations at 532nm wavelength of fluorescence excitation in the stressful situations induced by improper watering (at excess of moisture in the soil and at a lack of moisture.Researches of fluorescence spectra have been conducted using a created laboratory installation. As a source to excite fluorescence radiation the second harmonica of YAG:Nd laser is used. The subsystem to record fluorescence radiation is designed using a polychromator and a highly sensitive matrix detector with the amplifier of brightness.Experimental investigations have been conducted for fast-growing and unpretentious species of plants, namely different sorts of salad.Experimental studies of laser-induced fluorescence spectra of plants for 532nm excitement wavelength show that the impact of stressful factors on a plant due to the improper watering, significantly distorts a fluorescence spectrum of plants. Influence of a stressful factor can be shown as a changing profile of a fluorescence spectrum (an identifying factor, here, is a relationship of fluorescence intensities at two wavelengths, namely 685 nm and 740 nm or (and as a changing level of fluorescence that can be the basis for the laser method for monitoring the plant

  16. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  17. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Winn, J.S.

    1980-10-01

    Laser induced fluoresence (LIF) spectra (laser excitation spectra) are conceptually among the most simple spectra to obtain. One need only confine a gaseous sample in a suitable container, direct a laser along one axis of the container, and monitor the sample's fluorescence at a right angle to the laser beam. As the laser wavelength is changed, the changes in fluorescence intensity map the absorption spectrum of the sample. (More precisely, only absorption to states which have a significant radiative decay component are monitored.) For ion spectroscopy, one could benefit in many ways by such an experiment. Most optical ion spectra have been observed by emission techniques, and, aside from the problems of spectral analysis, discharge emission methods often produce the spectra of many species, some of which may be unknown or uncertain. Implicit in the description of LIF given above is certainty as to the chemical identity of the carrier of the spectrum. This article describes a method by which the simplifying aspects of LIF can be extended to molecular ions

  18. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  19. Responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME)

    Science.gov (United States)

    Gu, L.

    2017-12-01

    In this study, we examine responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME). FAME was developed to automatically and continuously measure chlorophyll fluorescence (F) of a leaf, plant or canopy in both laboratory and field environments, excited by either artificial light source or sunlight. FAME is controlled by a datalogger and allows simultaneous measurements of environmental variables complementary to the F signals. A built-in communication system allows FAME to be remotely monitored and data-downloaded. Radiance and irradiance calibrations can be done online. FAME has been applied in a variety of environments, allowing an investigation of biological and environmental controls on F emission.

  20. Robust, directed assembly of fluorescent nanodiamonds.

    Science.gov (United States)

    Kianinia, Mehran; Shimoni, Olga; Bendavid, Avi; Schell, Andreas W; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J

    2016-10-27

    Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.

  1. Electron beam induced fluorescence measurements of the degree of hydrogen dissociation in hydrogen plasmas

    NARCIS (Netherlands)

    Smit, C.; Brussaard, G.J.H.; de Beer, E.C.M.; Schram, D.C.; Sanden, van de M.C.M.

    2004-01-01

    The degree of dissociation of hydrogen in a hydrogen plasma has been measured using electron beam induced fluorescence. A 20 kV, 1 mA electron beam excites both the ground state H atom and H2 molecule into atomic hydrogen in an excited state. From the resulting fluorescence the degree of

  2. First improvements in the detection and quantification of label-free nucleic acids by laser-induced breakdown spectroscopy: Application to the deoxyribonucleic acid micro-array technology

    International Nuclear Information System (INIS)

    Le Meur, Julien; Menut, Denis; Wodling, Pascal; Salmon, Laurent; Thro, Pierre-Yves; Chevillard, Sylvie; Ugolin, Nicolas

    2008-01-01

    The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 10 5 nucleotides/μm 2 (i.e. 2 x 10 13 phosphorus atoms/cm 2 ). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling

  3. First improvements in the detection and quantification of label-free nucleic acids by laser-induced breakdown spectroscopy: Application to the deoxyribonucleic acid micro-array technology

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, Julien [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France); Menut, Denis [Laboratoire de Reactivite des Surfaces et des Interfaces, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Wodling, Pascal [Laboratoire d' Interaction Laser-Matiere, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Salmon, Laurent [Laboratoire de Reactivite des Surfaces et des Interfaces, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Thro, Pierre-Yves [Laboratoire d' Interaction Laser-Matiere, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Chevillard, Sylvie [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France); Ugolin, Nicolas [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France)], E-mail: nugolin@cea.fr

    2008-04-15

    The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 10{sup 5} nucleotides/{mu}m{sup 2} (i.e. 2 x 10{sup 13} phosphorus atoms/cm{sup 2}). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling.

  4. Fluorescent zinc sensor with minimized proton-induced interferences: photophysical mechanism for fluorescence turn-on response and detection of endogenous free zinc ions.

    Science.gov (United States)

    Kwon, Ji Eon; Lee, Sumin; You, Youngmin; Baek, Kyung-Hwa; Ohkubo, Kei; Cho, Jaeheung; Fukuzumi, Shunichi; Shin, Injae; Park, Soo Young; Nam, Wonwoo

    2012-08-20

    A new fluorescent zinc sensor (HNBO-DPA) consisting of 2-(2'-hydroxy-3'-naphthyl)benzoxazole (HNBO) chromophore and a di(2-picolyl)amine (DPA) metal chelator has been prepared and examined for zinc bioimaging. The probe exhibits zinc-induced fluorescence turn-on without any spectral shifts. Its crystal structure reveals that HNBO-DPA binds a zinc ion in a pentacoordinative fashion through the DPA and HNBO moieties. Steady-state photophysical studies establish zinc-induced deprotonation of the HNBO group. Nanosecond and femtosecond laser flash photolysis and electrochemical measurements provide evidence for zinc-induced modulation of photoinduced electron transfer (PeT) from DPA to HNBO. Thus, the zinc-responsive fluorescence turn-on is attributed to suppression of PeT exerted by deprotonation of HNBO and occupation of the electron pair of DPA, a conclusion that is further supported by density functional theory and time-dependent density functional theory (DFT/TD-DFT) calculations. Under physiological conditions (pH 7.0), the probe displays a 44-fold fluorescence turn-on in response to zinc ions with a K(d) value of 12 pM. The fluorescent response of the probe to zinc ions is conserved over a broad pH range with its excellent selectivity for zinc ions among biologically relevant metal ions. In particular, its sensing ability is not altered by divalent transition metal ions such as Fe(II), Cu(II), Cd(II), and Hg(II). Cell experiments using HNBO-DPA show its suitability for monitoring intracellular zinc ions. We have also demonstrated applicability of the probe to visualize intact zinc ions released from cells that undergo apoptosis. More interestingly, zinc-rich pools in zebrafish embryos are traced with HNBO-DPA during early developmental stages. The results obtained from the in vitro and in vivo imaging studies demonstrate the practical usefulness of the probe to detect zinc ions.

  5. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    Science.gov (United States)

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  6. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.

    Science.gov (United States)

    Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu

    2015-11-07

    Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.

  7. Detecting long-term low-irradiance stress and water stress of trees with laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Sagawa, M.; Kurata, K.; Takahashi, K.; Mineuchi, K.

    2001-01-01

    The objective of this study was to find simple and objective methods of diagnosing the ailments of trees in indoor spaces, such as atriums. In this study, two simple diagnostics were compared. One was the analysis of the laser-induced fluorescence spectra of leaves and the other was the analysis of the laser-induced chlorophyll-fluorescence induction kinetics (Kautsky effect). In the latter analysis, second time derivatives of the induction-kinetics curves were used. Cinnamomum camphora and Quercus myrsinifolia grown under different light conditions and Cinnamomum camphora under water stress were used in the experiments. The effects of low irradiance were detected in both the induction kinetics and the spectra; however, the effects of water stress were detected in the induction kinetics only. These results indicate the possibility of utilizing laser-induced-fluorescence induction-kinetics for diagnosing the ailments of trees. (author)

  8. Laser induced uranium fluorescence as an analytical method

    International Nuclear Information System (INIS)

    Krutman, I.

    1985-01-01

    A laser induced fluorescence system was developed to measure uranium trace level amounts in aqueous solution with reliable and simple materials and electronics. A nitrogen pulsed laser was built with the storage energy capacitor directly coupled to laser tube electrodes as a transmission line device. This laser operated at 3Hz repetition rate with peak intensity around 21 Kw and temporal width of 4.5 x 10 -9 s. A sample compartment made of rigid PVC and a photomultiplier housing of aluminium were constructed and assembled forming a single integrated device. As a result of this prototype system we made several analytical measurements with U dissolved in nitric acid to obtain a calibration curve. We obtained a straight line from a plot of U concentration versus fluorescence intensity fitted by a least square method that produced a regression coefficient of 0.994. The lower limit of U determination was 30 ppb -+ 3.5%. (Author) [pt

  9. Determination of absolute Ba densities during dimming operation of fluorescent lamps by laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Hadrath, S; Beck, M; Garner, R C; Lieder, G; Ehlbeck, J

    2007-01-01

    Investigations of fluorescent lamps (FL) are often focused on the electrodes, since the lifetime of the lamps is typically limited by the electrode lifetime and durability. During steady state operation, the work function lowering emitter material, in particular, barium, is lost. Greater barium losses occur under dimming conditions, in which reduced discharge currents lead to increased cathode falls, the result of the otherwise diminished heating of the electrode by the bombarding plasma ions. In this work the barium density near the electrodes of (FL), operating in high frequency dimming mode is investigated using the high-sensitivity method of laser-induced fluorescence. From these measurements we infer barium loss for a range of discharge currents and auxiliary coil heating currents. We show that the Ba loss can very easily be reduced by moderate auxiliary coil heating

  10. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    Science.gov (United States)

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Monitoring the corrosion process of Al alloys through pH induced fluorescence

    International Nuclear Information System (INIS)

    Pidaparti, R M; Neblett, E B; Miller, S A; Alvarez, J C

    2008-01-01

    A sensing and monitoring set-up based on electrochemical pH induced fluorescence to systematically control the electrochemical corrosion process has been developed for possible applications in the field of localized corrosion. The sensing and monitoring concept is based on exposing the corroding metal surface to solutions that contain selected redox chemicals which will react in local regions where anodic or cathodic polarizations occur. Redox couples that produce or consume protons in their electrochemical reactions were used so that local pH gradients can indicate electrochemical activity by inducing fluorescence in dyes. This approach has been applied to study the corrosion initiation in aircraft aluminum metal 2024-T3 in a controlled electrochemical cell. Preliminary results obtained suggest that monitoring of localized corrosion based on pH can be achieved for field applications

  12. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  13. The present status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Abu-Zayyad, T.; Allen, M. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Azuma, R. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Belz, J.W. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Bergman, D.R. [Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Blake, S.A.; Brusova, O.; Cady, R.; Cao, Z. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Chiba, J. [Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba 278-8510 (Japan); Chikawa, M. [Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8582 (Japan); Cho, I.S. [Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [KEK - Institute of Particle And Nuclear Studies, 1-1 Oho Tsukuba-shi, Ibaraki 305-0801 (Japan); Fujii, T. [Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fukuda, T. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Fukushima, M. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Hayashi, K. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Hayashida, N. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Hibino, K. [Kanagawa University, 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686 (Japan)

    2009-05-15

    The Telescope Array(TA) experiment located at western desert in Utah USA (N39.3,W112.9) is designed for observation of air shower from extreme high energy cosmic rays. The TA detector consists of 2 types of detector to enable a cross check on systematic difference from the two main methods of observation for the energy region. One is a Fluorescence detector (FD) for detecting fluorescence light from air shower and another is surface detector (SD) array for detecting air shower particles at ground level. Each SD consists of 2 layers of plastic scintillator with 3m{sup 2} of surface and more sensitive to electromagnetic component in air shower. The full operation using 3FD stations and full SD array has started. Here we present the updated status of Telescope Array experiment.

  14. A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-10-01

    Full Text Available A method for canopy Fluorescence Spectrum Reconstruction (FSR is proposed in this study, which can be used to retrieve the solar-induced canopy fluorescence spectrum over the whole chlorophyll fluorescence emission region from 640–850 nm. Firstly, the radiance of the solar-induced chlorophyll fluorescence (Fs at five absorption lines of the solar spectrum was retrieved by a Spectral Fitting Method (SFM. The Singular Vector Decomposition (SVD technique was then used to extract three basis spectra from a training dataset simulated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes. Finally, these basis spectra were linearly combined to reconstruct the Fs spectrum, and the coefficients of them were determined by Weighted Linear Least Squares (WLLS fitting with the five retrieved Fs values. Results for simulated datasets indicate that the FSR method could accurately reconstruct the Fs spectra from hyperspectral measurements acquired by instruments of high Spectral Resolution (SR and Signal to Noise Ratio (SNR. The FSR method was also applied to an experimental dataset acquired in a diurnal experiment. The diurnal change of the reconstructed Fs spectra shows that the Fs radiance around noon was higher than that in the morning and afternoon, which is consistent with former studies. Finally, the potential and limitations of this method are discussed.

  15. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  16. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.

    Science.gov (United States)

    Leffler, Tomas; Brackmann, Christian; Aldén, Marcus; Li, Zhongshan

    2017-06-01

    Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.

  17. Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

    Science.gov (United States)

    Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.

    2009-01-01

    Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.

  18. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    Science.gov (United States)

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  19. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  20. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters

    International Nuclear Information System (INIS)

    Chen Jinlong; Gao Yingchun; Xu, ZhiBing; Wu, GenHua; Chen, YouCun; Zhu, ChangQing

    2006-01-01

    Mono-disperse CdSe nanoclusters have been prepared facilely and functionalized with L-cysteine through two steps by using safe and low cost substances. They are water-soluble and biocompatible. Especially these functionalized quantum dots can be stably soluble in water more than for 30 days, and the intensity of fluorescence and absorbance was decreased less than 15% of fresh prepared CdSe colloids. These functionalized CdSe QDs exhibited strong specific affinity for mercury (II) through QDs interface functional groups. Based on the quenching of fluorescence signals of functionalized CdSe QDs at 530 nm and no obvious wavelength shift or no new emission band in present of Hg (II) at pH 7.75 of phosphate buffer solution, a simple, rapid and specific array for Hg (II) was proposed. In comparison with conventional organic fluorophores, these nanoparticles are brighter, more stable against photobleaching, and do not suffer from blinking. Under optimum conditions, the response of linearly proportional to the concentration of Hg (II) between 0 and 2.0 x 10 -6 mol L -1 , and the limit of detection is 6.0 x 10 -9 mol L -1 . The relative standard deviation of six replicate measurements is 1.8% for 1.0 x 10 -7 mol L -1 Hg (II). The mechanism of reaction is also discussed. The proposed method was successfully applied for Hg (II) detection in four real samples with a satisfactory result that was obtained by cold vapor atomic fluorescence spectrometry (CV-AFS)

  1. Quantitative nitric oxide measurements by means of laser-induced fluorescence in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Vliet, van A.P.; Klein-Douwel, R.J.H.; Ganippa, L.C.; Bougie, H.J.T.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2005-01-01

    Quantitative in-cylinder laser-induced fluorescence measurements ofnitric oxide in a heavy-duty Diesel engine are presented. Special attention is paid to experimental techniques to assess the attenuation of the laser beam and the fluorescence signal by the cylinder contents.This attenuation can be

  2. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant

    Czech Academy of Sciences Publication Activity Database

    Rascher, U.; Alonso, A.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanuš, Jan; Hyvarinen, T.; Jullita, T.; Jussila, J.; Kataja, K.; Kokkalis, P.; Kraft, S.; Kraska, T.; Matveeva, M.; Moreno, J.; Müller, O.; Panigada, C.; Pikl, Miroslav; Pinto, F.; Prey, L.; Pude, F.; Rossini, M.; Schickling, A.; Schurr, E.; Schüttemeyer, D.; Verrlest, J.; Zemek, František

    2015-01-01

    Roč. 21, č. 12 (2015), s. 4673-4684 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : airborne measurements * chlorophyll fluorescence * FLEX * HyPlant * imaging spectroscopy * photosynthesis * remote sensing * sun-induced fluorescence * vegetation monitoring Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015

  3. Laser-induced fluorescence for the detection of esophageal and skin cancer

    Science.gov (United States)

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.; Julius, Clark E.; Overholt, Suzanne; Phan, Mary N.

    2003-07-01

    Laser-induced fluorescence (LIF) is used for in-vivo cancer diagnosis of the esophagus and skin cancer. For esophageal measurements a fiberoptic probe inserted through an endoscope was used. Autofluorescence of normal and malignant tissues were measured directly on patient skin without requiring an endoscope. Measurement of the fluorescence signal from the tissue was performed using laser excitation at 410 nm. The methodology was applied to differentiate normal and malignant tumors of the esophagus and malignant skin lesions. The results of this LIF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal and malignant tumors for the samples investigated.

  4. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-06-01

    Full Text Available The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes, and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays.

  5. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Science.gov (United States)

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  6. Experimental Studies of Laser-Induced Fluorescence Spectra of Plants Immunity to the Kind of Ground

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2015-01-01

    Full Text Available Various external factors (pollutants available in the soil, a lack or insufficient amount of water and nutrients, etc. lead to stressful conditions of plants and impossibility of their normal development. At the early stages it is difficult to identify visually the stressful situations of plants. Therefore development of methods and devices to detect stressful states is important.A method of the laser-induced fluorescence is one of perspective methods for detection of stressful conditions of plants.In spite of quite a great number of work presenting results of the pilot studies of fluorescence spectra of vegetation, there are some important issues, which are unclear.The paper gives results of pilot studies of stability of a spectrum form of the laser-induced fluorescence of plants for different types of soil at the wavelength of excitation fluorescence of 532 nm.Results of processing fluorescence spectra of plants show:- fluorescence spectra of plants grown up under similar conditions have good repeatability of a spectra form for different samples of plants and different measurement time for each type of studied soil. The ratio value R of the fluorescence intensity at the wavelength of 685 nm to the fluorescence intensity at the wavelength of 740 nm has high stability. The standard deviation in sampling of the ratio R of different samples of a plant for one type of soil (for width of spectral ranges of recording fluorescent radiation of 10 nm lies in the range ~ 0.055 - ~ 0.12;- a difference in plant fluorescence spectra between themselves for different types of soil has the same order as a difference in fluorescence spectra of different samples of a plant for one type of soil. Difference in average value of the ratio R for different types of soil lies in the range ~ 0.01 - ~ 0.15.Thus, the value of the ratio R is steady against a type of soil and can be used to control a condition of plants.

  7. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  8. Measurements of excited-state-to-excited-state transition probabilities and photoionization cross-sections using laser-induced fluorescence and photoionization signals

    International Nuclear Information System (INIS)

    Shah, M.L.; Sahoo, A.C.; Pulhani, A.K.; Gupta, G.P.; Dikshit, B.; Bhatia, M.S.; Suri, B.M.

    2014-01-01

    Laser-induced photoionization and fluorescence signals were simultaneously observed in atomic samarium using Nd:YAG-pumped dye lasers. Two-color, three-photon photoionization and two-color fluorescence signals were recorded simultaneously as a function of the second-step laser power for two photoionization pathways. The density matrix formalism has been employed to analyze these signals. Two-color laser-induced fluorescence signal depends on the laser powers used for the first and second-step transitions as well as the first and second-step transition probability whereas two-color, three-photon photoionization signal depends on the third-step transition cross-section at the second-step laser wavelength along with the laser powers and transition probability for the first and second-step transitions. Two-color laser-induced fluorescence was used to measure the second-step transition probability. The second-step transition probability obtained was used to infer the photoionization cross-section. Thus, the methodology combining two-color, three-photon photoionization and two-color fluorescence signals in a single experiment has been established for the first time to measure the second-step transition probability as well as the photoionization cross-section. - Highlights: • Laser-induced photoionization and fluorescence signals have been simultaneously observed. • The density matrix formalism has been employed to analyze these signals. • Two-color laser-induced fluorescence was used to measure the second-step transition probability. • The second-step transition probability obtained was used to infer the photoionization cross-section. • Transition probability and photoionization cross-section have been measured in a single experiment

  9. New spectrofluorometer with pulsed intensified photodiodes array for direct trace determination of actinides and lanthanides in solutions

    International Nuclear Information System (INIS)

    Decambox, P.; Kirsch, B.; Mauchien, P.; Moulin, C.

    1989-01-01

    Actinides and lanthanides in solution at very low level are determined by Time-Resolved Laser-Induced Spectrofluorometry (TRLIS) with pulsed intensified photodiodes array detection. Temporal resolution allows discrimination against short lifetime fluorescence and measurement of fluorescence lifetime in various matrices. The use of laser source leads to excitation selectivity and high sensitivity. Multichannel detection allows to cover the entire wavelength range of interest which leads to emission selectivity and rapidity. These different advantages are present in the newly commercialized spectrofluorometer FLUO 2001 together with specially analytical adapted software. The apparatus and performances obtained for several actinides and lanthanides are presented

  10. Fluorescent fingerprints of edible oils and biodiesel by means total synchronous fluorescence and Tucker3 modeling

    Science.gov (United States)

    Insausti, Matías; de Araújo Gomes, Adriano; Camiña, José Manuel; de Araújo, Mario Cesar Ugulino; Band, Beatriz Susana Fernández

    2017-03-01

    The present work proposes the use of total synchronous fluorescence spectroscopy (TSFS) as a discrimination methodology for fluorescent compounds in edible oils, which are preserved after the transesterification processes in the biodiesel production. In the same way, a similar study is presented to identify fluorophores that do not change in expired vegetal oils, to associate physicochemical parameters to fluorescent measures, as contribution to a fingerprint for increasing the chemical knowledge of these products. The fluorescent fingerprints were obtained by Tucker3 decomposition of a three-way array of the total synchronous fluorescence matrices. This chemometric method presents the ability for modeling non-bilinear data, as Total Synchronous Fluorescence Spectra data, and consists in the decomposition of the three way data arrays (samples × Δλ × λ excitation), into four new data matrices: A (scores), B (profile in Δλ mode), C (profile in spectra mode) and G (relationships between A, B and C). In this study, 50 samples of oil from soybean, corn and sunflower seeds before and after its expiration time, as well as 50 biodiesel samples obtained by transesterification of the same oils were measured by TSFS. This study represents an immediate application of chemical fingerprint for the discrimination of non-expired and expired edible oils and biodiesel. This method does not require the use of reagents or laborious procedures for the chemical characterization of samples.

  11. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  12. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  13. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  14. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sikdar, Debabrata, E-mail: debabrata.sikdar@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria (Australia); Cheng, Wenlong [Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria (Australia); The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria (Australia)

    2015-02-28

    Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can

  15. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  17. Lectin-Array Blotting.

    Science.gov (United States)

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Projection neuron circuits resolved using correlative array tomography

    Directory of Open Access Journals (Sweden)

    Daniele eOberti

    2011-04-01

    Full Text Available Assessment of three-dimensional morphological structure and synaptic connectivity is essential for a comprehensive understanding of neural processes controlling behavior. Different microscopy approaches have been proposed based on light microcopy (LM, electron microscopy (EM, or a combination of both. Correlative array tomography (CAT is a technique in which arrays of ultrathin serial sections are repeatedly stained with fluorescent antibodies against synaptic molecules and neurotransmitters and imaged with LM and EM (Micheva and Smith, 2007. The utility of this correlative approach is limited by the ability to preserve fluorescence and antigenicity on the one hand, and EM tissue ultrastructure on the other. We demonstrate tissue staining and fixation protocols and a workflow that yield an excellent compromise between these multimodal imaging constraints. We adapt CAT for the study of projection neurons between different vocal brain regions in the songbird. We inject fluorescent tracers of different colors into afferent and efferent areas of HVC in zebra finches. Fluorescence of some tracers is lost during tissue preparation but recovered using anti-dye antibodies. Synapses are identified in EM imagery based on their morphology and ultrastructure and classified into projection neuron type based on fluorescence signal. Our adaptation of array tomography, involving the use of fluorescent tracers and heavy-metal rich staining and embedding protocols for high membrane contrast in EM will be useful for research aimed at statistically describing connectivity between different projection neuron types and for elucidating how sensory signals are routed in the brain and transformed into a meaningful motor output.

  19. Sample analysis using gamma ray induced fluorescent X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Gandhi, R; Batra, O P; Singh, N [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-01-01

    A non-destructive method for the analysis of materials using gamma ray-induced fluorescent x-ray emission has been developed. In this method, special preparation of very thin samples in which the absorption of the incident gamma rays and the emitted fluorescent x-rays is negligible, is not needed, and the absorption correction is determined experimentally. A suitable choice of the incident gamma ray energies is made to minimise enhancement effects through selective photoionization of the elements in the sample. The method is applied to the analysis of a typical sample of the soldering material using 279 keV and 59.5 keV gamma rays from /sup 203/Hg and /sup 241/Am radioactive sources respectively. The results of the analysis are found to agree well with those obtained from the chemical analysis.

  20. Functionalization of embedded thiol-ene waveguides for evanescent wave induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol−ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol−ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol−ene for optofluidic...

  1. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  2. Pathological diagnosis of bladder cancer by image analysis of hypericin induced fluorescence cystoscopic images

    Science.gov (United States)

    Kah, James C. Y.; Olivo, Malini C.; Lau, Weber K. O.; Sheppard, Colin J. R.

    2005-08-01

    Photodynamic diagnosis of bladder carcinoma based on hypericin fluorescence cystoscopy has shown to have a higher degree of sensitivity for the detection of flat bladder carcinoma compared to white light cystoscopy. The potential of the photosensitizer hypericin-induced fluorescence in performing non-invasive optical biopsy to grade bladder cancer in vivo using fluorescence cystoscopic image analysis without surgical resection for tissue biopsy is investigated in this study. The correlation between tissue fluorescence and histopathology of diseased tissue was explored and a diagnostic algorithm based on fluorescence image analysis was developed to classify the bladder cancer without surgical resection for tissue biopsy. Preliminary results suggest a correlation between tissue fluorescence and bladder cancer grade. By combining both the red-to-blue and red-to-green intensity ratios into a 2D scatter plot yields an average sensitivity and specificity of around 70% and 85% respectively for pathological cancer grading of the three different grades of bladder cancer. Therefore, the diagnostic algorithm based on colorimetric intensity ratio analysis of hypericin fluorescence cystoscopic images developed in this preliminary study shows promising potential to optically diagnose and grade bladder cancer in vivo.

  3. A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.; Bump, E.; Sahu, S.K.; Berman, R.M.; Kassis, A.I.

    1993-01-01

    A novel method is described to quantitate radiation-induced hydroxyl radicals in the vicinity of biomolecules in aqueous solutions. Coumarin-3-carboxylic acid (CCA) is a non-fluorescent molecule that, upon interaction with radiation in aqueous solution, produces fluorescent products. CCA was derivatized to its succinimidyl ester (SECCA) and coupled to free primary amines of albumin, avidin, histone-H1, polylysine, and an oligonucleotide. When SECCA-biomolecule conjugates were irradiated, the relationship between induced fluorescence and dose was linear in the dose range examined (0.01-10 Gy). The data indicate that the induction of fluorescence on SECCA-biomolecule conjugates records specifically the presence of the hydroxyl radical in the immediate vicinity of the irradiated biomolecule. The method is rapid and sensitive, uses standard instrumentation, and the sample remains available for further studies. (Author)

  4. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  5. Time-resolved laser-induced fluorescence in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Petit, A.

    1995-01-01

    Time-Resolved Laser-Induced Fluorescence (TRLIF) is a very sensitive and selective method that has been used for actinides and lanthanides analysis in the nuclear fuel cycle. This technique has been used in different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment. Spectroscopic data, limits of detection and results obtained in previously quoted fields are presented. (author)

  6. Proton induced X-Ray fluorescence study as a tool trace element analysis

    International Nuclear Information System (INIS)

    El-Kady, Ahmed A.

    1978-01-01

    Usefulness and limitations of trace elemental analysis by high energy charged particles and photon induced X-ray have been discussed. Comparison with the well established neutron activation analysis technique is also given. Back-ground radiation due to bremsstrahlung from secondary electrons and due to charged particle bremsstrahlung have been reviewed for different projectiles. The sensitivity of elemental analysis by proton induced X-ray fluorescence have been examined by measuring the characteristic X-ray emission cross section for K and L transitions of many elements and for different proton energies and compared with theroretical values. The discussion given in this report show that with suitable proton generator and a high resolution X-ray detector, proton X-ray fluorescence technique is capable of analyzing many elements simultaneously at the part per million level and offers a rapid and reliable method for trace element analysis. Data on water, blood and tissue samples given in this report are few examples of many possible applications

  7. Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy.

    Science.gov (United States)

    Khoshroo, H; Khadem, H; Bahreini, M; Tavassoli, S H; Hadian, J

    2015-11-10

    Laser-induced fluorescence and Raman spectroscopy are used for the investigation of different genotypes of Thymus daenensis native to the Ilam province of Iran. Different genotypes of T. daenensis essential oils, labeled T1 through T7, possess slight differences with regard to the composition of the thymol. The gas chromatography-mass spectrometry (GC-MS) method is performed to determine the concentration of each constituent as a reference method. The Raman spectra of different concentrations of pure thymol dissolved in hexane as standard samples are obtained via a laboratory prototype Raman spectroscopy setup for the calculation of the calibration curve. The regression coefficient and limit of detection are calculated. The possibility of the differentiation of different genotypes of T. daenensis is also examined by laser-induced fluorescence spectroscopy, although we do not know the exact amounts of their components. All the fluorescence spectral information is used jointly by cluster analysis to differentiate between 7 genotypes. Our results demonstrate the acceptable precision of Raman spectroscopy with GC-MS and corroborate the capacity of Raman spectroscopy in applications in the quantitative analysis field. Furthermore, the cluster analysis results show that laser-induced fluorescence spectroscopy is an acceptable technique for the rapid classification of different genotypes of T. daenensis without having any previous information of their exact amount of constituents. So, the ability to rapidly and nondestructively differentiate between genotypes makes it possible to efficiently select high-quality herbs from many samples.

  8. Use of quantitative light-induced fluorescence to monitor tooth whitening

    Science.gov (United States)

    Amaechi, Bennett T.; Higham, Susan M.

    2001-04-01

    The changing of tooth shade by whitening agents occurs gradually. Apart from being subjective and affected by the conditions of the surroundings, visual observation cannot detect a very slight change in tooth color. An electronic method, which can communicate the color change quantitatively, would be more reliable. Quantitative Light- induced Fluorescence (QLF) was developed to detect and assess dental caries based on the phenomenon of change of autofluorescence of a tooth by demineralization. However, stains on the tooth surface exhibit the same phenomenon, and therefore QLF can be used to measure the percentage fluorescence change of stained enamel with respect to surrounding unstained enamel. The present study described a technique of assessing the effect of a tooth-whitening agent using QLF. This was demonstrated in two experiments in which either wholly or partially stained teeth were whitened by intermittent immersion in sodium hypochlorite. Following each immersion, the integrated fluorescence change due to the stain was quantified using QLF. In either situation, the value of (Delta) Q decreased linearly as the tooth regained its natural shade. It was concluded that gradual changing of the shade of discolored teeth by a whitening agent could be quantified using QLF.

  9. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF).

    Science.gov (United States)

    Couderc, François; Ong-Meang, Varravaddheay; Poinsot, Véréna

    2017-01-01

    Native laser-induced fluorescence using UV lasers associated to CE offers now a large related literature, for now 30 years. The main works have been performed using very expensive Ar-ion lasers emitting at 257 and 275 nm. They are not affordable for routine analyses, but have numerous applications such as protein, catecholamine, and indolamine analysis. Some other lasers such as HeCd 325 nm have been used but only for few applications. Diode lasers, emitting at 266 nm, cheaper, are extensively used for the same topics, even if the obtained sensitivity is lower than the one observed using the costly UV-Ar-ion lasers. This review presents various CE or microchips applications and different UV lasers used for the excitation of native fluorescence. We showed that CE/Native UV laser induced fluorescence detection is very sensitive for detection as well as small aromatic biomolecules than proteins containing Trp and Tyr amino acids. Moreover, it is a simple way to analyze biomolecules without derivatization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  11. Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat

    International Nuclear Information System (INIS)

    Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    The UV-laser-induced blue, green and red fluorescence-emission spectra were used to characterize the pigment status of etiolated leaves of wheat (Triticum aestivum L.) during a 48 h greening period under white light conditions. Upon UV-light excitation (337 nm) leaves not only show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm), but also in the blue and green regions between 400 to 570 nm with maxima or shoulders near 450 nm (blue) and 530 nm (green). During greening of etiolated leaves the chlorophyll-fluorescence ratio F690/F735 strongly correlated with the total chlorophyll content and the ratio of the chlorophylls to the carotenoids (a+b/x+c). The ratio of the blue to the green fluorescence F450/F530 was also correlated with the total chlorophyll content and the ratio of chlorophylls to total carotenoids (a+b/x+c). Consequently, there also existed a correlation between the chlorophyll-fluorescence ratio F690/F735 and the ratio of the blue to green fluorescence F450/F530. In contrast, the ratios of the blue to red fluorescences F450/F690 and F450/F735 did not show clear relations to the pigment content of the investigated plants. The particular shape of the UV-laser-induced-fluorescence emission spectra of wheat leaves as well as the dependencies of the fluorescence ratios on the pigment content are due to a partial and differential reabsorption of the emitted fluorescences by the photosynthetic pigments

  12. Tunneling induced dark states and the controllable resonance fluorescence spectrum in quantum dot molecules

    International Nuclear Information System (INIS)

    Tian, Si-Cong; Tong, Cun-Zhu; Ning, Yong-Qiang; Qin, Li; Liu, Yun; Wan, Ren-Gang

    2014-01-01

    Optical spectroscopy, a powerful tool for probing and manipulating quantum dots (QDs), has been used to investigate the resonance fluorescence spectrum from linear triple quantum dot molecules controlled by tunneling, using atomic physics methods. Interesting features such as quenching and narrowing of the fluorescence are observed. In such molecules the tunneling between the quantum dots can also induce a dark state. The results are explained by the transition properties of the dressed states generated by the coupling of the laser and the tunneling. Unlike the atomic system, in such quantum dot molecules quantum coherence can be induced using tunneling, requiring no coupling lasers, which will allow tunneling controllable quantum dot molecules to be applied to quantum optics and photonics. (paper)

  13. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence.

    Science.gov (United States)

    Guthrie, Jeffrey W; Limmer, Robert T; Brooks, Eric A; Wisnewski, Chelsea C; Loggins-Davis, Nnekia D; Bouzid, Abderraouf

    2015-01-01

    An immunoassay based on CE-LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL(-1)) of DNA under a low UVB fluence of 65 J m(-2) for CPDs or 195 J m(-2) for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci)

    Energy Technology Data Exchange (ETDEWEB)

    Honda-Uezono, Asumi [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Kaida, Atsushi [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Michi, Yasuyuki; Harada, Kiyoshi [Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Hayashi, Yoshiki; Hayashi, Yoshio [Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Miura, Masahiko, E-mail: masa.mdth@tmd.ac.jp [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Fucci visualizes cell cycle by green and red fluorescence. Black-Right-Pointing-Pointer Plinabulin, induced unusual red fluorescence at M-phase in HeLa-Fucci cells. Black-Right-Pointing-Pointer The unusual pattern was followed by mitotic catastrophe. Black-Right-Pointing-Pointer The unusual pattern may be an early indicator of cell death in HeLa cells. -- Abstract: Plinabulin (NPI-2358) is a novel microtubule-depolymerizing agent. In HeLa cells, plinabulin arrests the cell-cycle at M phase and subsequently induces mitotic catastrophe. To better understand the effects on this compound on the cell-cycle, we used the fluorescent ubiquitination-based cell cycle indicator (Fucci), which normally enables G1 and S/G2/M cells to emit red and green fluorescence, respectively. When HeLa-Fucci cells were treated with 50 nM plinabulin, cells began to fluoresce both green and red in an unusual pattern; most cells exhibited the new pattern after 24 h of treatment. X-irradiation efficiently induced G2 arrest in plinabulin-treated cells and significantly retarded the emergence of the unusual pattern, suggesting that entering M phase is essential for induction of the pattern. By simultaneously visualizing chromosomes with GFP-histone H2B, we established that the pattern emerges after nuclear envelope breakdown but before metaphase. Pedigree assay revealed a significant relationship between the unusual expression and mitotic catastrophe. Nocodazole, KPU-133 (a more potent derivative of plinabulin), and paclitaxel also exerted similar effects. From these data, we conclude that the unusual pattern may be associated with dysregulation of late M phase-specific E3 ligase activity and mitotic catastrophe following treatment with anti-microtubule agents.

  15. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    International Nuclear Information System (INIS)

    Herbáth, Melinda; Balogh, Andrea; Matkó, János; Papp, Krisztián; Prechl, József

    2014-01-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications. (topical review)

  16. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  17. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    Science.gov (United States)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, Giordano; Ortolani, Michele

    2016-09-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film is determined, and bow-tie antennas are designed, fabricated, and embedded in a polymer. By using a near-field photoexpansion mapping technique at λ = 5.8 μm, we demonstrate the existence in the antenna gap of an electromagnetic energy density hotspot of diameter below 100 nm and confinement volume 105 times smaller than λ3.

  18. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  19. Disorder-induced localization of excitability in an array of coupled lasers

    Science.gov (United States)

    Lamperti, M.; Perego, A. M.

    2017-10-01

    We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.

  20. Laser-Induced Fluorescence (LIF) from plant foliage

    Science.gov (United States)

    Chappelle, Emmett W.; Williams, Darrel L.

    1987-01-01

    The fluorescence spectra and fluorescence induction kinetics of green plants excited at 337 nm by a laser were studied. They correlate with plant type, as well as with changes in the physiology of the plant as the result of stress. The plant types studied include herbaceous dicots, monocots, hardwoods, conifers, and algae. These plant types could be identified on the basis of differences in either the number of fluorescent bands or the relative intensity of the bands. Differences in fluorescent spectra which could be related to vigor status are observed in conifers located in an area of high atmospheric deposition. Changes in the fluorescence spectra and induction kinetics are also seen in plants grown under conditions of nutrient deficiency and drought stress.

  1. Study on two-color planar laser induced fluorescence thermometry

    International Nuclear Information System (INIS)

    Li Shaodan; Tan Sichao; Gao Puzhen; Lin Yuansheng

    2014-01-01

    Many of the convection heat transfer process are involved in the research of nuclear reactor thermal hydraulics. To experimentally determine the variation of the temperature field in those processes is important for the design and safety operation of the nuclear reactor. The application of the two-color planar laser induced fluorescence (PLIF) in the measurements of fluid temperature distribution is discussed in the paper. The laser dyes used here is rhodamine B (RhB) with negative temperature coefficient and fluorescein 27 (F127) with positive temperature coefficient. The beam of the laser light is adjusted to laser sheet by using the lens group. The fluid with dyes is excited by this laser sheet in a specific plane and temperature dependent fluorescence is released. The temperature field of the plane can be determined through the intensity information. Some technical aspects encountered in the application of the two-laser PLIF are discussed in the paper, such as the spectra characteristic of the dyes and the separation of the spectra. The calibration temperature is higher than the water saturation temperature (at atmosphere pressure). (authors)

  2. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  3. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence

    Science.gov (United States)

    Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas

    2018-04-01

    Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.

  4. Non-destructive monitoring of agricultural product (lettuce [Lactuca sativa]) based on laser-induced fluorescence

    International Nuclear Information System (INIS)

    Ishizawa, H.; Saito, Y.; Amemiya, T.; Komatu, K.

    2002-01-01

    Quality control of agricultural products in process of cultivation and distribution has become an important problem. This paper describes a field measuring method of lettuce based on laser induced fluorescence (LIF) spectroscopy for growth monitoring. Intensity at 460nm of LIF spectra showed characteristic variations of near harvest time. The results of chemical analysis confirmed that sucrose and chlorogenic acid are origins of the 460nm fluorescence. The prediction of harvest time and the possibility of quality monitoring are discussed based on the experimental data

  5. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  6. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas.

    Science.gov (United States)

    Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei

    2017-07-24

    We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.

  7. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    Science.gov (United States)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  8. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy

    Science.gov (United States)

    A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...

  9. Examinations for the determination of the flux density of sputtered iron using laser induced fluorescence

    International Nuclear Information System (INIS)

    Schweer, H.B.

    1983-11-01

    In this work investigations are described to measure the flux density of sputtered iron atoms by means of laser induced fluorescence. In a laboratory experiment an iron target (stainless steel 316, Inconel 600), was bombarded with 10 keV Ar + and 2.5 keV H + and the population distribution of the energy levels of the ground state a 5 D and the metastable state a 5 F was measured. In the plasma wall region in the ISX-B tokamak at the Oak Ridge National Laboratory (USA) neutral iron atoms were measured the first time by laser induced fluorescence. A detection limit of 10 6 atoms/cm 3 was found and sputtered iron atoms were observed in the first 15 ms of the discharge. (orig./BRB)

  10. Changes in the fluorescence of the Caribbean coral Montastraea faveolata during heat-induced bleaching

    Science.gov (United States)

    Zawada, David G.; Jaffe, J.S.

    2003-01-01

    In order to evaluate the response of commonly occurring green and orange fluorescent host-based pigments, a thermal stress experiment was performed on specimens of the Caribbean coral Montastraea faveolata. Seven paired samples were collected from a small oceanic reef near Lee Stocking Island in the Bahamas. Seven of the fourteen corals were subjected to elevated temperatures for 28 d, followed by a recovery period lasting 53 d. Throughout the experiment, high-resolution (~400 µm pixel-1) multispectral images of induced fluorescence were recorded at wavelengths corresponding to the green and orange host pigments, plus chlorophyll. These images revealed that the fluorescence of both host pigments was concentrated at polyp centers and declined by 70–90% in regions between polyps. Chlorophyll fluorescence, however, was distributed almost uniformly across the entire coral surface, but with decreases of 10–30% around polyp centers. A normalized difference ratio between the green and orange pigments (GO ratio) was developed to facilitate comparison with chlorophyll fluorescence as a bleaching indicator. Analysis showed a high correspondence between a sustained GO ratio of less than zero and the death of corals. Finally, this ratio was resistant to contamination from other sources of chlorophyll fluorescence, such as filamentous algae.

  11. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Rossini, P. M.; Nedbal, L.; Guanter, L.; Ač, Alexander; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Hanuš, Jan; Janoutová, Růžena; Julitta, T.; Kokkalis, P.; Moreno, J.; Novotný, Jan; Panigada, C.; Pinto, F.; Schickling, A.; Schuettemeyer, D.; Zemek, František; Rascher, U.

    2015-01-01

    Roč. 42, č. 6 (2015), s. 1632-1639 ISSN 0094-8276 Institutional support: RVO:67179843 Keywords : sun-induced fluorescence * remote sensing * stress detection * airborne images * HyPlant Subject RIV: EH - Ecology, Behaviour Impact factor: 4.212, year: 2015

  12. The effects of visual fluorescence marking induced by 5-aminolevulinic acid for endoscopic diagnosis of urinary bladder cancer

    Science.gov (United States)

    Daniltchenko, Dmitri I.; Koenig, Frank; Schnorr, Dietmar; Valdman, Alexander; Al-Shukri, Salman; Loening, Stefan A.

    2003-10-01

    During cystoscopy procedure, fluorescence diagnostics induced by 5-ALA improves visual detection of the bladder cancer. Macroscopic ALA-fluorescence allows visualizing of small flat tumors, carcinoma in situ, true neoplasm margins and dysplasias of the bladder. Following ALA instillation, cystoscopy has been performed under both standard and blue light illumination. Totally, 153 biopsies have been carried out at 53 patients with suspicion of bladder cancer. The results were compared to ALA-fluorescence data. In 13% of the patients, bladder cancer and dysplasia were found out in addition, due to red fluorescence. The sensitivity and specificity of ALA-fluorescence technique aggregated 96% and 52% respectively. The sensitivity and specificity of 5-ALA-fluorescent detection exceeded standard endoscopy under white light on 20%. The new method does not exclude a false positive and a false negative fluorescent luminescence. The ALA-based fluorescence detection system enhances the diagnosis of malignant/dysplastic bladder lesions significantly.

  13. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  14. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.

    Science.gov (United States)

    Jung, Se-Hui; Kong, Deok-Hoon; Park, Seoung-Woo; Kim, Young-Myeong; Ha, Kwon-Soo

    2012-08-21

    Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay. For fabrication of the peptide arrays, substrate peptides of cMMP-3, caspase-3, caspase-9, and calpain-1 were functionalized with TAMRA and cysteine, and were immobilized onto amine-functionalized arrays using a heterobifunctional linker, N-[γ-maleimidobutyloxy]succinimide ester. The proteolytic activities of the four enzymes were quantitatively analyzed by calculating changes induced by enzymatic reactions in the concentrations of peptides bound to array surfaces. In addition, this assay was successfully applied for calculating the Michaelis constant (K(m,surf)) for the four enzymes. Thus, this new assay has a strong potential for use in the quantitative evaluation of proteases, and for drug discovery through kinetics studies including the determination of K(m) and V(max).

  15. Diagnostics of Susabi-nori (Porphyra Yezoensis) by Laser-Induced Fluorescence Method

    Science.gov (United States)

    Okamoto, Tamotsu; Nakamura, Yuki; Takahashi, Kunio; Kaneko, Shohei; Shimada, Yuji

    Susabi-nori (Porphyra yezoensis) was diagnosed by means of laser-induced fluorescence (LIF) method. Fluorescence peaks located at approximately 580, 660, 685 and 720 nm were observed in the LIF spectra of Susabi-nori. In the spectrum of the sample infected with the red rot disease, the intensity of 580 nm peak was relatively high as compared with that of the control sample. On the other hand, the intensities of 580 nm and 660 nm peaks drastically decreased by the influence of the chytrid disease. Furthermore, the intensity of the 580 nm peak increased by dipping into fresh water. These results indicate that LIF spectra of Susabi-nori are affected by the diseases and the stress of fresh water and that the diseases and the stress of Susabi-nori can be diagnosed by the LIF method.

  16. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056 (United States)

    2016-11-15

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  17. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  18. The Status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Azuma, R [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Abu-Zayyad, T; Allen, M; Barcikowski, E; Belz, J W; Blake, S A; Brusova, O; Cady, R [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Higashi Osaka, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G; Cho, E J [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda, Chiba (Japan); Cho, L S; Cho, W R [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Cohen, F, E-mail: htokuno@cr.phys.titech.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan)

    2011-04-01

    The purpose of The Telescope Array experiment is to identify origin of the ultra high energy cosmic rays. The Telescope Array is a hybrid detector consists of a surface detector array and air fluorescence detectors. This hybrid detector is observing extensive air showers to measure the energy spectrum, anisotropy and composition of Ultra High Energy Cosmic Rays. The detector construction has been completed in March 2008, and the hybrid observation with the full configuration has been running since that time. In this talk, the status of observation and our prospects are described.

  19. Development of laser-induced fluorescence for precombustion diagnostics in spark-ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Neij, H.

    1998-11-01

    Motivated by a desire to understand and optimize combustion in spark-ignition (SI) engines, laser techniques have been developed for measurement of fuel and residual gas, respectively, in the precombustion mixture of an operating SI engine. The primary objective was to obtain two-dimensional, quantitative data in the vicinity of the spark gap at the time of ignition. A laser-induced fluorescence (LIF) technique was developed for fuel visualization in engine environments. Since the fluorescence signal from any commercial gasoline fuel would be unknown to its origin, with an unpredictable dependence on collisional partners, pressure and temperature, a non-fluorescent base fuel - isooctane - was used. For LIF detection, a fluorescent species was added to the fuel. An additive not commonly used in this context - 3-pentanone - was chosen based on its suitable vaporization characteristics and fluorescent properties. The LIF technique was applied to an optically accessible research engine. By calibration, the fluorescence signal from the additive was converted to fuel-to-air equivalence ratio ({phi}). The accuracy and precision of the acquired data were assessed. A statistical evaluation revealed that the spatially averaged equivalence ratio around the spark plug had a significant impact on the combustion event. The strong correlation between these two quantities suggested that the early combustion was sensitive to large-scale inhomogeneities in the precombustion mixture. A similar LIF technique, using acetone as a fluorescent additive in methane, was applied to a combustion cell for ion current evaluation. The local equivalence ratio around the spark gap at the time of ignition was extracted from LIF data. Useful relations were identified between different ion current parameters and the local equivalence ratio, although the impact of the flow field, the fuel type, and the electrode geometry were identified as areas for future research. A novel fuel - dimethyl ether (DME

  20. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-04-15

    As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.

  1. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides

    International Nuclear Information System (INIS)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang

    2016-01-01

    As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10"−"8 mol L"−"1 and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.

  2. Detection of radiation-induced brain necrosis in live rats using label-free time-resolved fluorescence spectroscopy (TRFS) (Conference Presentation)

    Science.gov (United States)

    Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura

    2017-02-01

    Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.

  3. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    Science.gov (United States)

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  4. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas.

    Science.gov (United States)

    Hentschel, Mario; Utikal, Tobias; Giessen, Harald; Lippitz, Markus

    2012-07-11

    Plasmonic dimer nanoantennas are characterized by a strong enhancement of the optical field, leading to large nonlinear effects. The third harmonic emission spectrum thus depends strongly on the antenna shape and size as well as on its gap size. Despite the complex shape of the nanostructure, we find that for a large range of different geometries the nonlinear spectral properties are fully determined by the linear response of the antenna. We find excellent agreement between the measured spectra and predictions from a simple nonlinear oscillator model. We extract the oscillator parameters from the linear spectrum and use the amplitude of the nonlinear perturbation only as scaling parameter of the third harmonic spectra. Deviations from the model only occur for gap sizes below 20 nm, indicating that only for these small distances the antenna hot spot contributes noticeable to the third harmonic generation. Because of its simplicity and intuitiveness, our model allows for the rational design of efficient plasmonic nonlinear light sources and is thus crucial for the design of future plasmonic devices that give substantial enhancement of nonlinear processes such as higher harmonics generation as well as difference frequency mixing for plasmonically enhanced terahertz generation.

  5. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    Science.gov (United States)

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (pproduction simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characterization of uranium in bituminized radioactive waste drums by self-induced X-ray fluorescence

    International Nuclear Information System (INIS)

    Pin, Patrick; Perot, Bertrand

    2013-06-01

    This paper reports the experimental qualification of an original uranium characterization method based on fluorescence X rays induced by the spontaneous gamma emission of bituminized radioactive waste drums. The main 661.7 keV gamma ray following the 137 Cs decay produces by Compton scattering in the bituminized matrix an intense photon continuum around 100 keV, i.e. in the uranium X-ray fluorescence region. 'Self-induced' X-rays produced without using an external source allow a quantitative assessment of uranium as 137 Cs and uranium are homogeneously mixed and distributed in the bituminized matrix. The paper presents the experimental qualification of the method with real waste drums, showing a detection limit well below 1 kg of uranium in 20 min acquisitions while the usual gamma rays of 235 U (185 keV) or 238 U (1001 keV of 234m Pa in the radioactive decay chain) are not detected. The relative uncertainty on the uranium mass assessed by self-induced X-ray fluorescence (SXRF) is about 50%, with a 95% confidence level, taking into account the correction of photon attenuation in the waste matrix. This last indeed contains high atomic numbers elements like uranium, but also barium, in quantities which are not known for each drum. Attenuation is estimated thanks to the peak-to-Compton ratio to limit the corresponding uncertainty. The SXRF uranium masses measured in the real drums are in good agreement with long gamma-ray spectroscopy measurements (1001 keV peak) or with radiochemical analyses. (authors)

  7. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  8. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät

    2017-10-12

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.

  9. Laser-induced fluorescence studies of premalignant and benign lesions in the female genital tract

    Science.gov (United States)

    af Klinteberg, Claes; Wang, Ingrid; Lindquist, Charlotta; Vaitkuviene, Aurelija; Svanberg, Katarina

    1997-12-01

    Laser-induced fluorescence (LIF) was studied in vivo from premalignant and benign lesions in the female genital tract, in particular the cervix. The aim of the study was to investigate the possibilities to differentiate cervical intraepithelial neoplasia (CIN) from normal tissue by means of two different fluorescence modalities. Most of the patients were given a low dose (5 mg/kg bw) of (delta) -amino levulinic acid (ALA). The ALA was orally administered 2 - 4 hours prior to the investigation. During this time, the ALA is transformed to the strongly fluorescent protoporphyrin IX (PpIX) via the haem cycle. Excitation light with a wavelength of 405 nm was used to excite the PpIX fluorescence. Excess amounts of PpIX were accumulated preferentially in diseased tissue. However, the variability in the PpIX accumulation from patient to patient was large. By using excitation light at 337 nm, the endogenous fluorophores are more efficiently excited. Therefore, this excitation modality was exploited for studying spectral characteristics of the autofluorescence in different tissue types. The spectra obtained were evaluated by forming fluorescence intensity ratios. The tissue types were grouped according to the histopathological examination. A correlation with the fluorescence ratios was performed. Some problems with the classification remain, mostly due to the difficulties in obtaining histopathologic evaluation of the biopsies at the exact location of the LIF measurements.

  10. An operational fluorescence system for crop assessment

    Science.gov (United States)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  11. Mixture-fraction imaging at 1  kHz using femtosecond laser-induced fluorescence of krypton.

    Science.gov (United States)

    Richardson, Daniel R; Jiang, Naibo; Stauffer, Hans U; Kearney, Sean P; Roy, Sukesh; Gord, James R

    2017-09-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (TALIF) imaging measurements of krypton (Kr) are demonstrated to study mixing in gaseous flows. A measurement approach is presented in which observed Kr TALIF signals are 7 times stronger than the current state-of-the-art methodology. Fluorescence emission is compared for different gas pressures and excitation wavelengths, and the strongest fluorescence signals were observed when the excitation wavelength was tuned to 212.56 nm. Using this optimized excitation scheme, 1-kHz, single-laser-shot visualizations of unsteady flows and two-dimensional measurements of mixture fraction and scalar dissipation rate of a Kr-seeded jet are demonstrated.

  12. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  13. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    International Nuclear Information System (INIS)

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M.

    2008-01-01

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of ±1.4 deg. C is established at the 95% confidence interval

  14. Two dimensional laser induced fluorescence in the gas phase: a spectroscopic tool for studying molecular spectroscopy and dynamics

    Science.gov (United States)

    Gascooke, Jason R.; Lawrance, Warren D.

    2017-11-01

    Two dimensional laser induced fluorescence (2D-LIF) extends the usual laser induced fluorescence technique by adding a second dimension, the wavelength at which excited states emit, thereby significantly enhancing the information that can be extracted. It allows overlapping absorption features, whether they arise from within the same molecule or from different molecules in a mixture, to be associated with their appropriate "parent" state and/or molecule. While the first gas phase version of the technique was published a decade ago, the technique is in its infancy, having been exploited by only a few groups to date. However, its potential in gas phase spectroscopy and dynamics is significant. In this article we provide an overview of the technique and illustrate its potential with examples, with a focus on those utilising high resolution in the dispersed fluorescence dimension.

  15. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials

    OpenAIRE

    Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti

    2015-01-01

    We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based mi...

  16. Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films

    International Nuclear Information System (INIS)

    Lukomska, Joanna; Gryczynski, Ignacy; Malicka, Joanna; Makowiec, Slawomir; Lakowicz, Joseph R.; Gryczynski, Zygmunt

    2005-01-01

    We report the observation of a strong two-photon induced fluorescence emission of Cy5-DNA within the tunable range of a Ti:Sapphire laser. The estimated two-photon cross-section for Cy5-DNA of 400 GM is about 3.5-fold higher than it was reported for rhodamine B. The fundamental anisotropies of Cy5-DNA are close to the theoretical limits of 2/5 and 4/7 for one- and two-photon excitation, respectively. We also observed an enhanced two-photon induced fluorescence (TPIF) of Cy5-DNA deposited on silver island films (SIFs). In the presence of SIFs, the TPIF is about 100-fold brighter. The brightness increase of Cy5-DNA TPIF near SIFs is mostly due to enhanced local field

  17. Radioisotope induced X-ray fluorescence analysis of cereal grains and flour

    International Nuclear Information System (INIS)

    Toeroek, Sz.; Szoekefalvi-Nagy, Z.

    1982-06-01

    Radioisotope-induced X-ray fluorescence analysis is a rather simple and easy method for investigating ashed plant material. In order to reduce matrix effects thin samples of 2 mg/cm 2 are analysed to obtain a reasonable compromise between maximum sensitivity and the lowest possible absorption effects. Concentrations are determined by standard addition method. An accuracy of 6-8% can be achieved. As an application analytical results are given for whole grains of several sorts of wheat. (author)

  18. Fluorescent sensing with Fresnel microlenses for optofluidic systems

    Science.gov (United States)

    Siudzińska, Anna; Miszczuk, Andrzej; Marczak, Jacek; Komorowska, Katarzyna

    2017-05-01

    The concept of fluorescent sensing in a microchannel equipped with focusing light Fresnel lenses has been demonstrated. The concept employs a line or array of Fresnel lenses generating a line or array of focused light spots within a microfluidic channel, to increase the sensitivity of fluorescent signal detection in the system. We have presented efficient methods of master mold fabrication based on the lithography method and focused ion beam milling. The flexible microchannel was fabricated by an imprint process with new thiolene-epoxy resin with a good ability to replicate even submicron-size features. For final imprinted lenses, the measured background to peak signal level shows more than nine times the increase in brightness at the center of the focal spot for the green part of the spectrum (532 nm). The effectiveness of the microlenses in fluorescent-marked Escherichia coli bacteria was confirmed in a basic fluoroscope experiment, showing the increase of the sensitivity of the detection by the order of magnitude.

  19. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    Science.gov (United States)

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  20. Electrohydrodynamic actuation of co-flowing liquids by means of microelectrode arrays

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Pablo; Ferney, Mathieu; Ramos, Antonio

    2011-01-01

    Electric fields induce forces at the interface between liquids with different electrical properties (conductivity and/or permittivity). We explore how to use these forces for manipulating two coflowing streams of liquids in a microchannel. A microelectrode array is fabricated at the bottom of the channel and one of the two liquids is labelled with a fluorescent dye for observing the phenomenon. The diffuse interface between the two liquids is deflected depending on the ac signal and conductivity (or permittivity) ratio between the liquids. Only a few volts are needed for observing the interface destabilization, in contrast with other electrode configurations where hundreds of volts are applied.

  1. Electrohydrodynamic actuation of co-flowing liquids by means of microelectrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Pablo; Ferney, Mathieu; Ramos, Antonio, E-mail: pablogarcia@us.es [Depto. de Electronica y Electromagnetismo, University of Sevilla (Spain)

    2011-06-23

    Electric fields induce forces at the interface between liquids with different electrical properties (conductivity and/or permittivity). We explore how to use these forces for manipulating two coflowing streams of liquids in a microchannel. A microelectrode array is fabricated at the bottom of the channel and one of the two liquids is labelled with a fluorescent dye for observing the phenomenon. The diffuse interface between the two liquids is deflected depending on the ac signal and conductivity (or permittivity) ratio between the liquids. Only a few volts are needed for observing the interface destabilization, in contrast with other electrode configurations where hundreds of volts are applied.

  2. Advanced statistical tools for SNP arrays : signal calibration, copy number estimation and single array genotyping

    NARCIS (Netherlands)

    Rippe, Ralph Christian Alexander

    2012-01-01

    Fluorescence bias in in signals from individual SNP arrays can be calibrated using linear models. Given the data, the system of equations is very large, so a specialized symbolic algorithm was developed. These models are also used to illustrate that genomic waves do not exist, but are merely an

  3. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  4. The NSLS 100 element solid state array detector

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Beren, J.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Cramer, S.P.

    1992-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500 000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 elements Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10 x 10 matrix of 4 mm x 4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entrie instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. (orig.)

  5. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12.

    Science.gov (United States)

    Sellars, Laura E; Bryant, Jack A; Sánchez-Romero, María-Antonia; Sánchez-Morán, Eugenio; Busby, Stephen J W; Lee, David J

    2017-08-03

    In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.

  6. Muon Detector R&D in Telescope Array Experiment

    Science.gov (United States)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  7. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    Energy Technology Data Exchange (ETDEWEB)

    Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria)]. E-mail: streli@ati.ac.at; Pepponi, G. [ITC-irst, Povo (Italy); Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Jokubonis, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22603 Hamburg (Germany); Zaray, G. [Institute of Inorganic and Applied Chemistry, 3 EOTVOS Univ, Budapest (Hungary); Broekaert, J. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, U. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Peschel, B. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2006-11-15

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm{sup 2} active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm{sup 2} silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al{sub 2}O{sub 3}. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are

  8. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    International Nuclear Information System (INIS)

    Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Zaray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.

    2006-01-01

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2 O 3 . No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection

  9. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    Science.gov (United States)

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  11. Teaching laser-induced fluorescence of plant leaves

    Science.gov (United States)

    Lenk, Sándor; Gádoros, Patrik; Kocsányi, László; Barócsi, Attila

    2016-11-01

    Plants convert carbon dioxide into sugars using the energy of sunlight. Absorbed light unused for conversion is dissipated primarily as heat with a small fraction re-emitted as fluorescence at longer wavelengths. One can use the latter to estimate photosynthetic activity. The illumination of intact leaves with strong light after keeping them in dark for tens of minutes results in a rapid increase followed by a slow decay of fluorescence emission from the fluorophore chlorophyll-a, called the Kautsky effect. This paper describes a laboratory practice that introduces students of physics or engineering into this research field. It begins with the spectral measurement of the fluorescence emitted by a plant leaf upon UV excitation. Then it focuses on the red and far-red components of the fluorescence emission spectrum characteristic to the chlorophyll-a molecule and presents an inexpensive demonstration of the Kautsky effect. As researchers use more complex measurement techniques and tools, the practice ends up with the demonstration of an intelligent fluorosensor, a compact tool developed for plant physiological research and horticulture applications together with a brief interpretation of some important fluorescence parameters.

  12. Teaching laser-induced fluorescence of plant leaves

    International Nuclear Information System (INIS)

    Lenk, Sándor; Gádoros, Patrik; Kocsányi, László; Barócsi, Attila

    2016-01-01

    Plants convert carbon dioxide into sugars using the energy of sunlight. Absorbed light unused for conversion is dissipated primarily as heat with a small fraction re-emitted as fluorescence at longer wavelengths. One can use the latter to estimate photosynthetic activity. The illumination of intact leaves with strong light after keeping them in dark for tens of minutes results in a rapid increase followed by a slow decay of fluorescence emission from the fluorophore chlorophyll -a , called the Kautsky effect. This paper describes a laboratory practice that introduces students of physics or engineering into this research field. It begins with the spectral measurement of the fluorescence emitted by a plant leaf upon UV excitation. Then it focuses on the red and far-red components of the fluorescence emission spectrum characteristic to the chlorophyll -a molecule and presents an inexpensive demonstration of the Kautsky effect. As researchers use more complex measurement techniques and tools, the practice ends up with the demonstration of an intelligent fluorosensor, a compact tool developed for plant physiological research and horticulture applications together with a brief interpretation of some important fluorescence parameters. (paper)

  13. Utilization of Photochemically Induced Fluorescence Detection for HPLC Determination of Genotoxic Impurities in the Vortioxetine Manufacturing Process.

    Science.gov (United States)

    Douša, Michal; Doubský, Jan; Srbek, Jan

    2016-07-01

    An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    International Nuclear Information System (INIS)

    Vankan, P.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.; Schram, D.C.; Doebele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has a bandwith of 0.15 cm -1 . The wavelength of the laser radiation is calibrated by simultaneous recording of the two-photon laser induced fluorescence spectrum of nitric oxide. The excited hydrogen populations are calibrated on the basis of coherent anti-Stokes Raman scattering measurements. A population distribution is measured in the shock region of a pure hydrogen plasma expansion. The higher rotational levels (J>5) show overpopulation compared to a Boltzmann distribution determined from the lower rotational levels (J≤5)

  15. Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis

    International Nuclear Information System (INIS)

    Chappelle, E.W.; McMurtrey, J.E. III; Kim, M.S.

    1991-01-01

    The laser-induced fluorescence (LIF) of vegetation is being investigated in this laboratory for use as a technique for the remote detection of the effects of environmental stress upon vegetation, as well as for plant identification. The fluorescence band with a maximum at 440 nm, in conjunction with the chlorophyll bands with maxima at 685 and 740 nm, has been found to be a critical band in the development of algorithms for detecting stress, and identifying plant types. The identification of the plant constituent responsible for this band is vital to understanding the mechanism underlying its fluorescence changes in response to environmental and physiological changes. The identification was achieved as follows: The laser induced fluorescence (LIF) spectra of pure plant pigments were determined. Fluorescence bands with maxima at 420 nm, 440 nm, 490 nm, and 525 nm were observed for vitamin K 1 , reduced nicotinamide adenine dinucleotide (NADPH), beta-carotene, and riboflavin, respectively. The LIF spectra of water extracts and acetone extracts of clover leaves were also measured. It was found that the blue fluorescence band was associated with the water extract. NADPH which is a water-soluble compound, and the water extract of clover had no fluorescence after oxidation by potassium ferricyanide, while the fluorescence of water insoluble vitamin K 1 was unchanged by the oxidizing agent. It was also found that the absorption maximum of NADPH was the same as the absorption maximum of the aqueous extract of clover. The above findings indicated that the compound responsible for the blue fluorescence at 440 nm is in the reduced state and is water-soluble. It was concluded that NADPH was responsible for the blue fluorescence at 440 nm. The strong linear relationship between the fluorescence at 440 nm and the rate of photosynthesis suggests the possible use of LIF measurements in the remote estimation of photosynthetic rates. (author)

  16. Serum Protein Profile Study of Clinical Samples Using High Performance Liquid Chromatography-Laser Induced Fluorescence

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Ukendt, Sujatha; Rai, Lavanya

    2009-01-01

    The serum protein profiles of normal subjects, patients diagnosed with cervical cancer, and oral cancer were recorded using High Performance Liquid Chromatography combined with Laser Induced Fluorescence detection (HPLC-LIF). Serum protein profiles of the above three classes were tested for estab...

  17. Laser induced fluorescence in atmospheric pressure discharges

    International Nuclear Information System (INIS)

    Dilecce, G; De Benedictis, S; Martini, L M; Tosi, P; Scotoni, M

    2015-01-01

    This paper offers an outline of laser induced fluorescence (LIF) diagnostics and practical recommendations for its use in atmospheric pressure discharges. LIF principles, technical requirements and rationalization of experimental outcomes by modelling are addressed. Important issues that are particularly relevant to small scale, spatially inhomogeneous discharges, like plasma-jets, are emphasized. For the first time, all collision processes and the spatial non-homogeneity of the laser beam are together accounted for in the LIF model. Saturation characteristics are discussed and used for the assessment of model parameters. A calibration procedure is discussed and implemented. Gas temperature measurements by LIF are also addressed. The whole description of the technique is given, without loss of generality, through the example of its application to the OH radical. Notes on other diatomic radicals, CH, NO and CN, are given along the paper. Some results in a RF plasma-jet are presented as an example of application in a discharge system where all the concepts developed in the paper are applied. (paper)

  18. The Regional Differences of Gpp Estimation by Solar Induced Fluorescence

    Science.gov (United States)

    Wang, X.; Lu, S.

    2018-04-01

    Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.

  19. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  20. Flow and flow-induced vibration of a square array of cylinders in steady currents

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ming [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Cheng, Liang; An, Hongwei; Tong, Feifei, E-mail: m.zhao@uws.edu.au [School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-08-15

    Flow and flow-induced vibration of a square array of cylinders are investigated by two-dimensional numerical simulations. Flow past 36 cylinders in an inline arranged square array and 33 cylinders in a staggered arranged square array is firstly simulated, for Re = 100 and the spacing ratios of L/D = 1.5, 2, 3, 4, 5. Only one vortex street is observed in the wake of the cylinder array when the spacing ratio is 1.5 in the inline arrangement and 1.5 and 2 in the staggered arrangement, indicating that the critical spacing ratio for the single-vortex street mode in the staggered arrangement is higher than that in the inline arrangement. The vortex shedding from the cylinders is suppressed at L/D = 3 for both inline and staggered arrangements. Vortex shedding from each individual cylinder is observed when L/D = 4. Flow-induced vibration of 36 cylinders in an inline square arrangement is studied for a constant Reynolds number of 100, two spacing ratios of 2 and 5, a constant mass ratio of 2.5 and a wide range of reduced velocities. It is found that for a spacing ratio of 2, the vibration of the cylinders in the four downstream columns does not start until the reduced velocity exceeds 4.5. The vibration of the cylinders progresses downstream with increasing reduced velocity. For a spacing ratio of 5, the vibrations of the cylinders in the most upstream column are similar to that of a single cylinder. The vibration amplitudes of the downstream cylinders peak at higher reduced velocities than that of a single cylinder. The maximum possible response amplitudes occur at the most downstream cylinders. (paper)

  1. The influence of PAH concentration and distribution on real-time in situ measurements of petroleum products in soils using laser induced fluorescence

    International Nuclear Information System (INIS)

    Douglas, G.S.; Lieberman, S.H.; McGinnis, W.C.; Knowles, D.; Peven, C.

    1995-01-01

    Real-time laser induced fluorescence (LIF) in situ measurements of soil samples provide a reliable and cost-effective screening tool for hydrocarbon site assessments. The site characterization and analysis penetrometer system (SCAPS), is a truck-mounted cone penetrometer probe modified with a sapphire window and connected to a laser by fiber optics. The pulsed nitrogen laser 337-nm excitation source induces fluorescence in polynuclear aromatic hydrocarbons (PAHs), which are present in petroleum products. The fluorescence response of these compounds is measured with a fluorometer. The SCAPS can provide continuous hydrocarbon screening measurements to soil depths greater than 100 feet. Discrete soil samples collected from the SCAPS boreholes were extracted and analyzed for total petroleum hydrocarbons (TPH), by gas chromatography with flame ionization detection (GC/FID), and 16 parent and over 100 alkyl substituted PAH compounds by gas chromatography with mass spectrometry detection (GC/MS). This method provides a basis for evaluating the relationship between TPH and PAH concentrations in the soil samples and laser induced fluorescence measurements from the soil borings

  2. Laser Induced Fluorescence of Helium Ions in a Helicon Plasma

    Science.gov (United States)

    Compton, C. S.; Biloui, C.; Hardin, R. A.; Keesee, A. M.; Scime, E. E.; Boivin, R.

    2003-10-01

    The lack of a suitable Laser Induced Fluorescence (LIF) scheme for helium ions at visible wavelengths has prevented LIF from being employed in helium plasmas for measurements of ion temperature and bulk ion flow speeds. In this work, we will discuss our attempts to perform LIF of helium ions in a helicon source plasma using an infrared, tunable diode laser operating at 1012.36 nm. The infrared transition corresponds to excitation from the n = 4 level (4f ^2F) to the n = 5 (5g ^2G) level of singly ionized helium and therefore requires substantial electron temperatures (> 10 eV) to maintain an adequate ion population in the n = 4 state. Calculations using a steady state coronal model predict that the n = 4 state population will be 25% larger than the n = 5 population for our experimental conditions. The fluorescence decay from the n = 5 (5f ^2F) level of singly ionized helium level to the n = 3 (3d ^2D) level at 320.31 nm is monitored as the diode laser is swept through 10 GHz around the 1012.36 nm line. Note that the fluorescence emission requires a collisionally coupled transition between two different n = 5 quantum states. We will also present measurements of the emission intensities of both the 1012.36 nm and the 320.31 nm lines as a function of source neutral pressure, rf power, and plasma density. This work supported by the U.S. DoE EPSCoR Lab Partnership Program.

  3. Two-photon induced fluorescence and other optical effects in irradiated and doped fused silica

    International Nuclear Information System (INIS)

    Kramer, S.D.

    1986-07-01

    The objective of this program was to assess and identify irradiation techniques which could be used to modify the optical charactistics of doped fused silica. Primary emphasis was placed on determining if gamma ray or neutron bombardment of the glass would enhance certain Raman and nonlinear optical effects. In particular, the effect of irradiation on optical two photon induced fluorescence was studied in detail. The maximum radiation exposures used were 10 6 rads (Si) of gamma rays and neutron fluences of 1 x 10 14 neutrons/cm 2 . The optical measurements were made at room temperature between one and four months after irradiation. The maximum input light intensity was 10 9 watts/cm 2 at a near infrared (1.06 μ) input wavelength which was chosen to lie in a transparent spectral region of the glass. Under these experimental conditions a careful search revealed no detectable two-photon induced fluorescence in the region from 550 to 900 nm. The upper limit for the photon efficiency of this process was determined to be less than 1 x 10 -10 %. 89 refs., 12 figs

  4. Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532nm Nd:YAG laser

    International Nuclear Information System (INIS)

    Vrabel, Patrik; Taborsky, Petr; Ryvolova, Marketa; Havel, Josef; Preisler, Jan

    2006-01-01

    Capillary electrophoresis with laser-induced fluorescence detection (CELIF) is a powerful tool for separation and sensitive determination of fluorescent species. Biologically active compounds, such as amino acids, peptides and proteins may exhibit native fluorescence, which is however often low and/or an expensive laser is required for excitation in UV. Therefore, labelling of the analytes with a fluorescent dye is usually necessary. In this work, a home-built CELIF instrument with diode pumped frequency-doubled continuous wave Nd:YAG excitation laser with feedback power regulation (532nm) was constructed. The suitability of this type of laser for LIF detection in a separation method was found excellent. A limit of detection (LOD) (S/N=3) of 2x10 -13 mol/l was achieved with rhodamine B, which is comparable to those obtained using similar instruments with Ar + laser [Y.F. Cheng, N.J. Dovichi, Science 242 (1988) 562, E.S. Yeung et al., J. Chromatogr. 608 (1992) 73]. LOD of a protein derivatized according to modified procedures [M.J. Little et al., Anal. Chim. Acta 339 (1997) 279, A. Chersi et al., Biochim. Biophys. Acta 1336 (1997) 83] was determined. Detection of the derivatives was found to be limited by insufficient reaction recovery at low analyte concentration, chemical noise, separation efficiency and quality of the derivatizing reagent rather than by the detector performance. As a consequence, a huge gap between the detection ability of CELIF instruments and LOD determined in real samples is revealed

  5. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    Science.gov (United States)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  6. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    Science.gov (United States)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Directory of Open Access Journals (Sweden)

    Toews Michael D

    2011-08-01

    Full Text Available Abstract Background Stink bugs (Hemiptera: Pentatomidae comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding. Results Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls. Conclusions The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.

  8. A Class I UV-Blocking (senofilcon A) Soft Contact Lens Prevents UVA-induced Yellow Fluorescence and NADH loss in the Rabbit Lens Nucleus in vivo

    Science.gov (United States)

    Giblin, Frank J.; Lin, Li-Ren; Simpanya, Mukoma F.; Leverenz, Victor R.; Fick, Catherine E.

    2012-01-01

    It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm2 on the cornea) for 1 hour using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 hour. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear

  9. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array.

    Science.gov (United States)

    Lenain, Christelle; Gamboa, Bastien; Perrin, Agnes; Séraïdaris, Alexia; Bertino, Béatrice; Rival, Yves; Bernardi, Mathieu; Piwnica, David; Méhul, Bruno

    2018-05-01

    We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.

    Science.gov (United States)

    Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C

    2017-06-05

    Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.

  11. Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube

    Science.gov (United States)

    Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.

    2011-11-01

    Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.

  12. Laser-induced fluorescence of se, as, and sb in an electrothermal atomizer.

    Science.gov (United States)

    Swart, D J; Ezer, M; Pacquette, H L; Simeonsson, J B

    1998-04-01

    Trace detection of Se, As, and Sb atoms has been performed by electrothermal atomization laser-induced fluorescence (ETA-LIF) approaches. Production of far-UV radiation necessary for excitation of As atoms at 193.696 nm and Se atoms at 196.026 nm was accomplished by stimulated Raman shifting (SRS) of the output of a frequency-doubled dye laser operating near 230 nm. Both wavelengths were obtained as second-order anti-Stokes shifts of the dye laser radiation and provided up to 10 μJ/pulse, which was shown through power dependence studies to be sufficient for saturation in the ETA. An excited-state direct line fluorescence approach using excitation at 206.279 nm was also investigated for the LIF detection of Se. High-sensitivity LIF of Sb atoms was accomplished using 206.833-nm excitation and detection at 259.805 nm. The accuracy of the ETA-LIF approaches was demonstrated by determining the As and Se content of aqueous reference samples. The limits of detection (absolute mass) were 200 fg by ground-state LIF and 150 fg by excited-state direct line fluorescence for Se, 200 fg for As, and 10 fg for Sb; these LODs compare favorably with results reported previously in the literature for ETA-LIF, GFAAS, and ICP-MS methods.

  13. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs

    Science.gov (United States)

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-01

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to

  14. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  15. THE REGIONAL DIFFERENCES OF GPP ESTIMATION BY SOLAR INDUCED FLUORESCENCE

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-04-01

    Full Text Available Estimating gross primary productivity (GPP at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of −5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.

  16. A facile fluorescent sensor based on silicon nanowires for dithionite

    Science.gov (United States)

    Cao, Xingxing; Mu, Lixuan; Chen, Min; She, Guangwei

    2018-05-01

    A facile and novel fluorescent sensor for dithionite has been constructed by simultaneously immobilizing dansyl group (fluorescence molecule) and dabsyl group (quencher and recognizing group) on the silicon nanowires (SiNWs) and SiNW arrays surface. This sensor for dithionite exhibited high selectivity and a good relationship of linearity between fluorescence intensities and dithionite concentrations from 0.1 to 1 mM. This approach is straightforward and does not require complicated synthesis, which can be extended to develop other sensors with similar rationale.

  17. Detection of potassium deficiency on palm oil tree (Elaeis guineensis (jacq)) by laser induced fluorescence

    International Nuclear Information System (INIS)

    Diomande, K.; Konate, A.; Krou Adjo, V.; Soro, A.; Ebby, N.; Ballo, K.

    1998-02-01

    The potassium is the main nutrient element which plays a significant role on oil palm tree (Elaeis guineensis (jacq)) production and its resistance to the dry season. One can observe 30% decrease of the production in case of potassium deficiency. The potassium nutrition control of an oil palm tree field is a very important activity and leads to the fertilization policy. The Laser Induced Fluorescence (L.I.F.) is a fast and simple method compared to the classical one, ''Diagnostic Foliaire'', usually used in agronomy. We used the L.I.F. method to detect the oil palm tree stress caused by potassium deficiency, analysing the fluorescence spectrum of the chlorophyll a. We proved that the intensity ratio of the fluorescence spectrum R=F690/F73S is superior to 0.5 when the tree is under stress and its value is around 0.4 in case of intact tree. (author)

  18. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind

    2015-09-24

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  19. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind; Battista, Edmondo; Manzo, Gianluigi; Causa, Filippo; Netti, Paolo; Di Fabrizio, Enzo M.

    2015-01-01

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  20. Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-12-01

    Full Text Available Abstract Background The availability of cell lines releasing fluorescent viral particles can significantly support a variety of investigations, including the study of virus-cell interaction and the screening of antiviral compounds. Regarding HIV-1, the recovery of such biologic reagents represents a very hard challenge due to the intrinsic cytotoxicity of many HIV-1 products. We sought to overcome such a limitation by using a cell line releasing HIV-1 particles in an inducible way, and by exploiting the ability of a HIV-1 Nef mutant to be incorporated in virions at quite high levels. Results Here, we report the isolation and characterization of a HIV-1 packaging cell line, termed 18-4s, able to release valuable amounts of fluorescent HIV-1 based Virus-Like Particles (VLPs in an inducible way. 18-4s cells were recovered by constitutively expressing the HIV-1 NefG3C mutant fused with the enhanced-green fluorescent protein (NefG3C-GFP in a previously isolated inducible HIV-1 packaging cell line. The G3C mutation creates a palmitoylation site which results in NefG3C-GFP incorporation into virions greatly exceeding that of the wild type counterpart. Upon induction of 18-4s cells with ponasterone A and sodium butyrate, up to 4 μg/ml of VLPs, which had incorporated about 150 molecules of NefG3C-GFP per viral particle, were released into the culture supernatant. Due to their intrinsic strong fluorescence, the 18-4s VLPs were easily detectable by a novel cytofluorometric-based assay developed here. The treatment of target cells with fluorescent 18-4 VLPs pseudotyped with different glycoprotein receptors resulted in these becoming fluorescent as early as two hours post-challenge. Conclusion We created a stable cell line releasing fluorescent HIV-1 based VLPs upon induction useful for several applications including the study of virus-cell interactions and the screening of antiviral compounds.

  1. The Telescope Array experiment: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Cohen, F [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa (Japan); Abbasi, R U; Abu-Zayyad, T; Belz, J W; Blake, S A; Brusova, O; Cady, R; Cao, Z [University of Utah, Salt Lake City (United States); Azuma, R [Tokyo Institute of Technology, Tokyo (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G [Hanyang University, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda (Japan); Cho, I S [Yonsei University, Seoul (Korea, Republic of); Chung, T [Ewha Womans University, Seoul (Korea, Republic of); Doyle, T [Utah State University, Logan (United States); Endo, A [Saitama University, Saitama (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp (and others)

    2008-07-15

    Telescope Array (TA) is a hybrid detector of a surface detector array and fluorescence telescopes. This hybrid detector will measure the energy spectrum, anisotropy and composition of ultra-high energy cosmic rays (UHECRs) to identify their origin. The almost construction of the detector has been completed in May 2007, and the detector is running under test and adjustments. The first hybrid observation with the full configuration is planned in beginning of 2008. In this paper the status and prospects of TA detector is described.

  2. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    Science.gov (United States)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  3. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Maraelys Morales González

    2018-04-01

    Full Text Available One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.

  4. Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion

    NARCIS (Netherlands)

    Dawood, M.K.; Zheng, H.; Kurniawan, N.A.; Leong, K.C.; Foo, Y.L.; Rajagopalan, Raj; Khan, S.A.; Choi, W.K.

    2012-01-01

    We describe a new scalable method to fabricate large-area hybrid superhydrophobic surfaces with selective adhesion properties on silicon (Si) nanowire array substrates by exploiting liquid-medium-dependent capillary-force-induced nanocohesion. Gold (Au) nanoparticles were deposited on Si by glancing

  5. The camera of the Pierre Auger Observatory Fluorescence Detector

    CERN Document Server

    Ambrosio, M; Bracci, F; Facal, P; Fonte, R; Gallo, G; Kemp, E; Matthiae, Giorgio; Nicotra, D; Privitera, P; Raia, G; Tusi, E; Vitali, G

    2002-01-01

    The Fluorescence Detector of the Pierre Auger Observatory is a set of telescopes which measure the fluorescence light emitted by atmospheric nitrogen stimulated by the cosmic-ray showers. The Camera is an array of photomultipliers positioned on the telescope focal surface. We describe the main features of the camera: the hexagonal pixels geometry on the spherical focal surface; the light collectors which complement the photomultipliers; the photomultipliers test.

  6. The camera of the Pierre Auger Observatory Fluorescence Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, M.; Aramo, C.; Bracci, F.; Facal, P.; Fonte, R.; Gallo, G.; Kemp, E. E-mail: kemp@roma2.infn.it; Matthiae, G.; Nicotra, D.; Privitera, P.; Raia, G.; Tusi, E.; Vitali, G

    2002-02-01

    The Fluorescence Detector of the Pierre Auger Observatory is a set of telescopes which measure the fluorescence light emitted by atmospheric nitrogen stimulated by the cosmic-ray showers. The Camera is an array of photomultipliers positioned on the telescope focal surface. We describe the main features of the camera: the hexagonal pixels geometry on the spherical focal surface; the light collectors which complement the photomultipliers; the photomultipliers test.

  7. The camera of the Pierre Auger Observatory Fluorescence Detector

    International Nuclear Information System (INIS)

    Ambrosio, M.; Aramo, C.; Bracci, F.; Facal, P.; Fonte, R.; Gallo, G.; Kemp, E.; Matthiae, G.; Nicotra, D.; Privitera, P.; Raia, G.; Tusi, E.; Vitali, G.

    2002-01-01

    The Fluorescence Detector of the Pierre Auger Observatory is a set of telescopes which measure the fluorescence light emitted by atmospheric nitrogen stimulated by the cosmic-ray showers. The Camera is an array of photomultipliers positioned on the telescope focal surface. We describe the main features of the camera: the hexagonal pixels geometry on the spherical focal surface; the light collectors which complement the photomultipliers; the photomultipliers test

  8. Jamming of Quantum Emitters by Active Coated Nanoparticles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2013-01-01

    to effectively cloak the emitters to a far-field observer is reported and explained through thorough near- and far-field investigations. This property offers an interesting route toward the jamming of quantum emitters/nanoantennas that might be of potential use, for instance, in biological fluorescence assays...

  9. Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging.

    Science.gov (United States)

    Wang, Yejun; Capps, Cade; Kulatilaka, Waruna D

    2017-02-15

    Ultrashort-pulse (femtosecond-duration) two-photon laser-induced fluorescence (fs-TPLIF) of an inert gas tracer krypton (Kr) is investigated. A detailed spectroscopic study of fluorescence channels followed by the 5p'←←4p excitation of Kr at 204.1 nm is reported. The experimental line positions in the 750-840 nm emission region agree well with the NIST Atomic Spectra Database. The present work provides an accurate listing of relative line strengths in this spectral region. In the range of laser pulse energies investigated, a quadratic dependence was observed between the Kr-TPLIF signal and the laser pulse energy. The single-laser-shot 2D TPLIF images recorded in an unsteady jet demonstrate the potential of using fs excitation at 204.1 nm for mixing and flow diagnostic studies using Kr as an inert gas tracer.

  10. Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements

    Science.gov (United States)

    Recent development of sun-induced chlorophyll fluorescence (SIF) technology is stimulating studies to remotely approximate canopy photosynthesis (measured as gross primary production, GPP). While multiple applications have advanced the empirical relationship between GPP and SIF, mechanistic understa...

  11. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  12. Light-emitting waveguide-plasmon polaritions

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.

    2012-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency

  13. Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection.

    Science.gov (United States)

    Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin

    2018-02-06

    Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.

  14. Suppressing self-induced frequency scanning of a phase conjugate diode laser array with using counterbalance dispersion

    DEFF Research Database (Denmark)

    Løbel, M.; Petersen, P.M.; Johansen, P.M.

    1998-01-01

    Experimental results show that angular dispersion strongly influences the self-induced frequency scanning of a multimode broad-area diode laser array coupled to a photorefractive self-pumped phase conjugate mirror. Prisms or a dispersive grating placed in the external cavity opposing the material...

  15. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    NARCIS (Netherlands)

    Vankan, P.J.W.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.A.H.; Schram, D.C.; Döbele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has

  16. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  17. Sputtering of amorphous carbon layers studied by laser induced fluorescence

    International Nuclear Information System (INIS)

    Pasch, E.

    1992-07-01

    In order to minimize the radiation losses, it is desirable to keep the plasmas in nuclear fusion devices free of high-Z-impurities. Therefore, the walls of TEXTOR and other tokamaks are covered with thin layers of amorphous carbon layers (a-C:H) or amorphous carbon/boron layers (a-C/B:H). The sputtering behaviour of these layers has been studied under bombardment by Ar + ions with energies of 1.5 keV and current densities of a few mA/cm 2 . Investigations of these coatings were carried out with the object to measure the velocity distribution of the sputtered atoms and the sputtered yields by laser induced fluorescence in the vacuum ultraviolet. (orig.)

  18. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    Science.gov (United States)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  19. Comparison of Nasal Epithelial Smoking-Induced Gene Expression on Affymetrix Exon 1.0 and Gene 1.0 ST Arrays

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available We have previously defined the impact of tobacco smoking on nasal epithelium gene expression using Affymetrix Exon 1.0 ST arrays. In this paper, we compared the performance of the Affymetrix GeneChip Human Gene 1.0 ST array with the Human Exon 1.0 ST array for detecting nasal smoking-related gene expression changes. RNA collected from the nasal epithelium of five current smokers and five never smokers was hybridized to both arrays. While the intersample correlation within each array platform was relatively higher in the Gene array than that in the Exon array, the majority of the genes most changed by smoking were tightly correlated between platforms. Although neither array dataset was powered to detect differentially expressed genes (DEGs at a false discovery rate (FDR <0.05, we identified more DEGs than expected by chance using the Gene ST array. These findings suggest that while both platforms show a high degree of correlation for detecting smoking-induced differential gene expression changes, the Gene ST array may be a more cost-effective platform in a clinical setting for gene-level genomewide expression profiling and an effective tool for exploring the host response to cigarette smoking and other inhaled toxins.

  20. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest.

    Science.gov (United States)

    Colombo, Roberto; Celesti, Marco; Bianchi, Remo; Campbell, Petya K E; Cogliati, Sergio; Cook, Bruce D; Corp, Lawrence A; Damm, Alexander; Domec, Jean-Christophe; Guanter, Luis; Julitta, Tommaso; Middleton, Elizabeth M; Noormets, Asko; Panigada, Cinzia; Pinto, Francisco; Rascher, Uwe; Rossini, Micol; Schickling, Anke

    2018-02-20

    Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic

  1. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  2. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    Science.gov (United States)

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  3. Initial operation of the LEDA beam-induced fluorescence diagnostic

    International Nuclear Information System (INIS)

    Kamperschroer, James H.; Gurd, Pamela A.; Martinez, Derwin G.; Gilpatrick, J. Douglas; Shurter, R. Bradford; Stettler, Matthew W.; Madsen, David W.; O'Hara, James F.; Sage, Joan; Schaefer, Timothy L.

    2000-01-01

    A diagnostic based on beam-induced fluorescence has been developed and used to examine the expanded beam in the High-Energy Beam Transport (HEBT) section of the Low Energy Demonstration Accelerator (LEDA). The system consists of a camera, a gas injector, a spectrometer, and a control system. Gas is injected to provide a medium for the beam to excite, the camera captures the resulting image of the fluorescing gas, and the spectrometer measures the spectrum of the emitted light. EPICS was used to control the camera and acquire and store images. Data analysis is presently being performed offline. A Kodak DCS420m professional CCD camera is the primary component of the optical system. InterScience, Inc. modified the camera with the addition of a gain of 4000 image intensifier, thereby producing an intensified camera with a sensitivity of ∼0.5 milli-lux. Light is gathered with a 1 '' format, 16-160 mm, Computar zoom lens. This lens is attached to the camera via a Century Precision Optics relay lens. Images obtained using only hydrogen from the beam stop exhibited features not yet understood. Images with good signal-to-noise ratio were obtained with the injection of sufficient nitrogen to raise the HEBT pressure to 2-8x10 -6 torr. Two strong nitrogen lines, believed to be of the first negative group of N 2 + , were identified at 391 and 428 nm

  4. Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air

    Science.gov (United States)

    Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.

    1993-01-01

    Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.

  5. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis.

    Science.gov (United States)

    Szarka, Mate; Guttman, Andras

    2017-10-17

    We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.

  6. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    Science.gov (United States)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  7. Angle-resolved polarimetry of antenna-mediated fluorescence

    NARCIS (Netherlands)

    Mohtashami, A.; Osorio, C.I.; Koenderink, A.F.

    2015-01-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters, and the strength of the

  8. A Class I UV-blocking (senofilcon A) soft contact lens prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo.

    Science.gov (United States)

    Giblin, Frank J; Lin, Li-Ren; Simpanya, Mukoma F; Leverenz, Victor R; Fick, Catherine E

    2012-09-01

    It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm(2) on the cornea) for 1 h using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 h. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear

  9. Static Hyperspectral Fluorescence Imaging of Viscous Materials Based on a Linear Variable Filter Spectrometer

    Directory of Open Access Journals (Sweden)

    Alexander W. Koch

    2013-09-01

    Full Text Available This paper presents a low-cost hyperspectral measurement setup in a new application based on fluorescence detection in the visible (Vis wavelength range. The aim of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these images, fluorescent and non-fluorescent impurities in the viscous materials can be detected. For the illumination of the measurement object, a narrow-band high-power light-emitting diode (LED with a center wavelength of 370 nm was used. The low-cost acquisition unit for the imaging consists of a linear variable filter (LVF and a complementary metal oxide semiconductor (CMOS 2D sensor array. The translucent wavelength range of the LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements of fluorescent viscous materials with a non-fluorescent impurity have been performed and analyzed. With the presented setup, measurement surfaces in the micrometer range can be provided. The measureable minimum particle size of the impurities is in the nanometer range. The recording rate for the measurements depends on the exposure time of the used CMOS 2D sensor array and has been found to be in the microsecond range.

  10. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    Science.gov (United States)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  11. Portable detection system of vegetable oils based on laser induced fluorescence

    Science.gov (United States)

    Zhu, Li; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan; Mu, Taotao

    2015-11-01

    Food safety, especially edible oils, has attracted more and more attention recently. Many methods and instruments have emerged to detect the edible oils, which include oils classification and adulteration. It is well known than the adulteration is based on classification. Then, in this paper, a portable detection system, based on laser induced fluorescence, is proposed and designed to classify the various edible oils, including (olive, rapeseed, walnut, peanut, linseed, sunflower, corn oils). 532 nm laser modules are used in this equipment. Then, all the components are assembled into a module (100*100*25mm). A total of 700 sets of fluorescence data (100 sets of each type oil) are collected. In order to classify different edible oils, principle components analysis and support vector machine have been employed in the data analysis. The training set consisted of 560 sets of data (80 sets of each oil) and the test set consisted of 140 sets of data (20 sets of each oil). The recognition rate is up to 99%, which demonstrates the reliability of this potable system. With nonintrusive and no sample preparation characteristic, the potable system can be effectively applied for food detection.

  12. Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data

    Directory of Open Access Journals (Sweden)

    Micol Rossini

    2016-05-01

    Full Text Available Sun-induced canopy chlorophyll fluorescence in both the red (FR and far-red (FFR regions was estimated across a range of temporal scales and a range of species from different plant functional types using high resolution radiance spectra collected on the ground. Field measurements were collected with a state-of-the-art spectrometer setup and standardized methodology. Results showed that different plant species were characterized by different fluorescence magnitude. In general, the highest fluorescence emissions were measured in crops followed by broadleaf and then needleleaf species. Red fluorescence values were generally lower than those measured in the far-red region due to the reabsorption of FR by photosynthetic pigments within the canopy layers. Canopy chlorophyll fluorescence was related to plant photosynthetic capacity, but also varied according to leaf and canopy characteristics, such as leaf chlorophyll concentration and Leaf Area Index (LAI. Results gathered from field measurements were compared to radiative transfer model simulations with the Soil-Canopy Observation of Photochemistry and Energy fluxes (SCOPE model. Overall, simulation results confirmed a major contribution of leaf chlorophyll concentration and LAI to the fluorescence signal. However, some discrepancies between simulated and experimental data were found in broadleaf species. These discrepancies may be explained by uncertainties in individual species LAI estimation in mixed forests or by the effect of other model parameters and/or model representation errors. This is the first study showing sun-induced fluorescence experimental data on the variations in the two emission regions and providing quantitative information about the absolute magnitude of fluorescence emission from a range of vegetation types.

  13. Measurement of isotope shift of recycled uranium by laser induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Oba, Masaki; Wakaida, Ikuo; Akaoka, Katsuaki; Miyabe, Masabumi

    1999-07-01

    Isotope shift of the recycled uranium atoms including the 236 U was measured by laser induced fluorescence method. Eight even levels at 2 eV and three odd levels at 4 eV were measured with isotope shifts among 238 U, 236 U and 235 U obtained. As for the measurement of the 4 eV levels, the Doppler free two photon absorption method was used, and the hyperfine structure of the 235 U was analyzed simultaneously. The isotope shift of 234 U was also observed in the three transition. (J.P.N.)

  14. L G-2 Scintrex manual.Fluorescence analyzer

    International Nuclear Information System (INIS)

    Pirelli, H.

    1987-01-01

    The Scintrex Fluorescence Analyzer LG-2 selectively detects the presence of certain fluorescent minerals through UV photoluminescence induced and provides quantitative information on its distribution.

  15. Gigapixel imaging with microlens arrays

    Science.gov (United States)

    Orth, Antony; Schonbrun, Ethan

    2016-03-01

    A crucial part of the drug discovery process involves imaging the response of thousands of cell cultures to candidate drugs. Quantitative parameters from these "high content screens", such as protein expression and cell morphology, are extracted from fluorescence and brightfield micrographs. Due to the sheer number of cells that need to imaged for adequate statistics, the imaging time itself is a major bottleneck. Automated microscopes image small fields-of-view (FOVs) serially, which are then stitched together to form gigapixel-scale mosaics. We have developed a microscopy architecture that reduces mechanical overhead of traditional large field-of-view by parallelizing the image capture process. Instead of a single objective lens imaging FOVs one by one, we employ a microlens array for continuous photon capture, resulting in a 3-fold throughput increase. In this contribution, we present the design and imaging results of this microscopy architecture in three different contrast modes: multichannel fluorescence, hyperspectral fluorescence and brightfield.

  16. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  17. Fluorescence detection of oral squamous cell carcinoma using Hyperflav

    Science.gov (United States)

    Melnik, Ivan S.; Dets, Sergiy M.; Rawicz, Andrew H.; Zhang, Lewei

    2000-05-01

    A novel hypericin-based drug HyperflavTM has been evaluated for light-induced fluorescence detection of oral cancer. Squamous cell carcinoma was induced with carcinogenic agent in right pouches of forty hamsters (20/20 males/females). Solution of HyperflavTM was sprinkled into stomach with a single dose 0.2 - 4 mg of pure hypericin per kg b.w. and 4 - 8 hours before fluorescence analysis. In two animal groups with cancer symptoms the autofluorescence and hypericin-induced fluorescence were taken under 442 nm excitation. The buccal mucosa and adjacent areas were measured fiberoptically in-vivo and in-vitro using orange/green ratio (610/540). The in-vivo fluorescence imaging of malignant areas was conducted to assist the biopsy guidance and to compare with white-light images. Histological and morphological analyses were performed from biopsies. Oral squamous cell carcinoma in its early stage demonstrated specific higher 610/540 ratio for 37 tested hamsters. Advanced state involved another higher fluorescence maximum around 640 nm that in our opinion caused by strong porphyrin-induced native fluorescence. Such deformation of fluorescence spectra may lead to inadequate perception of diseased tissue area. To avoid this problem the autofluorescence spectra & images were added. HyperflavTM application is promising for demarcation of early oral cancer when combined with autofluorescence measurements.

  18. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Romeijn, Stefan; Ossendorp, Ferry; Jiskoot, Wim; Bouwstra, Joke

    2014-10-01

    The aim of this work was to study the applicability of antigen-coated pH-sensitive microneedle arrays for effective vaccination strategies. Therefore, a model antigen (ovalbumin) was coated onto pH-sensitive (pyridine-modified) microneedle arrays to test pH-triggered antigen release by applying the coated arrays onto ex vivo human skin, and by conducting a dermal immunization study in mice. The release of antigen into ex vivo human skin from the coated microneedles was determined by using radioactively labeled ovalbumin. To investigate the induction of antigen-specific IgG, and CD4(+) and CD8(+) T-cell responses, BALB/c mice were immunized with antigen-coated pH-sensitive microneedles by the 'coat and poke' approach. These responses were compared to responses induced by the 'poke and patch' approach, and subcutaneous and intradermal vaccination with classic hypodermic needles. The pH-sensitive microneedle arrays were efficiently coated with ovalbumin (95% coating efficiency) and upon application of six microneedle arrays 4.27 of 7 μg ovalbumin was delivered into the skin, showing a release efficiency of 70%. In contrast, the 'poke and patch' approach led to a delivery of only 6.91 of 100 μg ovalbumin (7% delivery efficiency). Immunization by means of ovalbumin-coated microneedles resulted in robust CD4(+) and CD8(+) T-cell responses comparable to those obtained after subcutaneous or intradermal immunization with conventional needles. Moreover, it effectively induced IgG responses; however, it required prime-boost immunizations before antibodies were produced. In conclusion, antigen delivery into ex vivo human skin by antigen-coated pH-sensitive microneedle arrays is more efficient than the 'poke-and-patch' approach and in vivo vaccination studies show the applicability of pH-sensitive microneedles for the induction of both T cell and B cell responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Paghaleh, Soodeh Jamali; Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher; Rahimi, Mojtaba; Bahrampour, Ali Reza

    2015-01-01

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications

  20. Two-photon laser-induced fluorescence studies of HS radicals, DS radicals, and I atoms

    Energy Technology Data Exchange (ETDEWEB)

    Tiee, J J; Ferris, M J; Loge, G W; Wampler, F B

    1983-04-15

    A two-photon laser-induced excitation and fluorescence technique has been used to study the A /sup 2/..sigma../sup +/ - X/sup 2/PI transition of HS and DS radicals and various high-lying /sup 4/P/sup 0/, /sup 2/D/sup 0/, and /sup 4/D/sup 0/ states of the I atom. The two-photon excitation cross sections and detection sensitivity are discussed. 13 references, 5 figures.

  1. Plasmonic enhancement of ultraviolet fluorescence

    Science.gov (United States)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been

  2. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS)

    International Nuclear Information System (INIS)

    Brockmann, S.; Grossmann, K.; Arnold, T.

    2014-01-01

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10 -6 M for uranium (VI) compounds within the confocal volume. (orig.)

  3. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  4. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    Science.gov (United States)

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  5. Photodetection of early cancer by laser-induced fluorescence of a tumor-selective dye: apparatus design and realization

    Science.gov (United States)

    Wagnieres, Georges A.; Depeursinge, Christian D.; Monnier, Philippe; Savary, Jean-Francois; Cornaz, Piet F.; Chatelain, Andre; van den Bergh, Hubert

    1990-07-01

    An apparatus is designed and realized to detect "early" cancer at the surface of the hollow organs in the human body by endoscopic means. The tumor is localized by the laser induced fluorescence of a dye (HPD) which concentrates selectively in the neoplastic tissue after intravenous injection. Fluorescence contrast between the tumor and its normal surroundings is enhanced by subtracting the background autofluorescence which occurs in both types of tissue. This is done by means of 2-color digital images manipulation in real-time. Preliminary clinical tests of the apparatus demonstrated the detection of carcinoma in situ in the esophagus.

  6. Concentrating and labeling genomic DNA in a nanofluidic array

    DEFF Research Database (Denmark)

    Marie, Rodolphe; Pedersen, Jonas Nyvold; Mir, Kalim U.

    2018-01-01

    , however, hinder the polymerase activity. We demonstrate a device and a protocol for the enzymatic labeling of genomic DNA arranged in a dense array of single molecules without attaching the enzyme or the DNA to a surface. DNA molecules accumulate in a dense array of pits embedded within a nanoslit due...... to entropic trapping. We then perform ϕ29 polymerase extension from single-strand nicks created on the trapped molecules to incorporate fluorescent nucleotides into the DNA. The array of entropic traps can be loaded with λ-DNA molecules to more than 90% of capacity at a flow rate of 10 pL min-1. The final...

  7. Micropatterned arrays of porous silicon: toward sensory biointerfaces.

    Science.gov (United States)

    Flavel, Benjamin S; Sweetman, Martin J; Shearer, Cameron J; Shapter, Joseph G; Voelcker, Nicolas H

    2011-07-01

    We describe the fabrication of arrays of porous silicon spots by means of photolithography where a positive photoresist serves as a mask during the anodization process. In particular, photoluminescent arrays and porous silicon spots suitable for further chemical modification and the attachment of human cells were created. The produced arrays of porous silicon were chemically modified by means of a thermal hydrosilylation reaction that facilitated immobilization of the fluorescent dye lissamine, and alternatively, the cell adhesion peptide arginine-glycine-aspartic acid-serine. The latter modification enabled the selective attachment of human lens epithelial cells on the peptide functionalized regions of the patterns. This type of surface patterning, using etched porous silicon arrays functionalized with biological recognition elements, presents a new format of interfacing porous silicon with mammalian cells. Porous silicon arrays with photoluminescent properties produced by this patterning strategy also have potential applications as platforms for in situ monitoring of cell behavior.

  8. Lie Group Analysis of the Photo-Induced Fluorescence of Drosophila Oogenesis with the Asymmetrically Localized Gurken Protein.

    Directory of Open Access Journals (Sweden)

    Jen-Cheng Wang

    Full Text Available Lie group analysis of the photo-induced fluorescence of Drosophila oogenesis with the asymmetrically localized Gurken protein has been performed systematically to assess the roles of ligand-receptor complexes in follicle cells. The (2×2 matrix representations resulting from the polarized tissue spectra were employed to characterize the asymmetrical Gurken distributions. It was found that the fluorescence of the wild-type egg shows the Lie point symmetry X 23 at early stages of oogenesis. However, due to the morphogen regulation by intracellular proteins and extracellular proteins, the fluorescence of the embryogenesis with asymmetrically localized Gurken expansions exhibits specific symmetry features: Lie point symmetry Z 1 and Lie point symmetry X 1. The novel approach developed herein was successfully used to validate that the invariant-theoretical characterizations are consonant with the observed asymmetric fluctuations during early embryological development.

  9. Experimental studies of the propagation of electrostatic ion perturbations by time-resolved laser-induced fluorescence

    International Nuclear Information System (INIS)

    Bachet, G.; Skiff, F.; Doveil, F.; Stern, R.A.

    2001-01-01

    Effects induced by the propagation of several kinds of electrostatic perturbation in a low-density collisionless argon plasma are observed with space, time, and velocity-resolved laser-induced fluorescence (LIF). The propagation of strong self-organized ion structures is observed and the associated electric field is determined. Snap shots of the ion phase space with a time resolution of 2 μs can be reconstructed from the experimental data. All the terms of the kinetic equation can also be determined from the data. A one-dimensional (1D) numerical simulation reproduces qualitatively the experimentally observed ion phase space behavior

  10. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  11. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.

    Science.gov (United States)

    Lin, Dianmin; Tao, Hu; Trevino, Jacob; Mondia, Jessica P; Kaplan, David L; Omenetto, Fiorenzo G; Dal Negro, Luca

    2012-11-27

    By a reusable transfer fabrication technique, we demonstrate high-fidelity fabrication of metal nanoparticles, optical nanoantennas, and nanohole arrays directly on a functional silk biopolymer. The ability to reproducibly pattern silk biopolymers with arbitrarily complex plasmonic arrays is of importance for a variety of applications in optical biosensing, tissue engineering, cell biology, and the development of novel bio-optoelectronic medical devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  13. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays.

    Science.gov (United States)

    Ren, Dingding; Dheeraj, Dasa L; Jin, Chengjun; Nilsen, Julie S; Huh, Junghwan; Reinertsen, Johannes F; Munshi, A Mazid; Gustafsson, Anders; van Helvoort, Antonius T J; Weman, Helge; Fimland, Bjørn-Ove

    2016-02-10

    Ternary semiconductor nanowire arrays enable scalable fabrication of nano-optoelectronic devices with tunable bandgap. However, the lack of insight into the effects of the incorporation of Vy element results in lack of control on the growth of ternary III-V(1-y)Vy nanowires and hinders the development of high-performance nanowire devices based on such ternaries. Here, we report on the origins of Sb-induced effects affecting the morphology and crystal structure of self-catalyzed GaAsSb nanowire arrays. The nanowire growth by molecular beam epitaxy is changed both kinetically and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses and the crystal phase evolution mechanism proposed in this Letter, the phase transition/stability in catalyst-assisted ternary III-V-V nanowire growth can be well explained. Wavelength tunability with good homogeneity of the optical emission from the self-catalyzed GaAsSb nanowire arrays with high crystal phase purity is demonstrated by only adjusting the Sb2 flux.

  14. Ultraviolet laser-induced fluorescence detection strategies in capillary electrophoresis: determination of naphthalene sulphonates in river water.

    NARCIS (Netherlands)

    Kok, S.J.; Isberg, I.C.K.; Gooijer, C.; Brinkman, U.A.T.; Velthorst, N.H.

    1998-01-01

    Various UV-laser-induced fluorescence detection strategies for capillary electrophoresis (CE) are compared, i.e. two UV-laser systems (a pulsed laser providing up to 25 mW of tunable emission, applied at 280, 290 and 325 nm, and a continuous wave (cw) laser providing up to 100 mW of 257 nm emission)

  15. Time-resolved fluorescence measurements using microlens array and area imaging devices.

    Science.gov (United States)

    Merk, Susanne; Lietz, Achim; Kroner, Margareta; Valler, Martin; Heilker, Ralf

    2004-02-01

    Time-resolved fluorescence (TRF) assay formats are frequently used technologies in high-throughput screening. In this article, we have characterised the novel Plate::Vision(2) 96-microlens array reader (Carl Zeiss Jena GmbH, Germany) and compared it to the novel LEADseeker Generation IV multimodality imaging system (LEADseeker Gen IV; Amersham Biosciences UK Ltd., UK) for applications in the TRF mode. In europium measurements using the TRF mode, the Plate::Vision displayed a limit of detection for europium of approximately 3 pM, which was comparable to two established TRF readers, the Discovery and the Victor V (both PerkinElmer Life Sciences Inc., USA). The LEADseeker's limit of detection only extended down to europium concentrations of approximately 10 pM in these experiments. For TRF resonance energy transfer (TR-FRET) experiments, a europium-biotin (Eu-biotin) conjugate was titrated with a streptavidin-allophycocyanin (SA-APC) conjugate. The Plate::Vision produced Z' values larger than 0.5 for the acceptor fluorophor emission with concentrations of Eu-biotin as low as 3 nM combined with 175 pM SA-APC. To achieve Z' values of at least 0.5 with the LEADseeker, concentrations of 10 nM Eu-biotin combined with SA-APC of at least 0.8 nM were required. In a drug screening application using TR-FRET, the energy transfer from a europium-labelled protein X (Eu-protein X) to a complex of biotinylated peptide Y with SA-APC was measured. Using the Plate::Vision, a Z' factor larger than 0.5 for the acceptor fluorophor emission was only obtained for a Eu-protein X concentration of at least 10 nM in combination with biotinylated peptide Y/SA-APC at saturating concentrations. Both the Plate::Vision and the LEADseeker show good quality results for applications in the TRF mode and enable an increased throughput based on their shortened measurement time in comparison to classic photomultiplier tube-based readers.

  16. Ultratrace analysis of actinides via coprecipitation/laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Miller, S.M.

    1982-01-01

    Actinides were selectively preconcentrated by coprecipitating each out of solution with a fluoride matrix and calcining each sample at 800 0 C. The fluorescence spectrum of each sample was recorded by illuminating the sample with laser light and detecting fluorescence with either a fluorescence/Raman spectrometer, an infrared spectrometer or in certain cases a filter fluorimeter. Three previously unobserved actinide spectra were recorded. Narrow lines at 546.9 nm, 564.6 nm, and 569.6 nm were found for CaF 2 :PuO 2++ at 10K. CaF 2 :Am + 3 displayed two broadband fluorescent peaks at 625 nm and 746 nm at room temperature and CaF 2 :Pu + 3 possessed a fluorescent peak at 1.22 microns at 10K. Energy transfer was observed in the form of Tb fluorescence quenching in TbF 3 :Pu + 3 when Pu was present in quantities of 10 ppM or more and in the form of Tb fluorescence enhancement in TbF 3 :Am + 3 when 1 ppM or more of Am was present. Careful sample preparation and the use of temporal as well as a spectral discrimination system extended the detection limit of U from 1 ml samples to the subfemtogram level. The fluorescence detection limits for Pu and Am were extended to 0.48 and 0.032 pg/ml. 39 figures, 9 tables

  17. Metasurface-Enabled Remote Quantum Interference.

    Science.gov (United States)

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  18. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  19. Thyroid iodine content measured by x-ray fluorescence in amiodarone-induced thyrotoxicosis: concise communication

    International Nuclear Information System (INIS)

    Leger, A.F.; Fragu, P.; Rougier, P.; Laurent, M.F.; Tubiana, M.; Savole, J.C.

    1983-01-01

    Iodine-induced thyrotoxicosis (IiT) is characterized by (a) a low radioiodine uptake, increased by exogenous TSH, and (b) a spontaneous evolution towards cure within a few months. An hypothetical pathogenesis of IiT is an initial inflation in the stores of thyroid hormones during iodine excess, followed by their sudden discharge into the circulation. Thyroid iodine content was measured by fluorescent scanning in 10 patients with amiodarone-induced thyrotoxicosis and in various control groups. Results were found to be high at the onset of the disease and to decrease during its course. The data agree with the hypothetical pathogenesis. Furthermore they may permit exclusion of a painless subacute thyroiditis, which is the main differential diagnosis of IiT

  20. Multiplexed detection of mycotoxins in foods with a regenerable array.

    Science.gov (United States)

    Ngundi, Miriam M; Shriver-Lake, Lisa C; Moore, Martin H; Ligler, Frances S; Taitt, Chris R

    2006-12-01

    The occurrence of different mycotoxins in cereal products calls for the development of a rapid, sensitive, and reliable detection method that is capable of analyzing samples for multiple toxins simultaneously. In this study, we report the development and application of a multiplexed competitive assay for the simultaneous detection of ochratoxin A (OTA) and deoxynivalenol (DON) in spiked barley, cornmeal, and wheat, as well as in naturally contaminated maize samples. Fluoroimmunoassays were performed with the Naval Research Laboratory array biosensor, by both a manual and an automated version of the system. This system employs evanescent-wave fluorescence excitation to probe binding events as they occur on the surface of a waveguide. Methanolic extracts of the samples were diluted threefold with buffer containing a mixture of fluorescent antibodies and were then passed over the arrays of mycotoxins immobilized on a waveguide. Fluorescent signals of the surface-bound antibody-antigen complexes decreased with increasing concentrations of free mycotoxins in the extract. After sample analysis was completed, surfaces were regenerated with 6 M guanidine hydrochloride in 50 mM glycine, pH 2.0. The limits of detection determined by the manual biosensor system were as follows: 1, 180, and 65 ng/g for DON and 1, 60, and 85 ng/g for OTA in cornmeal, wheat, and barley, respectively. The limits of detection in cornmeal determined with the automated array biosensor were 15 and 150 ng/g for OTA and DON, respectively.

  1. Transition probability of the 5971-A line in neutral uranium from collision-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gagne, J.M.; Mongeau, B.; Demers, Y.; Pianarosa, P.

    1981-01-01

    From collision-induced fluorescence spectroscopy measurements, we have determined the transition probability Aof the 5971-A transition in neutral uranium. Our value, A 5971 = (5.9 +- 1.8) x 10 5 sec -1 , is, within experimental error, in good agreement with the previous determination of Corliss, A 5971 = (7.3 +- 3.0) x 10 5 sec -1 [J. Res. Nat. Bur. Stand. Sect. A 80,1 (1976)

  2. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.

    1999-05-01

    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  3. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  4. Amine Analysis Using AlexaFluor 488 Succinimidyl Ester and Capillary Electrophoresis with Laser-Induced Fluorescence

    Directory of Open Access Journals (Sweden)

    Christian G. Kendall

    2015-01-01

    Full Text Available Fluorescent probes enable detection of otherwise nonfluorescent species via highly sensitive laser-induced fluorescence. Organic amines are predominantly nonfluorescent and are of analytical interest in agricultural and food science, biomedical applications, and biowarfare detection. Alexa Fluor 488 N-hydroxysuccinimidyl ester (AF488 NHS-ester is an amine-specific fluorescent probe. Here, we demonstrate low limit of detection of long-chain (C9 to C18 primary amines and optimize AF488 derivatization of long-chain primary amines. The reaction was found to be equally efficient in all solvents studied (dimethylsulfoxide, ethanol, and N,N-dimethylformamide. While an organic base (N,N-diisopropylethylamine is required to achieve efficient reaction between AF488 NHS-ester and organic amines with longer hydrophobic chains, high concentrations (>5 mM result in increased levels of ethylamine and propylamine in the blank. Optimal incubation times were found to be >12 hrs at room temperature. We present an initial capillary electrophoresis separation for analysis using a simple micellar electrokinetic chromatography (MEKC buffer consisting of 12 mM sodium dodecylsulfate (SDS and 5 mM carbonate, pH 10. Limits of detection using the optimized labeling conditions and these separation conditions were 5–17 nM. The method presented here represents a novel addition to the arsenal of fluorescent probes available for highly sensitive analysis of small organic molecules.

  5. Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

    International Nuclear Information System (INIS)

    ALLERMAN, ANDREW A.; ARNOLD, DON W.; ASBILL, RANDOLPH E.; BAILEY, CHRISTOPHER G.; CARTER, TONY RAY; KEMME, SHANALYN A.; MATZKE, CAROLYN M.; SAMORA, SALLY; SWEATT, WILLIAM C.; WARREN, MIAL E.; WENDT, JOEL R.

    1999-01-01

    The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10(sup -4) M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements

  6. Direct visualization of secretion from single bovine adrenal chromaffin cells by laser-induced native fluorescence imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, W.; Yeung, E.S. [Ames Laboratory---USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1998-03-01

    Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved with laser-induced native fluorescence imaging microscopy. By monitoring the native fluorescence of catecholamines excited by the 275 nm laser line with an intensified charge-coupled-device (CCD) camera, we obtained good temporal and spatial resolution simultaneously without using additional fluorescent probes. Large variations were found among individual cells in terms of the amounts of catecholamines secreted and the rates of secretion. Different regions of a cell also behave differently during the secretion process. However, the degree of this local heterogeneity is smaller than in neurons and neuralgia. The influence of deep-ultraviolet (UV) laser excitation on cells is also discussed. This quantitative imaging technique provides a useful noninvasive approach for the study of dynamic cellular changes and the understanding of the molecular mechanisms of secretory processes. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  7. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  8. Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters

    International Nuclear Information System (INIS)

    Koslow, E.E.; Edelman, R.R.

    1985-01-01

    This invention provides a radiation imaging system employing arrays of scintillators. An object of the invention is to produce a detector with high spatial resolution, high gamma-photon absorption efficiency, excellent source and detector scatter rejection, and utilizing low-cost solid state opto-electronic devices. In one embodiment, it provides a radiation detection and conversion apparatus having an array of optically isolated radiation sensitive elements that emit optical radiation upon absorption of ionizing radiation. An array of channels, comprising a material that absorbs and traps the radiation emitted and transports it or radiation that has been shifted to longer wavelengths, is placed near the radiation-sensitive elements. Electro-optical detectors that convert the transported radiation into electrical signals are coupled to the channels. The activation of one of the electro-optical devices by radiation from one of the channels indicates that at least one of the radiation-sensitive elements near that channel has absorbed a quantity of radiation

  9. Rapid ELISA Using a Film-Stack Reaction Field with Micropillar Arrays.

    Science.gov (United States)

    Suzuki, Yuma; Morioka, Kazuhiro; Ohata, Soichiro; Shimizu, Tetsuhide; Nakajima, Hizuru; Uchiyama, Katsumi; Yang, Ming

    2017-07-11

    A film-stack reaction field with a micropillar array using a motor stirrer was developed for the high sensitivity and rapid enzyme-linked immunosorbent assay (ELISA) reaction. The effects of the incubation time of a protein (30 s, 5 min, and 10 min) on the fluorescence intensity in ELISAs were investigated using a reaction field with different micropillar array dimensions (5-µm, 10-µm and 50-µm gaps between the micropillars). The difference in fluorescence intensity between the well with the reaction field of 50-µm gap for the incubation time of 30 s and the well without the reaction field with for incubation time of 10 min was 6%. The trend of the fluorescence intensity in the gap between the micro pillars in the film-stack reaction field was different between the short incubation time and the long incubation time. The theoretical analysis of the physical parameters related with the biomolecule transport indicated that the reaction efficiency defined in this study was the dominant factor determining the fluorescence intensity for the short incubation time, whereas the volumetric rate of the circulating flow through the space between films and the specific surface area were the dominant factors for the long incubation time.

  10. Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide.

    Science.gov (United States)

    Zidki, Tomer; Cohen, Haim; Meyerstein, Dan

    2010-10-21

    Ag(0) and Au(0) nanoparticles suspended in dilute aqueous solutions containing (CH(3))(2)SO are photochemically unstable. The light source of a diode-array spectrophotometer induces, within less than a minute, particle growth and aggregation. The results indicate that this process is triggered by UV light absorption by the (CH(3))(2)SO.

  11. Analysis of noble metal on automotive exhaust catalysts by radioisotope-induce x-ray fluorescence

    International Nuclear Information System (INIS)

    Elgart, M.F.

    1976-01-01

    A technique was developed for the in-situ analysis of noble metals deposited on monolithic automotive exhaust catalysts. This technique is based on radioisotope-induced x-ray fluorescence, and provides a detailed picture of the distribution of palladium and platinum on catalyst samples. The experimental results for the cross section of a monolithic exhaust catalyst, analyzed in increments of 0.2 cm 3 , are compared with analyses for palladium and platinum obtained by instrumental neutron activation analysis

  12. Flame Front Detection Using Formaldehyde Laser Induced Fluorescence In Turbulent Lean Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, S.; Tylli, N.; Bombach, R.

    2005-03-01

    The present work aims at suggesting the excitation-detection scheme best suited for laser-induced fluorescence measurements of formaldehyde in turbulent lean premixed flames. In the literature, three different excitation schemes within the A{sup 1} X{sup 1} electronic transition have been suggested, with excitation into the 2{sup 1}{sub 0} 4{sup 1}{sub 0} , 4{sup 1}{sub 0} , and 4{sup 0}{sub 1} vibratoric bands, respectively. These excitation schemes were tested systematically and both advantages and disadvantages for each scheme are discussed. (author)

  13. Quantified light-induced fluorescence, review of a diagnostic tool in prevention of oral disease

    Science.gov (United States)

    de Josselin de Jong, Elbert; Higham, Susan M.; Smith, Philip W.; van Daelen, Catherina J.; van der Veen, Monique H.

    2009-05-01

    Diagnostic methods for the use in preventive dentistry are being developed continuously. Few of these find their way into general practice. Although the general trend in medicine is to focus on disease prevention and early diagnostics, in dentistry this is still not the case. Nevertheless, in dental research some of these methods seem to be promising for near future use by the general dental professional. In this paper an overview is given of a method called quantitative light-induced fluorescence or (QLF) in which visible and harmless light excites the teeth in the patient's mouth to produce fluorescent images, which can be stored on disk and computer analyzed. White spots (early dental caries) are detected and quantified as well as bacterial metabolites on and in the teeth. An overview of research to validate the technique and modeling to further the understanding of the technique by Monte Carlo simulation is given and it is shown that the fluorescence phenomena can be described by the simulation model in a qualitative way. A model describing the visibility of red fluorescence from within the dental tissue is added, as this was still lacking in current literature. An overview is given of the clinical images made with the system and of the extensive research which has been done. The QLF™ technology has been shown to be of importance when used in clinical trials with respect to the testing of toothpastes and preventive treatments. It is expected that the QLF™ technology will soon find its way into the general dental practice.

  14. Determination of nuclear spins of short-lived isotopes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Buchinger, F.; Dabkiewicz, P.; Kremmling, H.; Kuehl, T.; Mueller, A.C.; Schuessler, H.A.

    1980-01-01

    The spins of several nuclear ground and isomeric states have been measured for a number of mercury isotopes. The fluorescent light from the 6s6p 3 P 1 state is observed at 2537 Angstroem after excitation with the frequency doubled output of a pulsed dye laser. Four different laser induced fluorescence techniques were tested for their applicability: double resonance, Hanle effect, time delayed integral Hanle beats, and time resolved quantum beats. The sensitivity and selectivity of these models are compared with emphasis on the determination of spins of nuclei far from beta-stability, where short half lives and low production yields restrict the number of available atoms. The experiments were carried out on-line with the ISOLDE isotope separator at CERN at densities as low as 10 6 atoms/cm 3 . Results for the very neutron deficient high spin mercury isomers with half lives of several seconds, but also for the ground states of the abundant low spin stable mercury isotopes, are given as examples. The test measurements determined the nuclear spins of the odd sup(185m-191m)Hg isomers to be I = 13/2. (orig.)

  15. Multiplex detection of tumor markers with photonic suspension array

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yuanjin; Zhao Xiangwei [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Pei Xiaoping [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Hu Jing; Zhao Wenju [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Chen Baoan [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Gu Zhongze [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Dushu Lake Higher Education Town, Suzhou 215123 (China)], E-mail: gu@seu.edu.cn

    2009-02-02

    A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, {alpha}-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL{sup -1}, 1.0-500 ng mL{sup -1}, 1.0-500 U mL{sup -1} and 3.0-500 U mL{sup -1} with limits of detection of 0.68 ng mL{sup -1}, 0.95 ng mL{sup -1}, 0.99 U mL{sup -1} and 2.30 U mL{sup -1} at 3{sigma}, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.

  16. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    Science.gov (United States)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  17. The motional stark effect with laser-induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  18. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  19. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Meisinger, J.J.; Corp, L.A

    1994-01-01

    Laser-induced fluorescence (LIF) is an active sensing technique capable of capturing immediate and specific indications of changes in plant physiology and metabolism as they relate to the concentration and photosynthetic activity of the plant pigments. Reflectance is a passive sensing technique that can capture differences in the concentration of the primary plant pigments. Fluorescence and reflectance were compared for their ability to measure levels of plant stress that are of agronomic importance in corn (Zea mays L.) crops. Laboratory LIF and reflectance spectra were made on excised leaves from field grown corn. Changes in the visible region of the spectrum were compared between groups of plants fertilized with seven different levels of nitrogen (N) fertilization. A pulsed nitrogen laser emitting photons at a wavelength of 337 nm was used as a fluorescence excitation source. Differences in maximum intensity of fluorescence occurred at 440 nm, 525 nm, 685 nm, and 740 nm. Significant separations were found between levels of N fertilization at several LIF wavelength ratios. Several reflectance algorithms also produced significant separations between certain levels of N fertilization

  20. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  1. Radiation-induced polymerization monitored in situ by time-resolved fluorescence of probe molecules in methyl methacrylate

    International Nuclear Information System (INIS)

    Frahn, Mark S.; Abellon, Ruben D.; Luthjens, Leonard H.; Vermeulen, Martien J.W.; Warman, John M.

    2003-01-01

    A technique is presented for monitoring radiation-induced polymerizations in situ based on the measurement of the fluorescence lifetime of molecular probes dissolved in the polymerizing medium. This method is illustrated with results on methyl methacrylate (MMA) using two fluorogenic probe molecules; N-(2-anthracene)methacrylamide (AnMA) and maleimido-fluoroprobe (MFP), a molecule which has a highly dipolar excited state

  2. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    Science.gov (United States)

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  3. Conformational fluctuation dynamics of domain I of human serum albumin in the course of chemically and thermally induced unfolding using fluorescence correlation spectroscopy.

    Science.gov (United States)

    Yadav, Rajeev; Sengupta, Bhaswati; Sen, Pratik

    2014-05-22

    The present study elucidates the involvement of conformational fluctuation dynamics during chemically and thermally induced unfolding of human serum albumin (HSA) by fluorescence correlation spectroscopic (FCS) study, time-resolved fluorescence measurements, and circular dichroism (CD) spectroscopic methods. Two fluorescent probes, tetramethylrhodamine-5-maleimide (TMR) and N-(7-dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA) were used to selectively label the domain I of HSA through the reaction with cys-34 for these studies. The guanidine hydrochloride (GnHCl) induced global structural change of HSA is monitored through its hydrodynamic radius (r(H)) and CD response, which is found to be two step in nature. In FCS experiment, along with the diffusion time component we have observed an exponential relaxation time component (τ(R)) that has been ascribed to the concerted chain dynamics of HSA. Unlike in the global structural change, we found that the τ(R) value changes in a different manner in the course of the unfolding. The dependence of τ(R) on the concentration of GnHCl was best fitted with a four state model, indicating the involvement of two intermediate states during the unfolding process, which were not observed through the CD response and r(H) data. The fluorescence lifetime measurement also supports our observation of intermediate states during the unfolding of HSA. However, no such intermediate states were observed during thermally induced unfolding of HSA.

  4. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    Science.gov (United States)

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  5. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  6. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges : measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    NARCIS (Netherlands)

    Palomares Linares, J.M.; Graef, W.A.A.D.; Hubner, S.; Mullen, van der J.J.A.M.

    2013-01-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon

  7. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  8. Portable X-ray Fluorescence and Infrared Fluorescence Imaging Studies of Cadmium Yellow Alteration in Paintings by Edward Munch and Henri matisse in Oslo, Copenhagen, and San Francisco

    DEFF Research Database (Denmark)

    Mass, Jennifer; Uffelman, Erich; Buckley, Barbara

    2016-01-01

    -induced visible fluorescence, ultraviolet-induced infrared fluorescence, multispectral imaging, and X-ray fluorescence. Questions addressed included the following: Is the imaging method being tested comprehensive? Is it efficient at surveying an entire painting? Does it reveal the state of preservation...... and the Statens Museum for Kunst, Copenhagen. They were also tested on Edvard Munch’s The Scream (ca. 1910?, Munch Museum, Oslo). It was found that ultraviolet-induced visible fluorescence has the best ability to discriminate between altered and unaltered cadmium yellow paints (even before alteration is visible...... to the unaided eye), whereas multispectral imaging allows for the most efficient and comprehensive localization of the cadmium pigments in a work....

  9. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    Science.gov (United States)

    de Groot, Anne Marit; Platteel, Anouk C. M.; Kuijt, Nico; van Kooten, Peter J. S.; Vos, Pieter Jan; Sijts, Alice J. A. M.; van der Maaden, Koen

    2017-01-01

    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs. PMID:29375544

  10. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid.

    Science.gov (United States)

    de Groot, Anne Marit; Platteel, Anouk C M; Kuijt, Nico; van Kooten, Peter J S; Vos, Pieter Jan; Sijts, Alice J A M; van der Maaden, Koen

    2017-01-01

    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin's physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro . It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

  11. Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    Directory of Open Access Journals (Sweden)

    Anne Marit de Groot

    2017-12-01

    Full Text Available The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs, representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT and tetanus toxoid (TT intradermally. First, the piercing ability of the ceramic (alumina npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID immunization with subunit vaccines, which opens possibilities for future ID vaccination designs.

  12. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  13. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    Science.gov (United States)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.

  14. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR)

    DEFF Research Database (Denmark)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh

    2015-01-01

    the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay...

  15. Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress

    DEFF Research Database (Denmark)

    Carvalho, Ana Sofia; Ribeiro, Helena; Voabil, Paula

    2014-01-01

    We investigated the molecular effects of glucosamine supplements, a popular and safe alternative to nonsteroidal anti-inflammatory drugs, for decreasing pain, inflammation, and maintaining healthy joints. Numerous studies have reported an array of molecular effects after glucosamine treatment. We...... questioned whether the differences in the effects observed in previous studies were associated with the focus on a specific subproteome or with the use of specific cell lines or tissues. To address this question, global mass spectrometry- and transcription array-based glucosamine drug profiling was performed....... Further, we hypothesize that O-HexNAcylation induced by glucosamine treatment enhances protein trafficking....

  16. New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation.

    Science.gov (United States)

    Baran, Timothy M; Foster, Thomas H

    2011-08-01

    We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μ(s)'∕μ(a) = 8 in the tissue and 70 to 88% is collected in this region for μ(s)'∕μ(a) = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy.

  17. [Effects of redox state of disulfide bonds on the intrinsic fluorescence and denaturation of Trx-fused gibberellin-induced cysteine-rich protein from Gymnadnia conopsea].

    Science.gov (United States)

    Zhang, Teng; Feng, Juan; Li, Yang; Chen, Rui; Tang, Li-Xia; Pang, Xiao-Feng; Ren, Zheng-Long

    2010-02-01

    In the present paper, thioredoxin-fused gibberellin-induced cysteine-rich protein from Gymnadnia conopsea, desigated as Trx-GcGASA and expressed prokaryotically, was purified and identified by using Ni(2+) -NTA affinity chromatography column and SDS-PAGE, and then its intrinsic fluorescence was investigated in the absence and presence of dithiothreitol (DTT), oxidized glutathione (GSSG), peroxide and guanidine hydrochloride (GdnHCl) by means of steady-state fluorescence spectroscopic methods. It was found that (1) at the neutral pH Trx-GcGASA had maximum fluorescence emission at 305 nm following excitation at different wavelengths varying from 250 to 280 nm, which was ascribed to the fluorescence emission from tyrosine residues. (2) The reduction of disulphide bonds lead to the changes in the relative fluorescence intensity between tyrosine and tryptophan residues from 0.7 to 1.8. (3) Both Tyr and Trp residues underwent 12%-21% decrease in fluorescence intensity with the addition of 0.5 mmol x L(-1) GSSG or 5 mmol x L(-1) peroxide. The latter was roughly consistent with the antioxidative activity reported in vivo. (4) No matter whether 1 mmol x L(-1) DTT was absent or present, the fusion protein could not be fully unfolded with lambda(max) Trx-GcGASA experienced GdnHCl-induced denaturation process, and the unfolding equilibrium curve could be well fitted by using two-state model, giving the Gibbs free energy change (deltaG) of 3.7 kJ x mol(-1). However, it was not the case for reduced Trx-GcGASA protein. The aforementioned experimental results will not only provide some guides to investigate the effects of fusion partner Trx on the unfolding thermodynamics, kinetics and refolding process of Trx-GcGASA, but also will be useful for further studies on the strucuture of GA-induced cysteine-rich protein with the help of spectroscopic methods.

  18. Drying induced upright sliding and reorganization of carbon nanotube arrays

    International Nuclear Information System (INIS)

    Li Qingwen; De Paula, Raymond; Zhang Xiefei; Zheng Lianxi; Arendt, Paul N; Mueller, Fred M; Zhu, Y T; Tu Yi

    2006-01-01

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns

  19. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo.

    Science.gov (United States)

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Murthy, Shashi K; Lin, Charles P; Niedre, Mark

    2012-03-01

    Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. We first demonstrate that the DFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD-labeled cells in a custom-made optical flow phantom with similar size, optical properties, linear flow rates, and autofluorescence as a mouse limb. We also present preliminary data demonstrating that the DFFC is capable of detecting circulating cells in nude mice in vivo. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with sensitivity improvement by several orders of magnitude compared to current approaches. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Direct measurements of neutral density depletion by two-photon absorption laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Aanesland, A.; Liard, L.; Leray, G.; Jolly, J.; Chabert, P.

    2007-01-01

    The ground state density of xenon atoms has been measured by spatially resolved laser-induced fluorescence spectroscopy with two-photon excitation in the diffusion chamber of a magnetized Helicon plasma. This technique allows the authors to directly measure the relative variations of the xenon atom density without any assumptions. A significant neutral gas density depletion was measured in the core of the magnetized plasma, in agreement with previous theoretical and experimental works. It was also found that the neutral gas density was depleted near the radial walls

  1. Plasmonically amplified fluorescence bioassay with microarray format

    Science.gov (United States)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  2. Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces

    Science.gov (United States)

    Niu, Yuying; Wang, Jicheng; Hu, Zhengda; Zhang, Feng

    2018-06-01

    The frequency tunable Plasmonic induced transparency (PIT) effect is researched with a periodically patterned T-shaped graphene array in mid-infrared region. We adjust the geometrical parameters to obtain the optimized combination for the realization of the PIT response and use the coupled Lorentz oscillator model to analysis the physical mechanism. Due to the properties of graphene, the PIT effect can be easily and markedly enhanced with the increase of chemical potential and carrier mobility. The frequency of PIT effect is also insensitive with the angle of incident light. In addition, we also propose the π shaped structure to realizing the double-peak PIT effect. The results offer a flexible approach for the development of tunable graphene-based photonic devices.

  3. Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter.

    Directory of Open Access Journals (Sweden)

    Taruna Anand

    Full Text Available Curative approaches for eye cataracts and other eye abnormalities, such as myopia and hyperopia currently suffer from a lack of appropriate models. Here, we present a new approach for in vitro growth of lentoid bodies from induced pluripotent stem (iPS cells as a tool for ophthalmological research. We generated a transgenic mouse line with lens-specific expression of a fluorescent reporter driven by the alphaA crystallin promoter. Fetal fibroblasts were isolated from transgenic fetuses, reprogrammed to iPS cells, and differentiated to lentoid bodies exploiting the specific fluorescence of the lens cell-specific reporter. The employment of cell type-specific reporters for establishing and optimizing differentiation in vitro seems to be an efficient and generally applicable approach for developing differentiation protocols for desired cell populations.

  4. Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics.

    Science.gov (United States)

    Xu, Dazhuang; Zou, Hui; Liu, Meiying; Tian, Jianwen; Huang, Hongye; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-15

    Fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) features have recently emerged as promising fluorescent probes for biomedical applications owing to their excellent optical properties, designability and biocompatibility. Significant progress has been made recently for synthesis and biomedical applications of these AIE-active FONs. However, only very limited reports have demonstrated the fabrication of biodegradable AIE-active FONs with red fluorescence emission. In this study, a novel strategy has been developed for the preparation of biodegradable AIE-active polyurethanes (PUs) through a two-step polymerization, in which the diisocyanate-terminated polyethylene glycol (NCO-PEG-NCO) was synthesized and subsequently conjugated with diamine-containing AIE dye (NH 2 -Phe-NH 2 ). The successful synthesis of AIE-active Phe-PEG 2000 PUs is evidenced by a series of characterization techniques. Because of the formation of AIE-active amphiphilic PUs, the final copolymers can self-assemble into spherical nanoparticles, which exhibit strong luminescence and high water dispersion. The biological evaluation results suggest that the AIE-active Phe-PEG 2000 FONs possess low toxicity and desirable cell permeability. Therefore, we anticipate that these AIE-active FONs with biodegradable potential will trigger much research enthusiasm and effort toward the creation of new AIE-active materials with improved properties for various biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products

    International Nuclear Information System (INIS)

    Abbasi, Hamed; Nazeri, Majid; Mireei, Seyed Ahmad

    2016-01-01

    Over the past several years, the demand for high quality agricultural products has been remarkably increased. Thus, it is important to use non-destructive methods for product quality monitoring. LED-induced fluorescence spectroscopy has proved its potential for nondestructive detection of some defects in agricultural products, such as tissue browning and bruising. Due to such defects, changes in the polyphenol and chlorophyll contents occur which can be considered as the visible marks of decreasing fruit quality. In the present work, a fluorescence spectrometer (spectrofluorometer) controlled by LabVIEW software was designed and developed. In this spectrometer, a consumer-grade webcam was used as an imaging sensor. The spectrometer was able to measure the fluorescence spectra directly from the fruit and vegetable surface in the desired regions. To do so, the spectrometer was equipped with a suitable fiber-optic probe. The hardware solution was based on data acquisition working on the USB platform and controlled by the application running on the PC. In this system, light emitting diodes with different wavelengths were used as the excitation sources for inducing fluorescence spectra of some famous fruits and vegetables. (paper)

  6. Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies

    Czech Academy of Sciences Publication Activity Database

    Aouani, H.; Rahmani, M.; Šípová, Hana; Torres, V.; Hegnerová, Kateřina; Beruete, M.; Homola, Jiří; Hong, M.; Navarro-Cia, M.; Maier, S. A.

    2013-01-01

    Roč. 117, č. 36 (2013), s. 18620-18626 ISSN 1932-7447 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Biomolecules * Fluorescence * Integrated sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.835, year: 2013

  7. Peroxy Radical Measurements via Laser Induced Fluorescence

    Science.gov (United States)

    Trawny, Katrin; Tatum Ernest, Cheryl; Novelli, Anna; Elste, Thomas; Plaß-Dülmer, Christian; Rudolf, Markus; Martinez, Monica; Harder, Hartwig; Lelieveld, Jos

    2013-04-01

    We present a newly built Laser Induced Fluorescence (LIF) system to measure the sum of all peroxy radicals (RO2) utilizing chemical conversion to OH. This instrument operates in two different modes: the ROx mode (sum of OH, HO2, and RO2) and the HOx mode (sum of OH and HO2). The HOx mode is used to derive the RO2 data from the ROx measurements. A model approach was used during instrumental development to identify the key parameters needed for the conversion process in front of the detection area and to optimize sensitivity. The instrument was then carefully characterized in various lab experiments, where it could be shown that the wall losses for HO2 are negligible and that nearly all HO2 is converted to OH in front of the detection zone. The pressure and temperature dependencies were also analyzed and assured that the instrument does not show any photolytical interference. As the instrument is calibrated with only one kind of peroxy radicals it was very important that the differences in sensitivity for different peroxy radicals are acceptable. Lab experiments as well as first results from the HOPE 2012 intensive field campaign, which took place in summer 2012 at the Global Atmosphere Watch (GAW) station of the German Weather Service, will be discussed.

  8. Oxygen transmittance correction for solar-induced chlorophyll fluorescence measured on proximal sensing: application to the NASA-GSFC fusion tower

    Science.gov (United States)

    Since oxygen (O2) absorption of light becomes more pronounced at higher pressure levels, even a few meters distance between the target and the sensor can strongly affect canopy leaving Solar-Induced chlorophyll Fluorescence (SIF) retrievals. This study was conducted to quantify the consequent error ...

  9. Laser-induced fluorescence spectra of Ba+*-He exciplexes produced in cold He gas

    International Nuclear Information System (INIS)

    Fukuyama, Yoshimitsu; Matsuo, Yukari; Moriwaki, Yoshiki

    2004-01-01

    We report the observation of laser-induced fluorescence spectra of Ba +* -He exciplexes. The experiment is carried out in an environment of cold gaseous helium at a temperature range of 3-30 K. We have observed the emission spectra of exciplexes by means of excitation of the 6p 2 P 32 2 S 12 transition of Ba + ions. It is found that these spectra are redshifted from the D2 emission line in the free space and are composed of several peaks. The experimental results are reproduced well by theoretical calculation of the emission spectra for vibrational levels of Ba +* -He. We also investigate the vibrational dynamics of the 6p 2 Π 32 state of Ba + *-He, and we have determined the collision-induced vibrational relaxation cross sections of the 6p 2 Π 32 state to be 9.7±1.1 A 2 at 15 K

  10. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  11. Detection of Counterfeit Tequila by Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    José Manuel de la Rosa Vázquez

    2015-01-01

    Full Text Available An ultraviolet (UV light induced fluorescence study to discriminate fake tequila from genuine ones is presented. A portable homemade system based on four light emitting diodes (LEDs from 255 to 405 nm and a miniature spectrometer was used. It has been shown that unlike fake and silver tequila, which produce weak fluorescence signal, genuine mixed, rested, and aged tequilas show high fluorescence emission in the range from 400 to 750 nm. The fluorescence intensity grows with aging in 100% agave tequila. Such fluorescence differences can even be observed with naked eyes. The presented results demonstrate that the fluorescence measurement could be a good method to detect counterfeit tequila.

  12. Kerosene detection using laser induced fluorescence imaging for aeronautical engines application; Detection du kerozene par imagerie de fluorescence induite par laser, pour application sur foyer aeronautique

    Energy Technology Data Exchange (ETDEWEB)

    Baranger, Ph.

    2004-10-15

    The new concepts of aeronautical engines, developed to follow the evolution of the European standards of pollution, are generally based on an improvement of the processes of liquid fuel injection and mixture in the combustion chamber. There is currently no model mature enough to work without experimental validation. The purpose of this thesis is to assess the possibility of measuring the kerosene (Jet A1) vapour distribution by PLIF (Planar Laser Induced Fluorescence). That measurement technique must quantitatively image the instantaneous concentrations fields of the vaporized fuel in a spray. The implementation of such a technique needs an experimental spectroscopic study, which was realized on the vapour of fuel. First of all, this study allowed us to determine the properties of the kerosene fluorescence spectrum versus physical parameters such as temperature, pressure or gas mixture composition, especially in presence of oxygen molecules. Then, it was shown that the fluorescence spectrum of the fuel could be reproduce in all physical conditions by a single mixture of four aromatics. Their photophysical properties were also analyzed. Following this spectroscopic study, a phenomenological model for the fluorescence of the gaseous fuel was set up. This model led us to a protocol for an optical diagnostic on this fuel vapour. An experiment was set up to test the implementation and the limits of this technique in simple laboratory conditions. This experiment confirmed that this is indeed a promising technique for the diagnostic of the fuel vapour in aeronautical engine. (author)

  13. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chyu, M.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  14. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    Science.gov (United States)

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Laser-induced Fluorescence Spectroscopy for applications in chemical sensing and optical refrigeration

    Science.gov (United States)

    Kumi Barimah, Eric

    limit of detection for ClO4, was determined to be 14.7 +/- 0.5 wt%/wt for the given experimental conditions. In the second part of this research, the temperature-dependent absorption and emission properties of Tm doped KPb2Cl5 (KPC) and KPb2Br5 (KPB) were evaluated for applications in laser cooling. A Tm doped Y3Al5O12 (YAG) crystal was also included for comparative studies. Under laser pumping, all crystals exhibited broad IR fluorescence at room temperature with a mean fluorescence wavelength of ˜1.82 mum and bandwidth of 0.14 mum (FWHM) for Tm:KPC/KPB and ˜1.79 mum for Tm:YAG. Initial experiments on laser-induced heating/cooling were performed using a combined IR imaging and fluorescence thermometry setup. Employing a continuous-wave laser operating at 1.907 mum, Tm: KPC and Tm: KPB crystals revealed a very small heat load resulting in temperature increase of ˜ 0.3 ( +/- 0.1)°C. The heat loading in Tm:YAG was signicantly larger and resulted in a temperature increase of ˜0.9 (+/-0.1)°C. The results derived from IR imaging were also conrmed by the fluorescence thermometry experiments, which showed only minimal changes in the FIR intensity ratio of the green Er3+ fluorescence lines from Er:KPC.

  16. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Philip Joseph, Jr. (,; .); Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  17. Sensitive determination of malondialdehyde in exhaled breath condensate and biological fluids by capillary electrophoresis with laser induced fluorescence detection

    Czech Academy of Sciences Publication Activity Database

    Lačná, J.; Foret, František; Kubáň, Petr

    2017-01-01

    Roč. 169, JUL (2017), s. 85-90 ISSN 0039-9140 Grant - others:GA ČR(CZ) GA13-21919S Keywords : malondialdehyde * capillary electrophoresis * laser induced fluorescence * blood plasma * saliva Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  18. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  19. Development of nanostencil lithography and its applications for plasmonics and vibrational biospectroscopy

    Science.gov (United States)

    Aksu, Serap

    Development of low cost nanolithography tools for precisely creating a variety of nanostructure shapes and arrangements in a high-throughput fashion is crucial for next generation biophotonic technologies. Although existing lithography techniques offer tremendous design flexibility, they have major drawbacks such as low-throughput and fabrication complexity. In addition the demand for the systematic fabrication of sub-100 nm structures on flexible, stretchable, non-planar nanoelectronic/photonic systems and multi-functional materials has fueled the research for innovative fabrication methods in recent years. This thesis research investigates a novel lithography approach for fabrication of engineered plasmonic nanostructures and metamaterials operating at visible and infrared wavelengths. The technique is called Nanostencil Lithography (NSL) and relies on direct deposition of materials through nanoapertures on a stencil. NSL enables high throughput fabrication of engineered antenna arrays with optical qualities similar to the ones fabricated by standard electron beam lithography. Moreover, nanostencils can be reused multiple times to fabricate series of plasmonic nanoantenna arrays with identical optical responses enabling high throughput manufacturing. Using nanostencils, very precise nanostructures could be fabricated with 10 nm accuracy. Furthermore, this technique has flexibility and resolution to create complex plasmonic nanostructure arrays on the substrates that are difficult to work with e-beam and ion beam lithography tools. Combining plasmonics with polymeric materials, biocompatible surfaces or curvilinear and non-planar objects enable unique optical applications since they can preserve normal device operation under large strain. In this work, mechanically tunable flexible optical materials and spectroscopy probes integrated on fiber surfaces that could be used for a wide range of applications are demonstrated. Finally, the first application of NSL

  20. Airborne laser induced fluorescence imaging. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF

  1. Vortex lattice matching effects in a washboard pinning potential induced by Co nanostripe arrays

    International Nuclear Information System (INIS)

    Dobrovolskiy, Oleksandr V.; Begun, Evgeniya; Huth, Michael; Shklovskij, Valerij A.; Tsindlekht, Menachem I.

    2011-01-01

    We furnish superconducting Nb thin films with linearly-extended uniaxial pinning nanostructures. An array of Co stripes is deposited by focused electron beam-induced deposition. Nanostructures are designed to be commensurate with the vortex lattice at small magnetic fields. We investigate vortex lattice matching effects by magneto-transport measurements. Drops in ρ(B) are observed only when the vortex lattice parameter matches the nanostructure period. No matching effects corresponding to the Co stripe width have been observed. Drops in ρ(B) are more pronounced for the vortex motion perpendicular to the Co stripes. An advanced mask-less nanofabrication technique, focused electron beam-induced deposition (FEBID), has been employed on epitaxial Nb thin films to prepare ferromagnetic decorations in the form of an array of Co stripes. These substantially modify the non-patterned films' superconducting properties, providing a washboard-like pinning potential landscape for the vortex motion. At small magnetic fields B ≤ 0.1 T, vortex lattice matching effects have been investigated by magneto-transport measurements. Step-like drops in the field dependencies of the films resistivity ρ(B) have been observed in particular for the vortex motion perpendicular to the Co stripes. The field values, corresponding to the middle points of these drops in ρ(B), meet the vortex lattice parameter matching the pinning structure's period. These disagree with the results of Jaque et al. (2002) , who observed matching effects corresponding to the stripe width in Nb films grown on periodically distributed submicrometric lines of Ni.

  2. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  3. Study of Sugar Cane Management Systems in Brazil Using Laser Induced Fluorescence

    Science.gov (United States)

    Cabral, Jader; Villas-Boas, Paulino; Carvalho, Camila; Corá, José Eduardo; Milori, Débora

    2014-05-01

    Brazil is the largest producer of cane sugar, consequently, is a leader in the production of bio-ethanol, a clean and renewable energy that fits the model of sustainable economy as discussed and pursued by our society. Our state of São Paulo concentrates 60% of national production, representing a sizeable share in the range of world production. All this economic potential is closely monitored by the scientific community, which develops numerous studies seeking an improvement in production efficiency and reduced environmental impacts caused by the planting. However, the study of soil samples, in plantation areas, demands results about the content and structural forms of organic matter (OM). Also, the soil carbon stocks depend on the type of management. Our goal is to study OM of soil samples from four sugar cane management systems: (i) unburned cane harvest, (ii) preharvest burned, (iii) addition of sugarcane bagasse ash and (iv) addition of residue from the extraction of sucrose, using Laser Induced Fluorescence Spectroscopy of solid state. All the emission spectra were acquired using the system called LIFS-405, which consists of a diode laser Coherent, model cube with excitation at 405 nm, maximum output power of 50mJ and a mini-spectrometer, Ocean Optics USB2000-high sensitivity, with range of 194-894 nm and a fiber-optic bundle design (six excitation fibers in a circular path and one central fiber the collect the fluorescence). In this work, we will present the preliminary results evolving the humification index (HLIFS) of soil OM and total carbon amount (TC) for the different types of management. HLIFS shows a close correlation with the humification index of humic acid in solution obtained by means 2D conventional fluorescence spectroscopy.

  4. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters.

    Science.gov (United States)

    Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2015-01-25

    In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biological applications of an LCoS-BASED PROGRAMMABLE ARRAY MICROSCOPE (PAM)

    NARCIS (Netherlands)

    Hagen, G.M.; Caarls, W.; Thomas, M.; Hill, A.; Lidke, K.A.; Rieger, B.; Fritsch, C.; Van Geest, B.; Jovin, T.M.; Arndt-Jovin, D.J.

    2007-01-01

    We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a

  6. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    Science.gov (United States)

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  7. Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool to assess plaque accumulation and enamel demineralization in orthodontics.

    Science.gov (United States)

    Miller, Cara C; Burnside, Girvan; Higham, Susan M; Flannigan, Norah L

    2016-11-01

      To assess the use of Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool during orthodontic treatment.   In this prospective, randomized clinical trial, 33 patients undergoing fixed orthodontic appliance treatment were randomly allocated to receive oral hygiene reinforcement at four consecutive appointments using either white light (WL) or Quantitative Light-induced Fluorescence-Digital (QLF) images, taken with a device, as visual aids. Oral hygiene was recorded assessing the QLF images for demineralization, by fluorescence loss (ΔF), and plaque coverage (ΔR30). A debriefing questionnaire ascertained patient perspectives.   There were no significant differences in demineralization (P  =  .56) or plaque accumulation (P  =  .82) between the WL and QLF groups from T0 to T4. There was no significant reduction in demineralization, ΔF, in the WL, or the QLF group from T0-T4 (P > .05); however, there was a significant reduction in ΔR30 plaque scores (P orthodontics. Oral hygiene reinforcement at consecutive appointments using WL or QLF images as visual aids is effective in reducing plaque coverage. In terms of clinical benefits, QLF and WL images are of similar effectiveness; however, patients preferred the QLF images.

  8. Do daily and seasonal trends in leaf solar induced fluorescence reflect changes in photosynthesis, growth or light exposure

    Czech Academy of Sciences Publication Activity Database

    Wyber, R.; Malenovský, Zbyněk; Ashcroft, M. B.; Osmond, C. B.; Robinson, S. A.

    2017-01-01

    Roč. 9, č. 6 (2017), č. článku 604. ISSN 2072-4292 Institutional support: RVO:67179843 Keywords : Light induced fluorescence transient * Photosynthetic active radiation * Photosynthetic yield * Pulse amplitude modulation * Remote sensing of vegetation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.244, year: 2016

  9. Signatures of hot electrons and fluorescence in Mo Kα emission on Z

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S. B.; Ampleford, D. J.; Cuneo, M. E.; Jones, B.; Jennings, C. A.; Coverdale, C. A.; Rochau, G. A.; Dunham, G. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ouart, N.; Dasgupta, A.; Giuliani, J. L. [Naval Research Laboratory, Washington, DC 20375 (United States); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States)

    2014-03-15

    Recent experiments on the Z accelerator have produced high-energy (17 keV) inner-shell K-alpha emission from molybdenum wire array z-pinches. Extensive absolute power and spectroscopic diagnostics along with collisional-radiative modeling enable detailed investigation into the roles of thermal, hot electron, and fluorescence processes in the production of high-energy x-rays. We show that changing the dimensions of the arrays can impact the proportion of thermal and non-thermal K-shell x-rays.

  10. Measurement of fuel corrosion products using planar laser-induced fluorescence

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Sappey, A.D.; Butt, D.P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed

  11. Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence.

    Science.gov (United States)

    Storch, Michael; Lind, Susanne; Will, Stefan; Zigan, Lars

    2016-10-20

    In this work, the planar laser-induced fluorescence of a fuel tracer is applied for the analysis of mixture formation for various ethanol/iso-octane blends in a direct-injection spark-ignition (DISI) engine. The tracer triethylamine (TEA) was added to pure iso-octane and ethanol as well as to their blends E20 and E85 for the measurement of the fuel/air ratio. In general, ethanol blending strongly affects the mixture formation process, which is caused by specific physical fuel properties influencing the evaporation process of ethanol in comparison to iso-octane. As interactions of the fuel and tracer fluorescence appear possible, TEA fluorescence was studied for different fuel blends in a cuvette, in a calibration cell under constant conditions, and in an optically accessible internal combustion engine at late injection timing. It was found that ethanol blending strongly affects the fluorescence intensity of TEA in the liquid phase, which can be explained by the interaction of the tracer and ethanol molecules. However, in the gas phase a quantification of the fuel/air ratio is possible for different ethanol fuel blends, which is demonstrated in a DISI engine. Under stratified charge conditions the engine results showed a significant impact of a high amount of ethanol on the mixture formation process, leading to a leaner mixture in comparison to iso-octane.

  12. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  13. Thermal characterization of a flashing jet by planar laser-induced fluorescence

    Science.gov (United States)

    Vetrano, M. R.; Simonini, A.; Steelant, J.; Rambaud, P.

    2013-07-01

    Flash atomization can be observed when a pressurized fluid is released in an environment at lower pressure. This phenomenon plays an important role in the security management of chemical industries where liquefied gases can be accidentally released at atmosphere. In other applications, for example in propulsion systems, it can have some potential benefits as it is known to produce a fine spray with enhanced atomization. The experimental characterization of these kinds of atomization should be performed by means of non-intrusive measurement techniques since they are very sensitive to external perturbation. In this work, the planar laser-induced fluorescence technique is used to measure the liquid phase temperature of an ethanol superheated flashing jet. The feasibility of the technique is proved, measurements are taken for different superheat conditions, and an analysis of the measurement uncertainties is presented.

  14. The Pierre Auger Research and Development Array (RDA in southeastern Colorado – R&D for a giant ground array

    Directory of Open Access Journals (Sweden)

    Thompson J.

    2013-06-01

    Full Text Available The Pierre Auger Research and Development Array (RDA was originally designed to be the precursor of the northern Auger observatory, a hybrid array of 4400 surface detector stations and 39 fluorescence telescopes deployed over 20,000 square kilometers. It is conceived as a test bed aiming at validating an improved and more cost-effective 1-PMT surface detector design and a new peer-to-peer communication system. The array of ten surface detector stations and ten communication-only stations is currently being deployed in southeastern Colorado and will be operated at least until late 2013. It is configured in such a way that it allows testing of a new peer-to-peer communication protocol, as well as a new surface detector electronics design with a larger dynamic range aiming at reducing the distance from the shower core where saturation is observed. All these developments are expected in the short term to improve the performance of the Pierre Auger Observatory and enable future enhancements. In the longer term, it is hoped that some of these new developments may contribute to the design of a next-generation giant ground array.

  15. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    Science.gov (United States)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  16. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  17. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’

    DEFF Research Database (Denmark)

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto

    2015-01-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday/night temp......We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday...

  18. A fluorescence-based rapid screening assay for cytotoxic compounds

    International Nuclear Information System (INIS)

    Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E.; Garza, Kristine; Aguilera, Renato J.

    2004-01-01

    A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death

  19. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    Science.gov (United States)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  20. Babinet's principle for optical frequency metamaterials and nanoantennas

    Science.gov (United States)

    Zentgraf, T.; Meyrath, T. P.; Seidel, A.; Kaiser, S.; Giessen, H.; Rockstuhl, C.; Lederer, F.

    2007-07-01

    We consider Babinet’s principle for metamaterials at optical frequencies and include realistic conditions which deviate from the theoretical assumptions of the classic principle such as an infinitely thin and perfectly conducting metal layer. It is shown that Babinet’s principle associates not only transmission and reflection between a structure and its complement but also the field modal profiles of the electromagnetic resonances as well as effective material parameters—a critical concept for metamaterials. Also playing an important role in antenna design, Babinet’s principle is particularly interesting to consider in this case where the metasurfaces and their complements can be regarded as variations on a folded dipole antenna array and patch antenna array, respectively.