WorldWideScience

Sample records for nanoalumina fiber filters

  1. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani

    2017-03-01

    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  2. Oriented Fiber Filter Media

    OpenAIRE

    R. Bharadwaj; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  3. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  4. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of...

  5. Experimental investigation of nano-alumina effect on the filling time ...

    African Journals Online (AJOL)

    In this research, by producing composite samples made of glass fibers and epoxy resin with different percentages of nanoparticles (Nano-alumina), the adding effect of nanoparticles of alumina Alpha and Gamma grade on filling time in the vacuum assistant resin transfer molding process (VARTM) is investigated. The grade ...

  6. Effects of reprocessing on nanoalumina polymer composites

    Science.gov (United States)

    Huang, Chunchia

    The life cycle of reprocessed polymer nanocomposites is a critical factor associated with their growing use, but the limited work on reprocessing of nanocomposites has focused solely on the effects of organoclays. This research investigated of the structure and property changes during reprocessing of polypropylene (PP) and polycarbonate (PC) nanocomposites with 3 wt. % nanoalumina. Neat PP and PC were used as controls. Reprocessing of the neat polymers and nanocomposites produced no indication of oxidation (in FTIR), no changes in the glass transition temperature of PC and the melting temperatures of PP, and no changes in thermal stability (as measured using thermogravimetric analysis). Significant decreases, however, occurred in the melt viscosity of the materials. The introduction of nanoalumina during twin screw extrusion also produced a significant decrease in the viscosity and a 10°C decrease in the glass transition temperature of the PC nanocomposite. Color changes did not correspond to the chain scission in PP and PC; neat PP and PP composite yellowed, neat PC turned brown, and the PC nanocomposite did not change color. Dispersion of the nanoalumina in both PP and PC improved with repeated reprocessing, the crystallinity in the PP/nanoalumina composites remained constant. The Young's moduli of both the PP and PP/A12O3 nanocomposite were similar, whereas the Young's modulus values of the PC/A1 2O3 nanocomposite was slighted lower than that of the neat PC. In contrast, the elongations at break of the PP/A12O3 and PC/A12O3 nanocomposites were, respectively, 50% and 16% of the values measured for the neat resins. All modulus and elongation at break values, however, remained constant over five reprocessing cycles. This behavior suggests that the major degradation mechanism during reprocessing of neat PP and PP nanocomposites was thermal-mechanical polymer chain scission and that the nanoalumina enhanced this degradation in the PC/nanoalumina. This additional

  7. Wavelength switchable fiber-optic Sagnac filter

    Science.gov (United States)

    Su, Dan; Qiao, Xueguang; Rong, Qiangzhou; Shao, Zhihua

    2018-03-01

    A wavelength switchable fiber-optic comb filter based on an in-line Sagnac interference is proposed and demonstrated. The proposed filter consists of a polarizer, two polarization controllers (PCs) and two sections of polarization maintaining fiber (PMFs). The output comb spectrum characteristics of the configuration are theoretically analyzed by Jones matrix, and then numerically simulated and experimentally demonstrated, of which the results present four comb filter-types (sinusoidal, flat-top and narrow-band superposition, and line-shaped spectra) by adjusting the polarizations of light with PCs.

  8. Gaussian Filtering with Tapered Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2006-01-01

    We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm......We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm...

  9. Elongation-based fiber optic tunable filter

    Science.gov (United States)

    Pérez-Sánchez, G. G.; Mejia-Islas, J. A.; Andrade-González, E. A.; Pérez-Torres, J. R.

    2017-09-01

    This paper focuses on introducing the results of a model using a control system for an optical filter that can be tuned, using a solution that employs both, an elongation control system and a fiber Bragg grating. At the first stage, the optical characterization of the filter was made, then the stepper motors were chosen for the desired wavelength selection with a couple of pulleys which produce the grating elongation and, as a consequence, the wavelength shifting. The pulleys diameters were calculated to produce 0.8 nm shift for each filtering wavelength using a control program.

  10. A containment-venting filter concept and its implementation at stainless-steel fiber filters

    International Nuclear Information System (INIS)

    Dillmann, H.G.; Pasler, H.

    1984-01-01

    Bursting of the PWR containment as a result of severe reactor accidents can be avoided by installation of accident filter systems which fulfill the function of a safety valve. This greatly reduces contamination of the environment by fission product release. The filter concept and its implementation using stainless-steel fiber filters and silver molecular sieves are described. (orig./HP)

  11. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  12. All-fiber noninterferometric narrow-transmission-bandpass filter.

    Science.gov (United States)

    Sáez-Rodríguez, D; Cruz, J L; Díez, A; Andrés, M V

    2012-10-15

    In-fiber mode engineering based on the combination of Bragg and long-period gratings (LPGs) permits the implementation of noninterferometric transmission filters with narrow passbands using standard single-mode fiber. The design of the bandpass filter is based on the coupling between propagating and counterpropagating cladding modes in two fiber Bragg gratings. A LPG located between the Bragg gratings transfers power from the input fundamental mode to a specific cladding mode and recouples the filtered signal to the output fundamental mode. The filter produces a series of narrow passbands of about 30 pm linewidth with a maximum transmittance above 60%, 20 dB isolation, and passband separation of about 1 nm, each corresponding to the contribution of a different cladding mode.

  13. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Weirich, Johannes

    2008-01-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at X=1364nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed by in...... by increasing the temperature from 25°C to 100°C. The measurements are compared to a simulated spectrum obtained by means of a vectorial Beam Propagation Method model....

  14. Cross-correlated imaging of distributed mode filtering rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    We analyze the modal properties of an 85μm core distributed mode filtering rod fiber using cross-correlated (C2) imaging. We evaluate suppression of higher-order modes (HOMs) under severely misaligned mode excitation and identify a single-mode regime where HOMs are suppressed by more than 20dB....

  15. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  16. Neuromuscular fiber segmentation through particle filtering and discrete optimization

    Science.gov (United States)

    Dietenbeck, Thomas; Varray, François; Kybic, Jan; Basset, Olivier; Cachard, Christian

    2014-03-01

    We present an algorithm to segment a set of parallel, intertwined and bifurcating fibers from 3D images, targeted for the identification of neuronal fibers in very large sets of 3D confocal microscopy images. The method consists of preprocessing, local calculation of fiber probabilities, seed detection, tracking by particle filtering, global supervised seed clustering and final voxel segmentation. The preprocessing uses a novel random local probability filtering (RLPF). The fiber probabilities computation is performed by means of SVM using steerable filters and the RLPF outputs as features. The global segmentation is solved by discrete optimization. The combination of global and local approaches makes the segmentation robust, yet the individual data blocks can be processed sequentially, limiting memory consumption. The method is automatic but efficient manual interactions are possible if needed. The method is validated on the Neuromuscular Projection Fibers dataset from the Diadem Challenge. On the 15 first blocks present, our method has a 99.4% detection rate. We also compare our segmentation results to a state-of-the-art method. On average, the performances of our method are either higher or equivalent to that of the state-of-the-art method but less user interactions is needed in our approach.

  17. Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Ortega, Beatriz; Min, Rui; Sáez-Rodri­guez, David

    2017-01-01

    In this contribution we report on the fabrication of novel bandpass transmission filters based on PS-FBGs in microstructured polymer fibers at telecom wavelengths. The phase mask technique is employed to fabricate several superimposed gratings with slight different periods in order to form Moir......é structures with a single or various π phase shifts along the device. Simulations and experimental results are included in order to demonstrate very narrowband transmission filters. Experimental characterization under strain and temperature variations is provided in a non-annealed fiber and time stability...... of the fabricated devices has been also measured under different pre-strain conditions....

  18. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  19. High Performance Spatial Filter Array Based on Signal Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loveraging on Agiltron's experience in optical fiber components, Agiltron proposed a coherent single-mode fiber (SMF) spatial filter array (SFA) with a gradient...

  20. Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings.

    Science.gov (United States)

    Zhou, Shu Fan; Reekie, Laurence; Chan, Hau Ping; Luk, Kwai Man; Chow, Yuk Tak

    2013-02-01

    Transmission filters for the terahertz domain having a shaped bandpass have been modeled and demonstrated. The filter designs were based on the desired filter type and bandwidth, and implemented by cascading quarter wave phase shifted fiber Bragg gratings written in Topas polymer subwavelength fiber. As an example, a 5-pole Chebyshev filter with <3 GHz bandwidth was designed and fabricated. Experimental and simulated results are in good agreement.

  1. Method of making a continuous ceramic fiber composite hot gas filter

    Science.gov (United States)

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  2. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Adolphsen, Jens Q

    2013-01-01

    technique and gravimetric detection of airborne nanoparticles with a nanomechanical resonant filter-fiber. By increasing the nanoparticle momentum the dominant collection mechanism changes from diffusion to more efficient inertial impaction. In doing so we reach a single filter-fiber collection efficiency...

  3. Novel tunable optical filter employing a fiber loop mirror for synthesis applications in WDM

    OpenAIRE

    Vázquez García, María Carmen; Vargas Palma, Salvador Elías; Sánchez-Pena, José Manuel

    2001-01-01

    A novel optical filter employing a fiber loop mirror within an amplified ring resonator is presented. The fiber loop mirror allows tuning by changing the coupling factor of a coupler. The device can be used as a building block to synthesize optical filters, as previously reported, saving components. Publicado

  4. A switchable dual-wavelength erbium-doped fiber laser based on saturable absorber and active optical fiber ring filter

    Science.gov (United States)

    Zhu, Lian-qing; Chen, Qing-shan; Zhao, Ran-ran; Lou, Xiao-ping; He, Wei

    2014-11-01

    A dual-wavelength erbium-doped fiber laser (EDFL) with outstanding stability is presented. In the fiber laser system, two nested active optical fiber ring filters are configured to improve the comb spectrum performance, a saturable absorber is employed to form a gain grating for both filtering and frequency stabilizing, two cascaded fiber Bragg gratings (FBGs) are utilized to achieve dual-wavelength output, and a variable attenuator is arranged to adjust output power. Experimental results illustrate that the peak wavelength drift is less than 3 pm, and a good linear relationship between output power and pump power is realized.

  5. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    International Nuclear Information System (INIS)

    Tsai, Su-Jung; Ada, Earl; Isaacs, Jacqueline A.; Ellenbecker, Michael J.

    2009-01-01

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face velocity

  6. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-01-01

    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  7. Effect of using a cowl when measuring the fiber number concentration by the membrane filter method.

    Science.gov (United States)

    Kauffer, Edmond; Eypert-Blaison, Céline

    2004-05-01

    This article compares samples taken with three different sampling heads: (1). open-faced sampling head, (2). open-faced sampling head with stainless-steel extension cowl, and (3). open-faced sampling head with graphite-impregnated extension cowl. Sampling was performed in three factories producing man-made mineral fibers (alkaline silicate fibers, refractory ceramic fibers, glass fibers). Flow rate was varied (1 L/min or 2 L/min). The average densities measured on the sampling filter for fibers of fibers/mm(2). No significant difference in fiber density was observed in relation to the nature of the sampling head for fibers with a diameter of fibers until now. They were greater for fibers with a diameter of >3 microm than for those with a diameter of fibers, it would appear that cowl deposit can be reduced by increasing the sampling flow rate.

  8. Analysis of the Fiber Bragg Gratings using the Lattice Filter Model

    Science.gov (United States)

    Bae, Jinho; Chun, Joohwan; Lee, Sang Bae

    2000-04-01

    We propose a new method for analyzing fiber Bragg gratings with an arbitrary index profile and an arbitrary individual grating length. The proposed method is based on the lattice filter model which is widely used in applications ranging from digital filtering to speech synthesis and explosive seismic signal processing. Lattice filter interpretation provides us with an accurate and simple tool for analyzing an arbitrary index profile and arbitrary aperiodic fiber grating structures, and gives us further insight into the understanding of fiber Bragg gratings. To verify the validity of the proposed model experimentally, we have fabricated two grating structures; the short-period (periodic) fiber Bragg grating structure and the chirped fiber Bragg grating structure. We have observed that the calculated transmission spectrum and the calculated reflectivity using our lattice filter model match very closely to the corresponding measured spectrum in the wavelength band of interest.

  9. Spectral shaping of an all-fiber torsional acousto-optic tunable filter.

    Science.gov (United States)

    Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon

    2014-12-20

    Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.

  10. Second-order all-fiber comb filter based on polarization-diversity loop configuration.

    Science.gov (United States)

    Lee, Yong Wook; Kim, Hyun-Tak; Lee, Yong Wan

    2008-03-17

    By concatenating three birefringence loops in series, a second-order all-fiber comb filter based on a polarization-diversity loop configuration is newly proposed. The proposed filter consists of one polarization beam splitter, polarization-maintaining fibers, and two halfwave plates. The effect of a second-order structure of polarization-maintaining fiber loops on a bandwidth of the filter passband was theoretically analyzed and experimentally demonstrated. Transmission output of the second-order filter (flat-top and narrow-band transmission spectra) could be obtained by adjusting two half-wave plates. 1 and 3 dB bandwidths of the proposed filter in flat-top and narrow-band operations were greater by approximately 102.9 and 44.3 % and smaller by approximately 47.9 and 47.1 % than those of a conventional Sagnac birefringence filter, respectively.

  11. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  12. Electrically tunable bandpass filter based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds.......An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds....

  13. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  14. Fiber-reinforced composite hot-gas filters

    Science.gov (United States)

    Stinton, D. P.; Lowden, R. A.; Chang, R.

    1987-05-01

    A chemical vapor deposition process was developed for the fabrication of high-temperature particulate filters. Fibrous materials such as Nicalon (SiC) felt and aluminosilicate papers were used as the filter material. Preliminary evaluation of filter specimens fabricated from Nicalon revealed extremely encouraging results. Cleanable filters with collection efficiencies of greater than 99.9% were recorded for both PFBC flyash and gasifier char.

  15. Single mode chalcogenide glass fiber as wavefront filter for the DARWIN planet finding misson

    NARCIS (Netherlands)

    Faber, A.J.; Cheng, L.K.; Gielesen, W.L.M.; Boussard-Plédel, C.; Houizot, P.; Danto, S.; Lucas, J.; Pereira Do Carmo, J.

    2017-01-01

    The development of single mode chalcogenide glass fibers as wavefront filter for the DARWIN mission is reported. Melting procedures and different preform techniques for manufacturing core-cladding chalcogenide fibers are described. Bulk glass samples on the basis of Te-As-Se- and high

  16. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  17. Polymeric THz 2D Photonic Crystal Filters Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on a new form of polymeric 2D photonic crystal filters for THz frequencies fabricated using a standard fiber drawing technique. The band stop filters were modeled and designed using the generalized multipole technique. The frequency and angle-dependent transmission...

  18. Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled...... from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied. The distributed modal filtering (DMF) design enables SM guidance in ultra low NA fibers with very large cores, where large preform tolerances...... can be compensated during the fiber draw. Design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover...

  19. Highly efficient high power single-mode fiber amplifier utilizing the distributed mode filtering bandgap rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas T.; Jørgensen, Mette Marie

    2012-01-01

    We report on an ytterbium doped single mode distributed mode filtering rod fiber in an amplifier configuration delivering high average output power, up to 292 watts, using a mode-locked 30ps source at 1032nm with good power conversion efficiency. We study the modal stability of the output beam...... at high average output power levels and demonstrate a 44% power improvement before the threshold-like onset of mode instabilities by operating the rod fiber in a leaky waveguide regime. We investigate the guiding dynamics of the rod fiber and explain the improved performance by thermally induced...

  20. Developing particulate thin filter using coconut fiber for motor vehicle emission

    Science.gov (United States)

    Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.

    2016-03-01

    Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.

  1. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  2. Fiber temperature measurement system by the demodulation of F-P filter

    Science.gov (United States)

    Wang, Dongdong; Zhou, Jinfeng

    2010-10-01

    The laser from broadband laser source enters into the fiber Bragg grating after drilling through the coupler, if it meets the conditions to specific wavelength, the light will be reflected in accordance with backtrack by Fiber Bragg Grating, and enters into F-P filter. Wavelength selected by F-P filter, so various peaks of corresponding wavelength will be detected by photoelectric detector, F-P filter measures the wavelength reflected by fiber grating sensor, and transforms the wavelength signals into electrical signals directly. Consequently, According to empirical formula we can get the corresponding temperature. However, when the temperature changes, that the cavity length of the F-P filter will cause excursion and the measurements of Fiber Bragg Grating Wavelength will cause error will make error on temperature. So before formatting the system we should get the calibration of measuring system by accidental devices. That is to say, we get the calibration of central wavelength of the FBG. In this paper, DSP system generates scanning voltage of the F-P filter and collects voltage signal. So we get the scanning voltage of transmission peak wavelength of the F-P filter, thus a record of all wavelength - voltage relationship for the data can be obtained by us. This is the basis and standards that the wavelength-voltage data is used to demodulate the wavelength of FBG.

  3. Application of high efficiency metal fiber filters in ventilation systems of non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Grewal, G.; Milatovic, Z.; Landon, F.L.; Harty, W.M.

    1993-01-01

    Sand filters, Deep Bed Glass Fiber filters, and remotely replaceable High Efficiency Particulate Air filters have been successfully used for filtration of exhaust air from highly contaminated exhaust air streams. However, none of these technologies satisfy all requirements of an optimum filtration system design. The basic requirements of a nuclear filtration system are a high decontamination factor, low pressure drop, long operating life, sturdiness during normal operation, ability to withstand Design Basis Accidents, minimize generation of waste, minimum maintenance, high radiation resistance, ease of decontamination and decommissioning, and low life cycle cost. High Efficiency Metal Fiber filters are a new technology and provide a suitable alternative to the currently used nuclear air filtration technologies. This article investigates the advantages and disadvantages of the current air filtration technologies and compares them with those of the High Efficiency Metal Fiber filters. High Efficiency Metal Fiber Filters system design considerations for non-reactor nuclear facilities are also discussed in this article. The design considerations include, but are not limited to, physical configuration, space requirements, pressure drop, decontamination factors, dust holding capacity, in-place cleanability, cleaning procedures, in-place testing, and other support equipment. 2 refs., 4 figs

  4. Consumer perception of risk associated with filters contaminated with glass fibers.

    Science.gov (United States)

    Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L

    2000-09-01

    The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.

  5. Optically tunable multiwavelength fiber laser based on a Mach–Zehnder comb filter incorporating ytterbium-doped fibers

    Science.gov (United States)

    Zhou, Ying-Wu; Sun, Guo-Yong; Luo, Ai-Ping

    2018-01-01

    A tunable multiwavelength fiber laser based on an optically tunable Mach–Zehnder comb filter incorporating Yb-doped fibers is proposed and demonstrated. By selectively pumping the Yb-doped fibers, the lasing lines can be continuously tuned towards longer or shorter wavelengths. Up to 20 stable lasing lines with channel spacings of 0.76 nm in a 3-dB bandwidth were achieved at room temperature. Moreover, the laser tuning operation could easily cover the whole channel spacing by simply shifting the half-channel spacing separately in two opposite directions. The proposed multiwavelength fiber laser provides a simple and flexible optical tuning operation, which would be beneficial for its applications in fields requiring accurate tuning optical sources.

  6. Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization.

    Science.gov (United States)

    Lee, Cheng-Ling; Lee, Ray-Kuang; Kao, Yee-Mou

    2006-11-13

    We present the synthesis of multi-channel fiber Bragg grating (MCFBG) filters for dense wavelength-division-multiplexing (DWDM) application by using a simple optimization approach based on a Lagrange multiplier optimization (LMO) method. We demonstrate for the first time that the LMO method can be used to constrain various parameters of the designed MCFBG filters for practical application demands and fabrication requirements. The designed filters have a number of merits, i.e., flat-top and low dispersion spectral response as well as single stage. Above all, the maximum amplitude of the index modulation profiles of the designed MCFBGs can be substantially reduced under the applied constrained condition. The simulation results demonstrate that the LMO algorithm can provide a potential alternative for complex fiber grating filter design problems.

  7. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    International Nuclear Information System (INIS)

    Put, L.W.; Lembrechts, J.; Graaf, E.R. van der; Stoop, P.

    2000-01-01

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested that these dosimeters may give falsely elevated readings. A systematic contribution would be present due to alpha particles from natural radionuclides in the glass-fiber filter producing tracks on the track-etch foil. In the framework of the quality assurance of their laboratories, the origin of this offset was systematically assessed by means of measurements of alpha and gamma radiation from the glass-fiber filters and by intercomparisons between different types of detectors at low radon concentrations. It was found that alpha particles from the decay of 214 Po in the glass-fiber filter are the main cause of the extra tracks (only 12% originates from decay of 212 Po), leading, for this type of filter, to an offset in concentration of approximately 8 Bq m -3 . The implications of this offset are discussed

  8. Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering.

    Science.gov (United States)

    Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain

    2012-12-17

    We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.

  9. A Method for Cobalt and Cesium Leaching from Glass Fiber in HEPA Filter

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Suk Chol; Yang, Hee Chul; Yoon, In Ho; Choi, Wang Kyu; Moon, Jei Kwon

    2011-01-01

    A great amount of radioactive waste has been generated during the operation of nuclear facilities. Recently, the storage space of a radioactive waste storage facility in the Korea Atomic Energy Research Institute (KAERI) was almost saturated with many radioactive wastes. So, the present is a point of time that a volume reduction of the wastes in a radioactive waste storage facility needs. There are spent HEPA filter wastes of about 2,226 sets in the radioactive waste storage facility in KAERI. All these spent filter wastes have been stored in accordance with their original form without any treatment. Up to now a compression treatment of these spent HEPA filters has been carried out to repack the compressed spent HEPA filters into a 200 liter drum for their volume reduction. Frame and separator are contaminated with a low concentration of nuclide, while the glass fiber is contaminated with a high concentration of nuclide. So, for the disposal of the glass filter to the environment, the glass fiber should be leached to lower its radioactive concentration first and then must be stabilized by solidification and so on. Therefore, it is necessary to develop a leaching process of glass fiber in a HEPA filter. Leaching is a separation technology, which is often used to remove a metal or a nuclide from a solid mixture with the help of a liquid solvent

  10. Study on the Metal Fiber Filter Modeling for Capturing Radioactive Aerosol

    International Nuclear Information System (INIS)

    Lee, Seunguk; Lee, Chanhyun; Park, Minchan; Lee, Jaekeun

    2015-01-01

    The components of air cleaning system are demisters to remove entrained moisture, pre-filters to remove the bulk of the particulate matter, high efficiency particulate air (HEPA) filters, iodine absorbers(generally, activated carbon) and HEPA filters after the absorbers for redundancy and collection of carbon fines. The HEPA filters are most important components to prevent radioactive aerosols from being released to control room and adjacent environment. The Conventional HEPA filter has pleated media for low pressure drop. Consequently, the filters must provide high collection efficiency as well as low pressure drop. Unfortunately, conventional HEPA filters are made of glass fiber and polyester, and pose disposal issues since they cannot be recycled. In fact, 31,055 HEPA filters used in nuclear facilities in the U.S are annually disposed. The Analyses at face velocities 1cm/s and 10cm/s are also carried out, and they also show R2 value of 0.995. However, since official HEPA filter standards are established at face velocity of 5cm/s, this value will be used in further analysis. From the comparative studies carried out at different filter thickness and face velocities, a good correlation is found between the model and the experiment

  11. An approach to measure trace elements in particles collected on fiber filters using EDXRF.

    Science.gov (United States)

    Oztürk, Fatma; Zararsiz, Abdullah; Kirmaz, Ridvan; Tuncel, Gürdal

    2011-01-15

    A method developed for analyzes of large number of aerosol samples using Energy Dispersive X-Ray Fluorescence (EDXRF) and its performance were discussed in this manuscript. Atmospheric aerosol samples evaluated in this study were collected on cellulose fiber (Whatman-41) filters, employing a Hi-Vol sampler, at a monitoring station located on the Mediterranean coast of Turkey, between 1993 and 2001. Approximately 1700 samples were collected in this period. Six-hundred of these samples were analyzed by instrumental neutron activation (INAA), and the rest were archived. EDXRF was selected as an analytical technique to analyze 1700 aerosol samples because of its speed and non-destructive nature. However, analysis of aerosol samples collected on fiber filters with a surface technique such as EDXRF was a challenge. Penetration depth calculation performed in this study revealed that EDXRF can obtain information from top 150μm of our fiber filter material. Calibration of the instrument with currently available thin film standards caused unsatisfactory results since the actual penetration depth of particles into fiber filters were much deeper than 150μm. A method was developed in this manuscript to analyze fiber filter samples quickly with XRF. Two hundred samples that were analyzed by INAA were divided into two equal batches. One of these batches was used to calibrate the XRF and the second batch was used for verification. The results showed that developed method can be reliably used for routine analysis of fiber samples loaded with ambient aerosol. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Weighted finite impulse response filter for chromatic dispersion equalization in coherent optical fiber communication systems

    Science.gov (United States)

    Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui

    2018-01-01

    Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.

  13. Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Alkeskjold, Thomas Tanggaard

    2012-01-01

    Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed...... rod-type photonic crystal fiber, which exploits resonant coupling with high-index elements to suppress high-order modes, are thoroughly investigated. A computationally efficient model has been developed to calculate the refractive index change due to the thermo-optical effect, and it has been...... integrated into a full-vector modal solver based on the finite-element method to obtain the guided modes, considering different heating conditions. Results have shown that the single-mode regime of the distributed modal filtering fiber is less sensitive to thermal effects with respect to index-guiding fibers...

  14. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    NARCIS (Netherlands)

    Put, L.W.; Lembrechts, J.; van der Graaf, E.R.; Stoop, P.

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested to us that these dosimeters may give

  15. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short...

  16. Double-pumped multiwavelength fiber optical parametric oscillator based on a Sagnac loop filter.

    Science.gov (United States)

    Sun, Bing; Hu, Kai; Wei, Yizhen; Chen, Daru; Gao, Shiming; Wang, Tianshu; He, Sailing

    2012-01-01

    We propose a double-pumped ring cavity multiwavelength fiber optical parametric oscillator (MW-FOPO) using a highly nonlinear dispersion-shifted fiber (HNL-DSF) as the gain medium and a polarization maintained fiber based Sagnac loop filter as the comblike filter. 22-wavelength lasing of the double-pumped MW-FOPO with a ripple less than ±2.5 dB and a wavelength spacing of about 0.8 nm in a wavelength range from 1541 nm to 1558 nm is experimentally demonstrated. We discussed the power stability of the multiwavelength lasing of the double-pumped MW-FOPO. A comparison of the output spectra between the double-pumped MW-FOPO and single-pumped MW-FOPO is also presented. © 2012 Optical Society of America

  17. A simple gold-coated microstructure fiber polarization filter in two communication windows

    Science.gov (United States)

    Feng, Xinxing; Li, Shuguang; Du, Huijing; Zhang, Yinan; Liu, Qiang

    2018-03-01

    A polarization filter is designed at two communication windows of 1310 and 1550 nm based on microstructured optical fiber. The model has four large diameter air holes and two gold-coated air holes. The influence of the geometrical parameters of the photonic crystal fiber on the performance of the polarization filter is analyzed by the finite element method. The numerical simulation shows that when the fiber length is 300 μm, the corresponding extinction ratio is 209.7 dB and 179.8 dB, the bandwidth of extinction ratio (ER) better than 20 dB is 150 nm and 350 nm at the communication wavelength of 1310 nm and 1550 nm.

  18. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    Science.gov (United States)

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  19. New technique of leukocytapheresis by the use of nonwoven polyester fiber filter for inflammatory bowel disease.

    Science.gov (United States)

    Kawamura, A; Saitoh, M; Yonekawa, M; Horie, T; Ohizumi, H; Tamaki, T; Kukita, K; Meguro, J

    1999-11-01

    Leukocytapheresis (LCAP) is widely used for the treatment of immunological diseases. We studied a new treatment of LCAP using a nonwoven polyester fiber filter. In a basic study, 30-70% of leukocytes were removed. Also, 30-68% of the leukocyte subsets were removed. Sixteen inflammatory bowel disease (IBD) patients, mainly with ulcerative colitis (UC), were treated by this method. Their cytokine activity was normalized in the filter and in the peripheral blood. Eleven of 12 patients with UC were induced to remission. Four patients with Crohn's disease (CD) exhibited improvement. The LCAP using a nonwoven polyester fiber filter was very efficient for treating the patients with IBD. Also, it will be a very useful treatment for immunological diseases and extracorporeal immunomodulation.

  20. Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals.

    Science.gov (United States)

    Varshney, R K; Nagaraju, B; Singh, A; Pal, B P; Kar, A K

    2007-10-17

    Design and fabrication of a tunable gain equalization filter for dense wavelength division multiplexed (DWDM) signals through erbium doped fiber amplifiers (EDFA) is reported. It is based on a side-polished fiber (SPF) half-coupler block loaded with a displaceable tapered multimode overlay waveguide (MMOW). A simple and accurate normal mode analysis is employed to design this filtering device for its subsequent realization. Equalization of a typical EDFA gain spectrum in the C-band within +/-0.35 dB or even less in the presence of various ITU standard C-band DWDM signal channels is demonstrated under varied operating conditions like add/drop of signals. Tunability of the filter notch is achieved through displacement of the SPF relative to the MMOW.

  1. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS).

  2. Characterization of Mechanical Properties: Low-Density Polyethylene Nanocomposite Using Nanoalumina Particle as Filler

    Directory of Open Access Journals (Sweden)

    Ching Yern Chee

    2012-01-01

    Full Text Available Nanocomposites based on low-density polyethylene (LDPE, containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with silane which acts as coupling agent. The effects of alumina additions to the structure and morphology of LDPE matrix were characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM, respectively. The mechanical behaviour of nanoalumina-reinforced LDPE composite was studied using tensile tests, flexural tests, and impact tests. The interfacial adhesion between nano alumina particle and LDPE matrix was investigated. The result showed that the reinforcement performance of nano alumina to LDPE matrix was attributed to the interfacial adhesion between nanoparticle and polymer matrix. The addition of 1 wt% nano alumina has successfully enhanced the mechanical properties of LDPE material.

  3. Long-period-fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kulishov, M.; Park, Y.; Azana, J.

    2009-01-01

    Roč. 34, č. 7 (2009), s. 1045-1047 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GA102/07/0999; GA AV ČR KJB200670601 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.059, year: 2009

  4. Thermal effects in Yb-doped double-cladding Distributed Modal Filtering rod-type fibers

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Jørgensen, Mette Marie

    2012-01-01

    The effects of thermally-induced refractive index change in Yb-doped Distributed Modal Filtering (DMF) photonic crystal fibers are investigated, where high-order mode suppression is obtained by resonant coupling with high index elements in the cladding. The temperature distribution on the fiber...... element method. A DMF fiber design, which is single-mode in the 1030 nm–1064 nm region, is considered, and the effects of thermal load on the transmission characteristics are evaluated. Results show a blue-shift of the single-mode window and the single-mode bandwidth narrowing as the absorbed pump power...... cross-section is calculated with an analytical model, for different pump power values. The consequent refractive index change, due to the thermo-optical effect, is applied to the cross-section of the DMF fiber, whose guiding properties are studied with a full-vector modal solver based on the finite...

  5. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  6. Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors.

    Science.gov (United States)

    Comanici, Maria I; Chen, Lawrence R; Kung, Peter

    2017-11-10

    Fiber optic sensors based on fiber Bragg gratings (FBGs) find potential use in condition monitoring because their spectral properties change according to external environmental and/or physical factors. We propose and demonstrate a technique for interrogating multiple FBG-based sensors based on microwave photonic (MWP) filtering. In particular, we exploit the spectrum-slicing properties of two different FBG Fabry-Perot cavities to implement a double passband MWP filter. Each sensor spectrum results in a unique MWP filter passband. As temperature is applied to a sensor, the corresponding MWP filter passband will shift in frequency; we track such shifts by monitoring the detected power at a fixed radio frequency. We discuss the use of a ratiometric approach for enhancing the sensitivity and the impact of cross-talk from the MWP filter responses in terms of simultaneous multi-sensor operation. Results show that we can monitor local temperatures at two (or multiple) different locations simultaneously and independently using a single measurement system.

  7. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  8. Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering

    Science.gov (United States)

    Qiu, Tiequn; Wu, Jianfeng; Strandjord, Lee K.; Sanders, Glen A.

    2014-05-01

    A bench-top resonator fiber optic gyroscope (RFOG) was assembled and tested, showing encouraging progress toward navigation grade performance. The gyro employed a fiber length of 19 meters of polarizing fiber for the sensing coil which was wound on an 11.5 cm diameter PZT cylinder. A bias stability of approximately 0.1 deg/hr was observed over a 2 hour timeframe, which is the best bias stability reported to date in an RFOG to our knowledge. Special care was taken to minimize laser phase noise, including stabilization to an optical cavity which was also used for optical filtering, giving angle random walk (ARW) values in the range of 0.008 deg/rt-hr. The ARW performance and bias stability are within 2x and 10x, respectively, of many civil inertial navigation grade requirements.

  9. In-line flat-top comb filter based on a cascaded all-solid photonic bandgap fiber intermodal interferometer.

    Science.gov (United States)

    Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin

    2013-07-15

    In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.

  10. A Comparative Study on the Influence of Nanoalumina and Carbon Nanotubes on Thermal Stability, Adhesion Strength and Morphology of Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Mohammad Mansourian-Tabaei

    2015-02-01

    Full Text Available Nano-fillers have displayed excellent mechanical properties and are widely used in different polymeric matrices for high performance applications. Recently, epoxy resins modified by nano-reinforcing fillers such as multi-walled carbon nanotubes (MWCNTs and nanoalumina (Al2O3 have been developed for adhesive applications. In this work, the influence of 1.5 weight percent of various nanofillers namely nanoalumina, MWCNT, nanosilica (SiO2 and talc on the thermal stability, strength adhesion and morphology of diglycidyl ether of bisphenol A (DGEBA/epoxy novolac adhesives was studied. Thermal stability and degradation, adhesion strength and morphology were measured by the thermogravimetry analysis (TGA, lap shear strength test and scanning electron and transmission electron microscopic techniques, respectively. The results showed that incorporation of the nanoalumina and MWCNT into the DGEBA/epoxy novolac adhesives increased the lap shear strength. Moreover, the thermal stability of the epoxy adhesive in terms of onset of degradation temperature and char yield (after 800°C was improved to some extent. By addition of one and half weight percent nanoalumina and/or MWCNTs in the epoxy adhesives, the lap shear strength increased by about 70 and 25 percent, respectively. Among the investigated fillers, nanoalumina demonstrated the best performance in terms of improvements in the lap shear strength, thermal stability and degradation of the epoxy adhesives. When a combination of nanoalumina and MWCNTs reinforcing fillers (0.75 weight percent nanoalumina and 0.75 weight percent MWCNTs was used as a hybrid filler in the epoxy adhesive, a synergism effect on the char yield was observed.

  11. Lysosomes involved in the cellular toxicity of nano-alumina: combined effects of particle size and chemical composition.

    Science.gov (United States)

    Zhang, Q; Xu, L; Wang, J; Sabbioni, E; Piao, L; Di Gioacchino, M; Niu, Q

    2013-01-01

    Nowadays, manufactured nano-particles of aluminum oxide (nano-alumina) have been widely used in many fields with the rapidly developed nano-technology, but their basic toxic data are scarce. It is believed that the smaller nano-particles are able to easily cross the bio-membrane and quickly reach cellular compartments rather than micro-size particles, thus showing more toxic effects. The aim of this study was to compare the toxicity of nano- and micro- particles of alumina for detecting particle size related toxicity, and to compare the toxicity of nano-alumina and nano-carbon with the same particle size for determining chemical composition related toxicity. The present study revealed that nano-particles of alumina were much toxic than micro-alumina particles, indicating a particle size related toxicity; and were much more toxic than nano-carbon particles as well, manifesting a chemical related toxicity. The mechanism might be concerned with the involvement of the lysosomes. In conclusion, toxicity of nano-alumina is a combination of the toxic effects of its particle size and chemical composition.

  12. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  13. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    Science.gov (United States)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  14. Holographic matched filter for full-field in-line signal processing of optical-fiber sensor outputs

    Science.gov (United States)

    Indebetouw, Guy; Bennett, Kim D.; Zhang, Pinyi; May, Russell G.

    1990-01-01

    A holographic matched filter is used to measure the changes in the output of a dual-mode fiber undergoing axial strain. The hologram is formed by interfering collimated light from a single-mode reference fiber and an unstrained dual-mode sensor fiber on a small piece of holographic material. When the hologram is illuminated by the strained sensor fiber, the cross-correlation field comparing the dual-mode output and its previous state, as recorded in the hologram, is collected, focused into a pick-up fiber, and sent to a photodiode. This arrangement allows for a compact, in-line method for full-field processing of the strain-induced changes in phase and amplitude in the sensor fiber. Other uses of such fiber-based correlators are suggested.

  15. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  16. Effect of narrow spectral filter position on the characteristics of active similariton mode-locked femtosecond fiber laser.

    Science.gov (United States)

    Kotb, Hussein; Abdelalim, Mohamed A; Anis, Hanan

    2015-11-16

    A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb(3+)-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.

  17. MODELING REFLECTANCE AND TRANSMITTANCE OF QUARTZ-FIBER FILTER SAMPLES CONTAINING ELEMENTAL CARBON PARTICLES: IMPLICATIONS FOR THERMAL/OPTICAL ANALYSIS. (R831086)

    Science.gov (United States)

    A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...

  18. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-03-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  19. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Mizell, Steve A.; Shadel, Craig A.

    2016-01-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  20. Design of a novel photonic crystal fiber filter based on gold-coated and elliptical air holes

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Liu, Qiang; Wang, Xinyu

    2017-11-01

    In recent years, photonic crystal fibers have played an important role in the field of optical communications, and the addition of metal materials to photonic crystal fibers have offered new ways to improve the transmission characteristics of optical fibers. We design a new type of gold-coated photonic crystal filter, which utilizes the surface plasmon resonance effect, and study it by using the finite element method. In this paper, we optimise the structure parameters and analyze the numerical results. The numerical results show that the thickness of metal layer and the air holes near the fiber core strongly affect the performance of the polarization filter. For the operating wavelength of 1550 nm, the loss in the y-polarization direction can be as high as 906.9 dB/cm, which is much larger than the x-polarization direction. When the fiber length is longer than 100 μm, the crosstalk in the wavelength range from 1.4 μm to 1.9 μm is greater than 20 dB. The proposed optical fiber can find application as an optical fiber polarization filter.

  1. Tunable fiber comb filter based on simple waveplate combination and polarization-diversified loop

    Science.gov (United States)

    Jung, Jaehoon; Lee, Yong Wook

    2017-06-01

    By incorporating a simple waveplate combination (WPC) set composed of two waveplates, we propose a wavelength-tunable fiber comb filter based on a polarization-diversified loop (PDL). The simple WPC set includes three kinds of waveplate groups such as two quarter-wave plates (QWPs), a set of a QWP and a half-wave plate (HWP), and a set of an HWP and a QWP. The PDL is implemented by making a Sagnac birefringence loop comprised of a four-port polarization beam splitter (PBS), two waveplates, and polarization-maintaining fiber (PMF). In the PDL, one end of PMF is connected to one port of the PBS with its slow axis π/4 (45°) oriented with respect to the horizontal axis of the PBS, and the other end of PMF is concatenated with the waveplates. First, we investigated light polarization conditions required to continuously tune the absolute wavelength location of the proposed filter in terms of input and output states of polarization (SOPs) of a birefringence element, or PMF. Then, three analytic transmittances of the filter were derived for the three WPC sets with arbitrary orientation angles of waveplates through Jones matrix formulation. And eight specific orientation angle sets of two waveplates, which caused phase shifts increasing linearly from 0° to 315° by a step of 45° in a sinusoidal transmittance function, were found for each WPC set. In particular, it has been theoretically proved that an orientation angle set of two waveplates, which can induce an arbitrary phase shift in the sinusoidal transmittance function, always exists for each WPC set. This implies that the comb spectrum of the proposed filter can be continuously tuned within one channel bandwidth by the proper control of the waveplate orientation angles. Finally, the input SOPs of PMF and the wavelength-dependent evolution of its output SOP were examined on the Poincare sphere at the eight specific waveplate angle sets. The relationship between the wavelength tuning and the SOP evolution was also

  2. Variable single-passband narrowband optical filter based on forward stimulated interpolarization scattering in photonic crystal fiber.

    Science.gov (United States)

    Qin, Yi; Sun, Junqiang; Du, Mingdi; Liao, Jianfei

    2012-09-01

    A variable transmission spectrum single-passband narrowband optical filter is proposed and experimentally demonstrated. It is based on forward stimulated interpolarization scattering (SIPS) in a photonic crystal fiber by applying a differential quadrature phase-shift keying modulation to the pump wave to broaden and shape the SIPS gain spectrum. By choosing the bit rate of the modulation data pattern, a flat-top steep-cutoff optical bandpass filter with a 3 dB bandwidth of 70 MHz and a 10 dB bandwidth of 90 MHz is realized. In addition, a variable narrowband optical notch filter is also realized by attenuation of the pump wave.

  3. 80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Using cross-phase modulation in a 1-km high-nonlinearity dispersion-shifted fiber with subsequent filtering by a tunable optical filter, 80-Gb/s pulsewidth maintained wavelength conversion is realized. Penalty-free transmission over 80-km conventional single-mode fiber and 12-km dispersion...

  4. Investigation of microwave photonic filter based on multiple longitudinal modes fiber laser source

    Science.gov (United States)

    Cao, Yuan; Li, Feng; Feng, Xinhuan; Lu, Chao; Guan, Bai-ou; Wai, P. K. A.

    2015-06-01

    We theoretically study the transfer function of a finite impulse response microwave photonic filter (FIR-MPF) system using a multi-wavelength fiber laser source by considering multiple longitudinal modes in each wavelength. The full response function with the response from longitudinal mode taps is obtained. We also discussed the influence of the longitudinal mode envelope and mode spacing on the performance of FIR-MPF. The response function of the longitudinal mode taps is fully discussed and the contribution is compared with the response of the carrier suppression factor for double sideband (DSB) modulation. The multiple longitudinal modes structure in the wavelength taps can be utilized to engineer the response of the FIR-MPF such that desirable features such as high side lode suppression ratio can be realized. The analysis provides a guideline for designing incoherent FIR-MPF systems.

  5. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  6. Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver

    Science.gov (United States)

    Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.

    2017-02-01

    We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.

  7. Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer.

    Science.gov (United States)

    Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng; Cui, Hu

    2010-03-15

    A wavelength switchable all-fiber comb filter with flat-top spectral response based on a double-loop Mach-Zehnder (M-Z) interferometer is proposed and demonstrated. The proposed flat-top filter consists of a rotatable polarizer and a double-loop M-Z interferometer composed of two fiber couplers with a polarization controller (PC) in the first loop. In the theoretical analysis, when the second coupler of the M-Z interferometer is a non-3dB one, with proper settings of the polarization state of the input light and the PC, the wavelength switchable comb filter with flat-top passband can be obtained. Theoretical prediction was verified by experimental demonstration. The measured 1 dB bandwidth was 0.51 nm with a channel spacing of 0.98 nm, indicating that the flat-top passband of 1 dB bandwidth extends to about 50% of the comb spacing.

  8. Performance Assessment and Scooter Verification of Nano-Alumina Engine Oil

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lue

    2016-09-01

    Full Text Available The performance assessment and vehicle verification of nano-alumina (Al2O3 engine oil (NAEO were conducted in this study. The NAEO was produced by mixing Al2O3 nanoparticles with engine oil using a two-step synthesis method. The weight fractions of the Al2O3 nanoparticles in the four test samples were 0 (base oil, 0.5, 1.5, and 2.5 wt. %. The measurement of basic properties included: (1 density; (2 viscosity at various sample temperatures (20–80 °C. A rotary tribology testing machine with a pin-on-disk apparatus was used for the wear test. The measurement of the before-and-after difference of specimen (disk weight (wear test indicates that the NAEO with 1.5 wt. % Al2O3 nanoparticles (1.5 wt. % NAEO was the chosen candidate for further study. For the scooter verification on an auto-pilot dynamometer, there were three tests, including: (1 the European Driving Cycle (ECE40 driving cycle; (2 constant speed (50 km/h; and (3 constant throttle positions (20%, 40%, 60%, and 90%. For the ECE40 driving cycle and the constant speed tests, the fuel consumption was decreased on average by 2.75%, while it was decreased by 3.57% for the constant throttle case. The experimental results prove that the engine oil with added Al2O3 nanoparticles significantly decreased the fuel consumption. In the future, experiments with property tests of other nano-engine oils and a performance assessment of the nano-engine-fuel will be conducted.

  9. Experiments and analysis of tunable monolithic 1- μm single-frequency fiber lasers with loop mirror filters

    Science.gov (United States)

    Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.

  10. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter

    Science.gov (United States)

    Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua

    2018-04-01

    Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.

  11. Dimensionality reduction and dynamical filtering: Stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Setra, Rafael G; Arroyo-Almanza, Diana A; Ni, Zetian; Murphy, Thomas E; Roy, Rajarshi

    2015-08-01

    Stimulated Brillouin scattering (SBS) is a noise-driven nonlinear interaction between acoustical and optical waves. In optical fibers, SBS can be observed at relatively low optical powers and can severely limit signal transmission. Although SBS is initiated by high dimensional noise, it also exhibits many of the hallmarks of a complex nonlinear dynamical system. We report here a comprehensive experimental and numerical study of the fluctuations in the reflected Stokes wave produced by SBS in optical fibers. Using time series analysis, we demonstrate a reduction of dimensionality and dynamical filtering of the Stokes wave. We begin with a careful comparison of the measured average transmitted and reflected intensities from below the SBS threshold to saturation of the transmitted power. Initially the power spectra and correlation functions of the time series of the reflected wave fluctuations at the SBS threshold and above are measured and simulated. Much greater dynamical insight is provided when we study the scaling behavior of the intensity fluctuations using Hurst exponents and detrended fluctuation analysis for time scales extending over six orders of magnitude. At the highest input powers, we notice the emergence of three distinct dynamical scaling regimes: persistent, Brownian, and antipersistent. Next, we explore the Hilbert phase fluctuations of the intensity time series and amplitude-phase coupling. Finally, time-delay embedding techniques reveal a gradual reduction in dimensionality of the spatiotemporal dynamics as the laser input is increased toward saturation of the transmitted power. Through all of these techniques, we find a transition from noisier to smoother dynamics with increasing input power. We find excellent agreement between our experimental measurements and simulations.

  12. Dimensionality reduction and dynamical filtering: Stimulated Brillouin scattering in optical fibers

    Science.gov (United States)

    Setra, Rafael G.; Arroyo-Almanza, Diana A.; Ni, Zetian; Murphy, Thomas E.; Roy, Rajarshi

    2015-08-01

    Stimulated Brillouin scattering (SBS) is a noise-driven nonlinear interaction between acoustical and optical waves. In optical fibers, SBS can be observed at relatively low optical powers and can severely limit signal transmission. Although SBS is initiated by high dimensional noise, it also exhibits many of the hallmarks of a complex nonlinear dynamical system. We report here a comprehensive experimental and numerical study of the fluctuations in the reflected Stokes wave produced by SBS in optical fibers. Using time series analysis, we demonstrate a reduction of dimensionality and dynamical filtering of the Stokes wave. We begin with a careful comparison of the measured average transmitted and reflected intensities from below the SBS threshold to saturation of the transmitted power. Initially the power spectra and correlation functions of the time series of the reflected wave fluctuations at the SBS threshold and above are measured and simulated. Much greater dynamical insight is provided when we study the scaling behavior of the intensity fluctuations using Hurst exponents and detrended fluctuation analysis for time scales extending over six orders of magnitude. At the highest input powers, we notice the emergence of three distinct dynamical scaling regimes: persistent, Brownian, and antipersistent. Next, we explore the Hilbert phase fluctuations of the intensity time series and amplitude-phase coupling. Finally, time-delay embedding techniques reveal a gradual reduction in dimensionality of the spatiotemporal dynamics as the laser input is increased toward saturation of the transmitted power. Through all of these techniques, we find a transition from noisier to smoother dynamics with increasing input power. We find excellent agreement between our experimental measurements and simulations.

  13. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter.

    Science.gov (United States)

    Chen, Hao; Zhang, Shiwei; Fu, Hongyan; Zhou, Bin; Chen, Nan

    2016-02-08

    In this paper, a sensing interrogation system for fiber-optic interferometer type of sensors by using a single-passband radio-frequency (RF) filter has been proposed and experimentally demonstrated. The fiber-optic interferometer based sensors can give continuous optical sampling, and along with dispersive medium a single-passband RF frequency response can be achieved. The sensing parameter variation on the fiber-optic interferometer type of sensors will affect their free spectrum range, and thus the peak frequency of the RF filter. By tracking the central frequency of the passband the sensing parameter can be demodulated. As a demonstration, in our experiment a fiber Mach-Zehnder interferometer (FMZI) based temperature sensor has been interrogated. By tracking the peak frequency of the passband the temperature variation can be monitored. In our experiment, the sensing responsivity of 10.5 MHz/°C, 20.0 MHz/°C and 41.2 MHz/°C, when the lengths of sensing fiber are 1 m, 2 m and 4 m have been achieved.

  14. Continuously wavelength-tunable passband-flattened fiber comb filter based on polarization-diversified loop structure.

    Science.gov (United States)

    Jung, Jaehoon; Lee, Yong Wook

    2017-08-16

    Continuous wavelength tuning of optical comb filters, which is an essential functionality for flexible signal processing in reconfigurable optical systems, has been challenging in high order filter structures with two birefringent elements (BEs) or more due to cumbersomeness in finding a combination of waveplates and BEs and complexity in determining their individual azimuthal orientations. Here, we propose a continuously tunable polarization-independent passband-flattened fiber comb filter with two BEs using a polarization-diversified loop structure for the first time. The proposed filter consists of a polarization beam splitter and two groups of a half-wave plate, quarter-wave plate, and polarization-maintaining fiber (PMF). The azimuthal orientation of PMF in the second group is fixed as 22.5°. Orientation angle sets of the four waveplates, which can induce an arbitrary phase shift from 0 to 2π in the passband-flattened transmittance function, are found from the filter transmittance derived using Jones matrix formulation. From theoretical spectral analysis, it is confirmed that passband-flattened comb spectra can be continuously tuned. Theoretical prediction is verified by experimental demonstration. Moreover, the wavelength-dependent evolution of the output state of polarization (SOP) of each PMF is investigated on the Poincare sphere, and the relationship between wavelength tuning and SOP evolution is also discussed.

  15. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization.

    Science.gov (United States)

    Verly, Pierre G

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  16. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    Science.gov (United States)

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  17. Filtration via Conventional Glass Fiber Filters in 15N2 Tracer Assays Fails to Capture All Nitrogen-Fixing Prokaryotes

    OpenAIRE

    Deniz Bombar; Ryan W. Paerl; Ruth Anderson; Lasse Riemann

    2018-01-01

    Biological dinitrogen fixation (BNF) represents a major input of reduced nitrogen (N) to the oceans. Accurate direct measurements of BNF rates are crucial for reliably determining the biogeochemical significance of diazotrophy at local and global scales. Traditionally, borosilicate glass fiber filters (GF/F, Whatman) with a nominal pore size of 0.7 μm are used to collect suspended particles by filtration after incubations with added 15N2 tracer. We carried out BNF experiments in the Baltic Se...

  18. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  19. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  20. High Performance Spatial Filter Array Based on Single Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I project, by leveraging on Agiltron's experience in optical fiber components and our unique fabrication procedure of fiber array, we successfully designed...

  1. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    Science.gov (United States)

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  2. Filter unit

    International Nuclear Information System (INIS)

    Shiba, Kazuo; Nagao, Koji; Akiyama, Toshio; Tanaka, Fumikazu; Osumi, Akira; Hirao, Yasuhiro.

    1997-01-01

    The filter unit is used by attaching to a dustproof mask, and used in a radiation controlled area such as in a nuclear power plant. The filter unit comprises sheet-like front and back filtering members disposed vertically in parallel, a spacer for keeping the filtering members to a predetermined distance and front and back covering members for covering the two filtering members respectively. An electrostatic filter prepared by applying resin-fabrication to a base sheet comprising 100% by weight of organic fibers as fiber components, for example, wool felt, synthetic fiber non-woven fabric, wool and synthetic fiber blend non-woven fabric and then electrifying the resin is used for the filtering members. Then, residue of ashes can be eliminated substantially or completely after burning them. (I.N.)

  3. Design optimization of the distributed modal filtering rod fiber for increasing single mode bandwidth

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. This improves the limiting factor of nonlinear effects, while maintaining good beam quality. Photonic crystal fibers allow realization of short...

  4. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  5. C12-Ag wire as solid-phase microextraction fiber for determination of benzophenone ultraviolet filters in river water.

    Science.gov (United States)

    Li, Jian; Ma, Liyun; Tang, Minqiong; Xu, Li

    2013-07-12

    In the present study, a novel approach for fabrication of solid-phase microextraction (SPME) fiber based on silver wire was proposed. 3-(Mercaptopropyl) trimethoxysilane (MPTS) was self-assembled on the silver wire by the special interaction between Ag and S, producing MPTS-Ag wire. The MPTS-Ag wire was then functionalized with dodecyltrimethoxysilane via sol-gel approach, giving C12-Ag wire. The preparation conditions were systematically optimized. The prepared fiber was then used as the SPME fiber to extract three benzophenone UV filters from the river water. The developed method showed good linearity between 0.005 and 0.200 μg mL(-1) with regression determination coefficients in the range of 0.9929-0.9988 and detection limits ranging from 0.58 to 1.86 ng mL(-1). The C12-Ag fiber exhibited good stability and long lifetime, and could be an alternative to the traditional fused silica fiber. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    Science.gov (United States)

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.

  7. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers

    Science.gov (United States)

    Woodward, R. I.; Kelleher, E. J. R.

    2017-08-01

    Polarization-based filtering in fiber lasers is well-known to enable spectral tunability and a wide range of dynamical operating states. This effect is rarely exploited in practical systems, however, because optimization of cavity parameters is non-trivial and evolves due to environmental sensitivity. Here, we report a genetic algorithm-based approach, utilizing electronic control of the cavity transfer function, to autonomously achieve broad wavelength tuning and the generation of Q-switched pulses with variable repetition rate and duration. The practicalities and limitations of simultaneous spectral and temporal self-tuning from a simple fiber laser are discussed, paving the way to on-demand laser properties through algorithmic control and machine learning schemes.

  8. High-pass filtering and dynamic gain regulation enhance vertical bursts transmission along the mossy fiber pathway of cerebellum

    Directory of Open Access Journals (Sweden)

    Jonathan Mapelli

    2010-05-01

    Full Text Available Signal elaboration in the cerebellum mossy fiber input pathway presents controversial aspects, especially concerning gain regulation and the spot-like (rather than beam-like appearance of granular-to-molecular layer transmission. By using voltage-sensitive dye (VSD imaging in rat cerebellar slices (Mapelli et al., 2010, we found that mossy fiber bursts optimally excited the granular layer above ~50 Hz and the overlaying molecular layer above ~100 Hz, thus generating a cascade of high-pass filters. NMDA receptors enhanced transmission in the granular, while GABA-A receptors depressed transmission in both the granular and molecular layer. Burst transmission gain was controlled through a dynamic frequency-dependent involvement of these receptors. Moreover, while high-frequency transmission was enhanced along vertical lines connecting the granular to molecular layer, no high-frequency enhancement was observed along the parallel fiber axis in the molecular layer. This was probably due to the stronger effect of Purkinje cell GABA-A receptor-mediated inhibition occurring along the parallel fibers than along the granule cell axon ascending branch. The consequent amplification of burst responses along vertical transmission lines could explain the spot-like activation of Purkinje cells observed following punctuate stimulation in vivo .

  9. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter

    International Nuclear Information System (INIS)

    Song, Rui; Chen, Hong-Wei; Chen, Sheng-Ping; Hou, Jing; Lu, Qi-Sheng

    2011-01-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked fiber laser with a long cavity length over 700 m is demonstrated. A band pass filter is inserted into the laser cavity to stabilize the lasing wavelength. Some interesting phenomena are observed and discussed. The central wavelength, repetition rate, average power and single pulse energy of the laser are 1064 nm, 281.5 kHz, 11 mW and 39 nJ, respectively. The laser operates stably without Q-switching instabilities, which greatly reduces the damage opportunities of the SESAM

  10. Ferrule material dependence of axial force sensitivity of a tunable optical frequency filter made of fiber fabry-perot etalon

    Science.gov (United States)

    Tateda, Mitsuhiro; Dong, Mohan

    2011-01-01

    Fiber Fabry-Perot etalon (FFPE) is a device designed as an optical frequency filter, and its transmission characteristics change depending on force and temperature. In this paper, axial force sensitivity of three types of FFPE is investigated, whose ferrule materials have different Young's modulus. Force sensitivity of an FFPE whose ferrule material is borosilicate glass was found to be 2.7 GHz/N, while those of FFPEs with glass ceramics and zirconium oxide ferrules were 1.7 and 0.8 GHz/N, respectively. Thus, the theoretical expectation is confirmed experimentally that the axial force sensitivity of FFPE is inversely proportional to Young's modulus of the ferrule material.

  11. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea

    2009-01-01

    We present an all-optical adaptive-antenna radio over fiber transport system that uses proven, commercially-available components to effectively deliver standard-compliant optical signaling to adaptive multiantenna arrays for current and emerging radio technology implementations. The system is based...... on a directly-modulated reflective emiconductor amplifier (R-SOA) and exploits the interplay between transmission-line dispersion and tunable optical filtering to achieve flexible true time delay, with $2pi$ beam steering at the different antennas. The system was characterized, then successfully tested with two...

  12. Fiber laser refractometer based on tunable bandpass filter tailored FBG reflection

    Science.gov (United States)

    Zhao, Junfa; Wang, Juan; Zhang, Cheng; Xu, Wei; Sun, Xiaodong; Bai, Hua; Chen, Liying

    2018-02-01

    A fiber laser refractometer based on single-mode-no-core-single-mode (SNS) structure cascaded with a FBG is proposed and experimentally demonstrated. The output wavelength of the fiber laser keeps constant because the oscillating wavelength is only determined by the central wavelength of the FBG which is insensitive to the surrounding refractive index (SRI). However, the output power is sensitive to the SRI because the intracavity loss of the fiber laser varies with the SRI. A cost-effective power detection refractometer with reflective operation can be realized through measuring the variation of the fiber laser's output power. The refractometer has a sensitivity of 195.52 dB/RIU and 365.52 dB/RIU in the RI range of 1.3330-1.3687 and 1.3687-1.4135, respectively. Moreover, the refractometer can also be used for temperature measurement through discriminating the output wavelength of the fiber laser.

  13. Fiber-coupled Fabry-Pérot notch filter combining in-plane axis, high speed MEMS tunability and large etching depth

    Science.gov (United States)

    Sabry, Yasser M.; Eltagoury, Yomna M.; Shebl, Ahmed; Soliman, Mostafa; Khalil, Diaa

    2015-02-01

    Notch filters based on fiber-coupled Fabry-Pérot cavity are formed by a reflector placed in close proximity to a dielectric-coated end of an optical fiber. This kind of optical filters is easy to tailor for a given application because the external mirror has less mechanical and optical constraints. In this paper we present a fiber-coupled Fabry-Pérot filter based on dielectric-coated optical fiber inserted into a fiber groove facing a metallized micromirror, where the latter is driven by a high-speed MEMS actuator. The microsystem is fabricated using Deep Reactive Ion Etching (DRIE) technology on SOI wafer. The optical axis is in-plane and the components are self-aligned. The DRIE etching depth is 150 μm; chosen for improving the out-of-plane stiffness of the actuator and increasing the micromirror optical throughput. The MEMS actuator type is closing-gap while its quality factor is improved by slotting the fixed plate. The actuator, therefore, achieves a travel distance larger than 800 nm and has a resonance frequency of 90 kHz. The notch filter exhibits a free spectral range up to 100 nm and a notch rejection ratio of 20 dB around a wavelength of 1300 nm. The presented device provides low cost wafer level production of the filter.

  14. Experiences with sol-gel bonded high porosity alumina fiber materials for filter applications

    OpenAIRE

    Handrick, Karin E.; Mohlratzer, August; Ostertag, Rolf; Sporn, Dieter; Schmidt, Helmut K.

    1988-01-01

    High porous alumina fiber structures appear promising for hot gas filtration in particular for diesel particulate traps. For this purpose, however, a method is required for manufacturing of stable shapes resisant to the blow-out by the gas flow. The sol-gel process was expected to be the best suited method for fiber bonding to provide the required stability. The main tasks of the development-work were a uniform isotropic fiber-distribution, the adaptation of the sol-gel-process to the applica...

  15. Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil-water separation.

    Science.gov (United States)

    Liu, Qingsheng; Patel, Ankit A; Liu, Lingyun

    2014-06-25

    Oil-water separation is a major problem in industries such as oil production and wastewater treatment, where millions of gallons of oil-contaminated water are produced. Zwitterionic poly(sulfobetaine methacrylate) (pSBMA) is a superhydrophilic polymer due to its strong interaction with water via electrostatic interactions. By coating surfaces of filter media with such a superhydrophilic polymer, it is expected that one can effectively separate oil and water. In this work, pSBMA was grafted onto glass fiber surfaces using surface-initiated atom transfer radical polymerization (SI-ATRP). The in-air water contact angle of the pSBMA-treated glass was 8-15°, as compared to 31° for the control untreated glass, whereas the underwater-oil contact angle of the pSBMA-grafted glass was 162-169°, as compared to 142° for the control pristine glass, suggesting that the pSBMA-grafted glass slides are superhydrophilic and underwater superoleophobic. Such superhydrophilicity and underwater superoleophobicity were realized by modifying surface chemistry only, with no need to create rough surfaces. The pSBMA-grafted glass fiber filters demonstrated exceptional results at separating oil from water without even allowing miniscule amounts of visible oil to permeate through.

  16. Robust inertial frame-based alignment of fiber-optic gyro strapdown inertial navigation systems using a generalized proportional-integral-derivative filter

    Science.gov (United States)

    Rahgoshay, Mohammad Ali; Karimaghaie, Paknoosh; Shabaninia, Fereidoon

    2017-09-01

    Initial alignment is one of the most prominent and vital issues in fiber-optic gyro strapdown inertial navigation systems (SINS). In most research, the standard Kalman filter (KF) and its various versions have been used to accomplish the initial alignment of SINSs. A robust alignment approach is presented based on a generalized proportional-integral-derivative filter. The proposed inertial frame-based alignment approach outperforms the standard KF-based alignment methods and achieves a robust and accurate solution for marine fiber-optic SISN alignment. Experimental results also verify the prominent performance of the presented approach compared to the conventional standard KF-based alignment method.

  17. Ytterbium‐doped distributed spectral filtering photonic crystal fibers for use at wavelengths above 1100 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    Rare‐earth doped high‐power fiber lasers and amplifiers have attracted a lot of attention, due to the advantages of the fiber amplification scheme. Compared to conventional optically pumped bulk lasers, heat is dissipated much more effectively in fiber lasers, having a large surface‐to‐active vol......, and SM behaviour is demonstrated for core diameters of ~ 45 μm. Redshifting of the maximum gain from 1030 nm to above 1100 nm is illustrated by considering the Ytterbium gain curve and a white light transmission measurement of the PCF....... can reach the yellow‐orange light regime through frequency doubling. Yellow‐orange light has applications within the medical industry, high‐resolution spectroscopy and for laser‐guide stars [2]. To achieve amplification at these wavelengths, the larger gain at shorter wavelengths must be suppressed...... to avoid parasitic lasing due to Amplified Spontaneous Emission (ASE) build‐up. Nonlinear effects, such as stimulated Raman scattering, stimulated Brillouin scattering and four‐wave mixing, set the upper limit for achievable powers in fiber amplifiers. To increase the nonlinear threshold, Large...

  18. Large-band periodic filters for DWDM using multiuple-superimposed fiber Bragg gratings

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; LaRochelle, S.

    2002-01-01

    Roč. 14, č. 12 (2002), s. 1704-1706 ISSN 1041-1135 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibres * optical fibre filters * optical fibre communication * Bragg gratings * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.100, year: 2002

  19. Method for the analysis of asbestos fibers in water using MCE filters

    Energy Technology Data Exchange (ETDEWEB)

    Brackett, K.A.; Clark, P.J.; Millette, J.R.

    1993-01-01

    A method using mixed cellulose ester filters for the preparation of water samples to be tested under the Federal guidelines for asbestos in drinking water is described. Updating of the previous counting rules has been done to bring them closer to those specified in the AHERA protocol.

  20. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    Science.gov (United States)

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  1. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring

    Directory of Open Access Journals (Sweden)

    Radek Martinek

    2017-04-01

    Full Text Available This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS, and the Normalized Least Mean Square (NLMS Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs, filtered from abdominal maternal phonocardiograms (mPCGs by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV.

  2. Bidirectional single-longitudinal mode SOA-fiber ring laser based on optical filter assisted gain starvation

    Science.gov (United States)

    Khalil, Kamal; Al-Arifi, Fares; Al-Otaibi, Mohammed; Sabry, Yasser M.; Khalil, Diaa

    2015-03-01

    Generation of a single-longitudinal mode (SLM) in bidirectional ring lasers has direct impact on the laser linewidth and dynamic range of operation, when used in rotation sensing applications. Besides, operating at a specific wavelength helps in optimizing the performance of the system components. In this work, we report a novel method for generating SLM in bidirectional SOA-fiber ring laser using mechanically tunable Fabry-Perot filter with 1-nm bandwidth. The method is based on gain starvation by tuning the central wavelength of the filter in the blue edge of the gain-wavelength response. By adjusting the SOA driving current, the oscillation condition is satisfied mainly for single mode and bidirectional operation can be achieved simultaneously. The SLM operation is verified by monitoring the beating signal between the modes on an RF spectrum analyzer. Using an SOA with a small-signal gain of 20 dB at 300 mA pumping current and a gain bandwidth of 100 nm centered around 1490 nm; the central wavelength of the ring laser could be tuned from 1440 nm to 1480 nm with a side-mode suppression ratio of 25 dB.

  3. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  4. SU-F-J-28: Development of a New Imaging Filter to Remove the Shadows From the Carbon Fiber Grid Table Top

    Energy Technology Data Exchange (ETDEWEB)

    Maehana, W [Kanagawa Cancer Center, Yokohama, Kanagawa (Japan); Yokohama National University, Yokohama, kanagawa (Japan); Nagao, T [Yokohama National University, Yokohama, kanagawa (Japan)

    2016-06-15

    Purpose: For the image guided radiation therapy (IGRT), the shadows caused by the construction of the treatment couch top adversely affect the visual evaluation. Therefore, we developed the new imaging filter in order to remove the shadows. The performance of the new filter was evaluated using the clinical images. Methods: The new filter was composed of the band-pass filter (BPF) weighted by the k factor and the low-pass filter (LPF). In the frequency region, the stop bandwidth were 8.3×10{sup 3} mm{sup −1} on u direction and 11.1×10{sup 3} mm{sup −1} on v direction for the BPF, and the pass bandwidth were 8.3×10{sup 3} mm{sup −1} on u direction and 11.1×10{sup 3} mm{sup −1} on v direction for the LPF. After adding the filter, the shadows from the carbon fiber grid table top (CFGTT, Varian) on the kV-image was removed. To check the filter effect, we compared the clinical images, which are thorax and thoracoabdominal region, with to without the filter. The subjective evaluation tests was performed by adapting a three-point scale (agree, neither agree nor disagree, disagree) about the 15 persons in the department of radiation oncology. Results: We succeeded in removing all shadows of CFGTT using the new filter. This filter is very useful shown by the results of the subjective evaluation having the 23/30 persons agreed to the filtered clinical images. Conclusion: We concluded that the proposed method was useful tool for the IGRT and the new filter leads to improvement of the accuracy of radiation therapy.

  5. Fiber

    Science.gov (United States)

    ... for the treatment of diverticulosis , diabetes , and heart disease . ... fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, ... heart disease. Insoluble fiber is found in foods such as ...

  6. A tunable all-fiber filter based on microfiber loop resonator

    Science.gov (United States)

    Yu, Wu; Xu, Zeng; Changlun, Hou; Jian, Bai; Guoguang, Yang

    2008-05-01

    In this paper, a tunable high finesse microfilter is described, which is based on microfiber loop resonator (MLR). The length of microfiber loop could be controlled by a small cylindrical piezoelectric ceramic. As we calculated, this resonator has the maximum Q factor of 2400 and the finesse of 4.3. MLR filter was demonstrated that the maximum extinction ratio is about 10dB, and the free spectral range variation range could be more than 100GHz. This device could also be integrated into a smaller size due to the bigger radius of curvature of the microfiber.

  7. CHARACTERIZATION OF THE FORMATION OF FILTER PAPER USING THE BARTLETT SPECTRUM OF THE FIBER STRUCTURE

    Directory of Open Access Journals (Sweden)

    Martin Lehmann

    2013-06-01

    Full Text Available The formation index of filter paper is one of the most important characteristics used in industrial quality control. Its estimation is often based on subjective comparison chart rating or, even more objective, on the power spectrum of the paper structure observed on a transmission light table. It is shown that paper formation can be modeled as Gaussian random fields with a well defined class of correlation functions, and a formation index can be derived from the density of the Bartlett spectrum estimated from image data. More precisely, the formation index is the mean of the Bessel transform of the correlation taken for wave lengths between 2 and 5 mm.

  8. Fiber

    Science.gov (United States)

    ... not getting enough fiber. According to the 2010 Dietary Guidelines, teen girls (14 to 18 years) should get 25 grams of fiber per day and teen boys (14 to 18 years) should get 31 grams of fiber per day. The best sources are fresh fruits and vegetables, nuts and legumes, ...

  9. Effect of Fiber Volume Fraction and Water Absorption toward Bending Strength of Coconut Filters/ Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Putu Lokantara

    2012-11-01

    Full Text Available The variation of fibre volume and the duration of water soaking take influence on the mechanical properties of composite. This research aim is to know the influence of fraction volume fibre and soaking duration on the mineral watertoward the tensile strength and flexural of polyester-coconut-tapis composite. This research used coconut-tapis fibre which is cut 1 cm in length with 0%, 5%, 7,5%, and 10% fiber volume fraction, unsaturated-polyester (UPRs matrix resin type Yucalac 157 BQTN-EX, and MEKPO hardener. The flexure specimen are made by press hand lay-up method and cut according ASTM D790-03 for the flexure test. The result of flexure test shows that the duration of soaking and the fiber volume fraction give a significant effect on the flexural strength of composite. The highest strength are reached by composite with 10% fibre volume on 48 hour soaking time equal to 41.994 MPa. The flexure modulus happenend shows increasing until 24 hour soaking time. The highest modulus are reached by composite with 10% fibre volume equal to 7.114 GPa while the lowest are reached by composite with 0% fibre volume equal to 3,023 GPa.

  10. Edge-filter technique and dominant frequency analysis for high-speed railway monitoring with fiber Bragg gratings

    Science.gov (United States)

    Kouroussis, Georges; Kinet, Damien; Mendoza, Edgar; Dupuy, Julien; Moeyaert, Véronique; Caucheteur, Christophe

    2016-07-01

    Structural health and operation monitoring are of growing interest in the development of railway networks. Conventional systems of infrastructure monitoring already exist (e.g. axle counters, track circuits) but present some drawbacks. Alternative solutions are therefore studied and developed. In this field, optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, are particularly relevant due to their immunity to electromagnetic fields and simple wavelength-division-multiplexing capability. Field trials conducted up to now have demonstrated that FBG sensors provide useful information about train composition, positioning, speed, acceleration and weigh-in-motion estimations. Nevertheless, for practical deployment, cost-effectiveness should be ensured, specifically at the interrogator side that has also to be fast (>1 kHz repetition rate), accurate (∼1 pm wavelength shift) and reliable. To reach this objective, we propose in this paper to associate a low cost and high-speed interrogator coupled with an adequate signal-processing algorithm to dynamically monitor cascaded wavelength-multiplexed FBGs and to accurately capture the parameters of interest for railway traffic monitoring. This method has been field-tested with a Redondo Optics Inc. interrogator based on the well-known edge-filter demodulation technique. To determine the train speed from the raw data, a dominant frequency analysis has been implemented. Using this original method, we show that we can retrieve the speed of the trains, even when the time history strain signature is strongly affected by the measurement noise. The results are assessed by complimentary data obtained from a spectrometer-based FBG interrogator.

  11. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  12. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach–Zehnder interferometer and tunable filter

    Science.gov (United States)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach–Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach–Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4–1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  13. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    Science.gov (United States)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  14. High-birefringence photonic crystal fiber polarization filter with gold-coated and liquid-filled air holes based on surface plasmon resonance

    Science.gov (United States)

    Lou, Junbo; Li, Shuguang; Cheng, Tonglei; Yan, Xin; Zhang, Xuenan

    2018-01-01

    A high-birefringence photonic crystal fiber polarization filter is proposed. The coupling theory is used to explain full and incomplete couplings. The resonance point can be adjusted to the communication band by optimizing the fiber structure parameters. Numerical simulation results indicate that the resonance strength can reach 924.96 and 710.28 dB.cm-1 at the communication wavelength of 1.31 and 1.55 μm in x- and y-polarized directions, respectively. By filling liquid analyte, the confinement loss can reach 804.52 dB.cm-1 at the wavelength of 1.55 μm. Furthermore, when the fiber length of L equals 500 μm, the peak value of the cross talk (CT) can reach 389.15 and -280.52 dB, respectively. When the length of the fiber L equals 200 μm, the bandwidth of the CT better than 20 dB is up to 120 nm at the wavelength of 1.31 μm, and the bandwidth of the CT<-20 dB is up to 140 nm at the wavelength of 1.55 μm. These properties make it a good candidate for designing types of polarization filter devices.

  15. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  16. 21 CFR 211.72 - Filters.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible to manufacture such products without the use of these filters. If use of a fiber-releasing filter is...

  17. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    Science.gov (United States)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  18. Demonstration of a Speckle Nulling Algorithm and Kalman Filter Estimator with a Fiber Injection Unit for Observing Exoplanets with High-dispersion Coronagraphy

    Science.gov (United States)

    Xin, Yeyuan; Klimovich, Nikita; Mawet, Dimitri; Ruane, Garreth; Delorme, Jacques; Jovanovic, Nemanja; Llop Sayson, Jorge

    2018-01-01

    High-dispersion coronagraphy (HDC) combines high contrast imaging techniques with high spectral resolution spectroscopy to observe exoplanets and determine characteristics such as chemical composition, temperature, and rotational velocities. It has been demonstrated in lab at the Caltech Exoplanet Technology Lab’s transmissive testbed that a fiber injection unit (FIU), in which a single mode optical fiber is used to couple to light from the exoplanet, could be used to direct exoplanet light to a high-resolution spectrograph, with robust performance and starlight suppression that exceeds conventional image-based starlight suppression by at least two orders of magnitude. We now demonstrate this technique in lab with a speckle nulling starlight suppression algorithm and corresponding Kalman filter estimator that achieves the same suppression as an exhaustive probing of the parameter space, but within a few probe cycles.

  19. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    Science.gov (United States)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  20. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  1. Noninvasive Fetal Heart Rate Monitoring: Validation of Phonocardiography-Based Fiber-Optic Sensing and Adaptive Filtering Using the NLMS Algorithm

    Directory of Open Access Journals (Sweden)

    Jan Nedoma

    2017-01-01

    Full Text Available Here we present the evaluation results of our novel noninvasive phonocardiographic-based fiber-optic sensor for fetal Heart Rate (fHR detection using adaptive filtering and the NLMS Algorithm. The sensor uses two interferometric probes encapsulated inside a PolyDiMethylSiloxane (PDMS polymer. Based on real data acquired from pregnant women in a suitable research laboratory environment, once they had given their written informed consents, we created a simplified dynamic signal model of the distribution of maternal and fetal heart sounds inside the maternal body. Building upon this signal model, we verified the functionality of our novel fiber-optic sensor and its associated adaptive filtering system using the NLMS Algorithm. The main reason why we chose this technology to develop our system was that it allows monitoring the fHR without exposing the fetus to any external energies or radiation (in contrast to the ultrasound-based Cardiotocography Method. We used objective criteria such as: Signal to Noise Ratios: SNR_in, SNR_out and Percentage Root-mean-square Difference (PRD for our evaluations.

  2. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Science.gov (United States)

    Araujo, Rennan G. O.; Vignola, Fabíola; Castilho, Ivan N. B.; Borges, Daniel L. G.; Welz, Bernhard; Vale, Maria Goreti R.; Smichowski, Patricia; Ferreira, Sérgio L. C.; Becker-Ross, Helmut

    2011-05-01

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3σ), based on ten atomizations of an unexposed filter, was 40 ng g - 1 , corresponding to 0.12 ng m - 3 in the air for a typical air volume of 1440 m 3 collected within 24 h. The limit of quantification was 150 ng g -1, equivalent to 0.41 ng m -3 in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between air between < 0.12 ng m -3 and 1.47 ± 0.09 ng m -3. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  3. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  4. Corrosion testing of filter papers made with J-M 475 and J-M 753 glass fibers

    International Nuclear Information System (INIS)

    Petit, G.S.; Wiggins, F.N.; Weber, C.W.

    1975-01-01

    Results of static tests conducted on the fibers, and dynamic tests conducted on the papers are reported. The tests were conducted using H 2 O, HNO 3 , H 2 So 4 , HCl, NaOH, and NH 4 OH as the corrosive media. (U.S.)

  5. Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter

    Czech Academy of Sciences Publication Activity Database

    Krčmařík, David; Slavík, Radan; Park, Y.; Azana, J.

    2009-01-01

    Roč. 17, č. 9 (2009), s. 7074-7087 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA102/07/0999; GA AV ČR KJB200670601 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.278, year: 2009

  6. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  7. Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index.

    Science.gov (United States)

    Derevyanko, Stanislav

    2008-10-15

    The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.

  8. Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures

    Science.gov (United States)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2016-01-01

    The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.

  9. Synergism of Electrospinning and Nano-alumina Trihydrate on the Polymorphism, Crystallinity and Piezoelectric Performance of PVDF Nanofibers

    Science.gov (United States)

    Khalifa, Mohammed; Deeksha, B.; Mahendran, Arunjunairaj; Anandhan, S.

    2018-03-01

    Poly(vinlylidene fluoride) (PVDF) is known for its electroactive phases, which can be nucleated by incorporating nanoparticles into PVDF to enhance its piezoelectric performance. In this study, the synergistic effect of electrospinning and nano alumina trihydrate (ATH) filler was used to enhance the electroactive β phase of PVDF. Electrospun nanofibers of PVDF/ATH nanocomposite (PANCF) were synthesized with different loadings of ATH. The presence of ATH enhances the surface charges of the electrospun droplets, leading to thinner fibers. The highest β-phase content was found to be 70.1% for PANCF with 10% ATH. The piezoelectric performance of the nanofiber mats was studied using an indigenous setup. The highest voltage output of 840 mV was produced by PANCF with 10% ATH. These nanofibers could be a promising material in the field of sensors, actuators and energy-harvesting applications.

  10. Effects of membrane-filtered soy hull pectin and pre-emulsified fiber/oil on chemical and technological properties of low fat and low salt meat emulsions.

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Yong Jae; Kim, Yuan H Brad

    2016-06-01

    The objectives of this study were to determine efficacy of a membrane filtration in soy hull pectin purification and evaluate combined effects of soy hull pectin and pre-emulsified fiber/oil (PE) on chemical composition and technological properties of low fat and low salt meat emulsions. Soy hull pectin was purified through two different methods (alcohol-washed (ASP) and membrane-filtered (MSP)). Insoluble soy hull residues after pectin extraction were incorporated with sunflower oil and water for the PE preparation. Meat emulsion was formulated with 58 % pork, 20 % ice, 20 % pork backfat, and 2 % NaCl as control. A total of six low fat and low salt meat emulsions (1 % NaCl and 10 % backfat) was manufactured with 1 % pectin (with/without ASP or MSP) and 10 % PE (with/without). The pectin content of ASP and MSP was 0.84 and 0.64 g L-galacturonic acid/g dry sample, respectively. The inclusion of soy hull pectin caused similar results on chemical composition, color, cooking loss, and texture of the meat emulsions, regardless of the purification method. In addition, positive impacts of the combined treatments with soy hull pectin and PE compared to single treatments on cooking loss and texture of the meat emulsions were observed. Results suggest that membrane filtration could be an effective alternative method to purify pectin, instead of alcohol-washing, and both soluble pectin and insoluble fiber from soy hulls could be used as a functional non-meat ingredient to manufacture various low fat and low salt meat products.

  11. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    Used ventilation filters are a major source of sensory pollutants in air handling systems. The objective of the present study was to evaluate the net effect that different combinations of filters had on perceived air quality after 5 months of continuous filtration of outdoor suburban air. A panel...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  12. Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design.

    Science.gov (United States)

    Wen, Kun Hua; Yan, Lian Shan; Pan, Wei; Luo, Bin; Zou, Xi Hua; Ye, Jia; Ma, Ya Nan

    2009-10-10

    An analytical expression for calculating the reflection-peak wavelengths (RPWs) of a uniform sampled fiber Bragg grating (SFBG) with the multiple-phase-shift (MPS) technique is derived through Fourier transform of the index modulation. The new expression can accurately depict the RPWs incorporating various parameters such as the duty cycle and the DC index change. The effectiveness of the derived expression is further confirmed by comparing the RPWs estimated from the expression with the simulated reflective spectra using the piecewise uniform method. And the reflective spectrum has been well optimized by introducing the Gaussian apodization function to suppress the sidelobes without any wavelength shift on the RPWs. Then, a high-channel-count comb filter based on MPS is proposed by cascading two or more SFBGs with different Bragg periods but with the same RPWs. Noticeably, the RPWs of the new structured SFBG can also be accurately calculated through the expression. Furthermore, the number of spectral channels can be controlled by choosing gratings with specified difference Bragg periods.

  13. Exhaust gas filter

    International Nuclear Information System (INIS)

    Wada, Tadamasa; Hiraki, Akimitsu.

    1993-01-01

    A filter material formed by joining glass clothes to both surfaces of a glass fiber non-woven fabric is used. The filter material is disposed at the inside of a square filter material support frame made of stainless steel. The filter material is attached in a zig-zag manner in the flowing direction of the exhaust gases so as to increase the filtration area. Separators, for example, made of stainless steel are inserted between the filter materials. The separator is corrugated so as to sandwich and support the filter materials from both sides by the ridged crests. The longitudinal bottom of the separator formed by corrugating it defines a flow channel of the exhaustion gases. The longitudinal bottom is also used as a channel for back blowing air. With such a constitution, combustion gases of radioactive miscellaneous solid wastes can be completely filtered. In addition, a back wash can be conducted under high temperature. (I.N.)

  14. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  15. Leukodepletion blood filters: filter design and mechanisms of leukocyte removal.

    Science.gov (United States)

    Dzik, S

    1993-04-01

    Modern leukocyte removal filters have been developed after years of refinement in design. Current filters are composite filters in which synthetic microfiber material is prepared as a nonwoven web. The filter material may be surface modified to alter surface tension or charge to improve performance. The housing design promotes effective contact of blood with the filter material and decreases shear forces. The exact mechanisms by which these filters remove leukocytes from blood components are uncertain, but likely represent a combination of both physical and biological processes whose contributions to leukocyte removal are interdependent. Small-pore microfiber webs result in barrier phenomena that permit retention of individual cells and increase the total adsorptive area of the filter. Modifications in surface charge can increase or decrease cell attraction to the fibers. Optimum interfacial surface tensions between blood cells, plasma, and filter fibers not only permit effective blood flow through small fiber pores, but also facilitate cell contact with the material. Barrier retention is a common mechanism for all modern leukocyte-removal filters and applies to all leukocyte subtypes. Because barrier retention does not depend on cell viability, it is operative for cells of any age and will retain any nondeformable cell, including whole nuclei from lymphocytes or monocytes. Barrier retention is supplemented by retention by adhesion. RBCs, lymphocytes, monocytes, granulocytes, and platelets differ in their relative adhesiveness to filter fibers. Different adhesive mechanisms are used in filters designed for RBCs compared with filters designed for platelets. Although lymphocytes, monocytes, and granulocytes can adhere directly to filter fibers, the biological mechanisms underlying cell adhesion may differ for these cell types. These differences may depend on expression of cell adhesion molecules. In the case of filtration of fresh RBCs, platelet-leukocyte interaction

  16. Long-period fiber-brating-based filter for generation of picosecond and subpicosecond transform-limited flat-top pulses

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Park, Y.; Azana, J.

    2008-01-01

    Roč. 20, č. 10 (2008), s. 806-808 ISSN 1041-1135 R&D Projects: GA AV ČR(CZ) KJB200670601; GA ČR(CZ) GA102/07/0999 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filter s * passive filter s * optical pulse shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.173, year: 2008

  17. 27 CFR 24.243 - Filtering aids.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Filtering aids. 24.243... OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.243 Filtering aids. Inert fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and...

  18. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  19. High efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Conner, J.; Larsen, G.; Lopez, R.; Turner, C.; Vahla, G.; Violet, C.; Williams, K.

    1991-01-01

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  20. The high efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  1. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  2. Modification of Air Filter Media with Nylon-6 Nanofibers

    OpenAIRE

    Lei Li; Margaret W. Frey; Thomas B. Green

    2006-01-01

    Nylon-6 fibers with average diameters below 500 nm were electrospun onto conventional air filter media at varying weight coverage levels using a multi-nozzle bank. The initial filtration efficiency of the air filter media was improved significantly with increasing coverage level and decreasing size of nylon-6 fibers. Nylon-6 fibers were very durable on the air filter media at the coverage level of 0.1 g/m2 due to the good adhesion with the air filter fibers. The production efficiency of the c...

  3. Wien filter

    NARCIS (Netherlands)

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis

  4. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  5. FILTER TREATMENT

    Science.gov (United States)

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  6. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    Science.gov (United States)

    Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz

    2018-03-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.

  7. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Min, Rui; Marques, Carlos; Bang, Ole

    2018-01-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different...... periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured....

  8. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure

    Science.gov (United States)

    Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.

    2017-01-01

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527

  9. Fiber-optic filter fluorometer for emission detection of Protoporphyrin IX and its direct precursors - A preliminary study for improved Photodynamic Therapy applications

    Science.gov (United States)

    Landes, Rainer; Illanes, Alfredo; van Oepen, Alexander; Goeppner, Daniela; Gollnick, Harald; Friebe, Michael

    2018-03-01

    In this work we present first results of a laboratory manufactured filter-fluorometer to study differences in intensity and position of the main peaks of three porphyrins that appear during the Heme-Synthesis. Porphyrins play a major role in Photodynamic Therapy (PDT) for cancer treatment. Within the Heme-Synthesis, Porphyrins such as Protoporphyrin IX (PPIX) and its two precursors Coproporphyrin III (CPIII) and Uroporphyrin III (UPIII) represent photochemical agents that can interact with light to show fluorescence or generate Reactive Oxygen Species (ROS) to destroy cells. A major problem that arises is determining the ideal time slot to begin treatment after drug application. Our work is meant to show a way to solve this problem by looking at concentration changes of precursors appearing in Heme-Synthesis and using these changes to predict the occurence of PPIX inside the mitochondria.

  10. Wien filter

    OpenAIRE

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis such that electric and magnetic forces induced by the respective fields and exerted on an electrically charged particle moving substantially along the fileter axis at a certain velocity

  11. Fiber-optic filter fluorometer for emission detection of Protoporphyrin IX and its direct precursors – A preliminary study for improved Photodynamic Therapy applications

    Directory of Open Access Journals (Sweden)

    Rainer Landes

    2018-03-01

    Full Text Available In this work we present first results of a laboratory manufactured filter-fluorometer to study differences in intensity and position of the main peaks of three porphyrins that appear during the Heme-Synthesis. Porphyrins play a major role in Photodynamic Therapy (PDT for cancer treatment. Within the Heme-Synthesis, Porphyrins such as Protoporphyrin IX (PPIX and its two precursors Coproporphyrin III (CPIII and Uroporphyrin III (UPIII represent photochemical agents that can interact with light to show fluorescence or generate Reactive Oxygen Species (ROS to destroy cells. A major problem that arises is determining the ideal time slot to begin treatment after drug application. Our work is meant to show a way to solve this problem by looking at concentration changes of precursors appearing in Heme-Synthesis and using these changes to predict the occurence of PPIX inside the mitochondria. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Photodynamic Therapy, Drug light interval, Protoporphyrin IX, Coproporphyrin III, Uroporphyrin III

  12. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  13. Crude fiber determination using ceramic fiber to replace asbestos.

    Science.gov (United States)

    Knox, R L; Engvall, D S; Ginther, B E

    1982-09-01

    Crude fiber was determined in a wide range of feed products by a method which specifies ceramic fiber as a filter medium instead of the more hazardous and difficult to obtain asbestos. Results correlated well with those obtained by using AOAC official final action method 7.061-7.065 (correlation coefficient, 0.9994). For 8 samples, the coefficients of variation ranged from 0.74 to 4.80%. Compared with the AOAC method the proposed method showed a slight negative bias of 0.1%. Compared with asbestos, ceramic fiber was easier to prepare for use, filtering was faster, and samples bumped less.

  14. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  15. Distributed optical fibre devices based on liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Broeng, Jes; Hermann, D.S.

    2004-01-01

    We describe a new class of hybrid photonic crystal fibers, which are liquid crystal infiltrated fibers. Using these fibers, we demonstrate 'distributed' tunable filter and switching functionalities operating by the photonic bandgap effect....

  16. Asymmetric membrane filters for the removal of leukocytes from blood

    NARCIS (Netherlands)

    Bruil, A.; Bruil, A.; van Aken, W.G.; Beugeling, T.; Beugeling, T.; Feijen, Jan; Steneker, I.; Huisman, J.G.; Prins, H.K.

    1991-01-01

    As part of a study on the mechanisms of leukocyte filtration, the influence of pore size distribution on filter efficiency was investigated. Conventional leukocyte filters are not suitable for model studies, as these filters are composed of tightly packed synthetic fibers, with a poorly defined

  17. Dietary Fiber

    Science.gov (United States)

    ... label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and vegetables Dietary fiber adds bulk to ...

  18. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  19. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  20. Nanocellulose in spun continuous fibers: A review and future outlook

    Science.gov (United States)

    Craig Clemons

    2016-01-01

    Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling...

  1. Optical fiber sensors measurement system and special fibers improvement

    Science.gov (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  2. Investigation of Locally Made Ceramic Filter for Household Water Treatment

    OpenAIRE

    Nurmiyanto, Awaluddin; Prasetya, Agus

    2012-01-01

    This research have objective to develop and evaluate the performance of ceramic filter in using locally available material at Yogyakarta. Ceramic filter are made by pressing a mixture of clay, discarded pottery (grog) and combustible material (coconut fiber) into the molder. Curving processes are then applied to form tubular shape before firing it using kiln (1005°C). Filtration test were performed gravitationally by flowing well water into ceramic filter. Filtered water quality was complying...

  3. Performance of membrane filters used for TEM analysis of asbestos.

    Science.gov (United States)

    Webber, James S; Czuhanich, Alex G; Carhart, Laurie J

    2007-10-01

    This article presents findings related to characteristics of membrane filters that can affect the recovery of asbestos and the quality of preparations for transmission electron microscopy (TEM) analysis. Certain applications and preparation steps can lead to unacceptable performance of membrane filters used in analysis of asbestos by TEM. Unless substantial care is used in the collapsing of mixed-cellulose ester (MCE) filters with an acetone hot block, grid preparations can suffer and fiber recoveries can be compromised. Calibration of the etching depth of MCE filters, especially at differing locations in an asher's chamber, is critical for reliable fiber recovery. Excessive etching of MCE filters with aerosol-deposited asbestos can lead to loss of short fibers, while insufficient etching of MCE filters with aqueous-deposited asbestos can, paradoxically, also lead to loss of short fibers. Interlaboratory precision on MCE filters is improved by aerosol-deposited asbestos, as opposed to aqueous deposition. In comparison, straightforward preparation, improved solvents, and reduced contamination make PC filters an increasingly acceptable alternative. Variations in the geometric configuration during application of carbon films can lead to fiber loss and unacceptable grid quality for either type of filter.

  4. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  5. Natural fibers

    Science.gov (United States)

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  6. Determination of HEPA Filter Efficiency With Diocthyl Pthalate Aerosol

    International Nuclear Information System (INIS)

    Bunawas; Ruslanto, P O; Suhariyono, G

    1996-01-01

    Ultrafine aerosol filtration by HEPA (High Efficiency Particulate Air) filter has been determinated experimentally, based on the measurement of monodisperse Diocthyl Pthalate (DOP) aerosol concentration before and after passing the test filter. Using this technique, filter efficiency can be determined as a function of aerosol diameter with range from 0.017 to 0.747 um. The average efficiencies for Whatman -41 ; Whatman -42 and Whatman GF/A filters were 56.14 %; 95,74 %; and 99.65 % respectively. Gelman A Fiber Glass and Whatman membrane filter have fulfilled criterion as HEPA filter according to standard of IAEA, because of their minimum effiency of 99.90 %

  7. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  8. Eyeglass Filters

    Science.gov (United States)

    1987-01-01

    Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. Filtering helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.

  9. Antimicrobial Acrylic Fiber

    Science.gov (United States)

    2006-08-01

    the spinneret fitted with a 325 mesh wire screen filter inside. Extrusion conditions were as follows: 2 Process: dry-jet wet spinning...crude nonwoven fabric (one inch square), treated samples were challenged with Staphylococcus aureus (ATCC 6538) using a modified AATCC Test Method 100...obtained chlorine after chlorination. The fibers were formed into a nonwoven matt which upon chlorination with 10% household bleach became

  10. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  11. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  12. Jammed-array wideband sawtooth filter.

    Science.gov (United States)

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  13. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  14. Nanofiber filter media for air filtration

    Science.gov (United States)

    Raghavan, Bharath Kumar

    Nanofibers have higher capture efficiencies in comparison to microfibers in the submicron particle size range of 100-500 nm because of small fiber diameter and increased surface area of the fibers. Pressure drop across the filter increases tremendously with decrease in fiber diameter in the continuum flow regime. Nanofibers with fiber diameter less than 300 nm are in the slip flow regime as a consequence of which steep increase in pressure drop is considerably reduced due to slip effect. The outlet or inlet gases have broad range of particle size distribution varying from few micrometers to nanometers. The economic benefits include capture of a wide range of particle sizes in the gas streams using compact filters composed of nanofibers and microfibers. Electrospinning technique was used to successfully fabricate polymeric and ceramic nanofibers. The nanofibers were long, continuous, and flexible with diameters in the range of 200--300 nm. Nanofibers were added to the filter medium either by mixing microfibers and nanofibers or by directly electrospinning nanofibers as thin layer on the surface of the microfiber filter medium. Experimental results showed that either by mixing Nylon 6 nanofibers with B glass fibers or by electrospinning Nylon 6 nanofibers as a thin layer on the surface of the microfiber medium in the surface area ratio of 1 which is 0.06 g of nanofibers for 2 g of microfibers performed better than microfiber filter media in air filtration tests. This improved performance is consistent with numerical modeling. The particle loading on a microfibrous filter were studied for air filtration tests. The experimental and modeling results showed that both pressure drop and capture efficiency increased with loading time. Nanofiber filter media has potential applications in many filtration applications and one of them being hot gas filtration. Ceramic nanofibers made of alumina and titania nanofibers can withstand in the range of 1000°C. Ceramic nanofibers

  15. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.

    1981-02-01

    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  16. Fiber Grating Environmental Sensing System

    Science.gov (United States)

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  17. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  18. 21 CFR 177.2260 - Filters, resin-bonded.

    Science.gov (United States)

    2010-04-01

    ... a pH above 5.0. (j) Resin-bonded filters conforming with the specifications of paragraph (j) (1) of... bulk quantities of nonalcoholic, aqueous foods having a pH of 5.0 or below. (k) Resin-bonded filters...: List of Substances and Limitations (1) Fibers: Cellulose pulp. Cotton. Nylon. (From nylon resins...

  19. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  20. Experimental studies of flax-containing nonwoven fabric properties as a filter material

    Science.gov (United States)

    Nemirova, L. F.; Shtabnova, V. L.; Litunov, S. N.; Filkin, N. Yu.

    2017-08-01

    Nonwoven fabric (it consists of 50 % of modified flax fiber and a structure obtained by knitting the fabric with the scrim fibers) was examined. Air permeability, dust permeability, wind resistance and tensile strength at parameter range characteristic for industrial premises were determined. Findings support the use of the fabric as a filter material for filter elements.

  1. Development and evaluation of a cleanable high efficiency steel filter

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D.; Simon, K.; Turley, J.; Frye, L.; Monroe, D.

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 x 6l0 x 292 mm aluminum frame and has 13.5 m 2 of filter area. The filter media consists of a sintered steel fiber mat using 2 μm diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m 3 /hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO 2 aerosols. We used a 1,700 m 3 /hr slip stream from the 10,200 m 3 /hr exhaust system

  2. Electron microscopy study of refractory ceramic fibers.

    Science.gov (United States)

    MacKinnon, P A; Lentz, T J; Rice, C H; Lockey, J E; Lemasters, G K; Gartside, P S

    2001-10-01

    In epidemiological studies designed to identify potential health risks of exposures to synthetic vitreous fibers, the characterization of airborne fiber dimensions may be essential for assessing mechanisms of fiber toxicity. Toward this end, air sampling was conducted as part of an industry-wide study of workers potentially exposed to airborne fibrous dusts during the manufacture of refractory ceramic fibers (RCF) and RCF products. Analyses of a subset of samples obtained on the sample filter as well as on the conductive sampling cowl were performed using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to characterize dimensions of airborne fibers. Comparison was made of bivariate fiber size distributions (length and diameter) from air samples analyzed by SEM and by TEM techniques. Results of the analyses indicate that RCF size distributions include fibers small enough in diameter (fibers (> 60 microm) may go undetected by TEM, as evidenced by the proportion of fibers in this category for TEM and SEM analyses (1% and 5%, respectively). Limitations of the microscopic techniques and differences in fiber-sizing rules for each method are believed to have contributed to the variation among fiber-sizing results. It was concluded from these data that further attempts to characterize RCF exposure in manufacturing and related operations should include analysis by TEM and SEM, since the smallest diameter fibers are not resolved with SEM and the fibers of longer length are not sized by TEM.

  3. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    Science.gov (United States)

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  4. The Future of Modified Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J. V.; Goheen, Steven C.; Buschle-Diller, Gisela

    2006-06-30

    The future of fiber technology for medical and specialty applications depends largely on the future needs of our civilization. It has been said that unmet needs drive the funding that sparks ideas. In this regard recent emphasis on United States homeland security has encouraged new bio-fiber research, resulting in the development of anti-bacterial fibers for producing clothing and filters to eliminate pathogens and enzyme-linked fibers to facilitate decontamination of nerve toxins from human skin [1]. Magnetic fibers may also have future security applications including fiber-based detectors for individual and material recognition. Interest in smart and interactive textiles is increasing with a projected average annual growth rate of 36% by 2009 [2]. More specific markets including medical textiles and enzymes will grow even more rapidly. Among the medical textiles are interactive wound dressings, implantable grafts, smart hygienic materials, and dialysis tubing. Some of the medical and specialty fibers inclusive of these types of product areas are discussed in this book. A recent review of the surface modification of fibers as therapeutic and diagnostic systems relevant to some of these new product areas has been published by Gupta [3]. In his review he examined current technology for medical textile structures [3] with a focus on woven medical textile materials.

  5. Estimation of the upper limit of aerosol nanoparticles penetration through inhomogeneous fibrous filters

    International Nuclear Information System (INIS)

    Podgorski, Albert

    2009-01-01

    The fully segregated flow model (FSFM) was formulated to describe filtration of aerosol nanoparticles in polydisperse fibrous filters made of fibers with different diameters. The model is capable of predicting significantly higher penetration of nanoparticles through polydisperse filters than it may be expected from the classical theory applied to a mean fiber diameter. The model was solved numerically in the case of the log-normal fiber size distribution, and a simple correlation between the actual penetration through a polydisperse filter and the one calculated for the geometric mean fiber diameter was proposed. Equivalent fiber diameter for deposition due to Brownian diffusion was determined and it was found to be dependent on particle size and filter's polydispersity degree, being significantly greater than any mean fiber diameter. It was noted that it is impossible to select any one universal mean fiber diameter to describe penetration of nanoparticles with different sizes. It was also shown that in the case of a polydisperse fibrous filter the apparent exponent of the Peclet number based on the mean fiber diameter is greater than the expected value of -2/3 for diffusional deposition in a monodisperse filter. This prediction is in agreement with the available experimental data. The FSFM is expected to give the estimation of the upper limit of nanoparticles penetration in polydisperse fibrous filters.

  6. A new experimental approach for the measurement of the efficiency of fiber filters under low pressure; Une nouvelle approche experimentale de la mesure de l`efficacite des filtres a fibres a basse pression

    Energy Technology Data Exchange (ETDEWEB)

    Attoui, M.

    1995-12-31

    Theoretically, the permeance of a fibrous filter decreases with falling pressure. However, few experimental studies have been drawn to verify this theory. Our work has objectively measured the permeance of a fibrous filter to pressures in order of 10 hPa (1 kPa), such that comparisons could be made with the theoretical results. After a literature search of existing knowledge on filtration, we adapted the most advanced theoretical model, the model of S. Payet, for the low-end pressures. Secondly, we developed an original method of experimental measurements for the permeance of a filter, allowing us to twist around the problems associated with aerosol metrology at the lower end pressures. To this effect, we realised a form of tests to completely adapt to these problems. We validated our method by comparing these results to those given by the classic method under atmospheric pressure. Finally, it was possible for us to show the reduction of permeance (and thus the increase of the efficiency) of `formettes` filters for 6 diameters of DOP aerosols, from 4 10-2 {mu} to 0.3 {mu}m, and for filtration velocities between 2 and 40 cm/s. We showed that our experimental results agreed well, according to our theory, up until 50 hPa (5 kPa). (author). 119 refs., 39 figs., 5 appends.

  7. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  8. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  9. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  10. Development of acid-resistant HEPA filter components

    International Nuclear Information System (INIS)

    Terada, K.; Woodard, R.W.; Buttedahl, O.I.

    1981-01-01

    Laboratory and in-service tests of various HEPA filter media and separators were conducted to establish their relative resistances to HNO 3 -HF vapors. Filter medium of glass fiber with Nomex additive and aluminum separators with an epoxy-vinyl coating have performed quite well in the acid environment in the laboratory, and in prototype-filters placed in service in a plenum at Rocky Flats. Proprietary filters with new design and/or components were also tested in service with generally good results

  11. Tap water filters.

    Science.gov (United States)

    2003-02-01

    Moen PureTouch filters remove impurities from tap water without removing fluoride. These carbon block filters consist of finely powdered activated carbon that is combined with a plastic binder material and heated to form a hollow cylinder. The blocks are further wrapped with material to improve performance and reduce clogging. The filters are available with different filtering capabilities (Table 1). The filters mount in the faucet spout or under the sink.

  12. Method and apparatus for assaying wood pulp fibers

    Science.gov (United States)

    Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  13. High-temperature sapphire optical sensor fiber coatings

    Science.gov (United States)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    Advanced coal-fired power generation systems, such as pressurized fluidized-bed combustors and integrated gasifier-combined cycles, may provide cost effective future alternatives for power generation, improve our utilization of coal resources, and decrease our dependence upon oil and gas. When coal is burned or converted to combustible gas to produce energy, mineral matter and chemical compounds are released as solid and gaseous contaminants. The control of contaminants is mandatory to prevent pollution as well as degradation of equipment in advanced power generation. To eliminate the need for expensive heat recovery equipment and to avoid efficiency losses it is desirable to develop a technology capable of cleaning the hot gas. For this technology the removal of particle contaminants is of major concern. Several prototype high temperature particle filters have been developed, including ceramic candle filters, ceramic bag filters, and ceramic cross-flow (CXF) filters. Ceramic candle filters are rigid, tubular filters typically made by bonding silicon carbide or alumina-silica grains with clay bonding materials and perhaps including alumina-silica fibers. Ceramic bag filters are flexible and are made from long ceramic fibers such as alumina-silica. CXF filters are rigid filters made of stacks of individual lamina through which the dirty and clean gases flow in cross-wise directions. CXF filters are advantageous for hot gas cleanup applications since they offer a large effective filter surface per unit volume. The relatively small size of the filters allows the pressurized vessel containing them to be small, thus reducing potential equipment costs. CXF filters have shown promise but have experienced degradation at normal operational high temperatures (close to 1173K) and high pressures (up to 24 bars). Observed degradation modes include delamination of the individual tile layers, cracking at either the tile-torid interface or at the mounting flange, or plugging of

  14. Design of dual ring wavelength filters for WDM applications

    Science.gov (United States)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  15. Investigation of Locally Made Ceramic Filter for Household Water Treatment

    Directory of Open Access Journals (Sweden)

    Awaluddin Nurmiyanto

    2012-06-01

    Full Text Available This research have objective to develop and evaluate the performance of ceramic filter in using locally available material at Yogyakarta. Ceramic filter are made by pressing a mixture of clay, discarded pottery (grog and combustible material (coconut fiber into the molder. Curving processes are then applied to form tubular shape before firing it using kiln (1005°C. Filtration test were performed gravitationally by flowing well water into ceramic filter. Filtered water quality was complying with Indonesia drinking water quality standard (E.Coli and turbidity although it has low filtration rate (0,461 L/Hr. The most optimum ceramic filter in turbidity and bacterial removal was composition number 10 {clay+coconut fiber 4,5%(w/w+grog 5%(w/w} that have average turbidity removal 88,2%, and average E. Coli removal 100%. N2 adsorption-desorption result on ceramic filter number 10 showed 0,04μm pore size, and 4,32m2/g pore surface area. The result from the XRD (X-ray diffractometer indicates crystal structure of calcite and quartz on ceramic filter surface. Energy Dispersive X-ray (EDX analysis showed Carbon compound as the most material constituent within the filter. Whereas micro’s photo using SEM (scanning electron microscopic and TEM (transmitted electron microscopic showed filter surface consists of stacked aggregates, separated by more randomly oriented particles.

  16. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    Science.gov (United States)

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  17. Experimental investigation of in situ cleanable HEPA filter

    International Nuclear Information System (INIS)

    Adamson, D.J.

    1999-01-01

    The Westinghouse Savannah River Company located at the Savannah River Site (SRS) in Aiken, South Carolina is currently testing the feasibility of developing an in situ cleanable high efficiency particulate air (HEPA) filter system. Sintered metal filters are being tested for regenerability or cleanability in simulated conditions found in a high level waste (HLW) tank ventilation system. The filters are being challenged using materials found in HLW tanks. HLW simulated salt, HLW simulated sludge and South Carolina road dust. Various cleaning solutions have been used to clean the filters in situ. The tanks are equipped with a ventilation system to maintain the tank contents at negative pressure to prevent the release of radioactive material to the environment. This system is equipped with conventional disposable glass-fiber HEPA filter cartridges. Removal and disposal of these filters is not only costly, but subjects site personnel to radiation exposure and possible contamination. A test apparatus was designed to simulate the ventilation system of a HLW tank with an in situ cleaning system. Test results indicate that the Mott sintered metal HEPA filter is suitable as an in situ cleanable or regenerable HEPA filter. Data indicates that high humidity or water did not effect the filter performance and the sintered metal HEPA filter was easily cleaned numerous times back to new filter performance by an in situ spray system. The test apparatus allows the cleaning of the soiled HEPA filters to be accomplished without removing the filters from process. This innovative system would eliminate personnel radiation exposure associated with removal of contaminated filters and the high costs of filter replacement and disposal. The results of these investigations indicate that an in situ cleanable HEPA filter system for radioactive and commercial use could be developed and manufactured

  18. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  19. HEPA filter monitoring program

    Science.gov (United States)

    Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.

    1986-07-01

    The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.

  20. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved........ The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...

  1. UV holographic filters

    Science.gov (United States)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  2. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  3. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  4. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are......OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...

  5. High-temperature Fabry-Perot-based strain sensor for ceramic barrier filters

    Science.gov (United States)

    Weinstein, Shmuel J.; Vuppala, Veerendra B.; Gunther, Michael F.; Wang, Anbo; Murphy, Kent A.; Claus, Richard O.

    1994-02-01

    We report results from a program to develop fiber-optic sensor-based instrumentation methods to allow the in-situ analysis of ceramic barrier filters. The sensor used was an extrinsic Fabry-Perot cavity created between the ends of two longitudinally aligned fibers. Filters instrumented with these fiber sensors were tested in a combustor simulator at the Westinghouse Science and Technology Center. These tests were performed using silica optical fibers capable of withstanding the high temperature and harsh chemical environment of the combustor. The single-ended approach of the reflective Fabry-Perot sensors is well suited for high thermal strain measurements. The results from several tests are presented.

  6. HEPA filter encapsulation

    Science.gov (United States)

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  7. Filter service system

    Science.gov (United States)

    Sellers, Cheryl L [Peoria, IL; Nordyke, Daniel S [Arlington Heights, IL; Crandell, Richard A [Morton, IL; Tomlins, Gregory [Peoria, IL; Fei, Dong [Peoria, IL; Panov, Alexander [Dunlap, IL; Lane, William H [Chillicothe, IL; Habeger, Craig F [Chillicothe, IL

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  8. Adaptive high temperature superconducting filters for interference rejection

    International Nuclear Information System (INIS)

    Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.

    1996-01-01

    An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch's power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit

  9. Birefringent all-solid hybrid microstructured fiber.

    Science.gov (United States)

    Goto, Ryuichiro; Jackson, Stuart D; Fleming, Simon; Kuhlmey, Boris T; Eggleton, Benjamin J; Himeno, Kuniharu

    2008-11-10

    We report the characterization of a birefringent all-solid hybrid microstructured fiber, in which the core-modes are guided by both the photonic bandgap (PBG) effect and total internal reflection (TIR). Due to the twofold symmetry, modal birefringence of 1.5 x 10(-4) and group birefringence of 2.1 x 10(-4) were measured at 1.31 microm, which is in the middle of the second bandgap. The band structure was calculated to be different from conventional 2-D PBG fibers due to the 1-D arrangement of high-index regions. The bend loss has a strong directional dependence due to the coexistence of the two guiding mechanisms. The fiber has two important properties pertinent to PBG fibers; spectral filtering, and chromatic dispersion specific to PBG fibers. The number of high-index regions, which trap pump power (by index guiding) when the fiber is used in cladding-pumped fiber lasers, is greatly reduced so that this fiber should enable efficient cladding pumping. This structure is suitable for linearly-polarized, cladding-pumped fiber lasers utilizing the properties of PBG fibers.

  10. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    Science.gov (United States)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  11. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  12. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  13. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  14. Removal of Plasmodium falciparum-infected red blood cells from whole blood by leukoreduction filters.

    Science.gov (United States)

    Cardo, Lisa J; Salata, Jeanne; Wilder, Donna

    2009-02-01

    There has been an unexplained decrease in the incidence of transfusion-transmitted malaria in recent years. The decrease in incidence has paralleled the increasing use of leukoreduction filters. Malaria-infected red blood cells (RBCs) share surface characteristics of hemoglobin S-containing cells. Because units collected from donors with sickle trait do not filter optimally due to adherence of RBCs to the filters, the possibility that malaria-infected RBCs may also adhere to filters was investigated. Malaria-infected whole blood or calcium ionophore (A25187)-treated and control RBCs were filtered with leukoreduction filters. Quantitation of malaria-infected RBCs before and after filtration was performed by flow cytometry to determine the presence of DNA within RBCs, indicating malaria infection. Annexin V binding was also determined before and after filtration of RBCs treated with A25187. Immediately after filtration, filters were fixed and examined by scanning and transmission electron microscopy. There were at least three configurations of adherence of malaria-infected RBCs demonstrated within the filters. The first was direct adherence of infected RBCs to filter fibers; the second involved adherence of malaria-infected RBCs to platelets, which were adherent to filter fibers; and the third was adherence of infected RBCs to other RBCs. Filtration also resulted in preferential removal of phosphatidylserine (PS)-expressing cells as seen by the reduction of annexin V binding after filtration. This was further confirmed by electron micrographic examination of the filters in which untreated RBCs sit within the filter resting on top of filter fibers; however, calcium ionophore-treated RBCs are seen to cling tightly to the fibers. PS expression by RBCs leads to their adherence within leukoreduction filters. Malaria-infected RBCs are retained via more than one mechanism. The efficiency of removal requires further study.

  15. Modeling evaporative loss of oil mist collected by sampling filters.

    Science.gov (United States)

    Raynor, P C; Volckens, J; Leith, D

    2000-01-01

    Oil mists can cause respiratory distress and have been linked to skin and gastrointestinal cancers in workers. Standard concentration assessment methods call for sampling these mists with fibrous or membrane filters. Previous experimental studies using glass fiber (GF) filters and polyvinyl chloride and polytetrafluoroethylene membrane filters indicate that mist sampled onto filters may volatilize. A model has been developed to predict the evaporation of mist collected on a fibrous sampling filter. Evaporation of retained fluid from membrane filters can be modeled by treating the filter as though it is a fibrous filter. Predictions from the model exhibit good agreement with experimental results. At low mist concentrations, the model indicates that evaporation of retained mineral oil occurs readily. At high mist concentrations, significant evaporation from the filters is not expected because the vapor accompanying the airborne mist is already saturated with the compounds in the oil. The findings from this study indicate that sampling mineral oil mist with filters in accordance with standard methods can lead to estimates of worker exposure to oil mist that are too low.

  16. Nineteen-port photonic lantern with multimode delivery fiber

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Sandberg, Rasmus Kousholt

    2012-01-01

    We demonstrate efficient multimode (MM) to single-mode (SM) conversion in a 19-port photonic lantern with a 50 μm core MM delivery fiber. The photonic lantern can be used within the field of astrophotonics for coupling MM starlight to an ensemble of SM fibers in order to perform fiber-Bragg-grati......We demonstrate efficient multimode (MM) to single-mode (SM) conversion in a 19-port photonic lantern with a 50 μm core MM delivery fiber. The photonic lantern can be used within the field of astrophotonics for coupling MM starlight to an ensemble of SM fibers in order to perform fiber......-Bragg-grating-based spectral filtering. An MM delivery fiber spliced to the photonic lantern offers the advantage that the delivery fiber guides the light from the focal plane of the telescope to the splitter. Therefore, it is no longer necessary to have the splitter mounted directly in the focal plane of the telescope...

  17. Electro-Spun Fine Fibers of Shape Memory Polymer Used as an Engineering Part

    Science.gov (United States)

    2010-01-28

    fine fibers. By the use of electrospinning, for example, a two-dimensional filter with superior functionality can be easily fabricated. However...example, a two-dimensional filter with superior functionality can be easily fabricated. However, individually fabricating fibers is a difficult task for...counter electrode horizontally, and it is a benefit for fabricating a dense nonwoven fiber mat as illustrated in Figure 2. On the other hand, it becomes

  18. Further development of the cleanable steel HEPA filter, cost/benefit analysis, and comparison with competing technologies

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Lopez, R.; Wilson, K.; Witherell, C.; McGregor, M.

    1997-01-01

    We have made further progress in developing a cleanable steel fiber HEPA filter. We fabricated a pleated cylindrical cartridge using commercially available steel fiber media that is made with 1 μm stainless steel fibers and sintered into a sheet form. Test results at the Department of Energy (DOE) Filter Test Station at Oak Ridge show the prototype filter cartridge has 99.99% efficiency for 0.3 μm dioctyl phthalate (DOP) aerosols and a pressure drop of 1.5 inches. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned using reverse air pulses. Our analysis of commercially optimized filters suggest that cleanable steel HEPA filters need to be made from steel fibers less than 1 μm, and preferably 0.5 μm, to meet the standard HEPA filter requirements in production units. We have demonstrated that 0.5 μm steel fibers can be produced using the fiber bundling and drawing process. The 0.5 μm steel fibers are then sintered into small filter samples and tested for efficiency and pressure drop. Test results on the sample showed a penetration of 0.0015% at 0.3 μm and a pressure drop of 1.15 inches at 6.9 ft/min (3.5 cm/s) velocity. Based on these results, steel fiber media can easily meet the requirements of 0.03% penetration and 1.0 inch of pressure drop by using less fibers in the media. A cost analysis of the cleanable steel HEPA filter shows that, although the steel HEPA filter costs much more than the standard glass fiber HEPA filter, it has the potential to be very cost effective because of the high disposal costs of contaminated HEPA filters. We estimate that the steel HEPA filter will save an average of $16,000 over its 30 year life. The additional savings from the clean-up costs resulting from ruptured glass HEPA filters during accidents was not included but makes the steel HEPA filter even more cost effective. We also present the results of our evaluation of competing technologies with metallic and ceramic powder

  19. Further development of the cleanable steel HEPA filter, cost/benefit analysis, and comparison with competing technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Larsen, G.; Lopez, R.; Wilson, K.; Witherell, C.; McGregor, M.

    1997-01-01

    We have made further progress in developing a cleanable steel fiber HEPA filter. We fabricated a pleated cylindrical cartridge using commercially available steel fiber media that is made with 1 {mu}m stainless steel fibers and sintered into a sheet form. Test results at the Department of Energy (DOE) Filter Test Station at Oak Ridge show the prototype filter cartridge has 99.99% efficiency for 0.3 {mu}m dioctyl phthalate (DOP) aerosols and a pressure drop of 1.5 inches. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned using reverse air pulses. Our analysis of commercially optimized filters suggest that cleanable steel HEPA filters need to be made from steel fibers less than 1 {mu}m, and preferably 0.5 {mu}m, to meet the standard HEPA filter requirements in production units. We have demonstrated that 0.5 {mu}m steel fibers can be produced using the fiber bundling and drawing process. The 0.5 {mu}m steel fibers are then sintered into small filter samples and tested for efficiency and pressure drop. Test results on the sample showed a penetration of 0.0015% at 0.3 {mu}m and a pressure drop of 1.15 inches at 6.9 ft/min (3.5 cm/s) velocity. Based on these results, steel fiber media can easily meet the requirements of 0.03% penetration and 1.0 inch of pressure drop by using less fibers in the media. A cost analysis of the cleanable steel HEPA filter shows that, although the steel HEPA filter costs much more than the standard glass fiber HEPA filter, it has the potential to be very cost effective because of the high disposal costs of contaminated HEPA filters. We estimate that the steel HEPA filter will save an average of $16,000 over its 30 year life. The additional savings from the clean-up costs resulting from ruptured glass HEPA filters during accidents was not included but makes the steel HEPA filter even more cost effective. We also present the results of our evaluation of competing technologies with metallic and

  20. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  1. The diffuse ensemble filter

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-07-01

    Full Text Available A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF, is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF and the Diffuse Ensemble Transform Kalman Filter (DETKF, are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious

  2. pH within pores in plant fiber cell walls assessed by Fluorescence Ratio Imaging

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Thygesen, Lisbeth Garbrecht; Johansen, Katja Salomon

    2013-01-01

    The pH within cell wall pores of filter paper fibers and hemp fibers was assessed by Fluorescence Ratio Imaging (FRIM). It was found that the Donnan effect affected the pH measured within the fibers. When the conductivity of the added liquid was low (0. 7 mS), pH values were lower within the cell...

  3. Evaluation of new filter/demineralizer precoat materials

    International Nuclear Information System (INIS)

    Knight, J.T.; Halbfoster, J.

    1978-01-01

    An investigation into the problems associated with filter precoat materials used in LWR radwaste systems has led to the development of a new type of precoat material. A laboratory pilot plant study included testing on powdered resin, cellulose fibers, polyacrylonitrile fibers, diatomaceous earth, and several proprietary mixtures to assess performance in terms of precoatability, precoat bleedthrough, suspended and dissolved solids reduction, as well as oil removal. The results obtained with a special fiber-powdered resin mixture were superior, in nearly every test, to conventional materials. Subsequent field trials at operating BWR's confirmed the laboratory results. In addition, higher DF's were achieved and element fouling was significantly reduced

  4. Performance evaluation of PAN nanofiber air filter fabricated by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cheol; Kim, Tae Eun; Lee, Jung Koo; Ahn, Ji Woong; Park, Sung Ho; Kim, Hyung Man [Dept. of Electronic, Telecommunications, Mechanical and Automotive Engineering, Inje University, Kimhae (Korea, Republic of)

    2015-11-15

    Nanomaterials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications. Electrospinning has been recognized as an efficient technique for fabricating polymer nanofibers. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters on the diameter, orientation, and distribution of polyacrylonitrile (PAN) nanofiber are analyzed. To improve interlaminar fracture toughness and suppress delamination in the form of laminated non-woven fibers by using a heat roller, the performances of filter efficiency and pressure drop achieved with PAN nanofiber air filter are evaluated experimentally.

  5. Performance evaluation of PAN nanofiber air filter fabricated by electrospinning

    International Nuclear Information System (INIS)

    Kim, Kyung Cheol; Kim, Tae Eun; Lee, Jung Koo; Ahn, Ji Woong; Park, Sung Ho; Kim, Hyung Man

    2015-01-01

    Nanomaterials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications. Electrospinning has been recognized as an efficient technique for fabricating polymer nanofibers. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters on the diameter, orientation, and distribution of polyacrylonitrile (PAN) nanofiber are analyzed. To improve interlaminar fracture toughness and suppress delamination in the form of laminated non-woven fibers by using a heat roller, the performances of filter efficiency and pressure drop achieved with PAN nanofiber air filter are evaluated experimentally

  6. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  7. Fine dust filtration using a metal fiber bed.

    Science.gov (United States)

    Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min

    2006-08-01

    A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.

  8. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    Science.gov (United States)

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles. The findings of this study suggest that the efficiency of N95 respirator filters obtained with the NaCl aerosol challenge may not accurately predict (and rather overestimate) the filter efficiency against combustion particles.

  9. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  10. Variational Bayesian Filtering

    Czech Academy of Sciences Publication Activity Database

    Šmídl, Václav; Quinn, A.

    2008-01-01

    Roč. 56, č. 10 (2008), s. 5020-5030 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian filtering * particle filtering * Variational Bayes Subject RIV: BC - Control Systems Theory Impact factor: 2.335, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/smidl-variational bayesian filtering.pdf

  11. Performance of HEPA filters under severe conditions, 3

    International Nuclear Information System (INIS)

    Osaki, Makoto; Zanma, Tokugo; Kanagawa, Akira.

    1986-01-01

    Performance of high efficiency particulate air (HEPA) filters at temperatures from ambient to 240 deg C was measured to prove that HEPA filters kept up their regulated decontamination factor (DF) at elevated temperatures. The DF for NaCl aerosol was measured by using a laser particle spectrometer. Pressure drop of HEPA filters at elevated temperatures was also measured. The DF increased at elevated temperatures. The DF at 200 deg C was an order of magnitude higher than that at ambient. The change of DF at elevated temperatures of various HEPA filters was effectively evaluated by using the ratio of single fiber collection efficiencies at ambient to those at elevated temperatures. Pressure drop of HEPA filters also increased at elevated temperatures. The pressure drop at 200 deg C was 1.3 times larger than that at ambient. The change of DF and pressure drop at elevated temperatures was explained by applying Kirsh's theory to elevated temperatures. (author)

  12. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  13. Independent task Fourier filters

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    Since the early 1960s, a major part of optical computing systems has been Fourier pattern recognition, which takes advantage of high speed filter changes to enable powerful nonlinear discrimination in `real time.' Because filter has a task quite independent of the tasks of the other filters, they can be applied and evaluated in parallel or, in a simple approach I describe, in sequence very rapidly. Thus I use the name ITFF (independent task Fourier filter). These filters can also break very complex discrimination tasks into easily handled parts, so the wonderful space invariance properties of Fourier filtering need not be sacrificed to achieve high discrimination and good generalizability even for ultracomplex discrimination problems. The training procedure proceeds sequentially, as the task for a given filter is defined a posteriori by declaring it to be the discrimination of particular members of set A from all members of set B with sufficient margin. That is, we set the threshold to achieve the desired margin and note the A members discriminated by that threshold. Discriminating those A members from all members of B becomes the task of that filter. Those A members are then removed from the set A, so no other filter will be asked to perform that already accomplished task.

  14. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed......Filtering every global constraint of a CPS to are consistency at every search step can be costly and solvers often compromise on either the level of consistency or the frequency at which are consistency is enforced. In this paper we propose two randomized filtering schemes for dense instances...

  15. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  16. Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication

    DEFF Research Database (Denmark)

    Piels, Molly; Iglesias Olmedo, Miguel; Xue, Weiqi

    2015-01-01

    We formulate a semiconductor laser rate equationbased approach to carrier recovery in a Bayesian filtering framework. Filter stability and the effect of model inaccuracies (unknown or un-useable rate equation coefficients) are discussed. Two potential application areas are explored: laser...... characterization and carrier recovery in coherent communication. Two rate equation based Bayesian filters, the particle filter and extended Kalman filter, are used in conjunction with a coherent receiver to measure frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber...

  17. Water-resistant cellulosic filter for aerosol entrapment and water purification, Part I: production of water-resistant cellulosic filter.

    Science.gov (United States)

    Heydarifard, Solmaz; Nazhad, Mousa M; Xiao, Huining; Shipin, Oleg; Olson, James

    2016-01-01

    Synthetic filters are neither biodegradable nor produced from renewable sources. Thus, their disposal has serious environmental impacts. There is a growing desire to produce filters from cellulosic fibers that are renewable, biodegradable, cheap and most importantly recyclable if the contamination is removed. Foam-laid process in papermaking is a promising process for the production of specialty papers. Filters produced using this process are capable of providing products with high specific surface area and tortuous structure favorable for entrapping particulate matters, while providing excellent permeability for incoming gas or liquid. Although the end product fulfills completely the requirement of a filter in a dry environment, it fails completely if it is exposed to a moist environment. This work reports on converting the hydrophilic cellulosic filter into a hydrophobic product without disturbing its original structure.

  18. Advanced hot-gas filter development. Topical report, September 30, 1994--May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.E.; LeCostaouec, J.F.; Painter, C.J.; Sue, W.A.; Radford, K.C.

    1996-12-31

    The application of high-performance, high-temperature particulate control devices is considered to be beneficial to advanced fossil fuel processing technology, to selected high-temperature industrial processes, and to waste incineration concepts. Ceramic rigid filters represent the most attractive technology for these applications due to their capability to withstand high-temperature corrosive environments. However, current generation monolithic filters have demonstrated poor resistance to crack propagation and can experience catastrophic failure during use. To address this problem, ceramic fiber-reinforced ceramic matrix composite (CMC) filter materials are needed for reliable damage tolerant candle filters. This program is focused on the development of an oxide-fiber reinforced oxide material composite filter material that is cost competitive with prototype next generation filters. This goal would be achieved through the development of a low cost sol-gel fabrication process and a three-dimensional fiber architecture optimized for high volume filter manufacturing. The 3D continuous fiber reinforcement provides a damage tolerant structure which is not subject to delamination-type failures. This report documents the Phase 1, Filter Material Development and Evaluation, results. Section 2 provides a program summary. Technical results, including experimental procedures, are presented and discussed in Section 3. Section 4 and 5 provide the Phase 1 conclusions and recommendations, respectively. The remaining sections cover acknowledgements and references.

  19. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  20. Interdigital filter design

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2009-10-01

    Full Text Available A new synthesis procedure for interdigital filters with shorted-pin feeds is developed by relating the coupling factors and external Qs to the physical structure of the filter. This new procedure is easily understood and applied, extremely flexible...

  1. China exported birefringent filter

    Science.gov (United States)

    Li, Ting; Mao, Weijun; Lu, Haitian; Zhu, Yong

    2001-09-01

    Since 1960s, Nanjing Astronomical Instrument Research center of CAS have been developing the birefringent filters for China solar observatories, the most famous one in the world is the 0.15Å(0.12Å)/5324Å(4861Å) filter for the 35cm Solar Magnetic Field Telescope of the Huairou Solar Station of Beijing Observatory. The big success in the field of Lyot filter has been proved by the international solar physics circle, since 1988, Japanese and Korean astronomers have been paying a lot of orders for making Lyot filters from China, up to now we have exported 11 sets of such sophisticated optical instruments, they have been used for routine solar observations in the observatories and planetaria in the two countries. We also begin to repair old Lyot filters made by Germany and France from foreign countries, as India and Germany.

  2. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  3. A Comb Filter Design Method Using Linear Phase FIR Filter

    Science.gov (United States)

    Sugiura, Yosuke; Kawamura, Arata; Iiguni, Youji

    This paper proposes a comb filter design method which utilizes two linear phase FIR filters for flexibly adjusting the comb filter's frequency response. The first FIR filter is used to individually adjust the notch gains, which denote the local minimum gains of the comb filter's frequency response. The second FIR filter is used to design the elimination bandwidths for individual notch gains. We also derive an efficient comb filter by incorporating these two FIR filters with an all-pass filter which is used in a conventional comb filter to accurately align the nulls with the undesired harmonic frequencies. Several design examples of the derived comb filter show the effectiveness of the proposed comb filter design method.

  4. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    International Nuclear Information System (INIS)

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-01-01

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  5. Compact 84 GHz passive mode-locked fiber laser using dual-fiber coupled fused-quartz microresonator

    Science.gov (United States)

    Liu, Tze-An; Hsu, Yung; Chow, Chi-Wai; Chuang, Yi-Chen; Ting, Wei-Jo; Wang, Bo-Chun; Peng, Jin-Long; Chen, Guan-Hong; Chang, Yuan-Chia

    2017-10-01

    We propose and demonstrate a compact and portable-size 84-GHz passive mode-locked fiber laser, in which a dual-fiber coupled fused-quartz microresonator is employed as the intracavity optical comb filter as well as the optical nonlinear material for optical frequency comb generation. About eight coherent optical tones can be generated in the proposed fiber laser. The 20-dB bandwidth is larger than 588 GHz. The full-width half-maximum pulse-width of the proposed laser is 2.5 ps. We also demonstrate the feasibility of using the proposed passive mode-locked fiber laser to carry a 5-Gbit/s on-off-keying signal and transmit over 20-km standard single mode fiber. A 7% forward error correction requirement can be achieved, showing the proposed fiber laser can be a potential candidate for fiber-wireless applications.

  6. The impact of metallic filter media on HEPA filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris; Kaufman, Seth

    2006-01-01

    Traditional HEPA filter systems have limitations that often prevent them from solving many of the filtration problems in the nuclear industry; particularly in applications where long service or storage life, high levels of radioactivity, dangerous decomposition products, chemical aggression, organic solvents, elevated operating temperatures, fire resistance and resistance to moisture are issues. This paper addresses several of these matters of concern by considering the use of metallic filter media to solve HEPA filtration problems ranging from the long term storage of transuranic waste at the WIPP site, spent and damaged fuel assemblies, in glove box ventilation and tank venting to the venting of fumes at elevated temperatures from incinerators, vitrification processes and conversion and sintering furnaces as well as downstream of iodine absorbers in gas cooled reactors in the UK. The paper reviews the basic technology, development, performance characteristics and filtration efficiency, flow versus differential pressure, cleanability and costs of sintered metal fiber in comparison with traditional resin bonded glass fiber filter media and sintered metal powder filter media. Examples of typical filter element and system configurations and applications will be presented The paper will also address the economic case for installing self cleaning pre-filtration, using metallic media, to recover the small volumes of dust that would otherwise blind large volumes of final disposable HEPA filters, thus presenting a route to reduce ultimate disposal volumes and secondary waste streams. (authors)

  7. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large mode-field-diameter for spectral broadening, we obtained ultrashort pulses with the pulse energies up to 20 nJ. We applied such an enabling source to drive MPM imaging of both cancer cells and skin samples.

  8. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large mode-field-diameter for spectral broadening, we obtained ultrashort pulses with the pulse energies up to 20 nJ. We applied such an enabling source to drive MPM imaging of both cancer cells and skin samples.

  9. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  10. Nanofilms on a hollow core fiber

    Science.gov (United States)

    Matias, Ignacio R.; Bravo, Javier; Arregui, Francisco J.; Corres, Jesús M.

    2006-05-01

    We experimentally study the behavior of one multimode fiber-hollow core fiber-multimode fiber structure when nanofilms are deposited on it with the aim of developing practical evanescent field-based devices, such as sensors, filters, etc. The electrostatic self-assembly (ESA) method is used as the deposition technique and the chosen polymers are PDDA and Poly R-478 because of their well-known optical properties and their potential application as humidity sensors. Three different types of hollow core, fibers are used for the fabrication of the devices and at two different wavelengths. An oscillatory-decreasing transmitted optical power is obtained as the thickness of the nanofilms is increased.

  11. Control of repetitive firing in Hodgkin–Huxley nerve fibers using electric fields

    International Nuclear Information System (INIS)

    Doruk, Resat Ozgur

    2013-01-01

    The research aims to simulate feedback controlled nerve fiber stimulation where the behavior of the nerve fiber is manipulated by an electrical field generator. The feedback law varies the intensity of the electric field across the membrane of the fiber according to the measured fiber membrane potential. The Hodgkin–Huxley nerve fiber model is used for modeling the membrane potential behavior. The introduced feedback control algorithm controls the bifurcation conditions of the fiber so that the repetitive firing events vanish as a result of stimulation. The feedback control law is based on a washout filter designed by projective control theory

  12. Visualization of Fiber Structure in the Left and Right Ventricle of a Human Heart

    International Nuclear Information System (INIS)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-01-01

    The human heart is composed of a helical network of muscle fibers. Anisotropic least squares filtering followed by fiber tracking techniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration was visualized by using thin tubes to increase 3-dimensional visual perception of the complex structure. All visualizations were performed using the high-quality ray-tracing software POV-Ray. The fibers are shown within the left and right ventricles. Both ventricles exhibit similar fiber architecture and some bundles of fibers are shown linking right and left ventricles on the posterior region of the heart

  13. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  14. Dust filter testing

    International Nuclear Information System (INIS)

    Dupoux, J.

    1975-01-01

    The composition of dust filters used in cleanup systems for radioactive gaseous effluents is described as well as the technical controls, especially efficiency measured by a soda fluorescein aerosol [fr

  15. Vena cava filter

    International Nuclear Information System (INIS)

    Helmberger, T.

    2007-01-01

    Fulminant pulmonary embolism is one of the major causes of death in the Western World. In most cases, deep leg and pelvic venous thrombosis are the cause. If an anticoagulant/thrombotic therapy is no longer possible or ineffective, a vena cava filter implant may be indicated if an embolism is threatening. Implantation of the filter is a simple and safe intervention. Nevertheless, it is necessary to take into consideration that the data base for determining the indications for this treatment are very limited. Currently, a reduction in the risk of thromboembolism with the use of filters of about 30%, of recurrences of almost 5% and fatal pulmonary embolism of 1% has been reported, with a risk of up to 20% of filter induced vena cava thrombosis. (orig.) [de

  16. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  17. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  18. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  19. Characteristics research on self-amplified distributed feedback fiber laser

    Science.gov (United States)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2014-09-01

    A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.

  20. Switching power supply filter

    Science.gov (United States)

    Kumar, Prithvi R. (Inventor); Abare, Wayne (Inventor)

    1989-01-01

    A filter for a switching power supply. The filter includes a common mode inductor with coil configurations allowing differential mode current from a dc source to pass through but attenuating common mode noise from the power supply so that the noise does not reach the dc source. The invention also includes the use of feed through capacitors at the switching power supply input terminals to provide further high-frequency noise attenuation.

  1. Spatial filter issues

    International Nuclear Information System (INIS)

    Murray, J.E.; Estabrook, K.G.; Milam, D.; Sell, W.D.; Van Wonterghem, R.M.; Feil, M.D.; Rubenchick, A.M.

    1996-01-01

    Experiments and calculations indicate that the threshold pressure in spatial filters for distortion of a transmitted pulse scales approximately as I O.2 and (F number-sign) 2 over the intensity range from 10 14 to 2xlO 15 W/CM 2 . We also demonstrated an interferometric diagnostic that will be used to measure the scaling relationships governing pinhole closure in spatial filters

  2. Study and Realization of Image Segmentation on the Cotton Foreign Fibers

    Science.gov (United States)

    Zheng, Wenxiu; Wang, Jinxing; Liu, Shuangxi; Wei, Xinhua

    A method of foreign fibers image segmentation based on Mean shift, dilation and filtering algorithm is presented. For the representative gray images of hair, chicken feather and mixed foreign fibers, the Mean shift algorithm is used to carry on image segmentation; then dilation and filtering process is carried on to the divided image element. In this way the precise image segmentation of foreign fibers is realized. It's proved by experiments that the image segmentation method proposed by this article can suppress the noise well, and the segmentation results are satisfied for all kinds of foreign fibers image.

  3. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  4. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source

    Energy Technology Data Exchange (ETDEWEB)

    Licea-Rodriguez, Jacob; Rangel-Rojo, Raul [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada B.C., 22860 (Mexico); Garay-Palmett, Karina, E-mail: rrangel@cicese.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico DF. 04510 (Mexico)

    2011-01-01

    In this article we report experimental results related with the generation of a supercontinuum in a microstructured fiber, from which the soliton with the longest wavelength is filtered out of the continuum and is used to construct a tunable ultrashort pulses source by varying the pump power. Pulses of an 80 fs duration (FWHM) from a Ti:sapphire oscillator were input into a 2 m long fiber to generate the continuum. The duration of the solitons at the fiber output was preserved by using a zero dispersion filtering system, which selected the longest wavelength soliton, while avoiding temporal spreading of the solitons. We present a complete characterization of the filtered pulses that are continuously tunable in the 850-1100 nm range. We also show that the experimental results have a qualitative agreement with theory. An important property of the proposed near-infrared pulsed source is that the soliton pulse energies obtained after filtering are large enough for applications in nonlinear microscopy.

  5. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  6. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both ... water and turns to gel during digestion. This slows digestion. ...

  7. A unidirectional Er3+-doped fiber ring laser without isolator

    DEFF Research Database (Denmark)

    Shi, Yuan; Sejka, Milan; Poulsen, Ove

    1995-01-01

    An Er3+-doped fiber ring laser with unidirectional operation without optical isolator has been investigated for different cavity conditions. The fiber ring laser cavity is built in such a way that the optical fields propagating in the two directions suffer different losses. As a consequence, the ......, the laser oscillation appears in a quasi-unidirectional form. By incorporating a fiber pigtailed bandpass filter to enhance mode competition, a purely unidirectional tunable fiber ring laser is obtained with high efficiency and broad tunability......An Er3+-doped fiber ring laser with unidirectional operation without optical isolator has been investigated for different cavity conditions. The fiber ring laser cavity is built in such a way that the optical fields propagating in the two directions suffer different losses. As a consequence...

  8. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  9. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  10. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    During this ph.d. work, attention has been focused on understanding and analyzing the modal behavior of micro-structured fibers. Micro-structured fibers are fibers with a complex dielectric toplogy, and offer a number of novel possibilities, compared to standard silica based optical fibers......, and nonlinear fibers with zero dispersion wavelength well below 1300 nm. This thesis dexcribes the functionalities of these fibers, and further point to novel application areas, such as new efficient fiber amplifiers and fibers with new possibilities within dispersion management. When pointing toward novel...

  11. Controlled Deposition and Collection of Electro-spun Poly(ethylene oxide) Fibers

    National Research Council Canada - National Science Library

    Deitzel, J

    2001-01-01

    ...). Electro-spun fibers are typically collected in the form of non-woven mats, which are of interest for a variety of applications, including semi-permeable membranes, filters, composite reinforcement...

  12. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    “Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  13. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  14. Automated electronic filter design

    CERN Document Server

    Banerjee, Amal

    2017-01-01

    This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

  15. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    Science.gov (United States)

    Sabry, Yasser M.; Eltagoury, Yomna M.; Shebl, Ahmed; Soliman, Mostafa; Sadek, Mohamed; Khalil, Diaa

    2015-12-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry-Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry-Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry-Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter.

  16. Characteristics research of self-amplified distributed feedback fiber laser

    Science.gov (United States)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2013-09-01

    A distributed feedback (DFB) fiber laser with a ratio of backward to forward output power of 1:100 was composed by a 45mm length asymmetrical phase-shifted fiber grating fabricated on 50mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL980-Hp erbium-doped fiber to absorb surplus pump power after the active phase-shifted fiber grating and get population inversion. Using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with narrow line-width and low noise, a narrow-band light filter consisted of a FBG with the same Bragg wavelength as the laser and an optical circulator was used to filter the ASE noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, a DFB fiber laser of 32.5mW output power, 11.5 kHz line width, and -87dB/Hz relative intensity noise (RIN) at 300mW of 980 nm pump power was brought out.

  17. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  18. Alarm filtering and presentation

    International Nuclear Information System (INIS)

    Bray, M.A.

    1989-01-01

    This paper discusses alarm filtering and presentation in the control room of nuclear and other process control plants. Alarm generation and presentation is widely recognized as a general process control problem. Alarm systems often fail to provide meaningful alarms to operators. Alarm generation and presentation is an area in which computer aiding is feasible and provides clear benefits. Therefore, researchers have developed several computerized alarm filtering and presentation approaches. This paper discusses problems associated with alarm generation and presentation. Approaches to improving the alarm situation and installation issues of alarm system improvements are discussed. The impact of artificial intelligence (AI) technology on alarm system improvements is assessed. (orig.)

  19. Estimating modal instability threshold for photonic crystal rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko

    2013-01-01

    We present a semi-analytic numerical model to estimate the transverse modal instability (TMI) threshold for photonic crystal rod amplifiers. The model includes thermally induced waveguide perturbations in the fiber cross section modeled with finite element simulations, and the relative intensity...... noise (RIN) of the seed laser, which seeds mode coupling between the fundamental and higher order mode. The TMI threshold is predicted to ~370 W – 440 W depending on RIN for the distributed modal filtering rod fiber....

  20. Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters

    Directory of Open Access Journals (Sweden)

    Gonzalez Juan G

    2002-01-01

    Full Text Available Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove several fundamental properties of this estimator and show its optimality in practical impulsive models such as the -stable and generalized- . We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting scheme is utilized. We derive the "normal" equations for the optimal myriad filter, and introduce a suboptimal methodology for filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with several examples.

  1. The ATLAS event filter

    CERN Document Server

    Beck, H P; Boissat, C; Davis, R; Duval, P Y; Etienne, F; Fede, E; Francis, D; Green, P; Hemmer, F; Jones, R; MacKinnon, J; Mapelli, Livio P; Meessen, C; Mommsen, R K; Mornacchi, Giuseppe; Nacasch, R; Negri, A; Pinfold, James L; Polesello, G; Qian, Z; Rafflin, C; Scannicchio, D A; Stanescu, C; Touchard, F; Vercesi, V

    1999-01-01

    An overview of the studies for the ATLAS Event Filter is given. The architecture and the high level design of the DAQ-1 prototype is presented. The current status if the prototypes is briefly given. Finally, future plans and milestones are given. (11 refs).

  2. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Filter and Passband Problems

    Science.gov (United States)

    Young, A. T.

    1984-01-01

    Problems associated with achieving precision in photometric measurements of stars are examined. The thermal stabilization of glass and interference filters and the determination of correct analytic representations of bandwidth effects in data reduction are particularly discussed. Spectral sampling requirements are also addressed.

  4. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  5. Supersymmetric Transformations in Optical Fibers

    Science.gov (United States)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos

    2018-01-01

    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  6. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  7. High-fiber foods

    Science.gov (United States)

    ... other dried fruits Grains Grains are another important source of dietary fiber. Eat more: Hot cereals, such as oatmeal and ... wheat Whole-wheat pastas Bran muffins Alternative Names Dietary fiber - self-care; Constipation - fiber Images Sources of fiber References Dahl WJ, Stewart ML. Position ...

  8. Digital Simulation of a Hybrid Active Filter - An Active Filter in Series with a Shunt Passive Filter

    OpenAIRE

    Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V

    1998-01-01

    Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.

  9. Appropriate nonwoven filters effectively capture human peripheral blood cells and mesenchymal stem cells, which show enhanced production of growth factors.

    Science.gov (United States)

    Hori, Hideo; Iwamoto, Ushio; Niimi, Gen; Shinzato, Masanori; Hiki, Yoshiyuki; Tokushima, Yasuo; Kawaguchi, Kazunori; Ohashi, Atsushi; Nakai, Shigeru; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-03-01

    Scaffolds, growth factors, and cells are three essential components in regenerative medicine. Nonwoven filters, which capture cells, provide a scaffold that localizes and concentrates cells near injured tissues. Further, the cells captured on the filters are expected to serve as a local supply of growth factors. In this study, we investigated the growth factors produced by cells captured on nonwoven filters. Nonwoven filters made of polyethylene terephthalate (PET), biodegradable polylactic acid (PLA), or chitin (1.2-22 μm fiber diameter) were cut out as 13 mm disks and placed into cell-capturing devices. Human mesenchymal stem cells derived from adipose tissues (h-ASCs) and peripheral blood cells (h-PBCs) were captured on the filter and cultured to evaluate growth factor production. The cell-capture rates strongly depended on the fiber diameter and the number of filter disks. Nonwoven filter disks were composed of PET or PLA fibers with fiber diameters of 1.2-1.8 μm captured over 70% of leukocytes or 90% of h-ASCs added. The production of vascular endothelial growth factor (VEGF), transforming growth factor β1, and platelet-derived growth factor AB were significantly enhanced by the h-PBCs captured on PET or PLA filters. h-ASCs on PLA filters showed significantly enhanced production of VEGF. These enhancements varied with the combination of the nonwoven filter and cells. Because of the enhanced growth factor production, the proliferation of human fibroblasts increased in conditioned medium from h-PBCs on PET filters. This device consisting of nonwoven filters and cells should be investigated further for possible use in the regeneration of impaired tissues.

  10. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  11. Electrospun Zeolite/Cellulose Acetate Fibers for Ion Exchange of Pb2+

    Directory of Open Access Journals (Sweden)

    Daniel N. Tran

    2014-12-01

    Full Text Available The ion exchange capability of electrospun cellulose acetate (CA fibers containing zeolite A nanoparticles is reported. Solid and porous CA fibers were used to make a zeolite-embedded filter paper, which was then used to ion exchange Na+ with Cu2+ and Pb2+. The composite Linde Type A (LTA zeolite CA fibers exchanged 0.39 mmol/g more Pb2+ than LTA nanoparticles in the solid CA fibers. These fibers could provide a simple and effective method for heavy metal ion removal in water.

  12. Numerical study of canister filters with alternatives filter cap configurations

    Science.gov (United States)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  13. Single-fiber multi-color pyrometry

    Science.gov (United States)

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  14. Digital Filters for Low Frequency Equalization

    DEFF Research Database (Denmark)

    Tyril, Marni; Abildgaard, J.; Rubak, Per

    2001-01-01

    Digital filters with high resolution in the low-frequency range are studied. Specifically, for a given computational power, traditional IIR filters are compared with warped FIR filters, warped IIR filters, and modified warped FIR filters termed warped individual z FIR filters (WizFIR). The results...... indicate that IIR filters are the most effective in a number of situations....

  15. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  16. 85 μm core rod fiber amplifier delivering 350 W/m

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben

    2016-01-01

    An improved version of the distributed modal filtering (DMF) rod fiber is tested in a high power setup delivering 350 W/m of extracted signal average power limited by the available pump power. The rod fiber is thoroughly tested to record the transverse modal instability (TMI) behavior and also me...

  17. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...... amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude...

  18. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  19. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    International Nuclear Information System (INIS)

    Aguayo-Rodriguez, G; Zaldivar-Huerta, I E; GarcIa-Juarez, A; Rodriguez-Asomoza, J; Larger, L; Courjal, N

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  20. All fiber periodik filters for DWDM using a cascade of FIR and IIR latice filters

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; LaRochelle, S.

    2004-01-01

    Roč. 16, č. 2 (2004), s. 497-499 ISSN 1041-1135 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibres * Bragg gratings * wavelength division multiplexing * optical fibre communication Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.552, year: 2004

  1. The Rao-Blackwellized Particle Filter: A Filter Bank Implementation

    Directory of Open Access Journals (Sweden)

    Karlsson Rickard

    2010-01-01

    Full Text Available For computational efficiency, it is important to utilize model structure in particle filtering. One of the most important cases occurs when there exists a linear Gaussian substructure, which can be efficiently handled by Kalman filters. This is the standard formulation of the Rao-Blackwellized particle filter (RBPF. This contribution suggests an alternative formulation of this well-known result that facilitates reuse of standard filtering components and which is also suitable for object-oriented programming. Our RBPF formulation can be seen as a Kalman filter bank with stochastic branching and pruning.

  2. On fractional filtering versus conventional filtering in economics

    Science.gov (United States)

    Nigmatullin, Raoul R.; Omay, Tolga; Baleanu, Dumitru

    2010-04-01

    In this study, we compare the Hodrick-Prescott Filter technique with the Fractional filtering technique that has recently started to be used in various applied sciences like physics, engineering, and biology. We apply these filtering techniques to quarterly GDP data from Turkey for the period 1988:1-2003:2. The filtered series are analyzed using Minimum Square Error (MSE) and real life evidence. In the second part of the study, we use simulated data to analyze the statistical properties of the aforementioned filtering techniques.

  3. Processes and applications of silicon carbide nanocomposite fibers

    Science.gov (United States)

    Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.

    2011-10-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  4. Processes and applications of silicon carbide nanocomposite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D G; Cho, K Y; Riu, D H [Nanomaterials Team, Korea Institute of Ceramic Engineering and Technology, 233-5 Gasan-dong, Guemcheon-gu, Seoul 153-801 (Korea, Republic of); Jin, E J, E-mail: dhriu15@seoultech.ac.kr [Battelle-Korea Laborotary, Korea University, Anamdong, Seongbuk-gu, Seoul (Korea, Republic of)

    2011-10-29

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and {gamma}-Al{sub 2}O{sub 3}. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200deg. C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  5. Multilevel particle filter

    KAUST Repository

    Law, Kody

    2016-01-06

    This talk will pertain to the filtering of partially observed diffusions, with discrete-time observations. It is assumed that only biased approximations of the diffusion can be obtained, for choice of an accuracy parameter indexed by l. A multilevel estimator is proposed, consisting of a telescopic sum of increment estimators associated to the successive levels. The work associated to O( 2) mean-square error between the multilevel estimator and average with respect to the filtering distribution is shown to scale optimally, for example as O( 2) for optimal rates of convergence of the underlying diffusion approximation. The method is illustrated on some toy examples as well as estimation of interest rate based on real S&P 500 stock price data.

  6. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...

  7. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, S.J.; Lippert, T.E

    1994-12-01

    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  8. Optical filter finesses enhancement based on nested coupled cavities and active medium

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  9. Properties of nanoparticles affecting simulation of fibrous gas filter performance

    International Nuclear Information System (INIS)

    Tronville, Paolo; Rivers, Richard

    2015-01-01

    Computational Fluid Dynamics (CFD) codes allow detailed simulation of the flow of gases through fibrous filter media. When the pattern of gas flow between fibers has been established, simulated particles of any desired size can be “injected” into the entering gas stream, and their paths under the influence of aerodynamic drag, Brownian motion and electrostatic forces tracked. Particles either collide with a fiber, or pass through the entire filter medium. They may bounce off the fiber surface, or adhere firmly to the surface or to particles previously captured. Simulated injection of many particles at random locations in the entering stream allows the average probability of capture to be calculated. Many particle properties must be available as parameters for the equations defining the forces on particles in the gas stream, at the moment of contact with a fiber, and after contact. Accurate values for all properties are needed, not only for predicting particle capture in actual service, but also to validate models for media geometries and computational procedures used in CFD. We present a survey of existing literature on the properties influencing nanoparticle dynamics and adhesion. (paper)

  10. Filtering and analysis on the random drift of FOG

    Science.gov (United States)

    Tian, Yun-Peng; Yang, Xiao-Jun; Guo, Yun-Zeng; Liu, Feng

    2015-10-01

    Fiber optic gyro (FOG) is an optical gyroscope which is based on the Sagnac effect and uses the optical fiber coil as light propagation channel. Gyro drift consists of two components: systemic drift and random drift. Systemic drift can be compensated by testing and calibrating. Random drift changes with time, so it becomes an important indicator to measure the precision of gyroscope, which has a great impact on the inertial navigation system. It can't be compensated by the simple method. Random drift is a main error of fiber optic gyro (FOG). The static output of FOG is a random project and it has more random noise when as the inertial navigation sensor, which will affect the measurement accuracy. It is an efficient method to reduce the random drift and improve the accuracy by modeling and compensation from the output of FOG. According to the characteristic of fiber optic gyro, the random drift model is studied. Using the time series method, the constant component of the random noise original data is extracted. After stationarity and normality tests, a normal random process is acquired. Based on this, the model is established using the recursive least squares, and then the model is applied to the normal Kalman and adaptive Kalman, finally the data is process with the filter. After experimental verification, the noise variance was reduced after filtering, and the effect is obvious.

  11. Matched-Filter Thermography

    Directory of Open Access Journals (Sweden)

    Nima Tabatabaei

    2018-04-01

    Full Text Available Conventional infrared thermography techniques, including pulsed and lock-in thermography, have shown great potential for non-destructive evaluation of broad spectrum of materials, spanning from metals to polymers to biological tissues. However, performance of these techniques is often limited due to the diffuse nature of thermal wave fields, resulting in an inherent compromise between inspection depth and depth resolution. Recently, matched-filter thermography has been introduced as a means for overcoming this classic limitation to enable depth-resolved subsurface thermal imaging and improving axial/depth resolution. This paper reviews the basic principles and experimental results of matched-filter thermography: first, mathematical and signal processing concepts related to matched-fileting and pulse compression are discussed. Next, theoretical modeling of thermal-wave responses to matched-filter thermography using two categories of pulse compression techniques (linear frequency modulation and binary phase coding are reviewed. Key experimental results from literature demonstrating the maintenance of axial resolution while inspecting deep into opaque and turbid media are also presented and discussed. Finally, the concept of thermal coherence tomography for deconvolution of thermal responses of axially superposed sources and creation of depth-selective images in a diffusion-wave field is reviewed.

  12. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  13. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  14. Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols

    Directory of Open Access Journals (Sweden)

    Dinesh Lolla

    2016-08-01

    Full Text Available Electrospun polyvinylidene fluoride (PVDF fiber mats with average fiber diameters (≈200 nm, ≈2000 nm were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops.

  15. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    Science.gov (United States)

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  16. Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media

    OpenAIRE

    Gajanan Bhat; Vincent Kandagor; Daniel Prather; Ramesh Bhave

    2017-01-01

    Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further mod...

  17. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    Science.gov (United States)

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  18. Sharpening minimum-phase filters

    Science.gov (United States)

    Jovanovic Dolecek, G.; Fernandez-Vazquez, A.

    2013-02-01

    The minimum-phase requirement restricts that filter has all its zeros on or inside the unit circle. As a result the filter does not have a linear phase. It is well known that the sharpening technique can be used to simultaneous improvements of both the pass-band and stop-band of a linear-phase FIR filters and cannot be used for other types of filters. In this paper we demonstrate that the sharpening technique can also be applied to minimum-phase filters, after small modification. The method is illustrated with one practical examples of design.

  19. Inverse design of dispersion compensating optical fiber using topology optimization

    DEFF Research Database (Denmark)

    Riishede, Jesper; Sigmund, Ole

    2008-01-01

    We present a new numerical method for designing dispersion compensating optical fibers. The method is based on the solving of the Helmholtz wave equation with a finite-difference modesolver and uses topology optimization combined with a regularization filter for the design of the refractive index...

  20. Chemical modification of corn fiber with ion-exchanging groups

    Science.gov (United States)

    Pretreated corn fiber was chemically modified with quaternary ammonium group or/and sulfonated with 3-chloro-2-hydroxypropanesulfonic acid under vacuum or at ambient pressure. The soluble fraction was dialyzed through 1 kDa MWCO dialysis tubing and the material retained inside the tubing was filtere...

  1. A Short Note on t-filters, I-filters and Extended Filters on Residuated Lattices

    Czech Academy of Sciences Publication Activity Database

    Víta, Martin

    2015-01-01

    Roč. 271, 15 July (2015), s. 168-171 ISSN 0165-0114 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985807 Keywords : t-filters * I-filters * extended filters * residuated lattices Subject RIV: BA - General Mathematics Impact factor: 2.098, year: 2015

  2. Reducing fiber cross-talk in mineral fiber arrays

    OpenAIRE

    Daniel Lee Stark

    2017-01-01

    Monocentric optics replace current systems with diffraction limited performance. The fiber arrays have been the issue. Commercial expensive fiber arrays are available, but enhanced mineral fiber arrays offer very inexpensive fiber arrays.

  3. Requirements for a cleanable steel HEPA filter derived from a systems analysis

    International Nuclear Information System (INIS)

    Bergman, W.

    1996-06-01

    A systems analysis was conducted to determine customer requirements for a cleanable high efficiency particulate air (HEPA) filter in DOE Environmental Management (EM) facilities. The three principal drivers for cleanable steel HEPA are large cost savings, improved filter reliability, and new regulations; they produce a strong incentive to DOE customers to use cleanable steel HEPA filters. Input for customer requirements were obtained from field trips to EM sites and from discussions. Most existing applications require that cleanable steel HEPA filters meet size/performance requirements of standard glass HEPA filters; applications in new facilities can relax size/weight/pressure drop requirements on a case-by-case basis. We then obtained input from commercial firms on availability of cleanable steel HEPA filters. Systems analysis then showed that currently available technology was only able to meet customer needs in a limited number of cases. Further development is needed to meet requirements of EM customers. For cleanable steel HEPA to be retrofitted into existing systems, pressure drop and weight must be reduced. Pressure drop can be reduced by developing steel fiber media from 0.5 μm dia steel fibers. Weight can be reduced by packaging the steel fiber media in one of the standard HEPA configurations. Although most applications will be able to use standard 304 or 316L alloys, an acid resistant alloy such as Hastelloy or Inconel will be needed for incinerator and other thermal processes

  4. Requirements for a cleanable steel HEPA filter derived from a systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.

    1996-06-01

    A systems analysis was conducted to determine customer requirements for a cleanable high efficiency particulate air (HEPA) filter in DOE Environmental Management (EM) facilities. The three principal drivers for cleanable steel HEPA are large cost savings, improved filter reliability, and new regulations; they produce a strong incentive to DOE customers to use cleanable steel HEPA filters. Input for customer requirements were obtained from field trips to EM sites and from discussions. Most existing applications require that cleanable steel HEPA filters meet size/performance requirements of standard glass HEPA filters; applications in new facilities can relax size/weight/pressure drop requirements on a case-by-case basis. We then obtained input from commercial firms on availability of cleanable steel HEPA filters. Systems analysis then showed that currently available technology was only able to meet customer needs in a limited number of cases. Further development is needed to meet requirements of EM customers. For cleanable steel HEPA to be retrofitted into existing systems, pressure drop and weight must be reduced. Pressure drop can be reduced by developing steel fiber media from 0.5 {mu}m dia steel fibers. Weight can be reduced by packaging the steel fiber media in one of the standard HEPA configurations. Although most applications will be able to use standard 304 or 316L alloys, an acid resistant alloy such as Hastelloy or Inconel will be needed for incinerator and other thermal processes.

  5. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  6. Biofouling reduction for improvement of depth water filtration. Filter production and testing

    Directory of Open Access Journals (Sweden)

    Sztuk - Sikorska Ewa

    2016-09-01

    Full Text Available Water is a strategic material. Recycling is an important component of balancing its use. Deep-bed filtration is an inexpensive purification method and seems to be very effective in spreading water recovery. Good filter designs, such as the fibrous filter, have high separation efficiency, low resistance for the up-flowing fluid and high retention capacity. However, one of the substantial problems of this process is the biofouling of the filter. Biofouling causes clogging and greatly reduces the life of the filter. Therefore, the melt-blown technique was used for the formation of novel antibacterial fibrous filters. Such filters are made of polypropylene composites with zinc oxide and silver nanoparticles on the fiber surface. These components act as inhibitors of bacterial growth in the filter and were tested in laboratory and full scale experiments. Antibacterial/bacteriostatic tests were performed on Petri dishes with E. coli and B. subtilis. Full scale experiments were performed on natural river water, which contained abiotic particles and mutualistic bacteria. The filter performance at industrial scale conditions was measured using a particle counter, a flow cytometer and a confocal microscope. The results of the experiments indicate a significant improvement of the composite filter performance compared to the regular fibrous filter. The differences were mostly due to a reduction in the biofouling effect.

  7. Vertical removable filters in shielded casing for radioactive cells and process gaseous wastes

    International Nuclear Information System (INIS)

    Prinz, M.

    1983-01-01

    The installation of shielded filtration casing is necessary for highly contaminated active cells and process gaseous wastes containing active aerosols. SGN and COGEMA have developed two filtration casings (for 500 and 3000 m 3 /h flow rates) equipped with a vertically removable filter element. The filter elements fitted with high efficiency glass fiber media, are cylindrical in shape. The top flange of the filter is equipped with a gasket to ensure sealing between the filter element and its casing. The filter element is blindly installed and removed and its orientation, inside the casing, is immaterial. The shielding casing is made of a cast iron, or steel, shielding slab under which is secured the filtration casing itself. This shielding slab is settled on side shielding walls made of concrete or cast iron. The filter element, integral with a plug, is placed in the horizontal slab. The attachment of the filter element under the plug is necessary so that the plug and filter may be removed as one unit, and to keep the filter on its sealing surfaces, according to sealing and seismic resistance requirements. Filter removal is performed with the help of an intervention cask, centered over a removable trap door provided on the shielding slab of the casing. First, the plug and filter element assembly is raised into the cask. Then, the filtering element may be separated from the plug which is decontaminated and salvaged. The whole plug and filter assembly may also be sent to the conditioning waste storage. The installation of a clean filter element in the casing, is also performed with the help of the intervention cask, proceeding as above, but in reverse order. The same intervention cask may also be used to remove the upstream and downstream dampers from the top of the casing

  8. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    Science.gov (United States)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  9. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers......, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...

  10. Ways to Boost Fiber

    Science.gov (United States)

    ... not enough fluid, you may experience nausea or constipation. Before you reach for the fiber supplements, consider this: fiber is found naturally in nutritious foods. Studies have found the same benefits, such as a ...

  11. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  12. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  13. Shaped fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  14. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Hakon

    2016-06-14

    This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  15. Advances in Collaborative Filtering

    Science.gov (United States)

    Koren, Yehuda; Bell, Robert

    The collaborative filtering (CF) approach to recommenders has recently enjoyed much interest and progress. The fact that it played a central role within the recently completed Netflix competition has contributed to its popularity. This chapter surveys the recent progress in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with recent innovations. We also describe several extensions that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.

  16. [Relationship between dust mass concentration and fiber number concentration of refractory ceramic fibers].

    Science.gov (United States)

    Zhu, Xiaojun; Li, Tao; Wang, Hongfei

    2015-04-01

    To explore the quantitative relationship between the dust mass concentration and fiber number concentration of refractory ceramic fibres. A typical refractory ceramic fiber plant was selected as the study site. Fifty-three paired samples of total dust mass concentration and fiber number concentration were collected using the long-time fixed site mode. The total dust mass concentration was measured according to the GBZ/T 192.1-2007 (Measurement of dust in the air of workplace, part 1: Total dust concentration). Membrane filter method/phase-contrast optical microscopy was used to determine the fiber number concentration. Univariate analysis was used to describe the distribution of the two concentrations and their ratio. Spearman rank correlation, as well as linear regression, logarithmic curve, polynomial, power function, and exponential curve model, were used to explore the relationship between the two concentrations. Results The range of the total dust mass concentration (x) was 0.45-13.82 mg/m3. The range of the fiber number concentration (y) was 0.01-1.04 f/ml. The range of the ratio (x/y) was 4-158. All of the three parameters did not follow normal distribution (Pfiber number concentration of refractory ceramic fibers. However, there is no fixed regression relationship between the two concentrations, and neither is a definite coefficient which can be used to convert each other. The two concentrations cannot be replaced by each other.

  17. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins.

    Science.gov (United States)

    Lang, Gregor; Jokisch, Stephan; Scheibel, Thomas

    2013-05-08

    Based on the natural sequence of Araneus diadematus Fibroin 4 (ADF4), the recombinant spider silk protein eADF4(C16) has been engineered. This highly repetitive protein has a molecular weight of 48kDa and is soluble in different solvents (hexafluoroisopropanol (HFIP), formic acid and aqueous buffers). eADF4(C16) provides a high potential for various technical applications when processed into morphologies such as films, capsules, particles, hydrogels, coatings, fibers and nonwoven meshes. Due to their chemical stability and controlled morphology, the latter can be used to improve filter materials. In this protocol, we present a procedure to enhance the efficiency of different air filter devices, by deposition of nonwoven meshes of electrospun recombinant spider silk proteins. Electrospinning of eADF4(C16) dissolved in HFIP results in smooth fibers. Variation of the protein concentration (5-25% w/v) results in different fiber diameters (80-1,100 nm) and thus pore sizes of the nonwoven mesh. Post-treatment of eADF4(C16) electrospun from HFIP is necessary since the protein displays a predominantly α-helical secondary structure in freshly spun fibers, and therefore the fibers are water soluble. Subsequent treatment with ethanol vapor induces formation of water resistant, stable β-sheet structures, preserving the morphology of the silk fibers and meshes. Secondary structure analysis was performed using Fourier transform infrared spectroscopy (FTIR) and subsequent Fourier self-deconvolution (FSD). The primary goal was to improve the filter efficiency of existing filter substrates by adding silk nonwoven layers on top. To evaluate the influence of electrospinning duration and thus nonwoven layer thickness on the filter efficiency, we performed air permeability tests in combination with particle deposition measurements. The experiments were carried out according to standard protocols.

  18. Air Filter Devices Including Nonwoven Meshes of Electrospun Recombinant Spider Silk Proteins

    Science.gov (United States)

    Lang, Gregor; Jokisch, Stephan; Scheibel, Thomas

    2013-01-01

    Based on the natural sequence of Araneus diadematus Fibroin 4 (ADF4), the recombinant spider silk protein eADF4(C16) has been engineered. This highly repetitive protein has a molecular weight of 48kDa and is soluble in different solvents (hexafluoroisopropanol (HFIP), formic acid and aqueous buffers). eADF4(C16) provides a high potential for various technical applications when processed into morphologies such as films, capsules, particles, hydrogels, coatings, fibers and nonwoven meshes. Due to their chemical stability and controlled morphology, the latter can be used to improve filter materials. In this protocol, we present a procedure to enhance the efficiency of different air filter devices, by deposition of nonwoven meshes of electrospun recombinant spider silk proteins. Electrospinning of eADF4(C16) dissolved in HFIP results in smooth fibers. Variation of the protein concentration (5-25% w/v) results in different fiber diameters (80-1,100 nm) and thus pore sizes of the nonwoven mesh. Post-treatment of eADF4(C16) electrospun from HFIP is necessary since the protein displays a predominantly α-helical secondary structure in freshly spun fibers, and therefore the fibers are water soluble. Subsequent treatment with ethanol vapor induces formation of water resistant, stable β-sheet structures, preserving the morphology of the silk fibers and meshes. Secondary structure analysis was performed using Fourier transform infrared spectroscopy (FTIR) and subsequent Fourier self-deconvolution (FSD). The primary goal was to improve the filter efficiency of existing filter substrates by adding silk nonwoven layers on top. To evaluate the influence of electrospinning duration and thus nonwoven layer thickness on the filter efficiency, we performed air permeability tests in combination with particle deposition measurements. The experiments were carried out according to standard protocols. PMID:23685883

  19. Fiber optic coupled optical sensor

    Science.gov (United States)

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  20. Filter and Filter Bank Design for Image Texture Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Trygve

    1997-12-31

    The relevance of this thesis to energy and environment lies in its application to remote sensing such as for instance sea floor mapping and seismic pattern recognition. The focus is on the design of two-dimensional filters for feature extraction, segmentation, and classification of digital images with textural content. The features are extracted by filtering with a linear filter and estimating the local energy in the filter response. The thesis gives a review covering broadly most previous approaches to texture feature extraction and continues with proposals of some new techniques. 143 refs., 59 figs., 7 tabs.

  1. Intelligibility of bandpass filtered speech: The effect of filter types.

    Science.gov (United States)

    Amir, Noam; Kishon-Rabin, Liat

    2017-12-01

    Many studies have examined the contribution of different spectral bands to speech intelligibility, measuring recognition scores of filtered speech stimuli. For a given filter bandwidth, the influence of filter properties on such experiments has been studied mainly with respect to transition band slopes. The objective of the present study was to determine whether nominal transition band slope is a sufficient characterization of filter properties. Several types of filters, both finite impulse response and infinite impulse response types were examined in three experiments to determine if details of the transition band behavior, as well as group delay properties, had any influence on recognition scores. The results of a total of 72 participants showed that for 1/3 octave passbands, differences between filters having the same nominal transition band slopes, but of different types, were large and statistically significant. Linearity of phase response, however, did not influence the results. Further experiments using passband widths of 1/2 and 2/3 octaves revealed that only for the latter the difference in recognition scores between filter types ceased to be significant. These results have important implications for studies which involve filtered speech as well as models that employ different types of filters to emulate peripheral auditory processing.

  2. Tandem HEPA filter tests.

    Science.gov (United States)

    Schuster, B G; Osetek, D J

    1978-02-01

    Current methods for evaluating the performance and reliability of high-efficiency air cleaning systems use forward light-scattering photometers and DOP aerosol. This method is limited to measuring protection factors of 10(4) or 10(5) and has poor sensitivity to particles less than .3 micron. More accurate determination of system performance could be made by measuring two filter stages with a single test. Because of the large protection factors of a two-stage system, it is necessary to use high challenge aerosol concentrations and long downstream sampling times. Concentrations were measured using an intra-cavity laser light-scattering aerosol spectrometer which is capable of detection of single particles ranging in size from 0.07 to 3.00 micron diameter. The results of several tests with challenge aerosols of both NaCl and DOP yielded protection factors ranging from 1.4 x 10(7) to 3.0 x 10(9) for two HEPA filters in series.

  3. Nanoparticle optical notch filters

    Science.gov (United States)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  4. Mode Selection for a Single-Frequency Fiber Laser

    Science.gov (United States)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  5. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  6. Reconfigurable Mixed Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    Neelofer Afzal

    2014-01-01

    Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.

  7. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  8. Single mode fiber array for planet detection using a visible nulling interferometer

    Science.gov (United States)

    Liu, Duncan; Levine, B. Martin; Shao, Michael; Aguayo, Franciso

    2005-01-01

    We report the design, fabrication, and testing of a coherent large mode field diameter fiber array to be used as a spatial filter in a planet finding visible nulling interferometer. The array is a key component of a space instrument for visible-light detection and spectroscopy of Earth like extrasolar planets. In this concept, a nulling interferometer is synthesized from a pupil image of a single aperture which is then spatially filtered by a coherent array of single mode fibers to suppress the residual scattered star light. The use of the fiber array preserves spatial information between the star and planet. The fiber array uses a custom commercial large mode field or low NA step-index single mode fiber to relax alignment tolerances. A matching custom micro lens array is used to couple light into the fibers, and to recollimate the light out of the fiber array. The use of large mode field diameter fiber makes the fabrication of a large spatial filter array with 300 to 1000 elements feasible.

  9. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  10. Advanced simulation of digital filters

    OpenAIRE

    Doyle, Gerald S.

    1980-01-01

    Approved for public release; distribution is unlimited An Advanced Simulation of Digital Filters has been implemented on the IBM/67 computer utilizing Tektronix hardware and software. The program package is appropriate for persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the ...

  11. Multi-filter spectrophotometry simulations

    Science.gov (United States)

    Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.

  12. Superconducting tin core fiber

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary [Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA (United States)

    2014-11-13

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  13. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  14. Particle size for greatest penetration of HEPA filters - and their true efficiency

    International Nuclear Information System (INIS)

    da Roza, R.A.

    1982-01-01

    The particle size that most greatly penetrates a filter is a function of filter media construction, aerosol density, and air velocity. In this paper the published results of several experiments are compared with a modern filtration theory that predicts single-fiber efficiency and the particle size of maximum penetration. For high-efficiency particulate air (HEPA) filters used under design conditions this size is calculated to be 0.21 μm diam. This is in good agreement with the experimental data. The penetration at 0.21 μm is calculated to be seven times greater than at the 0.3 μm used for testing HEPA filters. Several mechanisms by which filters may have a lower efficiency in use than when tested are discussed

  15. INSCRIPTION PROCESS RESEARCH AND OPTIMIZATION FOR SUPERIMPOSED FIBER BRAGG GRATINGS

    Directory of Open Access Journals (Sweden)

    Kirill A. Konnov

    2017-11-01

    Full Text Available Subject of Research. The paper presents the study of inscription process distinctive features for superimposed fiber Bragg gratings. We analyzed spectral characteristics changes of superposition segregated gratings that appear during inscription of subsequent diffraction structures over the first ones. Method. Superimposed fiber Bragg gratings inscription was carried out by means of Talbot interferometer. Excimer laser system Optosystems MOPA CL-7550 was used as a radiation source. It was operating on gas mixture KrF (radiation wavelength is equal to 248 nm. The phase mask with a 1000 nm period was implemented in the inscription scheme for laser beam amplitude separation. Fiber Bragg gratings were inscribed in anisotropic optical fiber with 12 mol.% of GeO2 in optical fiber core. Main Results. Samples of superimposed fiber Bragg gratings were obtained and their spectral characteristics were analyzed. We have studied the regularities of the change in the reflection coefficient and the central wavelength of the first grating of the superposition from the number of diffraction structures inscribed over it, the exposure time during the inscription, and the spectral interval between them. Based on the results obtained, recommendations are given for optimizing the superimposed fiber Bragg gratings inscription process. Practical Relevance. The obtained superimposed fiber Bragg gratings can be used in the manufacture of optical filters, sensors for simultaneous measurement of several parameters, as well as for multiplexing and demultiplexing signals in telecommunications.

  16. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  17. Drawing the Optimal Design Factor of a Metal Filter for Capturing Radioactive Aerosol Using Particle Collection Modeling

    International Nuclear Information System (INIS)

    Lee, Seunguk; Park, Minchan; Lee, Jaekeun

    2014-01-01

    In the U. S., the number of HEPA filters, which are located in the HVAC system of nuclear power plants, generated as wastes is annually 31,055, and tremendous economic/social costs are incurred to deal with them. Thus, it is needed to develop the metal fiber filter that can be reused and has performance equal to the HEPA level to replace the glass fiber HEPA filter. This study, to draw the optimal design factors of the metal fiber filter for removing radioactive aerosol, analyzed the design condition by reflecting the actual temperature and pressure condition that can be generated in the nuclear HVAC system to the particle collection mechanism by single fiber. As a result of performing modeling for the radioactive aerosol particle collection efficiency and the pressure drop of the filter made up with single metal fiber. It was analyzed that when a diameter of the metal fiber is less than 4 μm, thickness more than 1 mm, solidity more than 0.2, and face velocity less than 5 cm, it shows more than 99.97% particle collection efficiency, which is equal to the HEPA level. Because generally as the particle collection efficiency gets higher, the pressure drop gets bigger, it is judged that the filter design factors should be optimized to satisfy the design condition for the HVAC system. It is also judged that, in the future, an additional verification should be conducted through a comparison of the test results of the filter particle collection efficiency and the pressure drop in the condition of actual temperature and pressure, and the modeling results of this study

  18. The intractable cigarette 'filter problem'.

    Science.gov (United States)

    Harris, Bradford

    2011-05-01

    When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the 'filter problem'. These extensive filter research and development efforts suggest a phase of genuine optimism among cigarette designers that cigarette filters could be engineered to mitigate the health hazards of smoking. This paper explores the early history of cigarette filter research and development in order to elucidate why and when seemingly sincere filter engineering efforts devolved into manipulations in cigarette design to sustain cigarette marketing and mitigate consumers' concerns about the health consequences of smoking. Relevant word and phrase searches were conducted in the Legacy Tobacco Documents Library online database, Google Patents, and media and medical databases including ProQuest, JSTOR, Medline and PubMed. 13 tobacco industry documents were identified that track prominent developments involved in what the industry referred to as the 'filter problem'. These reveal a period of intense focus on the 'filter problem' that persisted from the mid-1950s to the mid-1960s, featuring collaborations between cigarette producers and large American chemical and textile companies to develop effective filters. In addition, the documents reveal how cigarette filter researchers' growing scientific knowledge of smoke chemistry led to increasing recognition that filters were unlikely to offer significant health protection. One of the primary concerns of cigarette producers was to design cigarette filters that could be economically incorporated into the massive scale of cigarette production. The synthetic plastic cellulose acetate

  19. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities – requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  20. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  1. Bridging the ensemble Kalman filter and particle filters

    Energy Technology Data Exchange (ETDEWEB)

    Stordal, Andreas Stoerksen; Karlsen, Hans A.; Naevdal, Geir; Skaug, Hans J.; Valles, Brice

    2009-12-15

    The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter is a more robust method that has shown promising results with a small sample size but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with Gaussian kernels we get the advantage of both a Kalman correction and a weighting step. The resulting Gaussian mixture filter has the advantage of both a local Kalman type correction and the weighting/re sampling step of a particle filter. The Gaussian mixture approximation relies on a tunable bandwidth parameter which often has to be kept quite large in order to avoid weight collapse in high dimensions. As a result, the Kalman correction is too large to capture highly non-Gaussian posterior distributions. In this paper we have extended the Gaussian mixture filter (Hoteit et al., 2008b) and also made the connection to particle filters more transparent. In particular we introduce a tuning parameter for the importance weights. In the last part of the paper we have performed a simulation experiment with the Lorenz40 model where our method has been compared to the EnKF and a full implementation of a particle filter. The results clearly indicate that the new method has advantages compared to the standard EnKF. (Author)

  2. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    Science.gov (United States)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  3. AER image filtering

    Science.gov (United States)

    Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).

  4. Evaluation of Physical Capture Efficiency and Disinfection Capability of a Novel Iodinated Filter Medium

    National Research Council Canada - National Science Library

    Ratnesar, Shanna; Wu, Chang-Yu; Wander, Joe; Lundgren, Dale; Farrah, Sam; Wanakule, Prinda; Blackburn, Matthew; Lan, Mei-Fang

    2006-01-01

    ...% that of the glass-fiber HEPA filter (0.0054 in H2O/(in/min) vs 0.065 in H2O/(in/min)). Biological disinfection by the medium was evaluated using Micrococcus luteus and Echerichia coli vegetative bacterial cells...

  5. In-line Kevlar filters for microfiltration of transuranic-containing liquid streams.

    Science.gov (United States)

    Gonzales, G J; Beddingfield, D H; Lieberman, J L; Curtis, J M; Ficklin, A C

    1992-06-01

    The Department of Energy Rocky Flats Plant has numerous ongoing efforts to minimize the generation of residue and waste and to improve safety and health. Spent polypropylene liquid filters held for plutonium recovery, known as "residue," or as transuranic mixed waste contribute to storage capacity problems and create radiation safety and health considerations. An in-line process-liquid filter made of Kevlar polymer fiber has been evaluated for its potential to: (1) minimize filter residue, (2) recover economically viable quantities of plutonium, (3) minimize liquid storage tank and process-stream radioactivity, and (4) reduce potential personnel radiation exposure associated with these sources. Kevlar filters were rated to less than or equal to 1 mu nominal filtration and are capable of reducing undissolved plutonium particles to more than 10 times below the economic discard limit, however produced high back-pressures and are not yet acid resistant. Kevlar filters performed independent of loaded particles serving as a sieve. Polypropylene filters removed molybdenum particles at efficiencies equal to Kevlar filters only after loading molybdenum during recirculation events. Kevlars' high-efficiency microfiltration of process-liquid streams for the removal of actinides has the potential to reduce personnel radiation exposure by a factor of 6 or greater, while simultaneously achieving a reduction in the generation of filter residue and waste by a factor of 7. Insoluble plutonium may be recoverable from Kevlar filters by incineration.

  6. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim

    2010-09-19

    Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  7. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    LCL filters are widely used in Pulse Width Modulation (PWM) inverters. However, it also introduces a pair of unstable resonant poles that may challenge the controller stability. The passive damping is a convenient possibility to tackle the resonance problem at the cost of system overall efficiency....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated......, which has revealed that negative variations of the resonant frequency can seriously affect the system stability. In order to make the controller more robust against grid impedance variations, the notch filter frequency is thus designed smaller than the LCL filter resonant frequency, which is done...

  8. Low-NA single-mode LMA photonic crystal fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara

    2011-01-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using...... a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm...

  9. Thermally tunable bandgaps in a hybrid As2S3/silica photonic crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Bang, Ole

    2015-01-01

    We report the fabrication and characterization of a hybrid silica photonic crystal fiber (PCF) with integrated chalcogenide glass layers and we show how the bandgaps of the fiber can be thermally tuned. The formation of the high-index chalcogenide films on the inner surface of the PCF holes...... revealed resonances as strong as similar to 35 dB both in the visible and infrared regime. Temperature measurements indicate that the transmission windows can be tuned with a sensitivity as high as similar to 3.5 nm/degrees C. The proposed fiber has potential for all-fiber filtering and temperature sensing....

  10. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  11. Selection of filter media in alpha air monitors for emergency environmental monitoring

    International Nuclear Information System (INIS)

    Kinouchi, N.; Oishi, T.; Noguchi, H.; Kato, S.

    2000-01-01

    We have developed an alpha air monitor which is possible to measure rapidly and sensitively the concentrations of airborne alpha-emitting particles, such as plutonium, for the environmental monitoring at an accident of nuclear reprocessing plant. The monitor is designed to collect airborne alpha-emitting particles by drawing the ambient air through a filter and to detect the activity by alpha spectroscopy. In order to achieve high-sensitive measurements, selection of a suitable filter used in the monitor is considerably important. The most important requirement for the filter is that it has a high surface collection efficiency to obtain the sharpness of the alpha energy spectrum. This makes it easy to distinguish the alpha-ray peak of plutonium from the alpha spectrum of naturally occurring radon decay products in the environment. And the filter is also desired to have low resistance of the air flow so that particles can be collected at a high flowrate. We have made a comparison of the surface collection efficiency and pressure drop for the various filters. Types of the test filters, most of which are commercially available in Japan, were glass fiber, cellulose-glass fiber, membrane and so on. The surface collection efficiency has been evaluated by the following two indices. One was the sharpness of alpha-ray energy peaks of thoron decay products generated in a laboratory and collected in the fibers. The other was the background counts of radon decay products in a plutonium region by measuring alpha-ray energy spectrum of radon decay products collected in the filters by sampling of dust in the atmosphere. It was found that the PTFE (polytetrafluoroethylene) membrane filter with backing had a high surface collection efficiency and low pressure drop. The results of the test are described in detail in this paper. (author)

  12. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro......-optical effects of LCs. Thermally controlled spectral filters and broadband switching functionalities, electrically controlled switches, polarizers and polarization rotators and an all-optical modulator has been demonstrated. The waveguiding mechanism of anistotropic PBGs fibers has been analyzed and spectral...

  13. Tunable single-longitudinal-mode fiber optical parametric oscillator.

    Science.gov (United States)

    Yang, Sigang; Cheung, Kim K Y; Zhou, Yue; Wong, Kenneth K Y

    2010-02-15

    A tunable single-longitudinal-mode (SLM) fiber optical parametric oscillator (FOPO) is proposed and demonstrated experimentally. A sub-ring cavity with a short cavity length is used to suppress the longitudinal modes and broaden the longitudinal mode spacing. A fiber loop mirror, consisted of an unpumped erbium-doped fiber, acts as an autotracking filter for providing fine mode restriction and ensuring the single-frequency operation. The measurement based on a homodyne method shows that the FOPO provides the SLM output. Furthermore the SLM FOPO can be tunable over 14 nm for each of the signal and the idler, which is limited only by the gain bandwidth of the fiber optical parametric amplifier.

  14. Stormwater filtration of toxic heavy metal ions using lignocellulosic materials selection process, fiberization, chemical modification, and mat formation

    Science.gov (United States)

    James S. Han

    1999-01-01

    Lignocellulosic materials were evaluated for their effectiveness in filtering toxic heavy metals from stormwater. Kenaf, alfalfa, juniper, and aspen fibers were used as models to evaluate the effectiveness and limitations of chemical modification and the extent of fiber degradation. Individual and mixed aqueous solutions of nickel, copper, zinc, and cadmium in various...

  15. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode with a ...

  16. Dense Wavelength Division (De Multiplexers Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    S. BENAMEUR

    2014-05-01

    Full Text Available This study is to measure the impact of demultiplexers based on Fiber Bragg Grating (FBG filter on performance of DWDM system for optical access network. An optical transmission link has been established in which we have inserted a demultiplexer based on four different FBG filters. The first step will be the characterization of FBG’s filters (i.e. uniform FBG, Gaussian apodized Grating, chirped FBG to explain their behavior in the optical link. The simulations were conducted for different fiber’s lengths, filter bandwidth and different received power to get the best system performance. This helped to assess their impact on the link performance in terms of Bit Error Rate (BER.

  17. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters

    Science.gov (United States)

    Hennig, Georg; Brittenham, Gary M.; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms/nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  18. Implicit LES using adaptive filtering

    Science.gov (United States)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  19. Level 3 filters at CDF

    International Nuclear Information System (INIS)

    Carroll, J.T.

    1985-01-01

    The Level 3 stage in CDF online filtering is currently under development. This system should support a flexible division between online and offline software filters within the constraints of the full data acquisition system. Multimicroprocessor (MMP) structures like the ACP system used by CDF could be improved with multi-rank architectures to meet SSC requirements

  20. Chopped filter for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Koyama, J.

    1980-12-01

    Some of the theoretical and practical factors affecting the energy resolution of a spectrometry system are considered, specially those related to t he signal-to-noise ratio, and a time-variant filter with the transfer function of the theoretical optimum filter, during its active time, is proposed. A prototype has been tested and experimental results are presented. (Author) [pt

  1. Mobile filters in nuclear engineering

    International Nuclear Information System (INIS)

    Meuter, R.

    1979-01-01

    The need for filters with high efficiencies which may be used at any place originated in nuclear power plants. Filters of this type, called Filtermobil, have been developed by Sulzer. They have been used successfully in nuclear plants for several years. (orig.) [de

  2. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  3. Diabatic initialization using recursive filters

    Science.gov (United States)

    Lynch, Peter; Huang, Xiang-Yu

    1994-10-01

    Several initialization schemes based on recursive filters are formulated and tested with a numerical weather prediction model, HIRLAM. These have an advantage over schemes which use non-recursive filters in that they derive the initialized values from a diabatic trajectory passing through the original analysis. The changes to the analysed fields are comparable in size to typical observational errors. A non-recursive implementation of the recursive filters makes the new initialization schemes as easy to use as the original non-recursive filter schemes. It also allows use of higher-order filters without added cost. An initialization method using a 6th order filter is compared to a scheme based on an non-recursive optimal filter, and is found to produce similar results for less than half the computational cost. If the sole aim is noise suppression, a filter whose output validates later than the initial time may be used. The advantage of this is that computation time is further reduced and phase error completely eliminated.

  4. Derivative free filtering using Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Hansen, Søren; Ravn, Ole

    2010-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of different filtering algorithms. The toolbox is called Kalmtool 4 and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as for DD1 fi...

  5. Filters in Fuzzy Class Theory

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš

    2008-01-01

    Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008

  6. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  7. Approximately Liner Phase IIR Digital Filter Banks

    Directory of Open Access Journals (Sweden)

    J. D. Ćertić

    2013-11-01

    Full Text Available In this paper, uniform and nonuniform digital filter banks based on approximately linear phase IIR filters and frequency response masking technique (FRM are presented. Both filter banks are realized as a connection of an interpolated half-band approximately linear phase IIR filter as a first stage of the FRM design and an appropriate number of masking filters. The masking filters are half-band IIR filters with an approximately linear phase. The resulting IIR filter banks are compared with linear-phase FIR filter banks exhibiting similar magnitude responses. The effects of coefficient quantization are analyzed.

  8. Comparison of the efficiency of polycarbonate and mixed cellulose ester filters for use in the filtration of water samples

    Energy Technology Data Exchange (ETDEWEB)

    Brackett, K.A.; Clark, P.J.

    1993-01-01

    The federal standard for the presence of asbestos in drinking water mandates the use of transmission electron microscopy (TEM) as the only acceptable testing method. The July 17, 1992 Federal Register specifies that the analysis for asbestos shall be conducted by the EPA Protocol entitled Analytical Method for Determination of Asbestos Fibers in Water (EPA-600/4-83) developed by Chatfield and Dillon (1), using polycarbonate (PC) membrane filters. A separate document (1993) providing guidance and clarification of the Chatfield method has been peer reviewed, which allows some slight changes to what was originally a research method, but still requires the use of PC filters. A draft of an alternative method using mixed cellulose ester (MCE) membrane filters was recently published in The Microscope (2). The experiment was designed to determine the quantitative differences between the two methods for all fiber lengths as well as for the regulated fibers > or = 10 micrometers in length.

  9. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    Science.gov (United States)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  10. The development of novel Ytterbium fiber lasers and their applications

    Science.gov (United States)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  11. Composite fiber networks mechanics

    Science.gov (United States)

    Picu, Catalin; Shahsavari, Ali

    2014-03-01

    Random fiber networks are present in many soft biological and engineering materials. In most cases, these networks are composite, in the sense that they are constructed from multiple fiber types. In this work we develop elements of a theoretical understanding of the elasticity of these structures. To this end, we consider systems made from a softer base and varying fractions of stiff fibers and investigate the effect of various system parameters on the overall behavior. The small strain elasticity depends strongly on the presence of a small concentration of stiff fibers for some types of base networks, but is essentially insensitive to these additions for other types. The way in which the stiff fibers are cross-linked to the soft fibers and to themselves is also important. These issues will be discussed within a framework general enough to make the conclusions relevant for diverse applications.

  12. On-line filtering

    International Nuclear Information System (INIS)

    Verkerk, C.

    1978-01-01

    Present day electronic detectors used in high energy physics make it possible to obtain high event rates and it is likely that future experiments will face even higher data rates than at present. The complexity of the apparatus increases very rapidly with time and also the criteria for selecting desired events become more and more complex. So complex in fact that the fast trigger system cannot be designed to fully cope with it. The interesting events become thus contaminated with multitudes of uninteresting ones. To distinguish the 'good' events from the often overwhelming background of other events one has to resort to computing techniques. Normally this selection is made in the first part of the analysis of the events, analysis normally performed on a powerful scientific computer. This implies however that many uninteresting or background events have to be recorded during the experiment for subsequent analysis. A number of undesired consequences result; and these constitute a sufficient reason for trying to perform the selection at an earlier stage, in fact ideally before the events are recorded on magnetic tape. This early selection is called 'on-line filtering' and it is the topic of the present lectures. (Auth.)

  13. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  14. Passive fiber resonator gyro

    Science.gov (United States)

    Groellmann, P.; Herth, J.; Kemmler, M.; Kempf, K.; Neumann, G.

    After presenting the design principles of the passive fiber resonator gyroscope, which possesses the good scale-factor stability and repeatability of its active, ring-laser gyro counterpart, attention is given to the state of the art in fiber-optic component fabrication, with a view to achieving the requirements of low-loss fiber resonators. Also important is the rugged narrow-band semiconductor-laser light source that had to be modified for application in a system of this kind. Such error terms as polarization cross coupling and fiber backscattering are discussed, and methods are presented with which system output can be improved.

  15. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  16. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems ...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).......High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...

  17. An optical tunable filter array based on LCOS phase grating

    Science.gov (United States)

    Feng, Dong; Wan, Zhujun; Chen, Xu; Yan, Shijia; Luo, Zhixiang

    2018-01-01

    This paper reports an optical tunable filter array (TFA) based on a LCOS (liquid crystal on silicon) chip. The input broadband optical beam is first dispersed by a bulk grating and then incident on the LCOS chip. The LCOS chip is phase-only modulated and constructed as a dynamic reflective phase grating. The phase modulation is adjusted to meet the Littrow angle for a specified passband wavelength and thus the optical beam corresponding to this wavelength is steered to the output. The input/output optical beams are coupled to optical fibers with a dual-fiber collimator. Four dualfiber collimators are vertically aligned as the inputs/outputs and the pixels of the LCOS chip are vertically allocated as four independent zones. Thus the device can act as a 4-channel TFA, which is assembled and functionally demonstrated.

  18. Spacial gyroscope calibration algorithm base on fusion filter

    Science.gov (United States)

    Xu, Fan; You, Taihua; Guo, Kang

    2017-10-01

    When space homing aerocraft long term flighting on orbit, the accuracy and rapidity of its attitude and orientation are the key factors for its combat effectiveness and survivability. Fiber optic gyro is suitable for the navigation requirements of space vehicles, but in the long run, it is necessary to calibrate the fog. Aiming at the problem, A self calibration method based on fusion filter is presented. According to the observation of the star sensor, the gyro drift and the four part number vector of the attitude are used as the state estimation by UKF. The gyro axis misalignment error and scale factor error are used as the model error to be estimated by the prediction filter. This method can guarantee the precision, decrease the computation and improve the algorithm speed.

  19. Optical filtering in directly modulated/detected OOFDM systems.

    Science.gov (United States)

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.

  20. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.

    Science.gov (United States)

    Hwang, Gi Byoung; Lee, Jung Eun; Nho, Chu Won; Lee, Byung Uk; Lee, Seung Jae; Jung, Jae Hee; Bae, Gwi-Nam

    2012-04-01

    Bioaerosols have received social and scientific attention because they can be hazardous to human health. Recently, antimicrobial treatments using natural products have been used to improve indoor air quality (IAQ) since they are typically less toxic to humans compared to other antimicrobial substances such as silver, carbon nanotubes, and metal oxides. Few studies, however, have examined how environmental conditions such as the relative humidity (RH), surrounding temperature, and retention time of bacteria on filters affect the filtration and antimicrobial characteristics of a filter treated with such natural products. In this study, we investigated changes in the morphology of the natural nanoparticles, pressure drop, filtration efficiency, and the inactivation rate caused by the short-term effect of humid airflow on antimicrobial fiber filters. Nanoparticles of Sophora flavescens were deposited on the filter media surface using an aerosol process. We observed coalescence and morphological changes of the nanoparticles on fiber filters under humid conditions of an RH >50%. The level of coalescence in these nanoparticles increased with increasing RH. Filters exposed to an RH of 25% have a higher pressure drop than those exposed to an RH >50%. In an inactivation test against Staphylococcus epidermidis bacterial aerosol, the inactivation efficiency at an RH of 25% was higher than that at an RH of 57% or 82%. To effectively apply antimicrobial filters using natural products in the environment, one must characterize the filters under various environmental conditions. Thus, this study provides important information on the use of antimicrobial filters made of natural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  2. Gas cleaning with Granular Filters

    OpenAIRE

    Natvig, Ingunn Roald

    2007-01-01

    The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filte...

  3. Advanced simulation of digital filters

    Science.gov (United States)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  4. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  5. Pragmatic circuits signals and filters

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  6. Face Recognition using Gabor Filters

    Directory of Open Access Journals (Sweden)

    Sajjad MOHSIN

    2011-01-01

    Full Text Available An Elastic Bunch Graph Map (EBGM algorithm is being proposed in this research paper that successfully implements face recognition using Gabor filters. The proposed system applies 40 different Gabor filters on an image. As aresult of which 40 images with different angles and orientation are received. Next, maximum intensity points in each filtered image are calculated and mark them as Fiducial points. The system reduces these points in accordance to distance between them. The next step is calculating the distances between the reduced points using distance formula. At last, the distances are compared with database. If match occurs, it means that the image is recognized.

  7. Remotely operated top loading filter housing

    International Nuclear Information System (INIS)

    Ross, M.J.; Carter, J.A.

    1989-01-01

    A high-efficiency particulate air (HEPA) filter system was developed for the Fuel Processing Facility at the Idaho Chemical Processing Plant. The system utilizes commercially available HEPA filters and allows in-cell filters to be maintained using operator-controlled remote handling equipment. The remote handling tasks include transport of filters before and after replacement, removal and replacement of the filter from the housing, and filter containment

  8. Continuous liquid level monitoring sensor system using fiber Bragg grating

    Science.gov (United States)

    Sengupta, Dipankar; Kishore, Putha

    2014-01-01

    The design and packaging of simple, small, and low cost sensor heads, used for continuous liquid level measurement using uniformly thinned (etched) optical fiber Bragg grating (FBG) are proposed. The sensor system consists of only an FBG and a simple detection system. The sensitivity of sensor is found to be 23 pm/cm of water column pressure. A linear optical fiber edge filter is designed and developed for the conversion of Bragg wavelength shift to its equivalent intensity. The result shows that relative power measured by a photo detector is linearly proportional to the liquid level. The obtained sensitivity of the sensor is nearly -15 mV/cm.

  9. IR-UWB radio-over-fiber system components development

    Science.gov (United States)

    Sultanov, Albert K.; Vinogradova, Irina L.; Meshkov, Ivan K.; Grakhova, Elizaveta P.; Shmidt, Svyatoslav P.; Abdrakhmanova, Guzel I.; Tafur Monroy, Idelfonso

    2016-03-01

    The paper describes the application of IR-UWB technology for organizing the radio part of Radio-over-Fiber system. Four physical layer components are proposed and designed in the paper: three microstrip filters and UWB antenna. Firstly the effective SCRF mask was calculated to ensure electromagnetic compatibility with existing radio services. Then this mask was considered as a cost function for filters design. The simulation was made with Agilent Genesys™ and CST Microwave Studio. All the devices have shown good performance and could be implemented on one circuit board for reducing losses.

  10. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    Science.gov (United States)

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  11. Ultrafine PBI fibers and yarns

    Science.gov (United States)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  12. Soluble and insoluble fiber (image)

    Science.gov (United States)

    ... two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and turns to gel during digestion. ... and nutrient absorption from the stomach and intestine. Soluble fiber is found in foods such as oat bran, ...

  13. Method of carbonizing polyacrylonitrile fibers

    Science.gov (United States)

    Cagliostro, D. E.; Lerner, N. R. (Inventor)

    1983-01-01

    This invention relates to a method of carbonizing polyacrylonitrile fibers by exposing the fibers at an elevated temperature to an oxidizing atmosphere; then exposing the oxidized fibers to an atmosphere of an inert gas such as nitrogen containing a carbonaceous material such as acetylene. The fibers are preferably treated with an organic compound, for example benzoic acid, before the exposure to an oxidizing atmosphere. The invention also relates to the resulting fibers. The treated fibers have enhanced tensile strength.

  14. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  15. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  16. Buffers and vegetative filter strips

    Science.gov (United States)

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  17. Dimensional reduction in nonlinear filtering

    Science.gov (United States)

    Park, J. H.; Sowers, R. B.; Sri Namachchivaya, N.

    2010-02-01

    The theory of nonlinear filtering forms the framework of many data assimilation problems. When the rates of change of different variables differ by orders of magnitude, efficient data assimilation can be accomplished by constructing nonlinear filtering equations for the coarse-grained signal. We consider the conditional law of a signal given the observations in a multi-scale context. In particular, we study how scaling interacts with filtering via stochastic averaging. This is an extension of our previous work (Park et al 2008 Stoch. Dyn. 8 543-60) where the observation process depended only on the fast variable, so the filter became independent of the observation in the limit. Here, we investigate a more realistic setting in which the observation depends on both the slow and the fast variables. Paper dedicated to Professor Manfred Denker on the occasion of his 65th birthday.

  18. Optical fibers for communication.

    Science.gov (United States)

    Gloge, D

    1974-02-01

    The transparency of glass fibers in the visible and near infrared-improved beyond all expectations by recent breakthroughs-seems now sufficient to transmit optical signals unprocessed over miles. No wonder that efforts have intensified all over the world to utilize fibers in future communication systems. Materials research and fabrication are the fields where present progress is most rapid. New ways of preform preparation by deposition, doping, or diffusion are being studied and found to offer improvements and versatility. As far as materials are concerned, fused silica has shown the lowest bulk losses and hence receives the most interest, but many glasses are being studied as well. As new processes become available and record lows in fiber loss are being reached, propagation theory is finding new challenges as well. On the one hand, multimode fibers seem desirable with respect to transmitter compatibility, splicing, and fabrication tolerances. On the other hand, the signal distortion caused by mode delay differences in multimode fibers can be considerable and requires equalization-inherent in the fiber or at the fiber end. Beyond that, the wavelength dependence of the refractive index produces dispersion effects serious enough to be of importance. Thinking ahead, one is confronted with the question of fiber handling, strength, and life. The technology of making cables and splices from a brittle material like glass is in its infancy, and we can only indicate the extent of these difficult problems ahead.

  19. Fiber reinforced engineering plastics

    Science.gov (United States)

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  20. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  1. Super capacitor with fibers

    Science.gov (United States)

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  2. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  3. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  4. Current Conveyor Based Multifunction Filter

    OpenAIRE

    Manish Kumar; M.C. Srivastava; Umesh Kumar

    2010-01-01

    The paper presents a current conveyor based multifunction filter. The proposed circuit can be realized as low pass, high pass, band pass and elliptical notch filter. The circuit employs two balanced output current conveyors, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The parameter resonance frequency (\\omega_0) and bandw...

  5. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  6. Filter Fabrics for Airport Drainage.

    Science.gov (United States)

    1979-09-01

    pneumatically filling a woven polypropylene stocking with sand and vibrating it into a prebored hole, while another method uses a polyester nonwoven fabric...Selected Nonwoven Filter Fabrics," Letter Report, June 1977, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss. 18. BalL, J. E...woven and nonwoven plastic filter fabric. It has been developed based on limited field performance observations and the laboratory test evaluation of

  7. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  8. What is dietary fiber?

    Science.gov (United States)

    Prosky, L

    2000-01-01

    Dietary fiber consists of the remnants of the edible plant cell, polysaccharides, lignin, and associated substances resistant to digestion (hydrolysis) by human alimentary enzymes. This physiological definition has been translated into a chemical method (AOAC Method 985.29), which has recently been shown to miss substances of 10, 11, and 12 degrees of polymerization. It also fails to precipitate some hydrolysis-resistant oligosaccharides which contain many physiological properties expected in dietary fiber, such as inulin and oligofructose, indigestible dextrin (Fibersol-2), galactooligosaccharides and the synthetic polymer polydextrose. The Executive Board of the American Association of Cereal Chemists has appointed a committee to explore the possibility of expanding the definition or chemical methodology for dietary fiber to accommodate components that are not hydrolyzed by human alimentary enzymes, yet have the physiological attributes normally associated with dietary fiber. However, the present review suggests that the current definition is sufficient, along with new methodology, to detect recently discovered components of the dietary fiber complex.

  9. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  10. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  11. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  12. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  13. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  14. Comparison of Fiber Counting by Monitor Screen and Eyepieces of Phase Contrast Microscopy

    Directory of Open Access Journals (Sweden)

    Davoud Panahi

    2014-06-01

    Full Text Available Background: These minerals have been extensively used in industrial products such as cement-asbestos sheet and pipe, brake shoe, clutch, insulation materials, etc. Occupational and non - occupational exposures to this carcinogenic material have caused to develop several methods to evaluate airborne asbestos fibers. Materials and Methods: In this study, multiple microscopic method of determining the type and concentration of asbestos fibers has been used in an industry. 3TThe forty five personal3T4T 3T4Tsamples3T4T 3T4Ton3T4T 3T4Tmembrane3T4T 3T4Tfilters (MCE3T4T 3T4Twere collected3T4T 3T4Tof3T4T 3T4Tdifferent3T4T 3T4Tprocesses3T4T 3T4Tof a3T4T 3T4Tmanufacturing factory3T4T 3T4Tof 3Tcement-asbestos sheet4T. 4TThe half of each filter was prepared and then fibers counting were accomplished by ocular PCM and LCD images methods. Another part of filters was used for identification of asbestos fibers elements and types by scanning electron microscope method. Results: Fibers concentration range were determined 0.009-0.243 fibers/cc by direct counting method (Ocular PCM, while by indirect method (LCD Images, results were 0.00-0.117 fibers/cc and statistical tests showed significant difference (p<0.02. Study of elemental composition of fibers by scanning electron microscope confirmed that, the majority of fibers were chrysotile. Study of elemental composition of fibers by scanning electron microscope confirmed that majority of fibers are chrysotile. Conclusion: Due to limitation of study, use of 1.3 megapixels in indirect method, PCM direct method remains one the best methods of Asbestos fibers counting in Iran.

  15. A quantum extended Kalman filter

    International Nuclear Information System (INIS)

    Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R

    2017-01-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)

  16. Honeycomb-like polysulphone/polyurethane nanofiber filter for the removal of organic/inorganic species from air streams.

    Science.gov (United States)

    Chen, Xin; Xu, Yang; Liang, Meimei; Ke, Qinfei; Fang, Yuanyuan; Xu, He; Jin, Xiangyu; Huang, Chen

    2018-04-05

    Nanofiber nonwoven filters, especially those prepared by electrospinning, are of particular interest because of their high filtration efficiency. However, existing electrospun filters suffer from inherent limitations in that both strengths and filtration resistances of the filters leave much to be desired. Herein, we present a novel nonwoven filter that is composed of polysulphone and polyurethane nanofibers. By mimicking the honeycomb structure, a heterogeneous distribution of both fiber diameter and fiber density has been achieved. Compared with nanofiber nonwovens with plain architectures, the honeycomb-like nonwovens possess higher filtration efficiency (∼99.939%), better mechanical strength (∼105.24 N g -1 ) and improved quality factor (∼0.04 Pa -1 ). The filtration efficiency against both inorganic and organic aerosols is guaranteed through the nanofiber surface geometry and the intrinsic charge-retention capacity of polysulphone. Since the production of this nanofiber filter does not need multistep procedures and can be easily scaled up on a needleless electrospinning device, we anticipate that the strategy of endowing nanofibers with honeycomb texture and charge-retention capacity may lead to the development of advanced fiber filters. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Experience with three percutaneous vena cava filters

    International Nuclear Information System (INIS)

    McCowan, T.C.; Ferris, E.J.; Harshfield, D.L.; Hassell, D.R.; Baker, M.L.

    1987-01-01

    Twenty-one Kimray-Greenfield, 33 bird's nest, and 19 Amplatz vena cava filters were placed percutaneously. The Kimray-Greenfield filter was the most difficult to insert. The major problem was the insertion site, which required venipuncture with a 24-F catheter. Minor hemorrhage was frequent, and femoral vein thrombosis occurred in four patients. No migration, caval thrombosis, or pulmonary emboli were seen after Kimray-Greenfield filter placement. The bird's nest filter was relatively easy to insert, although in two cases the filter prongs could not be adequately seated in the wall of the inferior vena cava. Three patients with bird's nest filters had thrombosis below the filter, and three filters migrated to the heart. One migrated filter could not be removed. One patient had multiple small pulmonary emboli at autopsy. No other pulmonary emboli after filter placement were noted. The Amplatz filter was the easiest of the three filters to insert. Only one patient with an Amplatz filter had thrombosis of the vena cava below the filter. No filter migrations were documented, and no recurrent pulmonary emboli were found on clinical or radiologic follow-up. The Amplatz vena cava filter is easier to place than percutaneous Kimray-Greenfield or bird's nest filters, has a low complication rate, and has proven to be clinically effective in preventing pulmonary emboli

  18. Modelling of air flows in pleated filters and of their clogging by solid particles

    International Nuclear Information System (INIS)

    Del Fabbro, L.

    2002-01-01

    The devices of air cleaning against particles are widely spread in various branches of industry: nuclear, motor, food, electronic,...; among these devices, numerous are constituted by pleated porous media to increase the surface of filtration and thus to reduce the pressure drop, for given air flow. The objective of our work is to compensate a lack evident of knowledge on the evolution of the pressure drop of pleated filter during the clogging and to deduct a modelling from it, on the basis of experiments concerning industrial filters of nuclear and car types. The obtained model is a function of characteristics of the filtering medium and pleats, of the characteristics of solid particles deposited on the filter, of the mass of particles and of the aeraulic conditions of air flow. It also depends on data on the clogging of flat filters of equivalent medium. To elaborate this model of pressure drop, an initial stage was carried out in order to characterize, experimentally and numerically, the pressure drop and the distribution of air flow in clean pleated filters of nuclear (high efficiency particulate air filter, in fiberglasses) and car (mean efficiency filter, in fibers of cellulose) types. The numerical model allowed to understand the fundamental role played by the aeraulic resistance of the filtering medium. From an non-dimensional approach, we established a semi-empirical model of pressure drop for a clean pleated filter valid for both studied types of medium; this model is used of first base for the development of the final model of clogging. The study of the clogging of the filters showed the complexity of the phenomenon dependent mainly on a reduction of the surface of filtration. This observation brings us to propose a clogging of pleated filters in three phases. Both first phases are similar in those observed for flat filters, while last phase corresponds to a reduction of the surface of filtration and leads a strong increase of the filter pressure drop

  19. Separation Functional Fibers by Radiation Induced Graft Polymerization and Application

    International Nuclear Information System (INIS)

    Fujiwara, K.

    2006-01-01

    1. Method for manufacturing process of separation functional fiber.Radiation graft machine(Photo 1) was developed by EBARA and Japan atomic energy research institute (JAERI) in 1999. Long Sheet of 1.5 m width is continuously grafted using Electron Beam EB (300 keV).The control of oxygen concentration in the monomer impregnation zone and reactor is very important. Usually 100% or more grafting ratio is obtained under irradiation dose of 150 kGy,.2. Application; Chemical filter (for clean room), Electric de-ionization(for pure water), Mask(for influenza) shows application of functional fiber. In clean room of semiconductor factory, ionic contaminants, such as ammonia gas(NH 3 ) should be removed to extremely low concentration level. Chemical filter (Photo 2) with ion-exchange fabric is widely used

  20. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  1. Sensory pollution from bag-type fiberglass ventilation filters: Conventional filter compared with filters containing various amounts of activated carbon

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Fadeyi, M.O.; Clausen, Geo

    2009-01-01

    was judged to be significantly better than the air downstream of the 6-month-old F7 filter, and was comparable to that from an unused F7 filter. Additionally, the combination filters removed more ozone from the air than the F7 filter, with their respective fractional removal efficiencies roughly scaling......As ventilation filters accumulate particles removed from the airstream, they become emitters of sensory pollutants that degrade indoor air quality. Previously we demonstrated that an F7 bag-type filter that incorporates activated carbon (a "combination filter") reduces this adverse effect compared...... to an equivalent filter without carbon. The aim of the present study was to examine how the amount of activated carbon (AC) used in combination filters affects their ability to remove both sensory offending pollutants and ozone. A panel evaluated the air downstream of four different filters after each had...

  2. Pemodelan Tapis Fabry-perot pada Serat Optik dengan Menggunakan Fiber Bragg Grating

    OpenAIRE

    Pramuliawati, Septi; ', Saktioto; ', Defrianto

    2015-01-01

    Fabry-perot filter was successfully developed by a uniform Fiber Bragg Grating in fiber optic. A characterization of Bragg Grating was analyzed by using computational model with second-order of Transfer Matrix Method based on Coupled Mode Theory. The reflectivity, length of grating, and bandwidth were parametrics to determine the performance of single Bragg Grating. The transmission spectrum showed the longer grating is designed, the larger the reflectivity was produced, so that the transmiss...

  3. Development of a sapphire fiber thermometer using two wavelength bands

    Science.gov (United States)

    Ye, Linhua; Shen, Yonghang

    1996-09-01

    This paper reports the development of a sapphire ((alpha) - Al2O3) single crystal optical fiber thermometer using two wavelength bands. A thin film of precious metal or ceramic deposited onto one end of the sapphire fiber forms a mini-radiation cavity. The other end of the sapphire fiber is coupled to a low-loss silica fiber. Radiation from the small cavity is transmitted along the silica fiber into a photodetection system which consists of a lens, beam splitter, two interference filters (820 nm and 940 nm center wavelength, 30 nm bandwidth) and two silicon photocells. The temperature measurement is based on the detection of radiation from the small cavity. The sapphire fiber (0.25 - 1.0 mm diameter, 100 - 450 mm length) was grown by the laser heated pedestal growth (LHPG) methods. Transmission loss in the sapphire fiber was experimentally measured. Theoretical analysis shows the apparent emittance of the small cavity with a length to diameter (L/D) ratio greater than eight is a constant value near to one, so the small cavity can be considered as a small black-body cavity. Using the developed sapphire fiber temperature sensor, we have built a sapphire fiber thermometer based on a 8098 single-chip microcomputer system. It was calibrated at some known stable temperature point and uses the fundamental radiation law to extrapolate to other temperatures. By taking the ratio of the optical power at two wavelengths, errors due to changes in the system, such as emissivity and transmission losses, can be canceled out. The thermometer has an operating temperature range of 800 to 1900 degrees Celsius, and an accuracy of 0.2% at 1000 degrees Celsius. There are a number of applications of the thermometer both in science and industry.

  4. Hardware embedded fiber sensor interrogation system using intensive digital signal processing

    OpenAIRE

    Wang, Yujuan; Negri, Lucas H.; Kalinowski, Hypolito J.; Mattos, Daniel S.; Negri, Gabriel H.; Paterno, Aleksander S.

    2014-01-01

    The description of an interrogation system for fiber Bragg grating sensors is reported. The full implementation in hardware of the required signal processing is proposed and made publicly available. The hardware description is implemented in a field programmable gate array (FPGA) development kit and the processing units allow one to control an optoelectronic interrogation system that uses the tunable filter method. Since the signal that drives the used Fabry-Perot filter (FFP) using a digital...

  5. Development of filter module for passive filtration and accident gas release confinement system for NPP

    International Nuclear Information System (INIS)

    Yelizarov, P.G.; Efanov, A.D.; Martynov, P.N.; Masalov, D.P.; Osipov, V.P.; Yagodkin, I.V.

    2005-01-01

    Full text of publication follows: One of the urgent problems of the safe NPP operation is air cleaning from radioactive aerosols and volatile iodine compounds under the accident operation conditions of NPP. A principally new passive accident gas release confinement system is used as the basis of the designs of new generation reactor power blocks under the-beyond-design-basis accident conditions with total loss of current. The basic structural component of the passive filtration system (PFS) is the filter-sorber being heated up to 300 deg. C. The filter-sorber represents a design consisting of 150 connected in parallel two-step filtering modules. The first step is intended to clean air from radioactive aerosols, the second one - to clean air from radioactive iodine and its volatile compounds. The filter-sorber is located in the upper point of the exterior protection shell. Due to natural convection, it provides confinement of r/a impurities and controlled steam-gas release from the inter-shell space into atmosphere. The basic specific design feature is the two-section design of the PFS filter module consisting of a coarse-cleaning section and a fine-cleaning section. A combination of layer-by-layer put filtering materials on the basis of glass fiber and metal fiber. The pilot PFS filter module specimen tests run in conditions modeling accident situation indicated that at a filtration rate of 0,3 cm/s the aerodynamic resistance of the module does not exceed 12 Pa, the filtration effectiveness equals 99,99 % in terms of aerosol, no less than 99,9% in terms of radioactive 131 I and no less than 99,0% in terms of organic compounds of iodine (CH 3 131 I); the dust capacity amounts to a value above 50 g/m 2 . The obtained results of tests comply with the design requirements imposed on the PFS filter-sorber module. (authors)

  6. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    Science.gov (United States)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  7. Online Estimation of ARW Coefficient of Fiber Optic Gyro

    OpenAIRE

    Li, Yang; Hu, Baiqing; Qin, Fangjun; Li, Kailong

    2014-01-01

    As a standard method for noise analysis of fiber optic gyro (FOG), Allan variance has too large offline computational burden and data storages to be applied to online estimation. To overcome the barriers, the state space model is firstly established for FOG. Then the Sage-husa adaptive Kalman filter (SHAKF) is introduced in this field. Through recursive calculation of measurement noise covariance matrix, SHAKF can avoid the storage of large amounts of history data. However, the precision and ...

  8. High fiber-low matrix composites: kenaf fiber/polypropylene.

    Science.gov (United States)

    Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree

    2002-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...

  9. Filter-adsorber aging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  10. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  11. Fiber optic hydrogen sensor

    Science.gov (United States)

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  12. Water washable stainless steel HEPA filter

    Science.gov (United States)

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  13. Unscented Kalman filtering for articulated human tracking

    DEFF Research Database (Denmark)

    Boesen Lindbo Larsen, Anders; Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    -of-the-art trackers utilize particle filters, our unimodal likelihood model allows us to use an unscented Kalman filter. This robust and efficient filter allows us to improve the quality of the tracker while using substantially fewer likelihood evaluations. The system is compared to one based on a particle filter...

  14. A class of orthogonal nonrecursive binomial filters.

    Science.gov (United States)

    Haddad, R. A.

    1971-01-01

    The time- and frequency-domain properties of the orthogonal binomial sequences are presented. It is shown that these sequences, or digital filters based on them, can be generated using adders and delay elements only. The frequency-domain behavior of these nonrecursive binomial filters suggests a number of applications as low-pass Gaussian filters or as inexpensive bandpass filters.

  15. Kinetics of stress fibers

    International Nuclear Information System (INIS)

    Stachowiak, Matthew R; O'Shaughnessy, Ben

    2008-01-01

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  16. Kinetics of stress fibers

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Matthew R; O' Shaughnessy, Ben [Department of Chemical Engineering, Columbia University, New York, NY 10027 (United States)], E-mail: bo8@columbia.edu

    2008-02-15

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  17. Progress towards the use of disposable filters

    International Nuclear Information System (INIS)

    Macphail, I.

    1979-08-01

    Thermally degradable materials have been evaluated for service in HEPA filter units used to filter gases from active plants. The motivation was to reduce the bulk storage problems of contaminated filters by thermal decomposition to gaseous products and a solid residue substantially comprised of the filtered particulates. It is shown that while there are no commercially available alternatives to the glass fibre used in the filter medium, it would be feasible to manufacture the filter case and spacers from materials which could be incinerated. Operating temperatures, costs and the type of residues for disposal are discussed for filter case materials. (U.K.)

  18. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  19. QUARTZ FIBER ELECTROSCOPES

    Science.gov (United States)

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  20. Pulse regime in formation of fractal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.

  1. CHARACTERISTICS STUDY OF UNCONVENTIONAL TEXTILE FIBERS RECOVERED FROM RECYCLABLE MATERIALS - PART I

    Directory of Open Access Journals (Sweden)

    OANA Ioan-Pavel

    2015-05-01

    Full Text Available Unconventional textiles are manufactured different from those obtained by the classic spinning weaving and knitting. They are obtained by mechanical or chemical consolidation of a textile backing up of fibrous layers or combinations of layers of fiber and yarn, fabrics and yarns, fabrics or knitted fabrics and fibers. The non-conventional textiles can be obtained by mechanical or chemical consolidation of a system or several systems of wires. The increasing trend of chemical fiber production compared to natural fibers found also in the unconventional fabrics. In addition emphasis is laid increasingly on the use of recyclable materials recovered fibers and preforms or debris resulting from a regular textile processing. Processing unconventional fibers that are recovered from such materials are best suited for the production of unconventional textile. The production of unconventional textile fiber made from layers have the largest share. The fiber layers may have fibers oriented in a single direction, in two or more directions. The fiber layers can enhance mechanical, chemical and mixed. This produces textile auxiliaries for clothing, replacement canvas for buckram wadding, sanitary ware carpet filters, support for synthetic leather, cloth, wallpapers.

  2. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  3. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  4. Compact, Pneumatically Actuated Filter Shuttle

    Science.gov (United States)

    Leighy, Bradley D.

    2003-01-01

    A compact, pneumatically actuated filter shuttle has been invented to enable alternating imaging of a wind-tunnel model in two different spectral bands characteristic of the pressure and temperature responses of a pressure and temperature-sensitive paint. This filter shuttle could also be used in other settings in which there are requirements for alternating imaging in two spectral bands. Pneumatic actuation was chosen because of a need to exert control remotely (that is, from outside the wind tunnel) and because the power leads that would be needed for electrical actuation would pose an unacceptable hazard in the wind tunnel. The entire shuttle mechanism and its housing can be built relatively inexpensively [camera used for viewing the wind-tunnel model. The mechanism includes a pneumatic actuator connected to a linkage. The linkage converts the actuator stroke to a scissor-like motion that places one filter in front of the camera and the other filter out of the way. Optoelectronic sensors detect tabs on the sliding panels for verification of the proper positioning of the filters.

  5. A biological oil adsorption filter.

    Science.gov (United States)

    Pasila, Antti

    2004-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore.

  6. Testing HEPA filters with uranine

    International Nuclear Information System (INIS)

    Jalon, S.

    1987-01-01

    This paper reports experience gained at NASA's Goddard Space Flight Center in buying HEPA filters that were tested for efficiency without DOP. In preparing specifications for bid, we considered whether to test only a sample with DOP or to test every filter with some other aerosol. The choice of other aerosols was among air, salt, and uranine. The authors decided to specify that bidders choose between the British sodium flame test and the French uranine test or propose an acceptable alternative. One bidder proposed cutting an extra flap of paper off each filter, testing it with DOP, and checking the filter for leaks with air. The chosen supplier tested the efficiencies of his filters with uranine and counted the particles with a laser particle spectrometer. Part of this paper explains how the authors evaluated the different tests. The rest of it describes the test equipment, the upstream concentration and its constancy, the particle size distribution and its constancy, the penetration of different size particles, how discriminating the test was, and the issues that it raised

  7. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  8. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  9. Reduced Gravity Zblan Optical Fiber

    Science.gov (United States)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  10. Comparison of fiber length analyzers

    Science.gov (United States)

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  11. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  12. Multiplier-free filters for wideband SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2001-01-01

    This paper derives a set of parameters to be optimized when designing filters for digital demodulation and range prefiltering in SAR systems. Aiming at an implementation in field programmable gate arrays (FPGAs), an approach for the design of multiplier-free filters is outlined. Design results ar...... are presented in terms of filter complexity and performance. One filter has been coded in VHDL and preliminary results indicate that the filter can meet a 2 GHz input sample rate....

  13. Electronmicroscopic examination of white cell reduction by four white cell-reduction filters.

    Science.gov (United States)

    Steneker, I; van Luyn, M J; van Wachem, P B; Biewenga, J

    1992-06-01

    The mechanisms of white cell (WBC) reduction in 16-hour-old CPDA-1 red cell (RBC) concentrates by filtration on a column filter and on three different flatbed filters were studied by electron microscopy, with special emphasis on cell-to-cell interaction, cell damage, and interaction of blood cells with the material. Generally, lymphocytes were removed by mechanical sieving and monocytes by adherence and mechanical sieving. Granulocyte depletion occurred by mechanical sieving, direct adhesion to the fibers, and indirect adhesion to activated and spread platelets. In the column filter, most granulocytes were captured by adhesion. In the coarse layers of two of the flatbed filters, indirect adhesion was most prominent, whereas direct adhesion was most prominent in the other flatbed filter. For the most part, granulocytes were captured by direct adhesion in the fine layers, but in one flatbed filter, capture apparently occurred by mechanical sieving. The results of this study suggest that the efficiency and the mechanism of WBC reduction depend on the physicochemical characteristics of the non-woven materials in the filters as well as the cellular composition of the RBC concentrates.

  14. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.

    2008-01-01

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor(reg s ign) 3000) used at PNNL for self absorption effects. There were two methods used in the study, (1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and (2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended

  15. Fiber optics: A research paper

    Science.gov (United States)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  16. Value-added products from chicken feather fiber and protein

    Science.gov (United States)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between

  17. Wavelength-switchable multiwavelength erbium-doped fiber laser based on a D-shaped fiber with a photoresist thin-film overlay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)

    2011-04-15

    A wavelength-switchable multiwavelength erbium-doped fiber (EDF) laser based on a D-shaped fiber with a photoresist (PR) thin-film overlay is proposed and experimentally demonstrated. The D-shaped fiber with a PR thin-film overlay is implemented as a multichannel filter. Based on the evanescent field coupling between the D-shaped fiber and the PR thin-film overlay, periodic transmission characteristics are obtained. The wavelength spacing of the D-shaped fiber with the PR thin-film overlay is controlled by changing the thickness and the refractive index of the PR thin film overlay. By inserting the proposed multichannel filter into an EDF ring laser, a multiwavelength EDF laser is achieved. The homogenous line broadening of erbium ions for the realization of stable operation of the multiwavelength EDF ring laser is suppressed by using a nonlinear polarization rotation. A high-quality multiwavelength output with a high extinction ratio of {approx}0 dB is realized. The output fluctuation of the proposed multiwavelength EDF ring laser is measured to be less than 0.3 dB. Since the transmission characteristics of the proposed multichannel filter are controlled by using two orthogonal input polarization states, multiwavelength lasing outputs are switched.

  18. DEM Simulation of Particle Clogging in Fiber Filtration

    Science.gov (United States)

    Tao, Ran; Yang, Mengmeng; Li, Shuiqing

    2015-11-01

    The formation of porous particle deposits plays a crucial role in determining the efficiency of filtration process. In this work, an adhesive discrete element method (DEM), in combination with CFD, is developed to dynamically describe these porous deposit structures and the changed flow field between two parallel fibers under the periodic boundary conditions. For the first time, it is clarified that the structures of clogged particles are dependent on both the adhesion parameter (defined as the ratio of interparticle adhesion to particle inertia) and the Stokes number (as an index of impaction efficiency). The relationship between the pressure-drop gradient and the coordination number along the filtration time is explored, which can be used to quantitatively classify the different filtration regimes, i.e., clean filter stage, clogging stage and cake filtration stage. Finally, we investigate the influence of the fiber separation distance on the particle clogging behavior, which affects the collecting efficiency of the fibers significantly. The results suggest that changing the arrangement of fibers can improve the filter performance. This work has been funded by the National Key Basic Research and Development Program (2013CB228506).

  19. Smart polymeric materials in forms of fiber and film

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    1998-01-01

    Chemical grafting: graft polymerization is a powerful technology to append novel functionality to base fibers, clothes, felts, films and others, while maintaining their original properties. As shown in Figure 1, while a gardener may use a pair of shears to cut the branch, to cut the molecular branch of a polymeric material, one can utilize the radiation energy. Effective utilization of the radiation energy can proceed to a novel reaction that is impossible for other conventional methods and develop a new material bearing outstanding functions. This technology is named radiation-induced graft polymerization (RIGP). In this article, the present research and development of novel functional polymeric materials by radiation-induced graft polymerization is described. The felt of intertwined fibers has been widely used as a filter to remove particles from air but not toxic gaseous compounds. However, by RIGP, one can transform the felt into a high functional filter that will absorb the toxic gaseous compounds while removing particles simultaneously. As a result, the RIGP technology, which is impossible by conventional technology, has enabled the development of a novel functional material that produce highly pure air. Commercialization of this filter for applications in a semiconductor manufacturing facility and as an air purifier is under process. Moreover, this filter can also be used to produce highly purified water by removing toxic heavy metals. Commercially available polyethylene films are also been transform into conductive separators by RIGP to increase the lifetime of a battery by more than five-fold. (J.P.N)

  20. Fast algorithm for Morphological Filters

    International Nuclear Information System (INIS)

    Lou Shan; Jiang Xiangqian; Scott, Paul J

    2011-01-01

    In surface metrology, morphological filters, which evolved from the envelope filtering system (E-system) work well for functional prediction of surface finish in the analysis of surfaces in contact. The naive algorithms are time consuming, especially for areal data, and not generally adopted in real practice. A fast algorithm is proposed based on the alpha shape. The hull obtained by rolling the alpha ball is equivalent to the morphological opening/closing in theory. The algorithm depends on Delaunay triangulation with time complexity O(nlogn). In comparison to the naive algorithms it generates the opening and closing envelope without combining dilation and erosion. Edge distortion is corrected by reflective padding for open profiles/surfaces. Spikes in the sample data are detected and points interpolated to prevent singularities. The proposed algorithm works well both for morphological profile and area filters. Examples are presented to demonstrate the validity and superiority on efficiency of this algorithm over the naive algorithm.