WorldWideScience

Sample records for nano-sized zn powder

  1. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  2. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  3. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    Science.gov (United States)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  4. Preparation of zinc ferrite nano powders by high energy wet-milling method and investigation of Crystallites size variation during this process

    International Nuclear Information System (INIS)

    Masoudi, H.; Aftabi, A.; Mozafari, M.; Amighian, J.

    2007-01-01

    In this research work ZnFe 2 O 4 nano powders were prepared by high-energy wet-milling process, using metallic Fe and Zn powders. The process was investigated by XRD technique. 10% of the zinc ferrite was formed after 10 h milling. The as-milled sample was annealed at 500, 550 and 600 d egree C . Ultimately a single sample was obtained at 600 d egree C . Using sherrer's formula, the mean crystallite size of the as-milled and annealed powders were calculated. These were in the range of 17.9 to 20.4 nm.

  5. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  6. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  8. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  9. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  10. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  11. Nano crystals of Ni doped Zn O semiconductor by Sol-Gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Carrero, A.; Sagredo, V. [Universidad de Los Andes, Departamento de Fisica, Laboratorio de Magnetismo, 5101 Merida (Venezuela, Bolivarian Republic of); Larionova, J., E-mail: aneelyc@gmail.com [Universite Montpellier II, 2 Place Eugene Bataillon, 34090 Montpellier (France)

    2016-11-01

    Nanoparticles of the system Zn{sub 0.95}O were prepared by sol-gel self - combustion method and a study of their structural, optical and magnetic properties were conducted. X-ray diffraction study shows a hexagonal wurtzite structure for the nano compound. The formation of the wurtzite structure in Ni doped Zn O was further confirmed by Fourier transform infra-red spectrometry. Transmission electron microscopy revealed an average size of 31 nm for the particles. Optical absorption spectra shows that the band energy of Zn{sub 0.95}Ni{sub 0.}9{sub 5}O powders is about 2.54 eV at room temperature. A study of the magnetic properties of the nano powders of Zn O: Ni, reveals paramagnetic behavior, with interaction ferromagnetic between particles. (Author)

  12. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  13. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, I-Lun; Huang, Yuh-Jeen, E-mail: yjhuang@mx.nthu.edu.tw [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences (China)

    2013-09-15

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum-in this case, fetal bovine serum-in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 {mu}m) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn{sup 2+} release contributes to cytotoxicity. Although more extracellular Zn{sup 2+} release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  14. Preparation of nanometer sized Mn doped Zn based oxides powder for DMS applications

    CSIR Research Space (South Africa)

    Das, J

    2009-01-01

    Full Text Available In order to study the size dependent DMS (Diluted Magnetic Semiconductor) behavior of Mn doped ZnO, the authors have systematically prepared a series of nanosized green powder based on Mn doped ZnO (Zn 1-x Mn x O, where x=0.02 - 0.1) materials using...

  15. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    International Nuclear Information System (INIS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-01-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO 2 , primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30–50 nm), and nano-silicon dioxide (nano-SiO 2 , primary diameter: 10–30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO 2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1–2.1 μm and 166–261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3–6.0 μm and NMD: 156–462 nm), and the RD (MMAD: 5.2–11.2 μm and NMD: 198–479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  16. Structural and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal Powders

    International Nuclear Information System (INIS)

    Hassan, N.K.; Hashim, M.R.

    2013-01-01

    High quality ZnO nano structures have been fabricated at room temperature by a simple vacuum thermal evaporator from metallic Zn powders (99.999 % purity) on a silicon (100) substrate. The Zn thin films were then transferred into a thermal tube furnace for oxidation at 700 degree Celsius for different time durations. Time was found to be a critical factor in the synthesis. This was followed by characterization of their morphological, structural and optical properties. The morphology of the grown ZnO nano structures exhibited several large grains, which increased gradually with increasing oxidation time. The crystallinity of the grown nano structures was investigated using X-ray diffraction, revealing that the synthesized ZnO was in hexagonal wurtzite phase. The photoluminescence (PL) spectra of the fabricated ZnO nano structures showed high intensity peak in the UV region due to near-band-edge (NBE) emission in which the structures oxidized for 30 min showing highest intensity. (author)

  17. The use of nano-sized eggshell powder for calcium fortification of cow?s and buffalo?s milk yogurts.

    Science.gov (United States)

    El-Shibiny, Safinaze; El-Gawad, Mona Abd El-Kader Mohamed Abd; Assem, Fayza Mohamed; El-Sayed, Samah Mosbah

    2018-01-01

    Calcium is an essential element for the growth, activity, and maintenance of the human body. Eggshells are a waste product which has received growing interest as a cheap and effective source of dietary calcium. Yogurt is a food which can be fortified with functional additives, including calcium. The aim of this study was to produce yogurt with a high calcium content by fortification with nano-sized eggshell powder (nano-ESP). Nano-sized ESP was prepared from pre-boiled and dried eggshell, using a ball mill. Yogurt was prepared from cow’s milk supplemented with 3% skimmed milk powder, and from buffalo’s milk fortified with 0.1, 0.2 and 0.3% and 0.1, 0.3 and 0.5% nano-ESP respectively. Electron microscopic transmission showed that the powder consisted of nano-sized crystalline struc- tures (~10 nm). Laser scattering showed that particles followed a normal distribution pattern with z-average of 590.5 nm, and had negative zeta-potential of –9.33 ±4.2 mV. Results regarding changes in yogurt composi- tion, acid development, calcium distribution, biochemical changes, textural parameters and sensory attributes have been presented and discussed. The addition of up to 0.3% nano-ESP made cow and buffalo high-calcium yogurts with an acceptable composition and quality. High-calcium yogurt may offer better health benefits, such as combating osteoporosis.

  18. Plasma-arc reactor for production possibility of powdered nano-size materials

    International Nuclear Information System (INIS)

    Hadzhiyski, V; Mihovsky, M; Gavrilova, R

    2011-01-01

    Nano-size materials of various chemical compositions find increasing application in life nowadays due to some of their unique properties. Plasma technologies are widely used in the production of a range of powdered nano-size materials (metals, alloys, oxides, nitrides, carbides, borides, carbonitrides, etc.), that have relatively high melting temperatures. Until recently, the so-called RF-plasma generated in induction plasma torches was most frequently applied. The subject of this paper is the developments of a new type of plasma-arc reactor, operated with transferred arc system for production of disperse nano-size materials. The new characteristics of the PLASMALAB reactor are the method of feeding the charge, plasma arc control and anode design. The disperse charge is fed by a charge feeding system operating on gravity principle through a hollow cathode of an arc plasma torch situated along the axis of a water-cooled wall vertical tubular reactor. The powdered material is brought into the zone of a plasma space generated by the DC rotating transferred plasma arc. The arc is subjected to Auto-Electro-Magnetic Rotation (AEMR) by an inductor serially connected to the anode circuit. The anode is in the form of a water-cooled copper ring. It is mounted concentrically within the cylindrical reactor, with its lower part electrically insulated from it. The electric parameters of the arc in the reactor and the quantity of processed charge are maintained at a level permitting generation of a volumetric plasma discharge. This mode enables one to attain high mean mass temperature while the processed disperse material flows along the reactor axis through the plasma zone where the main physico-chemical processes take place. The product obtained leaves the reactor through the annular anode, from where it enters a cooling chamber for fixing the produced nano-structure. Experiments for AlN synthesis from aluminium power and nitrogen were carried out using the plasma reactor

  19. Preparation and performance of ZnO/Polyaniline nano-composite for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.P.; Chang, X.C.; Wang, Z.M.; Han, K.F.; Zhu, H. [Beijing Univ. of Chemical Technology, Beijing (China). School of Science

    2010-07-01

    Supercapacitors combine the advantages of traditional capacitors and batteries. In this study, a zinc oxide (ZnO-PANI) nano-composite material was fabricated in order to investigate its behaviour in a supercapacitor application. The ZnO nano-powder was synthesized using the sol-gel method. An inverted emulsion polymerization method was then used to prepare the ZnO/PANI nanocomposite. X-ray diffraction (XRD) analyses demonstrated that the prepared ZnO had a hexagonal structure. The ZnO/PANI composite electrode was prepared. Electrochemical impedance spectroscopy (EIS) analyses indicated that the nano-composite material functioned well as an electrode. The highest capacitance rating achieved by the electrode was 31.82 F per g. 6 refs., 4 figs.

  20. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  1. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    International Nuclear Information System (INIS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  2. Nano-ZnO Doping Induced Changes in Structure, Mechanical and Optical Properties of PVA Films

    International Nuclear Information System (INIS)

    Abdel-Galil, A.; BalboulM, R.; Ali, H.E.

    2015-01-01

    Zinc oxide ( ZnO ) nanoparticles ( NPs) were synthesized using t he co-precipitation method. Transmission electron microscope (TEM) was used to confirm the nanoparticle size of the ZnO powder sample. ZnO NPs (with different ratios) were dispersed into polyvinyl alcohol (PVA) matrix to get ZnO/PVA nano composites using the blending method. The structure of Pva polymer and ZnO/PVA nano composites was identified by X - ray diffraction (XRD). Thermogravimetric analysis (TGA) of PVA and ZnO/PVA nano composites has been carried out before and after γ- irradiation with different doses . The TGA , DTG thermo grams and the degradation activation energy have been studied. The results indicated the enhancement in thermal stability of PVA polymer as an effect of ZnO NPs. Irradiation doses lead to a change in the degradation activation energy as a result of the degradation and cross- linking processes of the PVA polymer. Moreover, the mechanical performance of PVA polymer has been improved by adding ZnO NPs and by γ- irradiation. The optical band gap of the PVA film was investigated with different ratios of ZnO NPs. The band gap de creased with increasing the ZnO NPs ratio. The effect of γ-irradiation, with different doses on the optical band gap of ZnO/PVA nano composites also has been studied

  3. Investigation of structural and magnetic properties of Ni0.5Zn0.5Fe2O4 nano powders prepared by self combustion method

    International Nuclear Information System (INIS)

    Sudheesh, V.D.; Nehra, J.; Vinesh, A.; Sebastian, V.; Lakshmi, N.; Dutta, Dimple P.; Reddy, V.R.; Venugopalan, K.; Gupta, Ajay

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Ni 0.5 Zn 0.5 Fe 2 O 4 prepared by self combustion with uniform/nonuniform heating. ► Characterized using TEM, XRD, in-field Mössbauer and DC magnetometry. ► Leads to bimodal (S1) and very narrow size distribution (S2) type nano samples. ► S1 has magnetic properties of bulk Ni 0.5 Zn 0.5 Fe 2 O 4 . ► Although very even sized, S2 large magnetic anisotropy distribution. -- Abstract: Nano powders of Ni 0.5 Zn 0.5 Fe 2 O 4 have been synthesized by the self-combustion method at a relatively low temperature of 473 K under conditions of non-uniform and uniform heating. Rietveld fitting of X-ray diffractograms confirm the formation of the pure spinel phase in both samples. Transmission electron microscopy indicates that the sample prepared under non-uniform heating has a bimodal particle size distribution (average values 16 nm and 6 nm) while the one prepared under uniform heating has a very narrow particle size distribution (average size 4 nm). Low temperature, in-field Mössbauer spectroscopic studies clearly show surface spin contributions. The hyperfine fields and Curie temperature of the non-uniformly heated sample are in good agreement with those reported for the corresponding bulk samples. Despite having a very narrow particle size distribution, the uniformly heated sample has a large anisotropy distribution which is evident in the broad transition visible in the temperature dependent magnetization curve. It is also corroborated by the fact that the experimental magnetization curve at room temperature requires two Langevin functions for satisfactory reproduction.

  4. Investigation of effective parameters in preparation and controlling lithium fluoride nano size powder

    International Nuclear Information System (INIS)

    Naderi, S.; Sarraf Mamoory, F.; Riahi Noori, N.

    2007-01-01

    In this research, the reaction of LiOH + HF+LiF+H 2 O has been selected and some precipitation parameters such as pH, temperature, time, super saturation, q d agitation type have been studied, and controlled. The morphology, phase analysis and particle size of the resulting powders were analyzed by SEM, XRD and LPSA. Finally, at temperature 2S d ig C , pH of about 2-3, reaction time less than 1 sec, and agitation by ultrasonic bath, the pure nano lithium fluoride powders of about 100 nm were produced

  5. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    OpenAIRE

    Dong-Yeol Yang; Youngja Kim; Min Young Hur; Hae June Lee; Yong-Jin Kim; Tae-Soo Lim; Ki-Bong Kim; Sangsun Yang

    2015-01-01

    This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder) using an in situ one-step process via radio frequency (RF) thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the r...

  6. Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages

    Energy Technology Data Exchange (ETDEWEB)

    Gain, Asit Kumar [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: eeycchan@cityu.edu.hk; Yung, Winco K.C. [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2009-05-25

    The effect of nano Ni additions in Sn-9Zn and Sn-8Zn-3Bi solders on their interfacial microstructures and shear loads with Au/Ni/Cu pad metallization in ball grid array (BGA) applications were investigated. After the addition of nano Ni powder in Sn-based lead-free solders, there were no significant changes in the interfacial microstructure. But, in the solder region a very fine Zn-rich phase was observed. Also on the fracture surfaces a fine Zn-Ni compound was found. After the addition of nano Ni powder in Sn-based solders, the shear loads were increased due to a refinement of the microstructure and in addition, ductile fracture surfaces were clearly observed. The shear loads of the plain Sn-9Zn and Sn-8Zn-3Bi solders after one reflow cycle were about 1798 g and 2059 g, respectively. After the addition of nano Ni powder, their loads were about 2172 g and 2212 g, respectively, after one reflow cycle and their shear loads after eight reflow cycles were about 2099 g and 2081 g, respectively.

  7. Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages

    International Nuclear Information System (INIS)

    Gain, Asit Kumar; Chan, Y.C.; Yung, Winco K.C.

    2009-01-01

    The effect of nano Ni additions in Sn-9Zn and Sn-8Zn-3Bi solders on their interfacial microstructures and shear loads with Au/Ni/Cu pad metallization in ball grid array (BGA) applications were investigated. After the addition of nano Ni powder in Sn-based lead-free solders, there were no significant changes in the interfacial microstructure. But, in the solder region a very fine Zn-rich phase was observed. Also on the fracture surfaces a fine Zn-Ni compound was found. After the addition of nano Ni powder in Sn-based solders, the shear loads were increased due to a refinement of the microstructure and in addition, ductile fracture surfaces were clearly observed. The shear loads of the plain Sn-9Zn and Sn-8Zn-3Bi solders after one reflow cycle were about 1798 g and 2059 g, respectively. After the addition of nano Ni powder, their loads were about 2172 g and 2212 g, respectively, after one reflow cycle and their shear loads after eight reflow cycles were about 2099 g and 2081 g, respectively.

  8. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Dong-Yeol Yang

    2015-11-01

    Full Text Available This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder using an in situ one-step process via radio frequency (RF thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the rate of surface evaporation. The simulation is conducted to determine the variation of the input power and the distance from the plasma torch to the feeding nozzle. It was demonstrated experimentally that the nano-powder ratio in the micro-nano-powder mixture can be controlled by adjusting the feeding rate, plasma power, feeding position and quenching effect during plasma treatment. The ratio of nano-particles in the micro-nano-powder mixture was controlled in a range from 0.1 (wt. % to 30.7 (wt. %.

  9. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO

    Science.gov (United States)

    Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan

    2010-11-01

    The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.

  10. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    Science.gov (United States)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  11. The gas-sensing properties of thick film sensors based on nano-ZnFe2O4 prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu Xiangfeng; Jiang Dongli; Zheng Chenmou

    2006-01-01

    ZnFe 2 O 4 sensors were fabricated from nano-ZnFe 2 O 4 powders prepared by hydrothermal method and their gas-sensing properties were investigated. It was found that the phase composition of the product and the gas-sensing properties greatly depend on the reaction pH value and the reaction temperature. Nano-ZnFe 2 O 4 powders could be obtained at a pH of 8-10 and the sensor based on the nano-ZnFe 2 O 4 powder prepared at 220 deg. C exhibited the best performance, characterized by high sensitivity to low concentrations of C 2 H 5 OH at 180 deg. C, especially, the sensitivity to 100 ppm C 2 H 5 OH was as high as 76

  12. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  13. Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion

    Science.gov (United States)

    Sijo, A. K.; Dutta, Dimple P.

    2018-04-01

    The study reports the tuning of magnetic and structural properties of nano-sized CoCrFeO4 via post-annealing treatment. CoCrFeO4 nano-powder has been prepared by solution self-combustion method. The structural and magnetic properties have been studied over a range of annealing temperatures (300-900 °C). The formation of the phase pure CoCrFeO4 spinel has been confirmed from powder XRD analysis. The crystallite size is observed to increase with an increase in annealing temperature. On annealing, the value of magnetic parameters-remanence, coercivity and saturation magnetization have enhanced. All the samples exhibit irreversibility at low-temperature measurements.

  14. Morphological and structural characterization of the Zn0,9Mn0,1O powder synthesized by combustion reaction and Pechini

    International Nuclear Information System (INIS)

    Ribeiro, M.A.; Torquato, R.; Simoes, A.N.; Costa, A.C.F.M.; Gama, L.; Kiminami, R.H.G.A.

    2009-01-01

    Zinc oxide, due to the piezoelectric and electro-optical characteristics, is used in application such as, chemical sensor, varistor, transparent conductive thin film and DMS. The aim of this work is to evaluate and compare structural and morphological characteristics of nanometric powders of Zn 0,9 Mn 0,1 O prepared by chemical synthesis of combustion reaction and Pechini method. The powders were characterized by XRD, SEM and BET. The XRD data shown to both studied method the presence of ZnO phase with hexagonal structure and without second phase. The powder prepared by combustion reaction presented 9% of reduction in crystallinity and 42% of increase in surface area in comparison with the powder prepared by Pechini method. The morphological analysis of the powder showed that both method produce powders with soft agglomerates constituted by nano size particles. (author)

  15. Straightforward fabrication of black nano silica dusting powder for latent fingerprint imaging

    Science.gov (United States)

    Komalasari, Isna; Krismastuti, Fransiska Sri Herwahyu; Elishian, Christine; Handayani, Eka Mardika; Nugraha, Willy Cahya; Ketrin, Rosi

    2017-11-01

    Imaging of latent fingerprint pattern (aka fingermark) is one of the most important and accurate detection methods in forensic investigation because of the characteristic of individual fingerprint. This detection technique relies on the mechanical adherence of fingerprint powder to the moisture and oily component of the skin left on the surface. The particle size of fingerprint powder is one of the critical parameter to obtain excellent fingerprint image. This study develops a simple, cheap and straightforward method to fabricate Nano size black dusting fingerprint powder based on Nano silica and applies the powder to visualize latent fingerprint. The nanostructured silica was prepared from tetraethoxysilane (TEOS) and then modified with Nano carbon, methylene blue and sodium acetate to color the powder. Finally, as a proof-of-principle, the ability of this black Nano silica dusting powder to image latent fingerprint is successfully demonstrated and the results show that this fingerprint powder provides clearer fingerprint pattern compared to the commercial one highlighting the potential application of the nanostructured silica in forensic science.

  16. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil

    International Nuclear Information System (INIS)

    Kool, Pauline L.; Diez Ortiz, Maria; Gestel, Cornelis A.M. van

    2011-01-01

    The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl 2 were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants K f of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl 2 respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl 2 , respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size. - Highlights: → ZnO nanoparticles and non-nano ZnO were equally toxic to Folsomia candida in soil. → Pore water from soil spiked with ZnO nanoparticles showed saturation with zinc suggesting aggregation. → Pore water based EC50 values for ZnO nanoparticles and ZnCl 2 were similar. → ZnO nanoparticle toxicity in soil was most probably due to Zn dissolution from the nanoparticles. - ZnO nanoparticle toxicity to springtails in soil can be explained from Zn dissolution but not from particle size.

  17. Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method

    International Nuclear Information System (INIS)

    Rafea, M. Abdel; Farag, A.A.M.; Roushdy, N.

    2009-01-01

    In this work, a stoichiometry Zn 0.5 Cd 0.5 S nano-structured powder was synthesized. Thin films of different thicknesses of Zn 0.5 Cd 0.5 S were prepared by dip-coating method onto glass substrates. The X-ray diffraction analysis of the prepared powder and films were performed to investigate the crystalline structure. Some structural parameters such as the mean crystallite size and the internal lattice strain were calculated. The composition analysis was made by the energy dispersive X-ray technique, EDX. Scanning electron micrographs, SEM showed that the prepared films are nearly homogeneous and consists of nearly parallel surfaces and the thickness was determined by the cross section imaging. The transmission spectra, T(λ), of the films at normal incidence of light were obtained in the spectral region 190-1100 nm. The optical constants of Zn 0.5 Cd 0.5 S films were determined using the interference maxima and minima of the transmission spectrum. The dispersion of refractive index was discussed in terms of the single-oscillator model and the important oscillating parameters were determined. The dependence of absorption coefficient on the photon energy was determined and the analysis of the result showed that the optical transition in Zn 0.5 Cd 0.5 S is allowed and indirect. The thickness dependence of the obtained optical parameters was also considered.

  18. Thermoluminescent properties of ZnS:Mn nanocrystalline powders

    International Nuclear Information System (INIS)

    Ortiz-Hernández, Arturo Agustín; Méndez García, Víctor Hugo; Pérez Arrieta, María Leticia; Ortega Sígala, José Juan

    2015-01-01

    Thermoluminescent ZnS nanocrystals doped with Mn 2+ ions were synthesized by chemical co-precipitation method. From X-ray diffraction studies it was observed that the synthesized nanoparticles have cubic zinc blende structure with average sizes of about 40–50 nm. Morphology was analyzed by TEM. Photoluminescence studies showed two transitions, one of them close to 396 nm and other close to 598 nm, which is enhanced with increasing dopant concentration, this behavior was also observed in the cathodoluminescence spectrum. The thermoluminescence gamma dose-response has linear behavior over dose range 5–100 mGy, the glow curve structure shows two glow peaks at 436 K and at 518 K that were taken into account to calculate the kinetic parameters using the Computerized Glow Curve Deconvolution procedure. - Highlights: • Nanocrystals in powder of ZnS:Mn were synthesized using the co-precipitation method. • The integrated TL spectra has a linear behavior on the dose range 5–100 mGy of γ-radiation. • The kinetic parameters were obtained by the CGCD procedure. • Results support the possible use of nanocrystalline ZnS:Mn as a new γ-dose nanoTLD

  19. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    Science.gov (United States)

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  1. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl{sub 2} to Folsomia candida (Collembola) in relation to bioavailability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Kool, Pauline L., E-mail: pauline.kool@falw.vu.nl [Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Diez Ortiz, Maria [Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Pole de Recherche ROVALTAIN en Toxicologie Environnementale et Ecotoxicologie, Batiment Rhovalparc, BP 15173, 26958 Valence Cedex 9 (France); Gestel, Cornelis A.M. van [Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2011-10-15

    The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl{sub 2} were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants K{sub f} of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl{sub 2} respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl{sub 2}, respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size. - Highlights: > ZnO nanoparticles and non-nano ZnO were equally toxic to Folsomia candida in soil. > Pore water from soil spiked with ZnO nanoparticles showed saturation with zinc suggesting aggregation. > Pore water based EC50 values for ZnO nanoparticles and ZnCl{sub 2} were similar. > ZnO nanoparticle toxicity in soil was most probably due to Zn dissolution from the nanoparticles. - ZnO nanoparticle toxicity to springtails in soil can be explained from Zn dissolution but not from particle size.

  2. Investigation of structural and magnetic properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano powders prepared by self combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Sudheesh, V.D.; Nehra, J.; Vinesh, A. [Department of Physics, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan (India); Sebastian, V. [Department of Physics, Nirmalagiri College, Kuthuparamba 670701, Kerala (India); Lakshmi, N., E-mail: nambakkat@yahoo.com [Department of Physics, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan (India); Dutta, Dimple P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Reddy, V.R. [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001, M.P. (India); Venugopalan, K. [Department of Physics, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan (India); Gupta, Ajay [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001, M.P. (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} prepared by self combustion with uniform/nonuniform heating. ► Characterized using TEM, XRD, in-field Mössbauer and DC magnetometry. ► Leads to bimodal (S1) and very narrow size distribution (S2) type nano samples. ► S1 has magnetic properties of bulk Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}. ► Although very even sized, S2 large magnetic anisotropy distribution. -- Abstract: Nano powders of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} have been synthesized by the self-combustion method at a relatively low temperature of 473 K under conditions of non-uniform and uniform heating. Rietveld fitting of X-ray diffractograms confirm the formation of the pure spinel phase in both samples. Transmission electron microscopy indicates that the sample prepared under non-uniform heating has a bimodal particle size distribution (average values 16 nm and 6 nm) while the one prepared under uniform heating has a very narrow particle size distribution (average size 4 nm). Low temperature, in-field Mössbauer spectroscopic studies clearly show surface spin contributions. The hyperfine fields and Curie temperature of the non-uniformly heated sample are in good agreement with those reported for the corresponding bulk samples. Despite having a very narrow particle size distribution, the uniformly heated sample has a large anisotropy distribution which is evident in the broad transition visible in the temperature dependent magnetization curve. It is also corroborated by the fact that the experimental magnetization curve at room temperature requires two Langevin functions for satisfactory reproduction.

  3. Direct synthesis of nano-sized glass powders with spherical shape by RF (radio frequency) thermal plasma

    International Nuclear Information System (INIS)

    Seo, J.H.; Kim, J.S.; Lee, M.Y.; Ju, W.T.; Nam, I.T.

    2011-01-01

    A new route for obtaining very small, spheroid glass powders is demonstrated using an RF (radio frequency) thermal plasma system. During the process, four kinds of chemicals, here SiO 2 , B 2 O 3 , BaCO 3 , and K 2 CO 3 , were mixed at pre-set weight ratios, spray-dried, calcined at 250 deg. C for 3 h, and crushed into fragments. Then, they were successfully reformed into nano-sized amorphous powders (< 200 nm) with spherical shape by injecting them along the centerline of an RF thermal plasma reactor at ∼ 24 kW. The as-synthesized powders show negligible (< 1%) composition changes when compared with the injected precursors of raw material compounds.

  4. Room temperature ferromagnetism in nano-crystalline Co:ThO2 powders

    International Nuclear Information System (INIS)

    Bhide, M.K.; Kadam, R.M.; Godbole, S.V.; Tyagi, A.K.; Salunke, H.G.

    2012-01-01

    The major interest in dilute magnetic semiconductors (DMS's) had been directed towards the synthesis of room temperature ferromagnetic (RTF) materials for their potential applications in spintronic devices. Room temperature (RT) ferromagnetism was initially reported in Co doped TiO 2 , ZnO 2 and SnO 2 thin films and in the recent past in transition metal doped wide band gap materials. In the present paper we report the synthesis of Co doped ThO 2 nano powders by urea combustion method. The XRD characterization of 300℃ annealed samples confirmed formation of ThO 2 in the cubic phase and the average crystallite size obtained using Scherrer's formula was around 6 nm

  5. Sonochemical synthesis and characterization of nano-sized zinc(II coordination complex as a precursor for the preparation of pure-phase zinc(II oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2017-01-01

    Full Text Available In current study, nanoparticles and single crystals of a Zn(II coordination complex, [Zn(dmphI2](1, {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine}, have been synthesized by the reaction of zinc(II acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy (SEM, X-ray powder diffraction (XRD, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of nano-sized 1 has been studied by thermogravimetric (TG and differential thermal analyses (DTA. Structural determination of compound 1 reveals the Zn(II ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-Phenanthroline ligand and two terminal I atoms. The effect of supercritical condition on stability, size and morphology of nano-structured compound 1 has also been studied. The XRD pattern of the residue obtained from thermal decomposition of nano-sized compound 1 at 600 °C under air atmosphere provided pure phase of ZnO with the average particles size of about 31 nm.

  6. Characteristics Of The Porous Body Sintered By Nano-Sized Fe-Cr-Al Alloy Powder

    Directory of Open Access Journals (Sweden)

    Lee Su-In

    2015-06-01

    Full Text Available Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE in ethanol. Its process consisted of the several steps; 1 coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2 heat treatment of debinding to remove the polyurethane sponge and 3 sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.

  7. Morphological characterization of tungsten trioxide nano powders synthesized by Sol-Gel modified Pechini's method

    International Nuclear Information System (INIS)

    Ghasemi, Leila; Jafari, Hassan

    2017-01-01

    Sol-gel modified Pechini's method was used to prepare WO 3 nano powders using dicarboxylic acid and polyethylene glycol as the chelating agent and polymeric source, respectively. WO 3 powders were first prepared by calcination of resin precursor at 550 deg C under various initial concentrations of metal ion (12.5-50 mmol), acid (125-500 mmol), a complexing agent (32-262 mmol), and polyethylene glycol (1-16.5 mmol) in the air atmosphere. The products were characterized using X-ray powder diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy. The results revealed that the WO 3 nano powders prepared with different amounts of chelating agent and polyethylene glycol, crystallized in monoclinic phase. The nano powders were impurity-free due to the presence of the complexing agent and polyethylene glycol as carbon sources. Morphological evolution indicated that the nano powders evolved from rod-like to regular and spherical shapes, depending on complexing agent and polyethylene glycol amounts. Nano powders with an average particle size of approximately 58 nm and a narrow size distribution were obtained. (author)

  8. Morphological characterization of tungsten trioxide nano powders synthesized by Sol-Gel modified Pechini's method

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Leila; Jafari, Hassan, E-mail: jafari_h@yahoo.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of)

    2017-11-15

    Sol-gel modified Pechini's method was used to prepare WO{sub 3} nano powders using dicarboxylic acid and polyethylene glycol as the chelating agent and polymeric source, respectively. WO{sub 3} powders were first prepared by calcination of resin precursor at 550 deg C under various initial concentrations of metal ion (12.5-50 mmol), acid (125-500 mmol), a complexing agent (32-262 mmol), and polyethylene glycol (1-16.5 mmol) in the air atmosphere. The products were characterized using X-ray powder diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy. The results revealed that the WO{sub 3} nano powders prepared with different amounts of chelating agent and polyethylene glycol, crystallized in monoclinic phase. The nano powders were impurity-free due to the presence of the complexing agent and polyethylene glycol as carbon sources. Morphological evolution indicated that the nano powders evolved from rod-like to regular and spherical shapes, depending on complexing agent and polyethylene glycol amounts. Nano powders with an average particle size of approximately 58 nm and a narrow size distribution were obtained. (author)

  9. Zinc oxide nano-particles as sealer in endodontics and its sealing ability

    Directory of Open Access Journals (Sweden)

    Maryam Javidi

    2014-01-01

    Full Text Available Aims: The aim of this study was to evaluate the sealing ability of new experimental nano-ZOE-based sealer. Settings and Design: Three types of nano-ZOE-based sealer (calcined at different temperatures of 500, 600 and 700°C with two other commercially available sealers (AH26 and micro-sized zinc oxide eugenol sealer were used. Materials and Methods: Zinc oxide nano-particles were synthesized by a modified sol-gel method. The structure and morphology of the prepared powders were characterized using x-ray diffraction (XRD and transmission electron microscopy (TEM techniques. The instrumented canals of 60 single-rooted teeth were divided into five groups (n = 10, with the remaining ten used as controls. The canals were filled with gutta-percha using one of the materials mentioned above as sealer. After 3, 45 and 90 days, the samples were connected to a fluid filtration system. Statistical Analysis Used: The data were analyzed using Student′s t-test. Results: The XRD patterns and TEM images revealed that all the synthesized powders had hexagonal wurtzite structures with an average particle size of about 30-60 nm at different calcination temperatures. Microleakage in AH26 groups was significantly more than that in three groups of ZnO nano-particles at all the three evaluation intervals. Apical microleakage of ZnO micro-powders was significantly more than that of all the materials, but the sealing ability of ZnO nano-powder sealers did not differ significantly. Conclusion: The results of this study showed that the synthesized ZnO nano-powder sealers are suitable for use as a nano-sealer in root canal therapy to prevent leakage; however, further studies should be carried out to verify their safety.

  10. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  11. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  12. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  13. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  14. NANODIAMOND - diamond nano-powder reflectors for very cold neutrons

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2011-01-01

    The present proposal is based on recent observation of two new phenomena, related to the interaction of neutrons with nano-dispersed medium, in particular from powder of diamond nanoparticles with a characteristic size of ∼ 5 nm: -) efficient (close to 100%) reflection of slow neutrons (above 10-20 Angstroms) at any incidence angle; -) quasi-specular reflection of cold neutrons (above ∼ 5 Angstroms) at small grazing angles. We propose to implement such diamond nano-powder reflectors into sources of cold neutrons (where appropriate) as well as around upstream sections of neutron guides in order to increase fluxes of slow neutrons available for experiments. (authors)

  15. Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Uma Sangari, N., E-mail: umasangariselvakumar@gmail.com [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India); Chitra Devi, S. [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India)

    2013-01-15

    A microwave assisted chemical precipitation method has been employed for the synthesis of nano zinc oxide rods by reacting zinc nitrate and potassium hydroxide. The amount of potassium hydroxide was adjusted for three different pHs to achieve ZnO nano rods with varying aspect ratio. The mechanism of growth of nano rods is explained briefly. The average crystallite size of the as synthesized samples was analyzed by means of powder XRD pattern and estimated to vary from 25.6 nm to 43.1 nm. The existence of rods was confirmed using scanning electron microscopy (SEM). The samples were also analyzed using FT-IR. The optical properties of the samples were also studied by means of UV-visible spectra and Room Temperature Photo Luminescence studies. The band gap of the samples was determined from the DRS spectrum. A strong near band emission peaks due to surface defects are observed in the PL spectrum. - Graphical abstract: At the solution pH of 11 and 9, tetrapod-like and flower-like ZnO nano rods were formed along with separated rods respectively due to the formation of activated nuclei of different sizes. Highlights: Black-Right-Pointing-Pointer Increase in alkalinity of the precursor solution results in longer rods. Black-Right-Pointing-Pointer Beyond a saturation limit, the excess of added OH{sup -} ions inhibited the growth of rods. Black-Right-Pointing-Pointer Keeping all parameters the same, the alkalinity can only modify the aspect ratio of the rods and not their morphology.

  16. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  17. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hong [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); Coleman, Victoria A. [National Measurement Institute Australia, Nanometrology Section (Australia); Casey, Phil S., E-mail: Phil.Casey@csiro.au [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); Angel, Brad [Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship (Australia); Catchpoole, Heather J. [National Measurement Institute Australia, Nanometrology Section (Australia); Waddington, Lynne [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); McCall, Maxine J. [Commonwealth Scientific and Industrial Research Organisation, Food and Nutrition Flagship (Australia)

    2015-02-15

    Given the broad commercial applications for ZnO nanomaterials, accurate attribution of physicochemical characteristics that induce toxic effects is particularly important. We report on the physicochemical properties of three commercial nano-ZnO products: Z-COTE and Z-COTE HP1 from BASF, and Nanosun from Micronisers, and, for reference, “bulk” ZnO from Sigma-Aldrich. Z-COTE, Nanosun and “bulk” consist of uncoated particles with different sizes, while Z-COTE HP1 consists of nanoparticles with a hydrophobic coating. Specific batches of these ZnO products were included in the OECD Sponsorship Programme to test manufactured nanomaterials. In order to identify properties potentially susceptible to variations between production runs, three additional batches of Z-COTE and Nanosun and two additional batches of Z-COTE HP1 were also investigated here. In general, all products showed little variation between batches for properties measured from powdered samples, but batch variations in the amount of surface coating were evident for the coated Z-COTE HP1. Properties measured with samples dispersed in liquids (agglomeration, photocatalytic activity, dissolution) were highly dependent on dispersion protocols, and this made it difficult to differentiate between differences due to dispersion and due to batches. However, batch-sensitive properties did appear to be present in Z-COTE and Z-COTE HP1 (photocatalytic activity), and Nanosun (dissolution). Intra-batch time and/or storage-dependent changes in the applied surface coating, noted specifically for the OECD batch of Z-COTE HP1, highlight the need for best practice when storing and accessing stocks of nano products. Awareness of inter-batch and intra-batch variability is essential for commercial applications and for nanotoxicological studies aimed at identifying links between physicochemical properties and any adverse effects in biological systems.

  18. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products

    Science.gov (United States)

    Yin, Hong; Coleman, Victoria A.; Casey, Phil S.; Angel, Brad; Catchpoole, Heather J.; Waddington, Lynne; McCall, Maxine J.

    2015-02-01

    Given the broad commercial applications for ZnO nanomaterials, accurate attribution of physicochemical characteristics that induce toxic effects is particularly important. We report on the physicochemical properties of three commercial nano-ZnO products: Z-COTE and Z-COTE HP1 from BASF, and Nanosun from Micronisers, and, for reference, "bulk" ZnO from Sigma-Aldrich. Z-COTE, Nanosun and "bulk" consist of uncoated particles with different sizes, while Z-COTE HP1 consists of nanoparticles with a hydrophobic coating. Specific batches of these ZnO products were included in the OECD Sponsorship Programme to test manufactured nanomaterials. In order to identify properties potentially susceptible to variations between production runs, three additional batches of Z-COTE and Nanosun and two additional batches of Z-COTE HP1 were also investigated here. In general, all products showed little variation between batches for properties measured from powdered samples, but batch variations in the amount of surface coating were evident for the coated Z-COTE HP1. Properties measured with samples dispersed in liquids (agglomeration, photocatalytic activity, dissolution) were highly dependent on dispersion protocols, and this made it difficult to differentiate between differences due to dispersion and due to batches. However, batch-sensitive properties did appear to be present in Z-COTE and Z-COTE HP1 (photocatalytic activity), and Nanosun (dissolution). Intra-batch time and/or storage-dependent changes in the applied surface coating, noted specifically for the OECD batch of Z-COTE HP1, highlight the need for best practice when storing and accessing stocks of nano products. Awareness of inter-batch and intra-batch variability is essential for commercial applications and for nanotoxicological studies aimed at identifying links between physicochemical properties and any adverse effects in biological systems.

  19. Preparation and Photocatalytic Performance of Bamboo-Charcoal-Supported Nano-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yunlong ZHOU

    2018-02-01

    Full Text Available Nano-ZnO/bamboo charcoal composites were prepared by precipitation with bamboo charcoal as support. Nano-ZnO/bamboo charcoal composites were characterized by XRD, SEM and EDS. Photocatalytic degradation processes of methyl orange were studied. The results indicate that the structure of nano-ZnO is of the wurtzite type and the grain size is about 19-54 nm. The best preparation temperature for these composites is 500℃. The composites have better photocatalytic degradation ability than pure ZnO under UV irradiation. Photocatalytic degradation of methyl orange with the composites obeys first-order kinetics, and the composites can be recycled.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17397

  20. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  1. Morphological and structural characterization of the Zn{sub 0,9}Mn{sub 0,1}O powder synthesized by combustion reaction and Pechini; Caracterizacao estrutural e morfologica de pos de Zn{sub 0,9}Mn{sub 0,1}O sintetizados por reacao de combustao e metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M A; Torquato, R; Simoes, A N; Costa, A C.F.M.; Gama, L [Universidade Federal de Campina Grande (DEMA/UFCG), PB (Brazil). Dept. de Engenharia dos Materiais; Kiminami, R H.G.A. [Universidade Federal de Sao Carlos (DEMA/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    Zinc oxide, due to the piezoelectric and electro-optical characteristics, is used in application such as, chemical sensor, varistor, transparent conductive thin film and DMS. The aim of this work is to evaluate and compare structural and morphological characteristics of nanometric powders of Zn{sub 0,9}Mn{sub 0,1}O prepared by chemical synthesis of combustion reaction and Pechini method. The powders were characterized by XRD, SEM and BET. The XRD data shown to both studied method the presence of ZnO phase with hexagonal structure and without second phase. The powder prepared by combustion reaction presented 9% of reduction in crystallinity and 42% of increase in surface area in comparison with the powder prepared by Pechini method. The morphological analysis of the powder showed that both method produce powders with soft agglomerates constituted by nano size particles. (author)

  2. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    Science.gov (United States)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  3. Nano ZnO/amine composites antimicrobial additives to acrylic paints

    Directory of Open Access Journals (Sweden)

    H.B. Kamal

    2015-12-01

    Full Text Available Nano ZnO has been widely used as an antimicrobial agent not only for food packaging purposes but also in many coating processes. The present work is meant to enhance such functions through the preparation of sustainable and safe conduct of nano ZnO composites with amine derivatives that are characterized by their antimicrobial and anti-fouling functional activities. The results obtained revealed a more comprehensive approach to the antimicrobial function based on the reported active oxide species role. The oxide/amine composites and the acrylic emulsion paint were characterized chemically and structurally through FT-IR, TGA and TEM supported by biological assessment of each ZnO/amine composite action. Results of the study concluded that equilibrium between the nano ZnO particles size, their dispersion form, and amine ability to stabilize the actively produced oxygen species responsible for the antimicrobial function, should all be accounted for when persistence of antimicrobial agent efficiency is regarded.

  4. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    International Nuclear Information System (INIS)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng; Wei, Shizhong; Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang

    2016-01-01

    The nano-sized ZrO 2 -reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO 2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO 2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO 2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  5. Orthophosphate modulates the phytotoxicity of nano-ZnO to Lemna minor (L.).

    Science.gov (United States)

    Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K

    2018-03-02

    Because of their applications in large numbers of products, Zinc Oxide nanoparticles (nano-ZnO) will inevitably enter into the environment. Nano-ZnO released into the environment will be present in a complex matrix which can cause various chemical and physical transformations and modulate the biological reactivity of these particles. Due to their rapid growth and small size, Lemna minor is recommended by OECD for toxicological testing. Here, we tested how nano-ZnO reactivity is modulated by the suite of macro- and micronutrients that are present in Lemna minor growth media. Specifically, we measured ex situ Reactive Oxygen Species (ROS) formation by nano-ZnO, and subsequent in planta toxicity. The data show how orthophosphate can modulate both ex situ ROS formation, and in planta toxicity. This has ramifications for phytotoxicity testing, which is commonly performed under controlled conditions and on media containing orthophosphate.

  6. Structure, morphology and optical properties of undoped and MN-doped ZnO{sub (1−x)}S{sub x} nano-powders prepared by precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.za [Department of Physics, University of the Free State, (Qwa-Qwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Onani, M.O. [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Koao, L.F.; Wako, A.H.; Motloung, S.V.; Yihunie, M.T. [Department of Physics, University of the Free State, (Qwa-Qwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa)

    2016-01-01

    The undoped and Mn-doped ZnO{sub (1−x)}S{sub x} nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO{sub (1−x)}S{sub x} nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO{sub (1−x)}S{sub x} pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10–20 nm. All the samples showed absorption maximum of ZnO{sub (1−x)}S{sub x} at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO{sub (1−x)}S{sub x} nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO{sub (1−x)}S{sub x}, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO{sub (1−x)}S{sub x} showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the {sup 4}T{sub 1}–{sup 6}A{sub 1} transition of the Mn{sup 2+} ions.

  7. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices

    International Nuclear Information System (INIS)

    Villasenor C, L. S.

    2015-01-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  8. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions

    International Nuclear Information System (INIS)

    Ghosh, Samir Kumar; Roy, Sujit Kumar; Kundu, Biswanath; Datta, Someswar; Basu, Debabrata

    2011-01-01

    Calcium hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 (HAp) was synthesized by combustion in the aqueous system containing calcium nitrate-diammonium hydrogen orthophosphate with urea and glycine as fuels. These ceramics are important materials for biomedical applications. Thermo-gravimetric and differential thermal analysis were employed to understand the nature of synthesis process during combustion. Effects of different process parameters namely, nature of fuel (urea and glycine), fuel to oxidizer ratio (0.6-4.0) and initial furnace temperature (300-700 o C) on the combustion behavior as well as physical properties of as-formed powders were investigated. A series of combustion reactions were carried out to optimize the reaction parameters for synthesis of nano-sized HAp powders. The combustion temperature (T f ) for the oxidant and fuels were calculated to be 896 deg. C and 1035 deg. C for the stoichiometric system of urea and glycine respectively. The stoichiometric glycine-calcium nitrate produced higher flame temperature (both calculated and measured) and powder with lower specific surface area (8.75 m 2 /g) compared to the stoichiometric urea-calcium nitrate system (10.50 m 2 /g). Fuel excess combustion in both glycine and urea produced powders with higher surface area. Nanocrystalline HAp powder could be synthesized in situ with a large span of fuel to oxidizer ratio (φ) in case of urea system (0.8 < φ < 4) and (0.6 < φ < 1.5) for the glycine system. Calcium hydroxyapatite particles having diameters ranging between 20 nm and 120 nm could be successfully synthesized through optimized process variable.

  9. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    Science.gov (United States)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  10. Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens.

    Science.gov (United States)

    Qian, Yiguang; Yao, Jun; Russel, Mohammad; Chen, Ke; Wang, Xiaoyu

    2015-03-01

    The application of nanotechnology in medicine has recently been a breakthrough in therapeutic drugs formulation. This paper presents the structural and optical characterization of a new green nano-formulation (ZnO-Aloe vera) with considerable antibacterial activity against pathogenic bacteria. Its particle structure, size and morphology were characterized by XRD, TEM and SEM. And optical absorption spectra and photoluminescence were measured synchronously. Their antibacterial activity against Escherichia coli and Staphylococcus aureus was also investigated using thermokinetic profiling and agar well diffusion method. The nano-formulation is spherical shape and hexagonal with a particle size ranging from 25 to 65 nm as well as an increased crystallite size of 49 nm. For antibacterial activity, the maximum inhibition zones of ZnO and ZnO+A. vera are 18.33 and 26.45 mm for E. coli, 22.11 and 28.12 mm for S. aureus (pvera nano-formulation has a significant (p E. coli at 15 and 25mg/L. ZnO+A. vera nano-formulation is much more toxic against S. aureus than E. coli, with an IC50 of 13.12 mg/L and 21.31 mg/L, respectively. The overall results reveal that the ZnO-A. vera nano-formulation has good surface energy, crystallinity, transmission, and enriched antibacterial activities. Their antibacterial properties are possibly relevant to particle size, microstructural ionization, the crystal formation and the Gram property of pathogens. This ZnO-A. vera nano-formulation could be utilized effectively as a spectral and significant antibacterial agent for pathogens in future medical and environmental concerns. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nano-powders

    International Nuclear Information System (INIS)

    Leconte, Y.; Maskrot, H.; Combemale, L.; Herlin-Boime, N.; Reynaud, C.

    2007-01-01

    Refractory carbide nano-structured ceramics appear to be promising materials for high temperature applications requiring hard materials such as nuclear energy industry. Such carbide materials are usually obtained with micrometric sizes from the high temperature carbo-reduction of an oxide phase in a raw mixture of C black and titania or zirconia. TiC and ZrC nano-powders were produced from an intimate mixture of oxide nano-grains with free C synthesized by laser pyrolysis from the decomposition of a liquid precursor. The temperature and the duration of the thermal treatment leading to the carburization were decreased, allowing the preservation of the nano-scaled size of the starting grains. A solution of titanium iso-prop-oxide was laser-pyrolyzed with ethylene as sensitizer in order to synthesize Ti/C/O powders. These powders were composed of crystalline TiO 2 nano-grains mixed with C. Annealing under argon enabled the formation of TiC through the carburization of TiO 2 by free C. The final TiC mean grain size was about 80 nm. Zr/O/C powders were prepared from a solution of zirconium butoxide and were composed of ZrO 2 crystalline nano-grains and free C. The same thermal treatment as for TiC, but at higher temperature, showed the formation of crystalline ZrC with a final mean grain size of about 40 nm. These two liquid routes of nano-particles synthesis are also compared to the very efficient gaseous route of SiC nano-powders synthesis from a mixture of silane and acetylene. (authors)

  12. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles.

    Science.gov (United States)

    Formentini, Thiago Augusto; Legros, Samuel; Fernandes, Cristovão Vicente Scapulatempo; Pinheiro, Adilson; Le Bars, Maureen; Levard, Clément; Mallmann, Fábio Joel Kochem; da Veiga, Milton; Doelsch, Emmanuel

    2017-03-01

    Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  14. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    Science.gov (United States)

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  15. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C. Justin; Varma, K.B.R. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Joshi, R.K. [Special Center for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2011-11-15

    We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng [Xi' an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi' an, Shaanxi Province (China); Wei, Shizhong [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China); Henan University of Science and Technology, Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Luoyang (China); Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China)

    2016-03-15

    The nano-sized ZrO{sub 2}-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO{sub 2} particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO{sub 2} particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO{sub 2} particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  17. Nano-sized Fe-metal catalyst on ZnO-SiO2: (photo-assisted deposition and impregnation) Synthesis routes and nanostructure characterization

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Al-Rayyani, M.A.; Baeissa, E.S.; Mkhalid, I.A.

    2011-01-01

    Highlights: → We prepared Fe/ZnO-SiO 2 by two methods. → We tested photocatalytic activity for degradation of methylene blue dye. → We controlled band gap and size. → We found activity of Fe/ZnO-SiO 2 prepared by PAD is hightest photocatalytic activity. - Abstract: A nano-sized Fe metal on ZnO-SiO 2 was synthesized using the photo-assisted deposition (PAD) and impregnation routes. The obtained samples were characterized by a series of techniques including X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy, N 2 adsorption, extended X-ray absorption fine structure (EXAFS), and transmission electron microscopy (TEM). Photocatalytic reactivity using Fe-ZnO-SiO 2 catalysts under visible-light condition on the degradation of methylene blue dye was evaluated. The results of characterization reveal, a notable photocatalytic activity of PAD:Fe-ZnO-SiO 2 which was about 9 and 12 times higher than that of Img:Fe-ZnO-SiO 2 and ZnO-SiO 2 , respectively.

  18. Synthesise of Zn O nano wires by direct oxidation method

    International Nuclear Information System (INIS)

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  19. NANO CRYSTALLINE ZnO CATALYZED ONE POT THREE ...

    African Journals Online (AJOL)

    advances in nanoscience and nanotechnology have led to new research interests in using nanometer-sized particles as .... dichloromethane and then filtered to separate the nano ZnO catalyst. ..... 104, 4063. 31. Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, N.; Niki, S. Thin Solid. Films 2003, 431, 369.

  20. Effects of calcination temperature on phase formation and particle size of Zn{sub 2}Nb{sub 34}O{sub 87} powder synthesized by solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Amonpattaratkit, Penphitcha, E-mail: p.amonpattaratkit@gmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Ananta, Supon, E-mail: suponananta@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-05-15

    The solid-state mixed oxide method via a rapid vibro-milling technique was explored for the preparation of single-phase Zn{sub 2}Nb{sub 34}O{sub 87} nanopowders. Phase formation of zinc niobate was investigated as a function of calcination temperature by using a combination of thermogravimetric/differential thermal analyzer (TG/DTA) and X-ray diffraction (XRD) techniques. Morphology, particle size and chemical composition of the powders were determined by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) technique. The obtained results clearly revealed the influences of calcination temperature on phase formation and particle size of Zn{sub 2}Nb{sub 34}O{sub 87} nanopowder. - Highlights: ► Single phase Zn{sub 2}Nb{sub 34}O{sub 87} was firstly prepared by solid-state mixed oxide method via a rapid vibro-milling technique. ► The influences of calcination temperature on phase formation and particle size were investigated. ► Zn{sub 2}Nb{sub 34}O{sub 87} powders were characterized by TG–DTA, XRD, SEM and EDX.

  1. Effect of Annealing on the Structural and Optical Properties of Nano Fiber ZnO Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2011-11-01

    Full Text Available Nano fiber ZnO films have been deposited on to glass substrate at 200 °C by a simple spray pyrolysis technique under atmospheric pressure. The effect of annealing temperature on the structural and optical properties of the as grown films has been studied by Scanning Electron Microscopy (SEM attached with an EDX, powder X-ray diffraction and UV visible spectroscopy. The atomic weight % of Zinc and Oxygen were found to be 49.22 % and 49.62 % respectively. The SEM micrographs show nano fiber structure and uniform deposition on the substrate. Average grain size of ZnO thin film was found in the range of 21 to 27 nm. The lattice constant a and c of ZnO thin film are determined at different annealing temperatures and values are found slightly larger than those of JCPDS data and lower for the sample annealed at 600 °C. The lattice parameters a and c decrease with increasing temperature. It reveals that the samples are poly-crystalline and having with low densities. Band gap energy of ZnO was found in the range of 3.33 to 3.17 eV and decreases with the increase of the annealing temperature.

  2. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO2 powder mixture

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M.; Juarez-Arellano, E.A.; Bykov, A.; Leon, I.; Siqueiros-Diaz, A.

    2011-01-01

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 0 MP >3120min) of powder mixtures of 50%wt ZnO+50%wt MnO 2 can be described as a three stage process. (1) 0 MP >30min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to ∼600K) and annealing of defects with the lowest energy of activation E ac . (2) 30 MP >390min, further particle destruction, slow increment of sample average temperature (from ∼600 to ∼700K), formation and growth of a very disordered layer of β-MnO 2 around ZnO particles, dehydration of MnO 2 , formation of solid solution of Mn 2+ ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO 2 mixture and onset of the formation of the ZnMnO 3 phase. (3) 390 MP >3120min, the sample average temperature remains constant (∼700K), the reaction is completed and the spinel ZnMnO 3 phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: → The kinetics during mechanical processing of ZnO-MnO 2 samples is a three stage process. → First stage, reduction of crystallites size and accumulation of defects. → Second stage, nano-quasiamorphous states formation and onset of the ZnMnO 3 phase. → Third stage, complete reaction to the spinel ZnMnO 3 phase.

  3. Electrodeposition of ZnO nano-wires lattices with a controlled morphology; Electrodepot de reseaux de nanofils de ZnO a morphologie controlee

    Energy Technology Data Exchange (ETDEWEB)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Thiais (France)

    2006-07-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO{sub 2}. Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  4. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaozhu, E-mail: Lixiaozhu1019@21cn.com [Department of Physics, Shaoguan University, Shaoguan, Guangdong 512005 (China) and Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan, Hubei 430072 (China); Wang Yongqian [Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences), Wuhan, Hubei 430074 (China)

    2011-05-12

    Highlights: > ZnO nano-needles were synthesized by thermal oxidation. > Their surfaces were coated with Ag by pulse electro-deposition technique. > The uncoated and coated ZnO nano-needles were characterized. > The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. > The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 {mu}m. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  5. Nano powders, components and coatings by plasma technique

    Science.gov (United States)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  6. Nano powders, components and coatings by plasma technique

    Science.gov (United States)

    McKechnie, Timothy N [Brownsboro, AL; Antony, Leo V. M. [Huntsville, AL; O'Dell, Scott [Arab, AL; Power, Chris [Guntersville, AL; Tabor, Terry [Huntsville, AL

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  7. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    International Nuclear Information System (INIS)

    Li Xiaozhu; Wang Yongqian

    2011-01-01

    Highlights: → ZnO nano-needles were synthesized by thermal oxidation. → Their surfaces were coated with Ag by pulse electro-deposition technique. → The uncoated and coated ZnO nano-needles were characterized. → The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. → The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 μm. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  8. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  9. Thermoluminescence properties of graphene–nano ZnS composite

    International Nuclear Information System (INIS)

    Sharma, Geeta; Gosavi, S.W.

    2014-01-01

    This work describes the thermoluminescence (TL) of graphene oxide (GO), reduced graphene oxide (RGO) and graphene–nano ZnS composite. Graphene oxide was synthesized using Hummer's method and then reduced to graphene by hydrazine hydrate. G–ZnS was synthesized via in-situ reduction of graphene oxide (GO) and zinc nitrate [Zn(NO 3 ) 2 ] by sodium sulfide (Na 2 S). The structures of samples were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). XRD pattern confirmed the formation of graphene oxide, reduced graphene oxide and G–ZnS lattice. The p-XRD spectrum of G–ZnS shows peaks of ZnS superimposed on those of graphene and the particle size of ZnS in the complex is less than 10 nm. Ultra thin graphene and graphene oxide sheets with size ranging between tens to several hundreds of square nanometers are observed in TEM images. The TEM micrographs of G–ZnS show that ZnS particles are embedded in graphene sheets and the average particle size of ZnS particles in the composite is less than 10 nm. Samples of RGO, GO and G–ZnS were exposed to different doses of γ-rays in the range of 1 Gy to 50 kGy. The reduced graphene oxide (RGO) did not show any thermoluminescence emission. The thermoluminescence glow curve of GO has a single broad peak whose peak position varied between 500 and 550 K with an absorbed dose increasing from 1 Gy to 5000 Gy. GO shows most intense TL peak, positioned at 523.6 K for a dose of 10 kGy. The glow curves of G–ZnS over the entire range of irradiation have single peak positioned between 492 and 527 K with variation in dose from 1 Gy to 50 kGy. G–ZnS shows the most intense TL glow curve for a dose of 50 kGy. The TL response curve of G–ZnS is found to be linear over a larger dose range from 1 Gy to 50 kGy whereas the response curve of GO shows linearity only at low doses up to 100 Gy. -- Highlights: • Graphene oxide, reduced graphene oxide and graphene–nano ZnS were synthesized. • TL of

  10. Nano-powder production by electrical explosion of wires

    International Nuclear Information System (INIS)

    Mao Zhiguo; Zou Xiaobing; Wang Xinxin; Jiang Weihua

    2010-01-01

    A device for nano-powder production by electrical explosion of wires was designed and built. Eight wires housed in the discharge chamber are exploded one by one before opening the chamber for the collection of the produced nano-powder. To increase the rate of energy deposition into a wire, the electrical behavior of the discharge circuit including the exploding wire was simulated. The results showed that both reducing the circuit inductance and reducing the capacitance of the energy-storage capacitor (keeping the storage energy constant) can increase the energy deposition rate. To better understand the physical processes of the nano-powder formation by the wire vapor, a Mach-Zehnder interferometer was used to record the time evolution of the wire vapor as well as the plasma. A thermal expansion lag of the dense vapor core as well as more than one times of the vapor burst was observed for the first time. Finally, nano-powders of titanium nitride, titanium dioxide, copper oxides and zinc oxide were produced by electrical explosion of wires. (authors)

  11. Microwave Assisted Synthesis of ZnO Nanoparticles: Effect of Precursor Reagents, Temperature, Irradiation Time, and Additives on Nano-ZnO Morphology Development

    Directory of Open Access Journals (Sweden)

    Gastón P. Barreto

    2013-01-01

    Full Text Available The effect of different variables (precursor reagents, temperature, irradiation time, microwave radiation power, and additives addition on the final morphology of nano-ZnO obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by field emission scanning electron microscopy (FE-SEM in transmission mode, infrared (FTIR, UV-Vis spectroscopy, and powder X-ray diffraction (XRD. The results showed that all the above-mentioned variables influenced to some extent the shape and/or size of the synthetized nanoparticles. In particular, the addition of an anionic surfactant (sodium di-2-ethylhexyl-sulfosuccinate (AOT to the reaction mixture allowed the synthesis of smaller hexagonal prismatic particles (100 nm, which show a significant increase in UV absorption.

  12. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO{sub 2} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M. [CIICAp-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Juarez-Arellano, E.A., E-mail: eajuarez@unpa.edu.mx [Universidad del Papaloapan, Tuxtepec, Oaxaca (Mexico); Bykov, A. [Institute for Problems of Materials Science of NASU, Kyiv (Ukraine); Leon, I. [CIQ-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Siqueiros-Diaz, A. [FCQI-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico)

    2011-10-15

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 03120min) of powder mixtures of 50%wt ZnO+50%wt MnO{sub 2} can be described as a three stage process. (1) 030min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to {approx}600K) and annealing of defects with the lowest energy of activation E{sub ac}. (2) 30390min, further particle destruction, slow increment of sample average temperature (from {approx}600 to {approx}700K), formation and growth of a very disordered layer of {beta}-MnO{sub 2} around ZnO particles, dehydration of MnO{sub 2}, formation of solid solution of Mn{sup 2+} ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO{sub 2} mixture and onset of the formation of the ZnMnO{sub 3} phase. (3) 3903120min, the sample average temperature remains constant ({approx}700K), the reaction is completed and the spinel ZnMnO{sub 3} phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: > The kinetics during mechanical processing of ZnO-MnO{sub 2} samples is a three stage process. > First stage, reduction of crystallites size and accumulation of defects. > Second stage, nano-quasiamorphous states formation and onset of the ZnMnO{sub 3} phase. > Third stage, complete reaction to the spinel ZnMnO{sub 3} phase.

  13. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  14. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Bichitra Nandi, E-mail: bichitra.ganguly@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dutta, Sreetama; Roy, Soma [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Röder, Jens [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Physical Chemistry, RWTH-Aachen, Aachen (Germany); Johnston, Karl [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Experimental Physics, University of the Saarland, Saarbrücken (Germany); Martin, Manfred [Physical Chemistry, RWTH-Aachen, Aachen (Germany)

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using {sup 111m}Cd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  15. ZnS/PVA nanocomposites for nonlinear optical applications

    Science.gov (United States)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  16. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-03-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  17. Synthesis of Vertically Aligned ZnO Nano rods on Various Substrates

    International Nuclear Information System (INIS)

    Hassan, J.J.; Hassan, Z.; Abu Hassan, H.; Mahdi, M.A.

    2011-01-01

    We successfully synthesized vertically aligned ZnO nano rods on Si, GaN, Sic, Al 2 O 3 , ITO, and quartz substrates using microwave assisted chemical bath deposition (MA-CBD) method. All these types of substrates were seeded with PVA-ZnO nano composites layer prior to the nano rods growth. The effect of substrate type on the morphology of the ZnO nano rods was studied. The diameter of grown ZnO nano rods ranged from 50 nm to 200 nm. Structural quality and morphology of ZnO nano rods were determined by x-ray diffraction and scanning electron microscopy, which revealed hexagonal wurtzite structures perpendicular to the substrate along the z-axis in the direction of (002). Photoluminescence measurements of grown ZnO nano rods on all substrates exhibited high UV peak intensity. Raman scattering studies were conducted to estimate the lattice vibration modes. (author)

  18. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    Science.gov (United States)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  19. Thermoelectric effect in nano-scaled lanthanides doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E H; Canepa, H R; Walsoee de Reca, N E [Centro de Investigacion en Solidos, CITEFA, San Juan Bautista de La Salle 4397 (B1603ALO) Villa Martelli, Buenos Aires (Argentina); Schaeuble, N; Aguirre, M H, E-mail: canepa@citefa.gov.a, E-mail: myriam.aguirre@empa.c [Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2009-05-01

    Start Nano-scaled ZnO with 1% Er doping was prepared by soft chemistry methods. The synthesis was carried out in anhydrous polar solvent to achieve a crystal size of a few nanometers. Resulting particles were processed as precipitates or multi layer films. Structural characterization was evaluated by X-Ray diffraction and transmission and scanning electron microscopy. In the case of films, UV-Vis characterization was made. The thermoelectrical properties of ZnO:Er were evaluated and compared with a typical good thermoelectric material ZnO:Al. Both materials have also shown high Seebeck coefficients and they can be considered as potential compounds for thermoelectric conversion.

  20. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling

    International Nuclear Information System (INIS)

    Aono, Hiromichi; Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Watanabe, Yuji

    2012-01-01

    Nano-sized magnetic Y 3 Fe 5 O 12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y 3 Fe 5 O 12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y 3 Fe 5 O 12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mmφ beads). The heat generation ability of the excessively milled Y 3 Fe 5 O 12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mmφ beads, the heat generation ability (W g −1 ) was estimated using a 3.58×10 −4 fH 2 frequency (f/kHz) and the magnetic field (H/kA m −1 ), which is the highest reported value of superparamagnetic materials. - Highlights: ► The nano-sized Y 3 Fe 5 O 12 powder prepared by bead-milling has the highest heat generation ability in an AC magnetic field. ► The heat generation properties are ascribed to an increase in the Néel relaxation of the superparamagnetic material. ► The heat ability (W g −1 ) can be estimated using 3.58×10 −4 fH 2 (f=kHz, H=kA m −1 ). ► This is an expectable material for use in a drug delivery system for the thermal coagulation therapy of cancer tumors.

  1. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  2. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  3. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  4. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods

    International Nuclear Information System (INIS)

    Mousa, M.A.; Bayoumy, W.A.A.; Khairy, M.

    2013-01-01

    Graphical abstract: - Highlights: • Nano-ZnO particles were synthesized by soft-wet precipitation and dry methods. • ZnO nanoparticle with different morphologies was obtained. • Nano ZnO samples showed a high photocatalytic activity. • ZnO nanoparticle showed strong ultraviolet emission at room temperature. • The samples showed high biological activity depending on their synthetic method. - Abstract: Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed

  5. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized; Luminiscencia opticamente estimulada de ZnO obtenido por tratamiento termico de ZnS sintetizado quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R. [Universidad de Sonora, A.P. 130, Hermosillo (Mexico)

    2005-07-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  6. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Walther, Till; Hesse, Dietrich; Ebbinghaus, Stefan G.

    2014-01-01

    The synthesis of nano-crystalline CuFe 2 O 4 powders by a combustion-like process is described herein. Phase formation and evolution of the crystallite size during the decomposition process of a (CuFe 2 )—precursor gel were monitored up to 1000 °C. Phase-pure nano-sized CuFe 2 O 4 powders were obtained after reaction at 750 °C for 2 h resulting in a crystallite size of 36 nm, which increases to 96 nm after calcining at 1000 °C. The activation energy of the crystallite growth process was calculated as 389 kJ mol −1 . The tetragonal⇄cubic phase transition occurs between 402 and 419 °C and the enthalpy change (ΔH) was found to range between 1020 and 1229 J mol −1 depending on the calcination temperature. The optical band gap depends on the calcination temperature and was found between 2.03 and 1.89 eV. The shrinkage and sintering behaviour of compacted powders were examined. Dense ceramic bodies can be obtained either after conventional sintering at 950 °C or after a two-step sintering process at 800 °C. Magnetic measurements of both powders and corresponding ceramic bodies show that the saturation magnetization rises with increasing calcination-/sintering temperature up to 49.1 emu g −1 (2.1 µ B fu −1 ), whereas the coercivity and remanence values decrease. - Graphical abstract: A cheap one-pot synthesis was developed to obtain CuFe 2 O 4 nano-powders with different crystallite sizes (36–96 nm). The optical band gaps, phase transition temperatures and enthalpies were determined depending on the particle size. The sintering behaviour of nano CuFe 2 O 4 was studied in different sintering procedures. The magnetic behaviour of the nano-powders as well as the corresponding ceramic bodies were investigated. - Highlights: • Eco-friendly and simple synthesis for nano CuFe 2 O 4 powder using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the synthesis. • Determination of the optical band gap

  7. Effect of nano size 3% wt TaC particles dispersion in two different metallic matrix composites

    International Nuclear Information System (INIS)

    Gomes, U.U.; Oliveira, L.A.; Souza, C.P.; Menezes, R.C.; Furukava, M.; Torres, Y.

    2009-01-01

    This work studies the characteristics of two different metallic matrixes composites, ferritic and austenitic steels, reinforced with 3% wt nano size tantalum carbide by powder metallurgy. The starting powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of the nano sized carbide dispersion on the matrix microstructures and its consequences on the mechanical properties were identified. The preliminary results showed that the sintering were influenced by morphology and the distribution of carbide and the alloys. (author)

  8. Desensitizing nano powders to electrostatic discharge ignition

    International Nuclear Information System (INIS)

    Steelman, Ryan; Daniels, Michael A.

    2015-01-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  9. Absorptive lasing mode suppression in ZnO nano- and microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wille, M.; Michalsky, T.; Krüger, E.; Grundmann, M.; Schmidt-Grund, R. [Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig (Germany)

    2016-08-08

    We conclusively explain the different lasing mode energies in ZnO nano- and microcavities observed by us and reported in literature. The limited penetration depth of usually used excitation lasers results in an inhomogeneous spatial gain region depending on the structure size and geometry. Hence, weakly or even nonexcited areas remain present after excitation, where modes are instantaneously suppressed by excitonic absorption. We compare the effects for ZnO microwires, nanowires, and tetrapod-like structures at room temperature and demonstrate that the corresponding mode selective effect is most pronounced for whispering-gallery modes in microwires with a hexagonal cross section. Furthermore, the absorptive lasing mode suppression will be demonstrated by correlating the spot size of the excitation laser and the lasing mode characteristic of a single ZnO nanowire.

  10. UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite

    International Nuclear Information System (INIS)

    Wong, Tsz-ting; Lau, Kin-tak; Tam, Wai-yin; Leng, Jinsong; Etches, Julie A.

    2014-01-01

    Highlights: • A GFRE composite with UV resistibility is introduced. • The bonding behaviour and UV resistibility of the composite were studied upon the addition of nano-ZnO particles. • The solvent effect in the dispersion of nano-ZnO particles was also studied. • The nano-ZnO/GFRE composite shows effective UV absorption with enhanced bonding behaviour. - Abstract: The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm)

  11. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel

    Science.gov (United States)

    Hosni, N. A. J.; Lajis, M. A.

    2018-04-01

    The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been extensively studied. Therefore, PMEDM have attracted the attention of many researchers since last few decades. Improvement in EDM process has resulted in the use of span-20 surfactant and Cr powder mixed in dielectric fluid, which results in increasing machiniability, better surface quality and faster machining time. However, the study of powder suspension size of surface charateristics in EDM field is still limited. This paper presents the improvement of micro-/nano- Cr powder size on the surface characteristics of the AISI D2 hardened steels in PMEDM. It has found that the reacst layer in PMEDM improved by as high as 41-53 % compared to conventional EDM. Also notably, the combination of added Cr powder and span-20 surfactant reduced the recast layer thickness significantly especially in nano-Cr size. This improvement was great potential adding nano-size Cr powder to dielectric for machining performance.

  12. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution

    International Nuclear Information System (INIS)

    Escobedo-Morales, A.; Téllez-Flores, D.; Ruiz Peralta, Ma. de Lourdes; Garcia-Serrano, J.; Herrera-González, Ana M.; Rubio-Rosas, E.; Sánchez-Mora, E.; Olivares Xometl, O.

    2015-01-01

    A green method for producing pristine porous ZnO nanoparticles with narrow particle size distribution is reported. This method consists in synthesizing ZnO 2 nanopowders via a hydrothermal route using cheap and non-toxic reagents, and its subsequent thermal decomposition at low temperature under a non-protective atmosphere (air). The morphology, structural and optical properties of the obtained porous ZnO nanoparticles were studied by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and nitrogen adsorption–desorption measurements. It was found that after thermal decomposition of the ZnO 2 powders, pristine ZnO nanoparticles are obtained. These particles are round-shaped with narrow size distribution. A further analysis of the obtained ZnO nanoparticles reveals that they are hierarchical self-assemblies of primary ZnO particles. The agglomeration of these primary particles at the very early stage of the thermal decomposition of ZnO 2 powders provides to the resulting ZnO nanoparticles a porous nature. The possibility of using the synthesized porous ZnO nanoparticles as photocatalysts has been evaluated on the degradation of rhodamine B dye. - Highlights: • A green synthesis method for obtaining porous ZnO nanoparticles is reported. • The obtained ZnO nanoparticles have narrow particle size distribution. • This method allows obtaining pristine ZnO nanoparticles avoiding unintentional doping. • A growth mechanism for the obtained porous ZnO nanoparticles is proposed

  13. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Morales, A., E-mail: alejandro.escobedo@correo.buap.mx [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Téllez-Flores, D.; Ruiz Peralta, Ma. de Lourdes [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Garcia-Serrano, J.; Herrera-González, Ana M. [Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca Tulancingo Km 4.5, Pachuca, Hidalgo (Mexico); Rubio-Rosas, E. [Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Sánchez-Mora, E. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, 72570 Puebla, Pue. (Mexico); Olivares Xometl, O. [Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2015-02-01

    A green method for producing pristine porous ZnO nanoparticles with narrow particle size distribution is reported. This method consists in synthesizing ZnO{sub 2} nanopowders via a hydrothermal route using cheap and non-toxic reagents, and its subsequent thermal decomposition at low temperature under a non-protective atmosphere (air). The morphology, structural and optical properties of the obtained porous ZnO nanoparticles were studied by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and nitrogen adsorption–desorption measurements. It was found that after thermal decomposition of the ZnO{sub 2} powders, pristine ZnO nanoparticles are obtained. These particles are round-shaped with narrow size distribution. A further analysis of the obtained ZnO nanoparticles reveals that they are hierarchical self-assemblies of primary ZnO particles. The agglomeration of these primary particles at the very early stage of the thermal decomposition of ZnO{sub 2} powders provides to the resulting ZnO nanoparticles a porous nature. The possibility of using the synthesized porous ZnO nanoparticles as photocatalysts has been evaluated on the degradation of rhodamine B dye. - Highlights: • A green synthesis method for obtaining porous ZnO nanoparticles is reported. • The obtained ZnO nanoparticles have narrow particle size distribution. • This method allows obtaining pristine ZnO nanoparticles avoiding unintentional doping. • A growth mechanism for the obtained porous ZnO nanoparticles is proposed.

  14. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R.

    2005-01-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  15. Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles

    International Nuclear Information System (INIS)

    Boshkov, N.; Tsvetkova, N.; Petrov, P.; Koleva, D.; Petrov, K.; Avdeev, G.; Tsvetanov, Ch.; Raichevsky, G.; Raicheff, R.

    2008-01-01

    The anodic behavior, corrosion resistance and protective ability of Zn and alloyed Zn-Co (∼3 wt.%) nanocomposite coatings were investigated in a model corrosion medium of 5% NaCl solution. The metallic matrix of the layers incorporates core-shell nano-sized stabilized polymeric micelles (SPMs) obtained from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block co-polymers. The protective properties of the composite coatings were evaluated using potentiodynamic polarization technique, polarization resistance measurements and powder X-ray diffraction. The sizes and distribution of the stabilized polymeric micelles in the starting electrolytes used as well as in the metal matrices of the layers were investigated using scanning and transmission electron microscopy. The results obtained are compared to those of electrodeposited Zn and Zn-Co (∼3 wt.%) alloy coatings at identical conditions and demonstrate the enhanced protective characteristics of the Zn nanocomposites during the investigating period. The influence of the SPMs on the corrosion resistance of the nanocomposite layers is commented and discussed

  16. Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing

    Directory of Open Access Journals (Sweden)

    Mengxing Chen

    2017-03-01

    Full Text Available It is reported that the ductility and strength of a metal matrix composite could be concurrently improved if the reinforcing particles were of the size of nanometers and distributed uniformly. In this paper, we revealed that gas atomization solidification could effectively disperse TiB2 nanoparticles in the Al alloy matrix due to its fast cooling rate and the coherent orientation relationship between TiB2 particles and α-Al. Besides, nano-TiB2 led to refined equiaxed grain structures. Furthermore, the composite powders with uniformly embedded nano-TiB2 showed improved laser absorptivity. The novel composite powders are well suited for selective laser melting.

  17. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices; Efectos de la radiacion gamma en nanocompositos de nanoparticulas de Ag en matrices de ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor C, L. S.

    2015-07-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  18. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  19. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  20. Thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate by using successive ion layer adsorption and reaction (SILAR) technique: characterization and optical-electrical-photovoltaic properties.

    Science.gov (United States)

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2012-07-01

    A method is described for thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate complex, Zn[((NO(2))(2)-8HQ)(2)] by using successive ion layer adsorption and reaction (SILAR) technique. Highly homogeneous assembled nano-sized metal complex thin films with particle size distribution in the range 27-47nm was identified by using scanning electron microscopy (SEM). Zn[((NO(2))(2)-8HQ)(2)] and [(NO(2))(2)-8HQ] ligand were studied by thermal gravimetric analysis (TGA). Graphical representation of temperature dependence of the dark electrical conductivity produced two distinct linear parts for two activation energies at 0.377eV and 1.11eV. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a fundamental band gap of 2.74eV. The dark current density-voltage (J-V) characteristics showed the rectification effect due to the formation of junction barrier of Zn[((NO(2))(2)-8HQ)(2)] complex film/n-Si interface. The photocurrent in the reverse direction is strongly increased by photo-illumination and the photovoltaic characteristics were also determined and evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  2. Molten salt synthesis of ZnNb2O6 powder

    International Nuclear Information System (INIS)

    Guo Liangzhai; Dai Jinhui; Tian Jintao; Zhu Zhibin; He Tian

    2007-01-01

    Pure ZnNb 2 O 6 powder was successfully prepared by the molten salt synthesis method using Nb 2 O 5 and ZnO as raw materials and a mixture of NaCl and KCl as the solvent. The phase form and morphology of the prepared powder were characterized by X-ray diffraction and scanning electron microscopy. The effect of reacting temperature on phase formation was investigated. The results indicated that the single phase ZnNb 2 O 6 powder can be obtained by the molten salt synthesis method at 600 deg. C, and the SEM photographs show that the grains of the powder are rod-like particles

  3. Mass synthesis of yttrium oxide nano-powders using radio frequency (RF) plasma

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Chakravarthy, Y.; Nagaraj, A.; Das, A.K.; Dhamale, G.

    2014-01-01

    Mass synthesis of nano-phase Yttrium Oxide (Y 2 O 3 ) from commercially available coarse grain powder is reported. Nano-sized high purity Y 2 O 3 is an important and critical constituent of ceramics like YAG (Yttrium aluminum garnet: Y 3 Al 5 O 12 ) for laser applications. The system is characterized in terms of its thermal and electrical behavior. Boltzmann plot technique is used to measure axial variation of temperature of the generated plasma. The synthesized particles are characterized in terms of XRD, SEM, TEM and BET analyses for qualification of the developed system. Major features observed are efficient conversion into nanometer-sized highly spherical particles, narrow size distribution, highly crystallite nature and highly pure phases. The particle distribution (from TEM) peaks within 20-30 nm. Average particle sizes determined from different methods like XRD, TEM and BET are very close to each other and point toward particle sizes within 20 to 30 nm

  4. White light generation from Dy3+-doped yttrium aluminium gallium mixed garnet nano-powders

    International Nuclear Information System (INIS)

    Praveena, R.; Balasubrahmanyam, K.; Jyothi, L.; Venkataiah, G.; Basavapoornima, Ch.; Jayasankar, C.K.

    2016-01-01

    Yttrium aluminium gallium garnet (here after referred as YAGG), Y 3 Al 5−y Ga y O 12 (where y=1.0, 2.5 and 4.0), nano-powders doped with 1.0 mol% of dysprosium (Dy 3+ ) ions were synthesised by the citrate sol–gel method. The structure, phase evolution, morphology and luminescence properties of these nano-crytalline powders were characterized by means of XRD, FTIR, Raman, electron microscopy and UV–vis spectroscopy. From the XRD results, the crystallite sizes were found to be in the range of 18–26 nm. Excitation spectra of YAGG nano-powders showed that the samples can be efficiently excited by near UV and blue LEDs. Upon excitation at 448 nm, the emission spectra of all these samples showed two bands centred at 485 (blue) and 585 nm (yellow) which corresponds to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ion, respectively. Intensity of blue emission was found to be stronger than the yellow emission in all the three samples. Integrated yellow to blue (Y/B) emission intensity was found to be increased with increasing the Ga content in the present YAGG host. Therefore, concentration (0.1, 1.0, 2.0 and 4.0 mol%) of Dy 3+ ions was varied in the Ga rich (Y 3 Ga 4 AlO 12 ) nano-powder. The chromaticity co-ordinates of all the prepared nano-powders were located in the white light region and also found to be dependent on Dy 3+ ion concentration and excitation wavelength. The decay curves for 4 F 9/2 level of Dy 3+ ion exhibited non-exponential nature in all the studied samples and the lifetime values remained constant (~1.0 ms) with increasing the Ga content, but were found to decrease with increasing the Dy 3+ ion concentration. The results indicated that 2.0 mol% of Dy 3+ -doped Y 3 Ga 4 AlO 12 nano-powder under 352 nm excitation is suitable for the white light emitting device applications.

  5. Synthesis of Nickel and Nickel Hydroxide Nano powders by Simplified Chemical Reduction

    International Nuclear Information System (INIS)

    Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.

    2014-01-01

    Nickel nano powders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at ph ∼ 12.5. Sonication of the solutions created a temperature of 54-65 °C to activate the reduction reaction of nickel nanoparticles. The solution ph affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (ph ∼10) of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  6. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    Science.gov (United States)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  7. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  8. Research on the combustion properties of propellants with low content of nano metal powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Jiang; Shu-Fen, Li [Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Feng-Qi, Zhao; Zi-Ru, Liu; Cui-Mei, Yin; Yang, Luo; Shang-Wen, Li [Xi' an Modern Chemistry Research Inst., Xi' an 710065 (China)

    2006-04-15

    A comparison of various experimental results for combustionrelated properties evaluation, including burning rates, deflagration heat, flame structures and thermal decomposition properties, of AP/RDX/Al/HTPB composite propellants containing nano metal powders is presented. The thermal behavior of n-Al (nano grain size aluminum) and g-Al (general grain size aluminum i.e., 10 {mu}m) heated in air was also investigated by thermogravimetry. The burning rates results indicate that the usage of bimodal aluminum distribution with the ratio around 4: 1 of n-Al to g-Al or the addition of 2% nano nickel powders (n-Ni) will improve the burning behavior of the propellant, while the usage of grading aluminum powders with the ratio 1: 1 of n-Al to g-Al will impair the combustion of the propellant. Results show that n-Al and n-Ni both have a lower heating capacity, lower ignition threshold and shorter combustion time than g-Al. In addition n-Al is inclined to burn in single particle form. And the thermal analysis results show that n-Ni can catalyze the thermal decomposition of AP in the propellant. The results also confirm the high reactivity of n-Al, which will lead to a lower reaction temperature and rather higher degree of reaction ratio as compared with g-Al in air. All these factors will influence the combustion of propellants. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. White light emission from Er2O3 nano-powder excited by infrared radiation

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul; Di Bartolo, Baldassare

    2017-07-01

    Phosphors of Er2O3 nano-crystalline powders were synthesized by the thermal decomposition method. The structural properties of the nano-powders were investigated with XRD and HRTEM measurements. The cubic phase with a = 10.540 Å was the only phase observed. The average crystalline sizes and the widths of the grain size distribution curves were determined to be 27.2, 18.7 and 9.7 nm, respectively. The spectroscopic properties of the Er2O3 nano-powder were studied by measuring the luminescence, decay and rise patterns under 808 and 975 nm diode laser excitations. A peculiar effect of the pressure was observed since an optically active ion (Er) is part of the complex and not a dopant. A broad band of the white light emission combined with blue, green and red up-conversion emission bands of Er3+ ions were observed at 0.03 mbar pressure under both excitation wavelengths. Only, an intense broad band white light emission was observed from these nanocrystals at atmospheric pressure. Rising patterns show that the white light intensity reaches its maximum value more rapidly under 975 nm excitation although it decays slower than that of 808 nm excitation. The color quality parameters such as the color coordinate (CRI), correlated color temperature and the color rendering index were found to vary with both the excitation wavelength and the ambient pressure indicating that these nanocrystals could be considered good white light emitting source under the infrared excitations.

  10. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    International Nuclear Information System (INIS)

    Ma, H.; Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M.; Glenn, T.C.; Williams, P.L.

    2011-01-01

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: → Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. → This phototoxicity was well-correlated to photocatalytic ROS generation. → Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. → Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. → Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  11. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H., E-mail: mah77@uga.edu [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States); Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M. [Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 (United States); Glenn, T.C.; Williams, P.L. [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

    2011-06-15

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: > Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. > This phototoxicity was well-correlated to photocatalytic ROS generation. > Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. > Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. > Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  12. Generation and characterization of nano aluminium powder ...

    Indian Academy of Sciences (India)

    TECS

    Generation and characterization of nano aluminium powder obtained through wire ... Department of Aerospace Engineering, Indian Institute of Technology. Madras, Chennai 600 .... pressure developed due to current flow (z-Pinch). Figure 2.

  13. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    Science.gov (United States)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  14. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  15. [Preparation of nano-nacre artificial bone].

    Science.gov (United States)

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  16. Slip casting nano-particle powders for making transparent ceramics

    Science.gov (United States)

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  17. PLGA/Nano-Zn O Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    International Nuclear Information System (INIS)

    Stankovic, A.; Stevanovic, M.; Sezen, M.; Milenkovic, M.; Kaisarevic, S.; Andric, N.

    2016-01-01

    Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (Zn O) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical Zn O nanoparticles (nano-Zn O) have been synthesized via microwave synthesis method. In addition to obtaining nano-Zn O, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-Zn O) and this was done by a simple physicochemical solvent/non solvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-Zn O particles are spherical, uniform, and with diameters below 1μ. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG_2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth micro dilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans)

  18. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Ana Stanković

    2016-01-01

    Full Text Available Copolymer poly (DL-lactide-co-glycolide (PLGA is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans.

  19. Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method

    Directory of Open Access Journals (Sweden)

    Baokang Dang

    2017-11-01

    Full Text Available A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM solution. The reflection loss (RL value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min under UV light irradiation. ZnO nanoparticels (NPs increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%.

  20. Dopants incorporation in ZnO mechanical milled powders sensed by positrons

    International Nuclear Information System (INIS)

    Damonte, L. C.; Donderis, V.; Hernandez Fenollosa, M. A.

    2007-01-01

    M-doped ZnO (M: Cd, Mg) powders obtained by mechanical milling were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and positron lifetime annihilation spectroscopy (PALS). The mixing of the oxides is followed by means of XRD and SEM. As milling proceeds, a clear reduction of grain size and homogenization are observed. The evolution of annihilation parameters with milling time and cation content were analyzed and related with the kind of mechanical induced defect involved. Ternary oxides Zn 1-x M x O were efficiency obtained for certain compositions. The results showed that positrons constitute a well suited probe to characterize the cation substitution in the ZnO oxide lattice.

  1. Dopants incorporation in ZnO mechanical milled powders sensed by positrons

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L. C., E-mail: damonte@fisica.unlp.edu.ar; Donderis, V.; Hernandez Fenollosa, M. A. [Universidad Politecnica de Valencia, Departamento de Fisica Aplicada (Spain)

    2007-09-15

    M-doped ZnO (M: Cd, Mg) powders obtained by mechanical milling were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and positron lifetime annihilation spectroscopy (PALS). The mixing of the oxides is followed by means of XRD and SEM. As milling proceeds, a clear reduction of grain size and homogenization are observed. The evolution of annihilation parameters with milling time and cation content were analyzed and related with the kind of mechanical induced defect involved. Ternary oxides Zn{sub 1-x}M{sub x}O were efficiency obtained for certain compositions. The results showed that positrons constitute a well suited probe to characterize the cation substitution in the ZnO oxide lattice.

  2. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  3. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    International Nuclear Information System (INIS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  4. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    International Nuclear Information System (INIS)

    Christensen, Axel Norlund; Jensen, Torben R.; Bahl, Christian R.H.; DiMasi, Elaine

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2 O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2 O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition. - Graphical abstract: Nano size crystals of goethite, α-FeOOH formed from amorphous iron(III) hydroxide after 23 years, and transforms faster to α-Fe 2 O 3 upon heating

  5. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    Science.gov (United States)

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  6. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    Directory of Open Access Journals (Sweden)

    Tapas R. Nayak

    2017-06-01

    Full Text Available Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  7. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors

    International Nuclear Information System (INIS)

    Zhang Weiwei; Zhang Junying; Chen Ziyu; Wang Tianmin; Zheng Shukai

    2010-01-01

    Low-temperature photoluminescent spectra of ZnGa 2 O 4 :Cr 3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr 3+ ions in different sites including ideal octahedral, Zn-interstitial, Ga ZN 4 -Zn Ga 6 sites and Ga 2 O 3 impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al 3+ is substituted in Ga 3+ sites to form Zn(Ga 1-y Al y ) 2 O 4 :Cr 0.01 3+ (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al 3+ and Ga 3+ .

  8. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; Villa S, G.; Rosales D, J. [Tecnologico de Estudios Superiores de Jocotitlan, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico); Vigueras S, E.; Hernandez L, S. [Universidad Autonoma del Estado de Mexico, Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Acuna, P. [Universidad Autonoma del Estado de Mexico, Programa de Doctorado en Ciencia de Materiales, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Argueta V, A.; Colin B, N., E-mail: lorr810813@gmail.com [Tecnologico de Estudios Superiores de Jocotitlan, Programa de Ingenieria Mecatronica, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico)

    2017-11-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  9. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    International Nuclear Information System (INIS)

    Lopez, R.; Villa S, G.; Rosales D, J.; Vigueras S, E.; Hernandez L, S.; Acuna, P.; Argueta V, A.; Colin B, N.

    2017-01-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  10. Spark plasma sintering of TiNi nano-powders for biological application

    International Nuclear Information System (INIS)

    Fu, Y Q; Gu, Y W; Shearwood, C; Luo, J K; Flewitt, A J; Milne, W I

    2006-01-01

    Nano-sized TiNi powder with an average size of 50 nm was consolidated using spark plasma sintering (SPS) at 800 deg. C for 5 min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H 2 O 2 ) solution at 60 deg. C followed by heat treatment at 400 deg. C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi

  11. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings

    International Nuclear Information System (INIS)

    Li Dengxin; Gao Guolong; Meng Fanling; Ji Chong

    2008-01-01

    On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH 3 .H 2 O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were α-Fe 2 O 3 with particle size of 50-70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed

  12. Synthesis of LaCoO{sub 3} nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia Siang; Zhang, Lan; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Zhang, Yu.Jun [Key Lab for Liquid Structure and Heredity of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan (China)

    2008-04-15

    LaCoO{sub 3} (LC) perovskite powders for intermediate temperature solid oxide fuel cells (IT-SOFCs) are synthesized by a simple and cost-effective aqueous gel-casting technique using metal nitrates as raw materials. Effect of the ratio of organic precursors (acrylamide (AM) monomer and N,N'-Methylenebisacrylamide (MBAM) crosslinker) to metal nitrates (lanthanum nitrate, cobalt nitrate) and the ratio of AM to MBAM on the particle size are investigated in detail. TEM results indicate that the particle size of LC nano-powders is in the range of 31-60 nm and decreases with increasing ratio of organic precursor to metal nitrates but is not affected by the ratio of AM to MBAM. Preliminary results show that the nano-structured electrode approach based on wet impregnation is effective to combine the high electrocatalytic activity of LC nano-powders and the structural stability of La{sub 0.72}Sr{sub 0.18}MnO{sub 3} {sub -} {sub {delta}} (LSM) electrodes for the development of IT-SOFC cathodes. (author)

  13. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  14. Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Nie Eryong; Liu Donglai; Zhang Yunsen; Bai Xue; Yi Liang; Jin Yong; Jiao Zhifeng [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Sun Xiaosong, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2011-08-15

    This paper is focusing on the synthesis of Zn{sub 1-x}Fe{sub x}S nano-particles with x = 0, 0.1 and 0.2 by chemical co-precipitation method, the prepared of which are characterized by XRD, EDS, TEM, PL, magnetization versus field behavior and M-T curve. In the XRD patterns, Zn{sub 1-x}Fe{sub x}S nano-particles are shown of cubic zinc blende structure, and the broadening diffraction peaks consistent with the small-size characteristic of nano-materials. The diameter of nano-particles is between 3.3 and 5.5 nm according to the HR-TEM images. The EDS data confirm the existence of Fe ions in Fe-doped ZnS nanoparticles. There we found that Fe-doping did not import new energy bands or defect states, but reduced the intensity of PL peaks. The magnetization versus field behaviors were illustrated by the M-H curves at both 5 K and 300 K, respectively, where no remanence or coercive force was observed. This phenomenon indicates that the Zn{sub 1-x}Fe{sub x}S (x = 0.1) nano-particles are superparamagnetic. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves further reveal that the blocking temperature (T{sub B}) of the superparamagnetic behavior might be below 5 K.

  15. Nano-composite powders Ag-SnO2 prepared by reactive milling sintering and microstructural evolution

    International Nuclear Information System (INIS)

    Lorrain, Nathalie

    2000-01-01

    This work aims at controlling the synthesis and the sintering of nano-composite powders Ag-SnO 2 in order to obtain a dense and nano-structured material for electrical contact as a substitute of the toxic compound Ag - CdO. The powder is prepared by reactive milling from silver oxide (Ag 2 O) and silver bronze (Ag 3 Sn) powders. This process leads to a fine dispersion of silver and tin oxide nanometer sized particles. We first studied the mechanisms of reaction promoted by milling in vacuum and in air. A two-stage oxidation of tin in Ag 3 Sn occurs: during forced contact with Ag 2 O, tin oxidises in SnO, then in SnO 2 . In air, gaseous oxygen also participates to the oxidation of tin in SnO 2 but the reaction is slower because of the formation of silver carbonates from a reaction of Ag 2 O with CO 2 .Then the sintering behaviour of the nano-composite powder as a function of the compacting pressure and of the heating rate has been studied. We show: (i) a diffusion of pure silver towards porosity and free surfaces (exo-diffusion) which destroys the nano-structure and (ii) a severe de-densification. We show that the origin of these phenomena is due to carbonates on to the Ag 2 O starting powder, which are incorporated, in the milled Ag-SnO 2 powder in course of milling; during sintering, decomposition gases generate internal stresses. Low stresses lead to a diffusional creep with exo-diffusion whereas high stresses induce an intensive de-densification by local plastic deformation but no exo-diffusion. A modelling shows that exo-diffusion is limited by heating very quickly a strongly compacted powder that contains a high quantity of carbonates. The experimental results confirm the predictions of the model. Finally, we propose solutions allowing a full densification and a process for decreasing the tin oxide concentration. (author) [fr

  16. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  17. Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO

    Directory of Open Access Journals (Sweden)

    Maryam Zirak

    2017-05-01

    Full Text Available Synthesis of pyrano-chromenes and pyrano-pyrans was developed by three-component reactions of kojic acid and aromatic aldehydes with dimethone and malononitrile, catalyzed with nano-Bi2O3-ZnO and nano-ZnO, respectively. Reactions proceeded smoothly and the corresponding heterocyclic products were obtained in good to high yields. Nano ZnO and nano Bi2O3-ZnO were prepared by sol-gel method and characterized by X-ray diffraction (XRD, energy-dispersive X-ray analysis (EDX, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Supporting Bi3+ on ZnO nanoparticles as Bi2O3, is the main novelty of this work. The simple reaction procedure, easy separation of products, low catalyst loading, reusability of the catalyst are some advantageous of this protocol.

  18. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Zheng, J.; Li, S.L.

    2006-01-01

    Ti 4+ -doped SnO 2 nano-powders were prepared by the sol-gel process using tin tetrachloride and titanium tetrachloride as the starting materials. The crystallinity and purity of the powders were analyzed by X-ray diffraction (XRD) and the size and distribution of Ti 4+ -doped SnO 2 grains were studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that Ti 4+ has been successfully incorporated into the SnO 2 crystal lattice and the electrical conductivity of the doped materials improves significantly

  19. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl{sub 2} with controllable dimension and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianguo [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Physics Department, Northwest University, Xi’an 710069 (China); Wang, Kaige, E-mail: wangkg@nwu.edu.cn [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Zhou, Yukun; Wang, Shuang; Zhang, Chen [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Wang, Guiren [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208 (United States); and others

    2016-12-30

    Highlights: • One kind of large area nano-PAA-ZnCl{sub 2} composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals. • At room temperature, the nano-PAA-ZnCl{sub 2} film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl{sub 2} nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl{sub 2} composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl{sub 2} composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl{sub 2} composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher

  20. Thermally and optically stimulated luminescence of new ZnO nano phosphors exposed to beta radiation

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Grijalva M, H.; Chernov, V.; Bernal, R.

    2006-01-01

    In this work, we report the thermoluminescence (TL) and the optically stimulated luminescence (OSL) of ZnO nano phosphors obtained by thermal annealing of ZnS powders synthesized by precipitation in a chemical bath deposition reaction. To obtain nanocrystalline ZnO, ZnS pellet-shaped samples were subjected to a sintering process at 700 C during 24 under air atmosphere. Some samples were exposed to beta particles in the 0.15-10.15 kGy dose range and the integrated thermoluminescence as a function of dose increased as dose increased, with no saturation clue for the tested doses. Computerized glow-curve deconvolution of the experimental TL curves in individual peaks revealed a second order kinetics. In order to test the BOSL (Blue Optically Stimulated Luminescence) response, samples were beta irradiated with doses up to 600 Gy, showing an increasing OSL intensity as dose increases. From the experimental results that we have obtained, we conclude that the new ZnO phosphors under investigation are good candidates to be used as dosimetric materials. (Author)

  1. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  2. Accelerated effects of nano-ZnO on phosphorus removal by Chlorella vulgaris: Formation of zinc phosphate crystallites.

    Science.gov (United States)

    Xiao, Huaixian; Liu, Na; Tian, Ke; Liu, Shixiang; Ge, Fei

    2018-09-01

    Nanoparticles have been reported to induce toxicity to aquatic organisms, however, their potential impacts on phosphorus removal from wastewater by algae are unclear. In this study, the effects of nanoparticle ZnO (nano-ZnO) on phosphate (PO 4 3- ) removal by a green alga Chlorella vulgaris were investigated. We found that PO 4 3- removal efficiency was accelerated with high concentrations of nano-ZnO (0.04-0.15mM) but reduced with low concentrations of nano-ZnO (0.005-0.04mM) compared to the control (without nano-ZnO), suggesting that PO 4 3- removal efficiency by C. vulgaris was related to nano-ZnO concentrations. Moreover, we observed changes of nano-ZnO morphology and detected element P on the surface of nano-ZnO by using transmission electronic microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDX), indicating that PO 4 3- was interacted with nano-ZnO or the dissolved Zn 2+ from nano-ZnO. Furthermore, we confirmed this interaction induced the formation of Zn 3 (PO 4 ) 2 crystallites sedimentation by employing X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS), which finally accelerates the removal of PO 4 3- . Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Combustion synthesis by reaction and characterization of nano ferrites: study of fuel aniline, citric and its mixture; Sintese por reacao de combustao e caracterizacao de nanoferritas Ni-Zn: estudo dos combustiveis anilina, acido citrico e sua mistura

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.C. da; Coutinho, J.P.; Costa, A.C.F.M., E-mail: normanda@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais; Freitas, N.L. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento

    2012-07-01

    The present study aims to evaluate the influence of aniline and citric acid used alone and combined in a ratio of 50% each in the characterization of NiZn ferrite synthesized by combustion reaction method in a muffle furnace. Measurements were made of temperature and reaction time. The nano-powders were characterized by XRD, EDX, textural analysis and SEM. The highest temperature was achieved by the reaction using the mixture of fuel and increased reaction time using citric acid. The nano ferrites using different fuels, and the mixture changed phases, the crystallite size and decreased surface area of the samples with aniline, citric acid and a mixture of both, respectively. The powder morphology ranged from presenting the formation of irregular blocks for the use of citric agglomerated in the form of skeins with aniline and a mixture to agglomerate larger particles. (author)

  4. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  5. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  6. Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Organophilic nano ZnO particles have been synthesized in various diols (ethylene glycol – EG, 1,2 propane diol – PD, 1,4 butane diol – BD and tetra(ethylene glycol – TEG in the presence of p-toluenesulfonic acid, p-TsOH, as an end capping agent. The addition of p-TsOH reduces the ZnO particle size and increases its crystallite size. With increasing diol main chain length the ZnO particle size increases (EG (32 nm < PD (33 nm < BD (72 nm < TEG (86 nm. Using the assynthesized and unmodified ZnO nanocomposites with poly(methyl methacrylate, PMMA, matrix have been prepared by the in-situ bulk polymerization of methyl methacrylate, MMA. The addition of surface modifiers is avoided which is an advantage for the application since they can influence other properties of the material. ZnO particles, especially those with smaller particle sizes (EG – 32 nm, PD – 33 nm showed enhanced effect on the thermal stability of PMMA, ultraviolet, UV, absorption and transparency for visible light. Transparent materials with high UV absorption and with enhanced resistance to sunlight were obtained by optimizing the nanocomposite preparation procedure using ZnO particles of about 30 nm size in concentrations between 0.05 and 0.1 wt%. The reported nanocomposite preparation procedure is compatible with the industrial process of PMMA sheet production.

  7. Characterization of size and morphology of ZnO and Fe2O3 nanoparticles in dispersive media by SAXS

    International Nuclear Information System (INIS)

    Wang Bing; Wang Meng; Zhu Motao; Zhao Yuliang; Wu Zhonghua

    2007-01-01

    The size and shape of ZnO and Fe 2 O 3 nano-particles in 1% sodium carboxy methyl cellulose were measured by small-angle X-ray scattering (SAXS) of synchrotron radiation. Compared with the TEM results, the SAXS results indicated that the ZnO and Fe 2 O 3 nano-particles in 1% sodium carboxy methyl cellulose were agglomerated. However, the size and shape of the agglomerated particles were almost unchanged along with the increase of particle concentration, indicating that the particles in 1% sodium carboxy methyl cellulose were stable. (authors)

  8. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    Science.gov (United States)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  9. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Beherei, Hanan H. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Physics Dept., Faculty of Science, El-Taif University (Saudi Arabia); El Bassyouni, Gehan T. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Medical Physics Dept., Faculty of Medicine, El-Taif University (Saudi Arabia); El Mahallawy, Nahed [Design and Production Engineering Department, Faculty of Engineering, Ain Shams University on secondment to the German University in Cairo (Egypt)

    2013-10-15

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO{sub 2} powders were prepared via sol–gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO{sub 2} or SiO{sub 2}/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. - Graphical abstract: Nano-structures of (a) HA, (b) ZnO and (c) SiO{sub 2} powders. Highlights: • The nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were prepared. • ZnO helps improve the mechanical properties of HA composites. • SiO{sub 2} helps improve the bioactivity of HA composites.

  10. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  11. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  12. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  13. Optimised synthesis of ZnO-nano-fertiliser through green chemistry: boosted growth dynamics of economically important L. esculentum.

    Science.gov (United States)

    Jabeen, Nyla; Maqbool, Qaisar; Bibi, Tahira; Nazar, Mudassar; Hussain, Syed Z; Hussain, Talib; Jan, Tariq; Ahmad, Ishaq; Maaza, Malik; Anwaar, Sadaf

    2018-06-01

    Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.

  14. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Sari Suvanto

    2013-03-01

    Full Text Available The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM, inductively coupled plasma mass spectrometry (ICP-MS, BET, powder X-ray diffraction (PXRD and NH3- temperature-programmed desorption (TPD.

  15. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Bahl, Christian R. H.; DiMasi, Elaine

    2007-04-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co K α radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.

  16. Bio-ecological consequences of crop seeds treatment with metal nano-powders

    International Nuclear Information System (INIS)

    Churilov, G

    2015-01-01

    As a result of our investigations we have determined the optimal concentrations of ferrum, cobalt and cuprum nano-powders recommended to be used as micro-fertilizers increasing the yield and feed value of crops at the expense of accumulating biologically active combinations by 25-35%. In unfavorable climate conditions, for example in a case of excess moisture or heat and drought, the plants development and ripening suffer. Our investigations have shown that the stimulating effect of nano-powders has lowered the effect of stress situations on plants development and simultaneously increased the rape seeds yield and quality. Treating the seeds with the drugs being studied has provided the high crop protection. If consider that the maximum efficiency of protectants Chinuk, SK (20 kg/t of seeds) and Cruiser, KS (10 kg/t of seeds) then for the same effect one needs nano-powders 0.1 g per hectare norm of seeds planting. (paper)

  17. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  18. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate

    International Nuclear Information System (INIS)

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-01-01

    Highlights: • A route to prepare nano α-Fe 2 O 3 red pigment from waste ferrous sulfate is proposed. • Acidithiobacillus ferrooxidans is introduced for accelerating iron oxidation. • The particle size of synthetic α-Fe 2 O 3 is ranged from 22 nm to 86 nm. • The prepared nano α-Fe 2 O 3 red pigment fulfills ISO 1248-2006. - Abstract: Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe 2 O 3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe 2 O 3 red pigment powders contained 98.24 wt.% of Fe 2 O 3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22 nm to 86 nm and averaged at 45 nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments.

  19. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  20. Acute and Cumulative Effects of Unmodified 50-nm Nano-ZnO on Mice.

    Science.gov (United States)

    Kong, Tao; Zhang, Shu-Hui; Zhang, Ji-Liang; Hao, Xue-Qin; Yang, Fan; Zhang, Cai; Yang, Zi-Jun; Zhang, Meng-Yu; Wang, Jie

    2018-01-02

    Nanometer zinc oxide (nano-ZnO) is widely used in diverse industrial and agricultural fields. Due to the extensive contact humans have with these particles, it is crucial to understand the potential effects that nano-ZnO have on human health. Currently, information related to the toxicity and mechanisms of nano-ZnO is limited. The aim of the present study was to investigate acute and cumulative toxic effects of 50-nm unmodified ZnO in mice. This investigation will seek to establish median lethal dose (LD50), a cumulative coefficient, and target organs. The acute and cumulative toxicity was investigated by Karber's method and via a dose-increasing method, respectively. During the experiment, clinical signs, mortality, body weights, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. The LD50 was 5177-mg/kg·bw; the 95% confidence limits for the LD50 were 5116-5238-mg/kg·bw. It could be concluded that the liver, kidney, lung, and gastrointestinal tract were target organs for the 50-nm nano-ZnO acute oral treatment. The cumulative coefficient (K) was 1.9 which indicated that the cumulative toxicity was apparent. The results also indicated that the liver, kidney, lung, and pancrea were target organs for 50-nm nano-ZnO cumulative oral exposure and might be target organs for subchronic and chronic toxicity of oral administered 50-nm ZnO.

  1. Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

    Directory of Open Access Journals (Sweden)

    M. A. Moghri Moazzen

    2012-09-01

    Full Text Available ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. The particle  size  and structure of the products have been confirmed by XRD. The FT-IR study  confirms  the  presence  of  functional  groups.  Also,  the morphology  and  size  distribution  of  ZnO  nanoparticles  was analyzed by TEM images. The optical properties were investigated by UV–Visible  spectroscopy. The XRD  results  show  that  the  size of  the prepared nanoparticles  is  in  the  range  of 20–40 nm, which this value  is  in good agreement with  the TEM  results. The FT-IR spectrum clearly indicates the formation of an interfacial chemical bond between Zn and O. Also  the UV absorption depends on  the particles  size  and morphology,  so  the  optical properties  enhances with  decreasing  nanoparticles  size.  Moreover  the  direct precipitation technique is a feasible method for production of ZnO nanopowders.

  2. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  3. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells

    International Nuclear Information System (INIS)

    Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N.

    2013-01-01

    Using pulsed-laser deposition method, crystalline ZnSe nano-needles have been grown on catalyst-coated silicon (100) substrates. The crystalline ZnSe nano-needles with the middle diameters of about 20–80 nm, and the lengths ranging from 100 to 600 nm can be grown densely on 300–400 °C substrates. The as-grown ZnSe nano-needles were well crystalline and base-grown. They are potential electron-capturing materials in polymer/inorganic hybrid solar cells for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nano-needle cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed and fabricated. The absorption spectra of the blend of regioregular poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), ZnSe nano-needles and the combination of P3HT:PCBM and ZnSe nano-needles were examined by ultraviolet–visible-infrared spectrophotometer, respectively. The absorption bands of the combination of P3HT:PCBM and ZnSe nano-needles fit well with the solar spectral distribution. - Highlights: ► Crystalline ZnSe nano-needles grown by pulsed laser deposition. ► A five-layer polymer/inorganic hybrid solar cell based on ZnSe nano-needles cathode. ► ZnSe nano-needles improve light absorption. ► Employment of ZnSe nano-needles increase the open-circuit voltage and fill factor

  4. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    Science.gov (United States)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  5. Laser clad Ni-base alloy added nano- and micron-size CeO 2 composites

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Lee, Chan Gyu; He, Yi Zhu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders are mixed with both 1.5 wt% (%) micron-CeO 2 (m-CeO 2) and also 1.0-3.0% nano-CeO 2 (n-CeO 2) powders. These mixtures are coated on low carbon steel (Q235) by 2.0 kW CO 2 laser cladding. The effects on microstructures, microhardness and wear resistance of the coating by the addition of m- and n-CeO 2 powders to NBA (m- and n-CeO 2/NBA) have been investigated. Addition to the primary phases of γ-Ni, Cr 23C 6 and Ni 3B of NBA coating, CeNi 3 shows up both in m- and n-CeO 2/NBA coatings and CeNi 5 appears only in n-CeO 2/NBA coating. Directional dendrite and coarse equiaxed dendrite are grown in m-CeO 2/NBA coating from interface to central zone, whereas multi-oriented dendrite and fine equiaxed dendrite growth by addition of n-CeO 2. The microhardness and wear resistance of coatings are greatly improved by CeO 2 powder addition, and compared to the addition of 1.0% and 3.0%, 1.5% n-CeO 2/NBA is the best. Hardness and wear resistance of the coating improves with decreasing CeO 2 size from micron to nano.

  6. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    International Nuclear Information System (INIS)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung

    2015-01-01

    Ni-YSZ (Y_2O_3-stabilized ZrO_2) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  7. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung [Korea Institute of Ceramic Engineering and Technology (KICET), Seoul (Korea, Republic of)

    2015-04-15

    Ni-YSZ (Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  8. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  9. Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nano rods

    International Nuclear Information System (INIS)

    Kashif, M.; Hashim, U.; Foo, K.L.; Ali, M.E.; Ali, M.E.; Ali, S.M.U.

    2013-01-01

    ZnO nano rods were grown on thermally oxidized p-type silicon substrate using sol-gel method. The SEM image revealed high-density, well-aligned, and perpendicular ZnO nano rods on the oxidized silicon substrate. The XRD profile confirmed the c-axis orientation of the nano rods. PL measurements showed the synthesized ZnO nano rods have strong ultraviolet (UV) emission. The electrical characterization was performed using interdigitated silver electrodes to investigate the stability in the current flow of the fabricated device under different ultraviolet (UV) exposure times. It was notified that a stable current flow was observed after 60 min of UV exposure. The determination of stable current flow after UV exposure is necessary for UV-based gas sensing and optoelectronic devices.

  10. ZnO nano-array-based EGFET biosensor for glucose detection

    Science.gov (United States)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  11. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, Nasser Y. [Materials and Corrosion Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd Elkader, Omar H. [Electron Microscope & Thin Films Department, Physics Division, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, College of Science, King Saud University, Riyadh (Saudi Arabia); Hemeda, D.M.; Tawfik, A.; Mostafa, M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2015-11-15

    A series of Zn{sub 1–x}Ni{sub x}Fe{sub 2}O{sub 4} nano ferrite (with x=0, 0.2, 0.4, 0.6, 0.8, and 1) compositions were synthesized using the combustion technique. The powder samples were characterized by XRD. The X-ray analysis showed that the samples were single phase spinel cubic structure. The AC resistivity decreases by increasing the frequency from 1 kHz to 10 kHz. As the frequency of the applied field increases the hopping of charge carrier also increase, thereby decreasing the resistivity. A shift in dielectric maximum is observed toward higher temperature with increasing the Ni content from 536 K to 560 K at 1 kHz. The HRTEM (high resolution TEM) images of four compositions have lattice spacing which confirms the crystalline nature of the samples. The surface morphology SEM of the sample consists of some grains with relatively homogenies distribution with an average size varying from 0.85 to 0.92 μm. The values for entropy change in this work are still small but are significally higher than the values that have been reported for iron oxide nanoparticle. The magnetic entropy change was calculated from measurements of M (H, T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (∆S) obtained near Curie temperature which makes these material candidates for magnetocaloric applications. - Highlights: • Nanoparticles of Ni–Zn ferrite were prepared by solution combustion method. • A shift in dielectric maximum is observed toward high temperature with increasing the Ni content. • The inter planner distance obtained from HRTEM coincide with the f XRD results. • The entropy change vs. temperature shows a broad maximum near Curie temperature. • This results are useful for the operation of cooling devices.

  12. Nano Size Crystals of Geothite, alpha-FeOOH: Synthesis and Thermal Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen,A.; Jensen, T.; Bahl, C.; DiMasi, E.

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, {alpha}-FeOOH crystallized from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co K{alpha} radiation showed that the only iron containing crystalline phase present in the recovered product was {alpha}-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of {alpha}-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of {alpha}-FeOOH transformed to {alpha}-Fe{sub 2}O{sub 3} in the temperature range 444--584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from {alpha}-Fe{sub 2}O{sub 3} to follow the decrease of intensity from {alpha}-FeOOH in agreement with the topotactic phase transition.

  13. Structural and optical analysis of ZnBeMgO powder and thin films

    International Nuclear Information System (INIS)

    Panwar, Neeraj; Liriano, J.; Katiyar, Ram S.

    2011-01-01

    Research highlights: → Structural and optical studies of Zn 1-x-y Be x Mg y O (0 ≤ x ≤0.10; 0 ≤ y ≤ 0.20) powders and thin films. → Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of doping effect. → The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. → From the UV-visible optical band gap measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn 0.7 Be 0.1 Mg 0.2 O film which lies in the solar blind region and is very useful for the deep UV detection. - Abstract: We here report the structural and optical studies of Zn 1-x-y Be x Mg y O (0 ≤ x ≤ 0.15; 0 ≤ y ≤ 0.20) powders and thin films. From the Rietveld refinement of the powder X-ray diffraction (XRD) patterns it was revealed that the value of 'a' lattice parameter remains almost unchanged whereas 'c' parameter reduces with Be and Mg co-doping in ZnO. The Zn-O bond length also decreases in co-doped samples. Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of substitution. The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with increase in co-doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. From the UV-visible optical transmittance measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn 0.7 Be 0.1 Mg 0.2 O film which lies in the

  14. Morphology, Structure and Nonstoichiometry of ZnCr2O4 Nanophased Powder

    Directory of Open Access Journals (Sweden)

    O. Milosevic

    2003-10-01

    Full Text Available It is well established that gas/humidity-sensing properties of spinels are markedly influenced by their stoichiometry and microstructure. In this work nucleation and spinel phase development in the Zn-Cr-O system were investigated from the viewpoint of structural and morphological phenomena occurred during nanophased particle synthesis through aerosol reaction. The aerosol was generated from nitrates precursor solution using ultrasonic atomizer operated at 1.7 MHz. The influence of different decomposition schedules on the particle chemical content and morphology was determined by adjusting the processing parameters (aerosol droplet density 3.9x106 droplets/cm3, droplet velocity 0.035m/s, max. temperature 900oC and residence times 3, 6 and 9s. A composite particle structure comprised of primary crystallites sized from 22 to 44nm is revealed by SEM and TEM analysis. XRD structural analysis (crystallite size, microstrains, unit cell and ionic occupancies is performed in accordance with procedure based on Koalariet-Xfit program. A certain degree of non-stochiometry is characteristic for all powders. Homogenous distribution of the constituting elements and Zn/Cr ratio of about 0.68 are proved by EDAX mapping analysis in 470nm sized as-prepared particles. After additional treatment at 1000oC octahedral crystals form with the (111 surface dominat. Evaluated spinel non-stochiometry (Zn/Cr=0.58 is a result of the ZnO dissolving (1.9%wt in the stoichiometric ZnCr2O4. Determination of the way by which the ZnO is incorporated into the spinel lattice is performed according to the procedure based on calculation of both formation and attachment energies.

  15. Luminescence of one dimensional ZnO, GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanostructure through thermal evaporation of Zn and Ge powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn; Kien, Vu Trung; Tam, Phuong Dinh; Huy, Pham Thanh

    2016-07-15

    Graphical abstract: - Highlights: • ZnO and GeO{sub 2}–ZnGeO{sub 4} nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture. • Morphology of specimens were observed to have a nanowire structure to rod-like morphology. • Strong NBE emission band with suppressed visible green emission band were observed on the dominant ZnO nanowires. • Strong emission of ∼530 nm were observed on the GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires. - Abstract: This paper reports the first attempt for fabrication of thermal evaporated Zn–Ge powder mixture to achieve near-band-edge (NBE) emission of ZnO and visible emission of GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires with controllable intensities. The nanowires were fabricated by thermal evaporation of Zn and Ge powder mixture, particularly, by using different Zn:Ge ratio, temperature and evaporated times. The morphology of nanowires was depended on the Zn and Ge ratio that was observed to have a nanowire structure to rod-like morphology. The thermal evaporation of Zn:Ge powder mixture resulted in formation of dominant ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires as a function of evaporated parameters. These results suggest that the application of thermal evaporation of Zn and Ge mixture for potential application in synthesis of ZnO or GeO{sub 2}–Zn{sub 2}GeO{sub 4} nanowires for optoelectronic field.

  16. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  17. Oxide nano particles modified by 2-benzothiazolylthiosuccinic acid

    International Nuclear Information System (INIS)

    Dang Quyet Thang; Trinh Anh Truc; Pham Gia Vu; To Thi Xuan Hang

    2015-01-01

    In this study, ZnO nanoparticle was synthesized and modified by a corrosion inhibitor 2-benzothiazolylthiosuccinic acid (BTSA) for corrosion protection of a carbon steel surface. The TEM, SEM and IR analyses were used for characterized the synthesized products. The nano ZnO size in the about 20 nm and the IR analyze shows the presence of BTSA on the ZnO surface. The corrosion inhibition of nano ZnO and nano ZnO bearing BTSA in the NaCL 0.1 M solution was characterized using electrochemical techniques. In the NaCl 0.1 M, both nano ZnO and nano ZnO-BTSA have the inhibition property for carbon steel surface. The inhibition efficiency of ZnO-BTSA in higher than of pure ZnO. The polarization curves indicate that ZnO is anodic inhibitor while the ZnO-BTSA is a mixed-type inhibitor. (author)

  18. Spectrum designation and effect of Al substitution on the luminescence of Cr{sup 3+} doped ZnGa{sub 2}O{sub 4} nano-sized phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.c [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen Ziyu; Wang Tianmin [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zheng Shukai [College of Electronic and Information Engineering, Hebei University, Baoding 071200 (China)

    2010-10-15

    Low-temperature photoluminescent spectra of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr{sup 3+} ions in different sites including ideal octahedral, Zn-interstitial, Ga{sub ZN}{sup 4}-Zn{sub Ga}{sup 6} sites and Ga{sub 2}O{sub 3} impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al{sup 3+} is substituted in Ga{sup 3+} sites to form Zn(Ga{sub 1-y}Al{sub y}){sub 2}O{sub 4}:Cr{sub 0.01}{sup 3+} (0{<=}y{<=}0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al{sup 3+} and Ga{sup 3+}.

  19. Formation and vibrational structure of Si nano-clusters in ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Universidad Autonoma del Estado de Hidalgo, Hidalgo (Mexico); Pal, U. [Universidad Autonoma de Puebla, Puebla (Mexico); Koshizaki, N.; Sasaki, T. [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    2001-02-01

    We have studied the formation and vibrational structure of Si nano-clusters in ZnO matrix prepared by radio-frequency (r.f.) co-sputtering, and characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) spectroscopy techniques. The composite films of Si/ZnO were grown o quartz substrates by co-sputtering of Si and ZnO targets. TEM images show a homogeneous distribution of clusters in the matrix with average size varied from 3.7 nm to 34 nm depending on the temperature of annealing. IR absorption measurements revealed the bands correspond to the modes of vibrations of Si{sub 3} in its triangular geometrical structure. By analysing the IR absorption and XPS spectra we found that the nano-clusters consist of a Si{sub 3} core and a SiO{sub x} cap layer. With the increase of annealing temperature, the vibrational states of Si changed from the triplet {sup 3}B1(C2{sub v}) and {sup 3}A'{sub 2}(D{sub 3h}) states to its singlet ground state {sup 1}A{sub 1}(C2{sub v}) and the oxidation state of Si in SiO{sub x} increased. The evolution of the local atomic structure of the Si nano-clusters with the variation of Si content in the film and with the variation of the temperature of annealing are discussed. [Spanish] Se estudia la formacion y estructura vibracional de nano-cumulos de Si en matriz de ZnO preparados por la tecnica de radio-frecuencia (r.f.) co-sputtering, y caracterizados por Microscopia Electronica de Transmision (TEM), Espectroscopia Fotoelectronica de rayos X (XPS) y Espectroscopia de Infrarrojo (IR). Las peliculas compositas de Si/ZnO fueron crecidas sobre sustratos de cuarzo mediante el co-sputtering de blancos de Si y ZnO. Las imagenes de TEM mostraron una distribucion homogenea de cumulos en la matriz con un tamano promedio de 3.7 nm a 34 nm dependiendo de la temperatura de tratamiento. Las mediciones de IR relevaron las bandas correspondientes a los modos de vibracion de Si{sub 3} en su estructura

  20. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    Science.gov (United States)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  1. Net Shape Rapid Manufacturing Using Nano Encapsulated Powders, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this STTR is to determine the capability of Net Shape LENS processing with Nano-coated powders. The unique composites produced using regualr...

  2. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Meng, Lingyin [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Mu, Guiqin [Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130 (China); Zhao, Maojun; Zou, Ping [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Zhang, Yunsong, E-mail: yaanyunsong@126.com [College of Science, Sichuan Agricultural University, Yaan 625014 (China)

    2016-08-15

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb{sup 2+} adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb{sup 2+} ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb{sup 2+} concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb{sup 2+} (31.72 mg g{sup −1}) is 2.03 times higher than that of pristine yeast (15.63 mg g{sup −1}). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb{sup 2+} via synergistic effect.

  3. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    International Nuclear Information System (INIS)

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong

    2016-01-01

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb"2"+ adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb"2"+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb"2"+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb"2"+ (31.72 mg g"−"1) is 2.03 times higher than that of pristine yeast (15.63 mg g"−"1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb"2"+ via synergistic effect.

  4. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  5. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance

    International Nuclear Information System (INIS)

    Rajabi, Hamid; Ghaemi, Negin; Madaeni, Sayed S.; Daraei, Parisa; Astinchap, Bandar; Zinadini, Sirus; Razavizadeh, Sayed Hossein

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanofillers with different shape (nanorod and nanoparticle) were synthesized. • Mixed matrix PES membranes were fabricated by different concentrations of nanofillers. • Embedding nanofillers affected on morphology and hydrophilicity of PES membranes. • Nanorod MM membranes revealed the highest water flux and antifouling characteristic. • ZnO nanorod-embedded membrane showed an acceptable reusability and durability. - Abstract: Two different kinds of nano-ZnO (nanoparticle and nanorod) were synthesized, characterized, and embedded in a PES membrane matrix to investigate the effects of a nanofiller shape on the mixed matrix membrane characteristics and the antifouling capability. The mixed matrix membranes were fabricated by mixing different amounts of nanofillers with dope solution followed by a phase inversion precipitation technique. The effect of the shape of the embedded nanofillers on the morphology and performance of the fabricated membranes was studied in terms of pure water flux, fouling resistance, hydrophilicity, surface, and bulk morphology by means of permeation tests, milk powder solution filtration, water contact angle and porosity measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. Water flux of the mixed matrix membranes significantly improved after the addition of both types of ZnO nanofillers due to a higher hydrophilicity and porosity of the prepared membranes. The water contact angle measurements confirmed the increased hydrophilicity of the modified membranes, particularly in the ZnO nanorod mixed membranes. Fouling resistance of the membranes assessed by powder milk solution filtration revealed that 0.1 wt% ZnO nanorod membrane has the best antifouling property. The prepared mixed matrix membranes embedded with 0.1 wt% of both types of ZnO nanofillers showed a remarkable durability and reusability during the filtration tests; however, the best

  6. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Civil Engineering, Razi University, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, Negin, E-mail: negin_ghaemi@kut.ac.ir [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Madaeni, Sayed S. [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Daraei, Parisa [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Astinchap, Bandar [Physics Department, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Zinadini, Sirus [Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Razavizadeh, Sayed Hossein [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • ZnO nanofillers with different shape (nanorod and nanoparticle) were synthesized. • Mixed matrix PES membranes were fabricated by different concentrations of nanofillers. • Embedding nanofillers affected on morphology and hydrophilicity of PES membranes. • Nanorod MM membranes revealed the highest water flux and antifouling characteristic. • ZnO nanorod-embedded membrane showed an acceptable reusability and durability. - Abstract: Two different kinds of nano-ZnO (nanoparticle and nanorod) were synthesized, characterized, and embedded in a PES membrane matrix to investigate the effects of a nanofiller shape on the mixed matrix membrane characteristics and the antifouling capability. The mixed matrix membranes were fabricated by mixing different amounts of nanofillers with dope solution followed by a phase inversion precipitation technique. The effect of the shape of the embedded nanofillers on the morphology and performance of the fabricated membranes was studied in terms of pure water flux, fouling resistance, hydrophilicity, surface, and bulk morphology by means of permeation tests, milk powder solution filtration, water contact angle and porosity measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. Water flux of the mixed matrix membranes significantly improved after the addition of both types of ZnO nanofillers due to a higher hydrophilicity and porosity of the prepared membranes. The water contact angle measurements confirmed the increased hydrophilicity of the modified membranes, particularly in the ZnO nanorod mixed membranes. Fouling resistance of the membranes assessed by powder milk solution filtration revealed that 0.1 wt% ZnO nanorod membrane has the best antifouling property. The prepared mixed matrix membranes embedded with 0.1 wt% of both types of ZnO nanofillers showed a remarkable durability and reusability during the filtration tests; however, the best

  7. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  8. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  9. Effect of particle size and morphology on the properties of luminescence in ZnWO4

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Valiev, D.T.; Tupitsyna, I.A.; Polisadova, E.F.; Oleshko, V.I.; Lisitsyna, L.A.; Andryuschenko, L.A.; Yakubovskaya, A.G.; Vovk, O.M.

    2014-01-01

    We investigated pulsed photoluminescence and pulsed cathodoluminescence in ZnWO 4 crystals and composite materials based on dispersed powders of zinc tungstate in the polymer matrix. It is shown that the size of crystal particles affects the luminescence decay time in excitation by electron and laser radiation. The decay time obtained for the composite material with nanoparticles 25 nm and 100 nm in size is equal to 5 µs and 7 µs, respectively. Relative values of the light yield of composite containing zinc tungstate crystals in the form of rods are found to be larger in comparison with crystallites in the form of grains. The mechanisms of luminescence recombination in laser and electron excitation are discussed. - Highlights: • Pulsed photoluminescence and pulsed cathodoluminescence spectra and decay kinetics of nano- and microcrystals of zinc tungstate in the organosilicic matrix compared to a single crystal were studied. • The luminescence decay kinetics and life-time of the excited state depend on the size of particles in the composite materials and on the type of excitation. • The probability of excitation of luminescence centers responsible for the band at 490 nm is higher which is apparently due to the larger capture cross-section and quantum yield

  10. Development of Electrodeposited Zn/nano-TiO2 Composite Coatings with Enhanced Corrosion Performance

    Science.gov (United States)

    Benea, L.; Dănăilă, E.

    2017-06-01

    Pure zinc coatings have been found ineffective when are used in aggressive environments such as those which contain chlorides or industrial pollutants [1]. In this paper, Zn/nano-TiO2 composite coatings with various contents of TiO2 nanoparticles (diameter size of 10 nm) were prepared on low-carbon steel by electro-codeposition technique. The deposition was carried out at different cathodic potentials ranging from -1600 mV to -2100 mV for different deposition times between 5-15 min. Pure Zn coatings were also produced under the same experimental conditions for comparison. Present work aims to investigate the effects of selected electrodeposition parameters (cathodic potential, TiO2 nanoparticle concentration in the plating bath and electrodeposition time) on the corrosion behavior of electrodeposited Zn/nano-TiO2 composite obtained. The corrosion experiments were performed in natural seawater, using electrochemical methods such as open circuit potential, potentiodynamic polarization and linear polarization resistance. The results showed that the inclusion of TiO2 nanoparticles into zinc matrix lead to an improved corrosion resistance comparatively with pure zinc coatings obtained under similar conditions.

  11. Al-doped ZnO mechanical milled powders for dye sensitized cells

    International Nuclear Information System (INIS)

    Damonte, L.C.; Donderis, V.; Ferrari, S.; Orozco, J.; Hernandez-Fenollosa, M.A.

    2010-01-01

    Mixtures of Al 2 O 3 and ZnO powders were prepared by mechanical milling. The resulting samples were analyzed and characterized by X-ray diffraction (XRD), positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM) and optical reflection spectroscopy (OPS). XRD and PALS measurements confirm Al incorporation into ZnO wurtzite structure. Powders obtained from Al 2 O 3 precursors display better reflectivity than those prepared from Al metal so they might be better materials for implementation in photovoltaic solar devices.

  12. Magnetic, hyperthermic and structural properties of zn substituted CaFe2O4 powders

    Science.gov (United States)

    Kheradmand, Abbas; Vahidi, Omid; Masoudpanah, S. M.

    2018-03-01

    In the present study, we have synthesized single phase Ca1 - x Zn x Fe2O4 powders by hydrothermal method. The cation distribution between the tetrahedral and octahedral sites in the spinel structure and the magnetic properties as a function of the zinc substitution have been investigated by X-ray diffraction (XRD), infrared spectroscopy and vibrating sample magnetometer methods. The obtained XRD pattern indicated that the synthesized particles had single phase cubic spinel structure with no impurity. The magnetic measurements showed that the saturation magnetization increased from 83 to 98 emu/g with the addition of zinc due to the decrease of inversity. The particle size observed by electron microscopy decreased from 1.38 to 0.97 µm with the increase of zinc addition. The Ca0.7Zn0.3Fe2O4 powders exhibited appropriate heating capability for hyperthermia applications with the maximum AC heating temperature of 20 °C and specific loss power of 9.29 W/g.

  13. A simple one-step synthesis of ZnS nanoparticles via salt-alkali-composited-mediated method and investigation on their comparative photocatalytic activity

    International Nuclear Information System (INIS)

    Xiang, Donghu; Zhu, Yabo; He, Zhanjun; Liu, Zhangsheng; Luo, Jin

    2013-01-01

    Graphical abstract: The TEM image shows that the as-synthesized ZnS particle size was estimated to be about 40 nm and this newly synthesized ZnS nanoparticles can be as a promising photocatalytic degradation material for the organic pollutant removal. Display Omitted Highlights: ► ZnS nanoparticles with cubic phase have been successfully synthesized via salt-alkali-composited-mediated method (SACM) for the first time and this method has not been found so far. ► Its band gap (E g ) is a little bigger than commercial ZnS particle mainly due to quantum size effect. ► The as-synthesized ZnS nanoparticles show much more efficient photocatalytic degradation on methyl orange than commercial ZnS powder. -- Abstract: ZnS nanoparticles have been successfully synthesized via salt-alkali-composited-mediated method (SACM) for the first time, using a mixture of LiNO 3 and LiOH (LiNO 3 /LiOH = 60.7:39.3) as a reaction solvent, sodium sulfide and zinc nitrate as reactants at temperature of 210 °C for 24 h in the absence of organic dispersant or capping agents. X-ray diffraction, environment scanning electron microscopy (ESEM) and Transmission electron microscopy (TEM) indicated that the as-synthesized products were well crystallized and belonged to nano-scale. Their UV–vis absorption spectrum demonstrated a band gap of 3.6406 eV corresponding to the absorption edge of 340 nm. The experimental result of photocatalytic degradation on methyl orange by the nano-ZnS showed much better photocatalysis than that by the commercial ZnS powder under the irradiation of ultraviolet light and visible light, respectively.

  14. Rectifying Behavior of Aligned ZnO Nano rods on Mg0.3Zn0.7O Thin Film Template

    International Nuclear Information System (INIS)

    Salina Muhamad; Suriani Abu Bakar; Mohamad Hafiz Mamat; Rafidah Ahmad; Mohamad Rusop

    2011-01-01

    Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nano rods grown on Mg 0.3 Zn 0.7 O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crystallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nano rods was discussed in further details. (author)

  15. Al-doped ZnO mechanical milled powders for dye sensitized cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C., E-mail: damonte@fisica.unlp.edu.a [Departamento de Fisica, UNLP, IFLP-CCT-CONICET, C.C.67(1900), La Plata (Argentina); Dto. de Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Donderis, V. [Dto. de Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Ferrari, S. [Departamento de Fisica, UNLP, IFLP-CCT-CONICET, C.C.67(1900), La Plata (Argentina); Orozco, J. [ITM, Universidad Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. de Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain)

    2010-04-16

    Mixtures of Al{sub 2}O{sub 3} and ZnO powders were prepared by mechanical milling. The resulting samples were analyzed and characterized by X-ray diffraction (XRD), positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM) and optical reflection spectroscopy (OPS). XRD and PALS measurements confirm Al incorporation into ZnO wurtzite structure. Powders obtained from Al{sub 2}O{sub 3} precursors display better reflectivity than those prepared from Al metal so they might be better materials for implementation in photovoltaic solar devices.

  16. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis

    Science.gov (United States)

    The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...

  17. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).

    Science.gov (United States)

    Coll, Claudia; Notter, Dominic; Gottschalk, Fadri; Sun, Tianyin; Som, Claudia; Nowack, Bernd

    2016-01-01

    The environmental risks of five engineered nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) were quantified in water, soils, and sediments using probabilistic Species Sensitivity Distributions (pSSDs) and probabilistic predicted environmental concentrations (PECs). For water and soil, enough ecotoxicological endpoints were found for a full risk characterization (between 17 and 73 data points per nanomaterial for water and between 4 and 20 for soil) whereas for sediments, the data availability was not sufficient. Predicted No Effect Concentrations (PNECs) were obtained from the pSSD and used to calculate risk characterization ratios (PEC/PNEC). For most materials and environmental compartments, exposure and effect concentrations were separated by several orders of magnitude. Nano-ZnO in freshwaters and nano-TiO2 in soils were the combinations where the risk characterization ratio was closest to one, meaning that these are compartment/ENM combinations to be studied in more depth with the highest priority. The probabilistic risk quantification allows us to consider the large variability of observed effects in different ecotoxicological studies and the uncertainty in modeled exposure concentrations. The risk characterization results presented in this work allows for a more focused investigation of environmental risks of nanomaterials by consideration of material/compartment combinations where the highest probability for effects with predicted environmental concentrations is likely.

  18. Synthesising and comparing electrical properties of NTC thermistors prepared from nano powder and solid state reaction

    International Nuclear Information System (INIS)

    Azad, N.; Ghanbari Shohany, B.; Hosseini, S. M.; Kompany, A.

    2011-01-01

    In this research, NTC thermistors with composition of NiMn 2-x Co x O 4 (x = 0.4, 0.8, 1.2, 1.6) prepared by two methods: solid state reaction and sol-gel (gel-combustion). The average particle size was monitored and structure of the calcinated powders have been investigated using x-ray diffraction and tunneling electron microscopy techniques. The average particle size was estimated to be about 65 nm with the cubic and cubic + tetragonal phases for low and high cobalt concentrations, respectively. The grain size of samples verifies with scanning electron microscopy images. Upon increasing the cobalt fraction, the grain size of samples increases from about 2μm to a few μm in size. The electrical properties of these thermistors depend on the grain size. The grain size of samples made from sol-gel is smaller than from solid state reaction under the same condition. For longer sintering time of the samples prepared by gel-combustion method, the grain size was increased then the electrical parameters of nano powder improved and we obtain better results than the samples prepared from solid state reaction.

  19. Bacteria-assisted preparation of nano α-Fe{sub 2}O{sub 3} red pigment powders from waste ferrous sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui, E-mail: zhangyongkui@scu.edu.cn

    2016-11-05

    Highlights: • A route to prepare nano α-Fe{sub 2}O{sub 3} red pigment from waste ferrous sulfate is proposed. • Acidithiobacillus ferrooxidans is introduced for accelerating iron oxidation. • The particle size of synthetic α-Fe{sub 2}O{sub 3} is ranged from 22 nm to 86 nm. • The prepared nano α-Fe{sub 2}O{sub 3} red pigment fulfills ISO 1248-2006. - Abstract: Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe{sub 2}O{sub 3} red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe{sub 2}O{sub 3} red pigment powders contained 98.24 wt.% of Fe{sub 2}O{sub 3} were successfully prepared, with a morphology of spheroidal and particle size ranged from 22 nm to 86 nm and averaged at 45 nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments.

  20. ZnMgO-ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Bakin, A.; El-Shaer, A.; Mofor, A.C.; Al-Suleiman, M.; Schlenker, E.; Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)

    2007-07-01

    ZnO thin films, ZnMgO/ZnO heterostructures and ZnO nanostructures were fabricated using molecular beam epitaxy (MBE), vapour phase transport (VPT) and an aqueous chemical growth approach (ACG). The possibility to employ several fabrication techniques is of special importance for the realization of unique device structures. MBE was implemented for ZnO-based layer and heterostructure growth. Pronounced RHEED oscillations were used for growth control and optimisation, resulting in high quality ZnO and Zn{sub 1-x}Mg{sub x}O epilayers and heterostructures, as well as ZnMgO/ZnO quantum wells on sapphire and SiC substrates. A novel advanced VPT approach is developed and sapphire, SiC, ZnO epitaxial layers, and even plastic and glass were implemented as substrates for ZnO growth. The VPT fabrication of ZnO nanopillars, leading to well aligned, c-axis oriented nanopillars with excellent quality and purity is demonstrated. Successful steps were made towards device fabrication on ZnO basis. The nanopillar fabrication technique is combined with MBE technology: MBE-grown ZnMgO/ZnO quantum well structures were grown on ZnO nanopillars presenting significant progress towards nano-LEDs realization. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    Science.gov (United States)

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  2. Comparative study on nano-Zirconium Oxide Materials used in Nuclear Technology

    International Nuclear Information System (INIS)

    Khalil, T.; Dakroury, G.A.; Abou El-Nour, F.; Abdel-Khlik, M.

    2004-01-01

    Nano-ZrO 2 powders were prepared using two advanced methods, namely SoI-GeI and Gelation techniques. Y 2 O 3 , Ce0 2 and Mg0 were used as stabilizers during the preparation processes. The function of these materials is to stabilize the meta stable tetragonal Zr0 2 phase responsible for the nano character of produced materials. The applied experimental procedures proved to be suitable to produce nano powders composed of crystallites of few nano-meter size with an interfacial component formed by all atoms situated in the grain boundaries. These two structure components (nano-sized crystallites and boundaries) of comparable volume fractions are crucial for the nano-structure materials. Powder agglo-meration, contamination during processing and remaining of the residual pores in the bodies were overcome during the sintering process of the powder by special treatment. Different analytical procedures such as DTA-TG, specific surface area, pore size analysis, density, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out for Zr0 2 produced by both SoI-GeI and Gelation techniques

  3. Synthesis and Photocatalytic Properties of Reduced Graphene Oxides Loaded-nano ZnS/CuS Heterostructures

    Directory of Open Access Journals (Sweden)

    ZENG Bin

    2017-12-01

    Full Text Available The reduced graphene oxides(rGO loaded-nano ZnS nanoparticles were fabricated by microwave heating method and by ion exchanged reaction reduced graphene oxides(rGO loaded-nano ZnS/CuS heterostructures were obtained. The structure, morphology were characterized via scanning electron microscopy(SEM, transmission electron microscopy(TEM and X-ray diffraction pattern(XRD. The effect of the mass fraction of graphene oxides, sulfur source and microwave heating time on the morphology and photocatalyitc performance were discussed. The results show that graphene uniformly loaded-nano ZnS/CuS heterostructures are obtained on the condition of graphene mass fraction of 10%, thioacetamide acting as sulfur source, microwave heating time is 30min. rGO-loaded nano ZnS/CuS heterostructures nanoparticles enhance photocatalytic performance with 81.2% decomposition of MO in 150min under visible light, demonstrating the excellent photocatalytic performance. The high visible photocatalytic performances are attributed to photoinduced interfacial charge transfer in the nano heterostructures and their further separation and transfer by rGO.

  4. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil.

    Science.gov (United States)

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Gestel, Cornelis A M

    2012-10-01

    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery (>85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (soil spiked at concentrations up to 6,400 mg Zn kg(-1) d.w. was not affected for both compounds. Reproduction was reduced in a concentration-dependent manner with EC50 values of 3,159 and 2,914 mg Zn kg(-1) d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg(-1) d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candida.

  5. Comparative studies of microstructural, tribological and corrosion properties of Zn-TiO2 and Zn-TiO2-WO3 nano-composite coatings

    Directory of Open Access Journals (Sweden)

    A.A. Daniyan

    Full Text Available Nano sized composites of Zn-TiO2 and Zn-TiO2-WO3 were produced via electrocodeposition on plain carbon steel. The effect of input current on the microstructure, mechanical strengthening and corrosion properties were compared. The morphological features of the composite coatings were characterized by scanning electron microscope (SEM equipped with energy dispersive spectrometer (EDS; mechanical properties were carried out using a diamond base Dura Scan hardness tester and CERT UMT-2 multi-functional tribological tester. The corrosion properties were investigated by potentiodynamic studies in 3.5% NaCl. The result showed that the coatings exhibited good stability and the particle loading of WO3 greatly enhanced the microstructural properties, hardness behaviour and corrosion resistance of the coatings. Keywords: Zn-TiO2, Zn-TiO2-WO3, Electrocodeposition, Microstructure, Composite, Stability and coatings

  6. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Pei-Jia Lu

    2018-04-01

    Full Text Available This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors. Keywords: Zinc oxide, Nanoparticles, Methodology

  7. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder–air mixtures

    International Nuclear Information System (INIS)

    Liu, Xueling; Zhang, Qi

    2015-01-01

    Highlights: • The slope of P_m_a_x versus U_r_m_s is greater for nano-Al powder than for micro-Al powder. • The u_e_f_f_,_m_a_x of micro-Al and nano-Al powder-air mixtures increases linearly with U_r_m_s. • For micro- and nano-Al powders, u_e_f_f_, _m_a_x increases as the percentage of nano-Al increases. - Abstract: The environmental turbulence intensity has a significant influence on the explosion parameters of both micro- and nano-Al at the time of ignition. However, explosion research on turbulence intensity with respect to micro- and nano-Al powders is still insufficient. In this work, micro- and nano-aluminum powders were investigated via scanning electron microscopy (SEM), and their particle size distributions were measured using a laser diffraction analyzer under dispersing air pressures of 0.4, 0.6, and 0.8 MPa in a 20 L cylindrical, strong plexiglass vessel. The particle size distributions in three different mass ratio mixtures of micro- and nano-Al powders (micro-Al:nano-Al_[_m_a_s_s_r_a_t_i_o_] = 95:5, 90:10, and 85:15) were also measured. The results show that the agglomerate size of nano-Al powder is an order of magnitude larger than the nanoparticles’ actual size. Furthermore, the turbulence intensity ranges (U_r_m_s) of the Al powder-air mixtures were measured using particle image velocimetry (PIV) under dispersing air pressures of 0.4, 0.6, and 0.8 MPa. The effect of turbulence intensity on the explosion characteristics of the micro- and nano-Al powders was investigated using a 20 L cylindrical explosion vessel. The results of micro-Al and nano-Al powder-air mixtures with a stoichiometric concentration of 337.00 g·m"−"3 were discussed for the maximum explosion pressure, the maximum rate of pressure increase and the maximum effective burning velocity under the different turbulence intensity.

  8. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  9. Pembuatan Bioplastik Dari Pati Ubi Kayu Berpenguat Nano Serat Jerami dan ZnO

    Directory of Open Access Journals (Sweden)

    Chairul Amni

    2015-12-01

    Full Text Available Production of biodegradable plastic film had been done using cassava starch which serves as a main raw material, distilled water as a solvent, as well as nano fiber straw, ZnO, and a mixture of nano fiber straw and ZnO that function as a reinforcement of bioplastic. Cassava starch was chosen as the raw material for making plastics because of easy to obtain and inexpensive, moreover the use is still very low when compared to other plants that as staple food stuffs, such as rice, corn, potatoes, wheat, and so forth. This research was aimed to make plastics that can reduce the environmental impact by looking at the effect of reinforcing the concentration used for the mechanical properties of the film, water absorption, and the decomposition rate of the plastic. The reinforcer used was nano fibers straw, ZnO, and a mixture of both with a concentration of 1%, 3%, 6%, and 9% of each reinforcer. Testing of mechanical properties (tensile strength and elongation used the Electronic System Universal Testing Machines, testing of water absorption was done by immersing the film in water for 24 hours, and testing of decomposition rate was done by burying the film into the ground. The results showed the highest tensile strength values was 0.32 kgf/mm2obtained at a concentration of 9% ZnO, whereas the highest percent elongation was 34% obtained at a concentration of 1% nano-fiber straw. The lowest water absorption was 16% obtained at a concentration of 9% ZnO. The highest absorption of water was 27.23% obtained at a concentration of 1% nano-fiber straw and the decomposition process occured for 18-27 days.ABSTRAKPembuatan film plastik biodegradable telah dilakukan dengan menggunakan pati ubi kayu  yang berfungsi sebagai bahan baku utama dan bahan-bahan lain yaitu aquades yang berfungsi sebagai pelarut, serta  nano serat jerami, ZnO dan campuran dari serat jerami dan ZnO yang berfungsi sebagai penguat bioplastik. Pati ubi kayu dipilih sebagai bahan baku

  10. Forging of metallic nano-objects for the fabrication of submicron-size components

    International Nuclear Information System (INIS)

    Roesler, J; Mukherji, D; Schock, K; Kleindiek, S

    2007-01-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1)

  11. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  12. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Haruhiko, E-mail: atsumi-h@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imai, Hisashi; Li, Shufeng; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kousaka, Yoshiharu; Kojima, Akimichi [San-etsu Metals Co. Ltd., 1892 Ohta, Tonami, Toyama 939-1315 (Japan)

    2012-08-15

    In this paper, high-strength brass (Cu-40% Zn) alloy with magnesium (Mg) element was fabricated via powder technology process, and the effect of the additive Mg element on microstructural and mechanical properties of extruded brass alloys with {alpha}-{beta} duplex phases was investigated. Pre-mixed Cu-40% Zn alloy powder with 0.5-1.5 mass% pure Mg powder (Cu-40% Zn + Mg) was consolidated using a spark plasma sintering (SPS) equipment. SPSed Cu-40% Zn + Mg specimens consisted of {alpha}-{beta} duplex phases containing Mg(Cu{sub 1-x}Zn{sub x}){sub 2} intermetallic compounds (IMCs) with a mean particle size of 10-30 {mu}m in diameter. The IMCs were completely dissolved in the {alpha}-{beta} duplex phases by a heat-treatment at 973 K for 15 min; thus, in order to disperse fine IMCs on {alpha}-{beta} duplex phase matrix, the SPSed Cu-40% Zn + Mg specimens were pre-heated at the solid solutionizing condition, and immediately extruded. The extruded specimen exhibited fine {alpha}-{beta} duplex phases, containing very fine precipitates of the above Mg(Cu{sub 1-x}Zn{sub x}){sub 2} IMCs with 0.5-3.0 {mu}m in diameter. In particular, a mean grain size of the extruded Cu-40% Zn + 1.0% Mg specimen was 3.32 {mu}m analyzed using an electron back-scattered diffraction. Tensile properties of the extruded Cu-40% Zn + 1.0% Mg specimen were an average value of yield strength (YS): 328 MPa, ultimate tensile strength (UTS): 553 MPa, and 25% elongation. This indicated that the extruded Cu-40% Zn + 1.0% Mg specimen revealed the significantly high-strength properties compared to a conventional binary brass alloy with 229 MPa YS and 464 MPa UTS. A high strengthening mechanism of this wrought brass alloy was mainly due to the grain refinement because of a pinning effect by the fine Mg(Cu{sub 1-x}Zn{sub x}){sub 2} precipitates at the boundaries of each phase. -- Highlights: Black-Right-Pointing-Pointer New high-strength extruded brass alloy with Mg was fabricated via powder metallurgy. Black

  13. Photocatalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-ZnO and Nanoclay Composite

    Directory of Open Access Journals (Sweden)

    Sol-A Bak

    2015-01-01

    Full Text Available The presence of nondegradable organic compounds and xenobiotic chemicals in water is a great concern for the general public because of their polar properties and toxicity. For instance, trichloroethylene (TCE is a widely used solvent in the chemical industry, and it is also a contaminant of soil, surface water, and groundwater. Recent studies on new treatment technologies have shown that photocatalyst-based advanced oxidation processes are appropriate for removing these polar and toxic compounds from water. The objective of this study was to remove TCE from water using novel nano-ZnO-laponite porous balls prepared from photocatalyst ZnO with nanoscale laponite. These nano-ZnO-laponite porous balls have a porosity of approximately 20%. A lower initial concentration of TCE resulted in high removal efficiency. Moreover, the removal efficiency increased with increasing pH in the photocatalytic degradation experiments employing UVC light with nano-ZnO-laponite. The optimal dosage of nano-ZnO-laponite was 30 g and the use of UVC light resulted in a higher removal efficiency than that achieved with UVA light. In addition, the removal efficiency of TCE significantly increased with increasing light intensity. We think that TCE’s removal in water by using porous ball of nano-ZnO and nanoclay composite is a result of degradation from hydroxide by photons of nano-ZnO and physical absorption in nanoclay.

  14. Combustion synthesis by reaction and characterization of nano ferrites: study of fuel aniline, citric and its mixture

    International Nuclear Information System (INIS)

    Silva, M.C. da; Coutinho, J.P.; Costa, A.C.F.M.; Kiminami, R.H.G.A.; Freitas, N.L. de

    2012-01-01

    The present study aims to evaluate the influence of aniline and citric acid used alone and combined in a ratio of 50% each in the characterization of NiZn ferrite synthesized by combustion reaction method in a muffle furnace. Measurements were made of temperature and reaction time. The nano-powders were characterized by XRD, EDX, textural analysis and SEM. The highest temperature was achieved by the reaction using the mixture of fuel and increased reaction time using citric acid. The nano ferrites using different fuels, and the mixture changed phases, the crystallite size and decreased surface area of the samples with aniline, citric acid and a mixture of both, respectively. The powder morphology ranged from presenting the formation of irregular blocks for the use of citric agglomerated in the form of skeins with aniline and a mixture to agglomerate larger particles. (author)

  15. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  16. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  17. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    Science.gov (United States)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  18. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  19. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Yin, Jun-Jie [Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740 (United States); Zheng, Zhi, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  20. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    International Nuclear Information System (INIS)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  1. Preparation of UO{sub 2}, ThO{sub 2} and (Th,U)O{sub 2} pellets from photochemically-prepared nano-powders

    Energy Technology Data Exchange (ETDEWEB)

    Pavelková, Tereza [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Čuba, Václav, E-mail: vaclav.cuba@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Visser-Týnová, Eva de [Nuclear Research and Consultancy Group (NRG), Research & Innovation, Westerduinweg 3, 1755 LE Petten (Netherlands); Ekberg, Christian [Nuclear Chemistry/Industrial Materials Recycling, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Persson, Ingmar [Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala (Sweden)

    2016-02-15

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely “ThO{sub 2} like” and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300–550 °C yielded nano-crystalline UO{sub 2}, ThO{sub 2} or solid (Th,U)O{sub 2} solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H{sub 2} (20:1) mixture (UO{sub 2} and (Th,U)O{sub 2} pellets) or at 1600 °C in ambient air (ThO{sub 2} pellets). The theoretical density of the sintered pellets varied from 91 to 97%. - Highlights: • Photochemically prepared UO{sub 2}/ThO{sub 2} nano-powders were pelletized. • The nano-powders of crystalline oxides were pelletized without any binder. • Pellets were sintered at 1300 °C (UO{sub 2} and (Th,U)O{sub 2}) or 1600 °C (ThO{sub 2} pellets). • The theoretical density of the sintered pellets varies from 91 to 97%.

  2. Preparation and electrochemical characterization of size controlled SnO2-RuO2 composite powder for monolithic hybrid battery

    International Nuclear Information System (INIS)

    Jeon, Young-Ah; No, Kwang-Soo; Choi, Sun Hee; Ahn, Jae pyong; Yoon, Young Soo

    2004-01-01

    Tin oxide (SnO 2 ) powders with a particle size of ∼20 nm were synthesized by a gas condensation method. Ruthenium oxide was loaded by an incipient-wetness method, in which an aqueous solution of RuCl 3 was added to the manufactured SnO 2 powder in an amount that was just sufficient to wet completely the powder. And then, the resulting solution was obtained after freeze-drying to synthesis the smallest particle. The as-synthesized SnO 2 powder with 1.5 wt.% ruthenium oxide (RuO 2 ) exhibited well-developed facets and had a very uniform particle size. The first discharge capacity was lower than comparing to commercial powder because of forming the second phase, but showed good cyclability. A maximum specific electrode capacitance of ∼20 F/g and a maximum specific power of ∼80 W/kg were achieved by manufactured SnO 2 with 1.5 wt.% RuO 2 . This result indicated that the synthesized SnO 2 -RuO 2 composite powder of nano-size scale is candidate for use in fabricating monolithic hybrid batteries using suitable electrolyte as well

  3. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  4. Effect of milling on the damping behavior of nano-structured copper

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, Narasimalu; Thein, Maung Aye; Gupta, Manoj

    2004-02-05

    In the present study, elemental Cu powder was mechanically milled (MMed) for 10 h to reduce the grain (crystalline) size in the nano-range (<100 nm). The mechanically milled powder (10 h-MMed) and elemental powder without mechanical milling (MM) (0 h-MMed) was consolidated by die-cold compaction and were further hot extruded at different temperatures to maintain a crystallite size within the nano-range. Further, the specimen was tested by a novel free-free type suspended beam arrangement, coupled with circle-fit approach to determine damping characteristics. The characterization results help to understand the effect of the nano-size grains on the overall damping capacity of the bulk samples compared to a normal micro-crystalline sample. Results show that the damping capacity of the nano-grained material increases due to the presence of process induced microstructural changes similar to the damping behavior of a micro-grain sized specimen.

  5. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  6. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O_2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  7. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  8. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 INDIA (India)

    2016-05-06

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O{sub 2}) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  9. Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution

    Energy Technology Data Exchange (ETDEWEB)

    Eltabey, M.M. [Basic Engineering Science Department, Faculty of Engineering, Menoufiya University (Egypt); Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Massoud, A.M., E-mail: Amassouda1@yahoo.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo (Egypt); Radu, Cosmin [Lake Shore Cryotronics, Inc., Westerville, OH (United States)

    2017-01-15

    Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method from stoichiometric aqueous solutions, where x varies from 0 to 0.3 in steps of 0.05. The synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FT-IR). A vibrating sample magnetometer (VSM) was used to measure the hysteresis parameters at 300 and 6 K. Zero field cooling (ZFC) and field cooling (FC) curves were obtained at the temperature range 6–400 K and the blocking temperature values were determined. XRD analysis confirmed the formation of the obtained powder in a single cubic spinel phase and it showed also that the lattice parameter is decreasing with the increase of (Co-Zn) content. FT-IR measurements between 160 and 650 cm{sup −1} also confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements showed that the saturation magnetization, coercivity and the values of blocking temperatures were increased with the (Co-Zn) content. TEM micrographs declared the improvement of particle size homogeneity with the increase of (Co-Zn) content without remarkable change in the average particle size. The obtained results were discussed in view of A-B sublattices interaction and superparamagnetic phenomenon. - Highlights: • Nanocrystalline particles of compositions (CoZn){sub x}Mn{sub 1-x}Fe{sub 2}O{sub 4} were prepared by the coprecipitation method. • XRD analysis showed that the lattice parameter is decreased with the increase of (Co,Zn) content. • The saturation magnetization is improved with the (Co,Zn) content. • Particle size homogeneity is enhanced with (Co,Zn) content. • The values of blocking temperatures are enhanced with increasing (Co,Zn) content.

  10. The Effect of Sodium Dodecyl Sulfate (SDS and Cetyltrimethylammonium Bromide (CTAB on the Properties of ZnO Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yun Hin Taufiq-Yap

    2012-10-01

    Full Text Available ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB and Sodium dodecyl sulfate (SDS as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD, thermogravimetric and differential thermogravimetric analysis (TGA-DTG, FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.

  11. Antibacterial properties of F-doped ZnO visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Podporska-Carroll, Joanna, E-mail: joannapcarroll@gmail.com [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); Myles, Adam [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin (Ireland); Quilty, Brid [School of Biotechnology, Dublin City University, Dublin (Ireland); McCormack, Declan E.; Fagan, Rachel [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin (Ireland); Hinder, Steven J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Pillai, Suresh C., E-mail: Pillai.Suresh@itsligo.ie [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); Nanotechnology Research Group, Department of Environmental Science, PEM Centre, Institute of Technology Sligo, Sligo (Ireland)

    2017-02-15

    Highlights: • F doped ZnO nano-powders were obtained by a modified sol–gel method. • These materials were found to be effective against S. aureus and E. coli. • Enhanced visible light photocatalytic and antimicrobial properties were obtained. • The toxic effect of ZnO on bacteria can be due to the release of zinc cations. • Production of reactive oxidation species influences bacterial viability. - Abstract: Nanocrystalline ZnO photocatalysts were prepared by a sol–gel method and modified with fluorine to improve their photocatalytic anti-bacterial activity in visible light. Pathogenic bacteria such as Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) were employed to evaluate the antimicrobial properties of synthesized materials. The interaction with biological systems was assessed by analysis of the antibacterial properties of bacteria suspended in 2% (w/w) powder solutions. The F-doping was found to be effective against S. aureus (99.99% antibacterial activity) and E. coli (99.87% antibacterial activity) when irradiated with visible light. Production of reactive oxygen species is one of the major factors that negatively impact bacterial growth. In addition, the nanosize of the ZnO particles can also be toxic to microorganisms. The small size and high surface-to-volume ratio of the ZnO nanoparticles are believed to play a role in enhancing antimicrobial activity.

  12. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  13. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    International Nuclear Information System (INIS)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fátima; Teófilo, Reinaldo F.; Vitor, Débora M.; Reis Coimbra, Jane Sélia dos; Andrade, Nélio José de; Sousa, Frederico B. de; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na 4 P 2 O 7 ), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  14. Synthesis and characterization of nano silver ferrite composite

    International Nuclear Information System (INIS)

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  15. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  16. Sorption behavior of human bone powder towards 60 Co and 65 Zn

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.T.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder 30-40 Μ in diameter was prepared from human bone femurs as fat-free (FFB), protein-free (PFB) or left untreated as raw bone powder (RB). The sorption behavior of human bone powder towards 60 Co and 65 Zn was studied. The uptake changed with the type of bone powder to be : PFB>FFB>RB. The increase in the concentration of cobalt(from 10 -6 to 10 -1 Mole/litre)and of zinc (from 10 -7 to 10 -4 M/1) increased the uptake of 60 Co and 65 Zn. Freunclich-type isotherm was successfully applied on the uptake data of both ions and the slopes of these isotherms were, nearly, directly proportional to their uptake values. The uptake was found to be less influenced by the PH. In case of cobalt the uptake increased till PH 4, followed by a plateau till PH 8 while in case of zinc the PH effect is much less pronounced

  17. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  18. Synthesis of Si, N co-Doped Nano-Sized TiO2 with High Thermal Stability and Photocatalytic Activity by Mechanochemical Method

    Directory of Open Access Journals (Sweden)

    Peisan Wang

    2018-05-01

    Full Text Available Τhe photocatalytic activity in the range of visible light wavelengths and the thermal stability of the structure were significantly enhanced in Si, N co-doped nano-sized TiO2, and synthesized through high-energy mechanical milling of TiO2 and SiO2 powders, which was followed by calcination at 600 °C in an ammonia atmosphere. High-energy mechanical milling had a pronounced effect on the mixing and the reaction between the starting powders and greatly favored the transformation of the resultant powder mixture into an amorphous phase that contained a large number of evenly-dispersed nanocrystalline TiO2 particles as anatase seeds. The experimental results suggest that the elements were homogeneously dispersed at an atomic level in this amorphous phase. After calcination, most of the amorphous phase was crystallized, which resulted in a unique nano-sized crystalline-core/disordered-shell morphology. This novel experimental process is simple, template-free, and provides features of high reproducibility in large-scale industrial production.

  19. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity

    Directory of Open Access Journals (Sweden)

    Jaffri Shaan Bibi

    2018-03-01

    Full Text Available Zinc oxide nano falcates of sickle shape have been synthesized from Prunus cerasifera pomological extract as a reducing cum stabilizing agent via novel, biomimetic and non-toxic route. Zinc oxide nano falcates were analyzed via ultraviolet spectroscopy, Fourier transform infrared analysis, X-ray powder diffraction, scanning electron microscopy and atomic force microscopy. Highly stable zinc oxide nano falcates synthesized at 200°C and 400°C calcination temperatures expressed intense UV-vis peak at 398 nm. Phenolic and amino groups were revealed by FTIR in pomological extract. Wurtzite crystalline structure of zinc oxide nano falcates was confirmed by XRD with average crystal size of 4.93 nm. SEM sizes ranged between 72.11-120 nm and 56.57-107.70 nm, respectively and shown higher polydispersity levels for two calcination temperatures. Augmented photocatalytic degradation of methyl red and bromophenol blue under direct solar irradiance shown pseudo first order kinetics (R2= 0.99 and 0.96. Furthermore, biomedical and agriculturally important pathogenic strains i.e., Xanthomanas axonopodis pv. citri and Pseudomonas syringae, Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani and Lasiodiplodia theobromae were remarkably inhibited. Enhanced photocatalytic and antimicrobial activity reveals zinc oxide nano falcates promising prospects in nano bioremediation of polluted water and conversion into green nano pesticides.

  20. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  1. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  2. Preparation of TiO2 Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens

    Directory of Open Access Journals (Sweden)

    Moo-Chin Wang

    2012-02-01

    Full Text Available The preparation of TiO2 nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl4 and Zn(NO32·6H2O as starting materials. XRD results show that the phases of anatase TiO2 and rutile TiO2 coexist for precursor powders without added ZnO (T-0Z and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO2 appears. In addition, when the TiO2 precursor powders contain 9 mol% ZnO (T-9Z are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO2 and the minor phases of anatase TiO2 and Zn2Ti3O8. The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO2 nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens.

  3. Preparation of Co-Zn ferrite nano-based materials and their enhanced magnetic performance via inverse miniemulsion method

    Science.gov (United States)

    Ji, Juejin; Zhang, Zhenqian; Fang, Bijun; Ding, Jianning

    2017-11-01

    The well dispersed CZF/PAM nanoparticles were prepared by the inverse miniemulsion method, which present high calcining and sintering activity for preparing Co0.875Zn0.125Fe2O4 (CZF) films, powders and ceramics at rather low temperatures. The prepared CZF/PAM inverse miniemulsion exhibits excellent film-formation performance, which is feasible for coating CZF films. XRD and FT-IR measurements confirmed that phase pure spinel structure and well crystalline CZF powders can be prepared calcined at the least temperature of 400 °C. The 450 °C-calcined CZF powders exhibit nearly spherical shape grains with average particle size 20-30 nm accompanied by apparent conglomeration. Improved external magnetic performance and electrical properties are obtained in the synthesized CZF powders and ceramics, which provide versatile promising applications.

  4. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    Energy Technology Data Exchange (ETDEWEB)

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia; Amal, M. Ikhlasul; Kartika, Ika, E-mail: pepeng2000@yahoo.com [Research center for Metallurgy and Material, Indonesian Institute of Science (Indonesia); Sitorus, Lyandra S. [Sultan Ageng Tirtayasa University (Indonesia)

    2016-04-19

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  5. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    Science.gov (United States)

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes

    International Nuclear Information System (INIS)

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio

    2004-01-01

    Micro/nano-textured ZnO thick films were synthesized through deposition and pyrolysis of layered hydroxide zinc acetate (LHZA), Zn 5 (OH) 8 (CH 3 COO) 2 ·2H 2 O. LHZA films having a unique, rose-like morphology were initially deposited on conducting glass sheets in a chemical bath composed of methanol and zinc acetate dihydrate at 60 deg. C under neutral conditions. Pyrolysis of the LHZA films resulted in formation of ZnO without destroying the original morphology. Pyrolysis temperatures were found to greatly influence grain sizes and specific surface areas of the ZnO films. Photoelectrochemical performance of the films as ZnO/eosin Y electrodes was investigated in dye-sensitized solar cells using an I - /I 3 - redox electrolyte solution. The cell using the ZnO film pyrolyzed at 150 deg. C exhibited overall light to electricity conversion efficiencies of 2.0 and 3.3% under an AM-1.5 illumination at 100 and 10 mW cm -2 , respectively. While microscale pores in the electrodes facilitated mass transfer of fluid electrolytes in the depth direction, nanoscale pores contributed to an increase in the amount of adsorbed dye. The maximum incident photon-to-current conversion efficiency (IPCE) of the electrode reached 84.9% at a wavelength of 530 nm

  7. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Sarıışık Merih

    2010-01-01

    Full Text Available Abstract ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL process on cotton fabrics properties.

  8. Selective antibacterial effects of mixed ZnMgO nanoparticles

    International Nuclear Information System (INIS)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-01-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size ∼50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  9. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Science.gov (United States)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-05-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive ( B. subtilis) and Gram-negative ( E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size 50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  10. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Jasmina, E-mail: jasmina.vidic@jouy.inra.fr [VIM, Institut de la Recherche Agronomique (France); Stankic, Slavica, E-mail: slavica.stankic@insp.jussieu.fr; Haque, Francia [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore [VIM, Institut de la Recherche Agronomique (France); Jupille, Jacques [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Delmas, Bernard [VIM, Institut de la Recherche Agronomique (France)

    2013-05-15

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals-with the length of tetrapod legs about 100 nm and the diameter about 10 nm-were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size {approx}50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  11. A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nano wires

    International Nuclear Information System (INIS)

    Lavcevic, M.L.; Silovic, L.; Dubcek, P.; Pavlovic, M.; Bernstorff, S.

    2013-01-01

    We report a grazing-incidence small-angle X-ray scattering study of ZnO films with vertically aligned and randomly distributed nano wires, grown through a hydrothermal growth process on nano structured ZnO seeding coatings and deposited by electron beam evaporation on silicon and glass, respectively. The comparison of the scattering patterns of seeding coatings and nano wires showed that the scattering of vertically aligned nano wires exhibited a specific feature: the dominant characteristic of their scattering patterns is the appearance of fine structure effects around the specular peak. These effects were clarified by the combined reflection and scattering phenomena, suggested for the aligned nano wires-substrate system. Furthermore, they enabled the calculation of the average gyration radius of nano wires in horizontal direction. The calculated value was in good agreement with the radii of nano wires estimated by surface electron microscopy. Therefore, the observed feature in the scattering pattern can serve as evidence of the aligned growth of nano wires.

  12. Influence of starting powder milling on magnetic properties of Mn-Zn ferrite

    Directory of Open Access Journals (Sweden)

    Miodrag M. Milutinov

    2017-06-01

    Full Text Available In this paper, the influence of additional sieving and milling of starting industrial Mn-Zn powders on magnetic properties was investigated. The starting powder was milled for 60 minutes, followed by sieving through 325 and 400 meshes. The starting and milled powders were used to fabricate toroid shaped samples sintered at 1200°C for 2 hours. Structural parameters of the fabricated samples were analysed by X-ray diffraction and scanning electron microscopy. Complex permeability, core loss density, and hysteresis were measured using the modified watt-meter method. The complex permeability and hysteresis loop were modelled with a new model proposed in the paper. The core loss density was modelled with the Steinmetz empirical equation. The experimental results and calculations show the significance of the additional milling and sieving process on magnetic properties of Mn-Zn ferrite in the frequency range 0.1-10MHz. These processes increase the relative permeability about 3 times and decrease the core loss 4 times by milling of the starting powder.

  13. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis

    International Nuclear Information System (INIS)

    Yan, Ting; Guo, Xiaode; Zhang, Xiang; Wang, Zhixiang; Shi, Jinqiu

    2016-01-01

    Highlights: • The nano α-Al 2 O 3 with good dispersion was prepared by two-step hydrolysis. • α-Al 2 O 3 powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al 2 O 3 transformed to α-Al 2 O 3 directly. • This article indicated that the addictive of α-Al 2 O 3 seed could improve the phase transformation rate of γ-Al 2 O 3 to α-Al 2 O 3 . • In this article, the pure α-Al 2 O 3 could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powder has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.

  14. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Marashi, Houriyeh, E-mail: houriyeh@marashi.co [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@yahoo.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt); Hamdi, Mohd [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • We proposed adding Ti nano-powder to dielectric in EDM. • Average and peak-valley surface roughness was improved by 35 and 40%, respectively. • Improvement of up to 69% in material removal rate was obtained. • Enhanced surface morphology and formation of shallower craters were observed. - Abstract: Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (T{sub on}) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except T{sub on} = 340 μs. Of these parameters, maximum enhancement was observed at T{sub on} = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  15. Examination of Zinc Oxide Nanoparticles as a Fluorescent Fingerprint Detection Powder

    International Nuclear Information System (INIS)

    Tun Tun Lin

    2010-12-01

    Detection of latent fingerprint was performed using zinc oxide nanoparticles which were produced by simple and efficient method in aqueous media from zinc nitrate. Synthesized ZnO nanoparticles were characterized by XRD, SEM and AFM for ZnO purification and particle size examination. In this paper an effort has been made to compare the results of using ZnO nanoparticles and conventional fingerprint powders such as ZnO bulk powder, CaO, TiO2, printer toner powder and graphite. Fingerprints on different materials were also examined by the use of ZnO and Graphite powder, which is currently used in the Central Intelligence Department of Myanmar Police Force.From this research, it was observed that zinc oxide nanoparticles powder produced a much clearer picture of the fingerprints, compared to conventional powders and it has very good quality at sticking to the fingerprint residue but not to the background surface.

  16. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes

    International Nuclear Information System (INIS)

    Liu, Xiaoya; Hu, Lianxi; Wang, Erde

    2013-01-01

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase are two major effective means to improve magnetic properties. Since the matrix Nd 2 Fe 14 B phase in the starting Nd–Fe–B alloy can be disproportionated into a nano-structured mixture of NdH 2.7 , Fe 2 B, and α-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd 16 Fe 76 B 8 alloy powders, we find that the as-disproportionated Nd 16 Fe 76 B 8 alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density–pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: ► Nano-structured disproportionated Nd–Fe–B alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated Nd–Fe–B alloy powders. ► Density–pressure data fitted well by an empirical powder compaction model. ► As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. ► The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd 16 Fe 76 B 8 (atomic ratio) alloy powders, which were prepared by three different processing routes including melt spinning, mechanical milling in argon, and mechanically activated disproportionation by milling in

  17. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    Science.gov (United States)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  18. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  20. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  1. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  2. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    International Nuclear Information System (INIS)

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-01-01

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient

  3. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    Science.gov (United States)

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-10-01

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient

  4. Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders

    Science.gov (United States)

    Everitt, Henry

    2013-03-01

    Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation wavelength, closely mirrors the PLE spectra for both emission bands. Sulfur-doped ZnO exhibits additional PLE and X-ray features indicative of a ZnS-rich surface

  5. Synthesis of Nano sized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    International Nuclear Information System (INIS)

    Wang, J.W.; Kuo, Y.M.

    2013-01-01

    Two nano structures of cobalt oxyhydroxide (CoOOH) and Zinc-(Zn-) doped CoOOH (1–4% Zn) are prepared from Co(NO 3 ) 2 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD) analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co + ) of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nano structure exhibits good sensitivity to carbon monoxide (CO) in a temperature range of 40–110°C with maximum sensitivity to CO at around 70–80°C. When CoOOH nano structure is doped with 1% Zn, its sensitivity and selectivity for CO gas are improved at 70–80°C; further Zn doping to 2% degraded the CO sensing properties of nano-CoOOH. The results of a cross-sensitivity investigation of the sensor to various gases coexisting at early stages of a fire show that the sensitivity of Zn-doped nano-CoOOH is the highest toward CO. Zn-doped nano-CoOOH film exhibits a high sensitivity to CO at room temperature, making it a promising sensor for early-stage fire detection.

  6. Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica

    Directory of Open Access Journals (Sweden)

    Zain El-Abdin Raouf

    2016-08-01

    Full Text Available This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS with ratios (1, 1.5, 2, 2.5 and 3 % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS had higher compressive strength, modulus of rupture, splitting tension, stress in compression and strain in compression than the corresponding values for the carbon fiber reinforced nonmagnetic reactive powder concrete containing the same ratio of NS (CFRNRPCCNS. The percentage increase in these values for CFRMRPCCNS were (22.37, 17.96, 19.44, 6.44 and 25.8 % at 28 days respectively, as compared with the corresponding CFRNRPCCNS mixtures.

  7. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    Science.gov (United States)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  8. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio

    2004-06-15

    Micro/nano-textured ZnO thick films were synthesized through deposition and pyrolysis of layered hydroxide zinc acetate (LHZA), Zn{sub 5}(OH){sub 8}(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O. LHZA films having a unique, rose-like morphology were initially deposited on conducting glass sheets in a chemical bath composed of methanol and zinc acetate dihydrate at 60 deg. C under neutral conditions. Pyrolysis of the LHZA films resulted in formation of ZnO without destroying the original morphology. Pyrolysis temperatures were found to greatly influence grain sizes and specific surface areas of the ZnO films. Photoelectrochemical performance of the films as ZnO/eosin Y electrodes was investigated in dye-sensitized solar cells using an I{sup -}/I{sub 3}{sup -} redox electrolyte solution. The cell using the ZnO film pyrolyzed at 150 deg. C exhibited overall light to electricity conversion efficiencies of 2.0 and 3.3% under an AM-1.5 illumination at 100 and 10 mW cm{sup -2}, respectively. While microscale pores in the electrodes facilitated mass transfer of fluid electrolytes in the depth direction, nanoscale pores contributed to an increase in the amount of adsorbed dye. The maximum incident photon-to-current conversion efficiency (IPCE) of the electrode reached 84.9% at a wavelength of 530 nm.

  9. Synthesis, characterization, and photo-physical properties of nano-crystallites of CdyZn1-yS semiconductors

    International Nuclear Information System (INIS)

    Cizeron, Joel

    1996-01-01

    This research thesis reports the study of the synthesis of particles of semiconductor with a hybrid composition (Cd y Zn 1-y S) in an inverse micellar system. This system is made of nano-scopic water droplets suspended in oil by Brownian movement. Inverse micelles of AOT/water/alkane have been successfully used in laboratory to synthesize semiconductor particles (CdS, Ag 2 S, AgI, PbS) and metallic particles (Ag, Cu, Co) with a diameter of few nanometers. The objective has been to demonstrate the feasibility of synthesises of solid solution with a composition controlled by colloidal techniques. It was then possible to identify new information on the mechanism which governs the size of semiconductor particles. Optical properties of these particles were then studied. These nano-particles exhibit a displacement of their exciton towards high energies; it is the so-called size quantum effect. This effect has been analysed for the particles and their fluorescence [fr

  10. Photoluminescent nano-sized ternary and quaternary complexes of thorium(IV)

    International Nuclear Information System (INIS)

    Baranwal, B.P.; Jain, A.K.; Varma, A.; Singh, A.K.; Fatma, T.

    2011-01-01

    Some ternary and quaternary complexes of thorium(IV) with the general formula [Th(OOCCH 3 ) 2-n (SB) n (OOCC 15 H 31 ) 2 ] (HSB=Schiff bases and n=1 or 2) have been synthesized by the stepwise substitutions of acetate ions from thorium(IV) acetate, first with straight chain carboxylic acid and then with Schiff bases. The complexes are characterized by elemental analyses, spectral (electronic, infrared, 1 H NMR, FAB mass, photoluminescence and powder XRD) and TEM studies. Conductance measurements indicated non-conducting behaviour of the complexes. Structural parameters from powder XRD data for complexes 5 and 6 which indicate poorly crystalline nano-sized triclinic particles. Electronic absorption spectra of the complexes showed π → π * and n → π * charge transfer transitions. All complexes displayed fluorescence and a correlation was sought between luminescence spectra of complexes in solution at room temperature. On the basis of physico-chemical studies, coordination number 8 was assigned for thorium(IV) in the complexes. The morphology and microstructure of the complexes were examined with transmission electron microscopy (TEM) and the selected area electron diffraction (SAED). (orig.)

  11. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    Science.gov (United States)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  12. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Łuka, Grzegorz; Włodarski, Maksymilian

    2016-01-01

    Highlights: • Al nano-concave arrays with different interpore distance (D c ) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al 2 O 3 spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D c and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D c ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D c ) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al 2 O 3 spacer was placed between the textured Al and the ZnO films (the Al/Al 2 O 3 -ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D c = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ (0,1) SPP resonance mode. In the Al/Al 2 O 3 -ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ (0,1) plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ (0,1) SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al 2 O 3 -ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further enhancement of the SP-modulated UV emission from ZnO thin films.

  13. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    Energy Technology Data Exchange (ETDEWEB)

    Norek, Małgorzata, E-mail: mnorek@wat.edu.pl [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Łuka, Grzegorz [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Włodarski, Maksymilian [Institute of Optoelectronics, Military University of Technology, Str. Kaliskiego 2, 00-908 Warszawa (Poland)

    2016-10-30

    Highlights: • Al nano-concave arrays with different interpore distance (D{sub c}) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al{sub 2}O{sub 3} spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D{sub c} and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D{sub c} ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D{sub c}) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al{sub 2}O{sub 3} spacer was placed between the textured Al and the ZnO films (the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D{sub c} = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ{sub (0,1)} SPP resonance mode. In the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ{sub (0,1)} plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ{sub (0,1)} SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al{sub 2}O{sub 3}-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further

  14. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  15. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek; Saadat, Irfan; Saraswat, Krishna; Nayfeh, Ammar

    2017-01-01

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  16. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek

    2017-10-19

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  17. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders

    International Nuclear Information System (INIS)

    Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin

    2010-01-01

    Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.

  18. Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoya [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, Lianxi, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Erde [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-25

    Graphical abstract: Relative density enhancement and nanocrystallization of Nd{sub 2}Fe{sub 14}B phase are two major effective means to improve magnetic properties. Since the matrix Nd{sub 2}Fe{sub 14}B phase in the starting Nd-Fe-B alloy can be disproportionated into a nano-structured mixture of NdH{sub 2.7}, Fe{sub 2}B, and {alpha}-Fe phases during mechanical milling in hydrogen. It is thus important to study the densification behavior of nanocrystalline powders to evaluate and predict the cold compactibility of powders. By comparison with the as milled as well as melt-spun Nd{sub 16}Fe{sub 76}B{sub 8} alloy powders, we find that the as-disproportionated Nd{sub 16}Fe{sub 76}B{sub 8} alloy powder exhibits the best cold compactibility. As evident from the illustration presented below, compaction parameters (representing the powder compactibility) have been determined by fitting density-pressure data with double logarithm compaction equation. Densification mechanisms involved during cold compaction process are clarified in our work by referring to microstructure observation of samples prepared by various methods. As a result, highly densified green magnet compact can be obtained by cold pressing of as-disproportionated NdFeB alloy powders. Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated Nd-Fe-B alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated Nd-Fe-B alloy powders. Black-Right-Pointing-Pointer Density-pressure data fitted well by an empirical powder compaction model. Black-Right-Pointing-Pointer As-disproportionated powder showed better compactibility than as milled and melt-spun counterparts. Black-Right-Pointing-Pointer The effects of physical properties on powder compactibility and densification mechanisms are clarified. - Abstract: The compaction behavior of nano-structured Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy

  19. Nano/micro Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} crystallites: Size dependent structural, second harmonic and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Tukaram, Shet; Bhimireddi, Rajasekhar; Varma, K.B.R., E-mail: kbrvarma@mrc.iisc.ernet.in

    2016-09-15

    Graphical abstract: Synthesis of Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} nano/micro crystallites and their size dependent non-linear optical and piezoelectric responses. - Highlights: • Nano/microcrystallites of Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} were synthesized via sol-gel route. • Crystallite size dependent structural and physical properties were studied. • SHG intensity (1.4 times that of KDP powder) from these crystallites was recorded. • PFM studies on isolated crystallite of 480 nm exhibited d{sub 33} as high as 27 pm/V. • Single domain nature of the crystallites below 160 nm was observed. - Abstract: Strontium bismuth titanate (Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18}) powders comprising crystallites of average sizes in the range of 94–1400 nm were prepared via citrate-assisted sol-gel route. With an increase in the average crystallite size there was a change in the lattice parameters and shift in the Raman vibration modes. Second harmonic signal (532 nm) intensity of the Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} powders increased with the increase in the average crystallite size and the maximum intensity obtained in the reflection mode was 1.4 times as high as that of the powdered KH{sub 2}PO{sub 4}. Piezo Force Microscopic analyses carried out on isolated crystallite of size 74 nm, established a single domain nature with the coercive field as high as 347 kV/cm. There was a systematic increase in the d{sub 33} value with an increase in the size of the isolated crystallites and a high piezoelectric coefficient of ∼27 pm/V was obtained from an isolated crystallite of size 480 nm.

  20. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  1. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  2. Size dependent emission stimulation in ZnO nanosheets

    International Nuclear Information System (INIS)

    Torchynska, T.V.; El Filali, B.

    2014-01-01

    Photoluminescence (PL), X ray diffraction (XRD) and Raman scattering have been studied in crystalline ZnO nanosheets (NSs) of different sizes, estimated by scanning electronic microscopy (SEM). ZnO NSs with the size from the range of 60–600 nm were created by the electrochemical (anodization) method and followed thermal annealing at 400 °C for 2 h in ambient air. XRD study confirms the wurtzite structure of ZnO NSs and has revealed that the lattice parameters increase monotonically with decreasing NS sizes. Simultaneously the intensity of a set of Raman peaks increases and Raman peaks shift into the low energy range. The surface phonon has been detected in smallest size ZnO NSs. Two types of PL bands deal with a set of phonon replicas of free excitons and the defect related emission have been detected in ZnO NSs. The intensity enhancement of exciton- and defect-related PL bands with decreasing ZnO NS sizes has been detected. The intensity stimulation of exciton-related PL bands is attributed to the realization of the week confinement and the exciton-light coupling with the formation of polariton in small size ZnO NSs of 67–170 nm. The intensity rising of defect-related PL bands is attributed to the concentration enlargement of surface defects when the surface to volume ration increases at decreasing ZnO NS sizes. Numerical simulations of radiative lifetimes and exciton radiative recombination rates in ZnO NSs for different emission wavelengths have been done using the exciton-light coupling model. Then the experimental and numerically simulated PL results have been compared and discussed. - Highlights: • Optical and structural investigations of the ZnO nanosheets with the sizes 60–600 nm. • The enlargement of interplanar distances in the wurtzite ZnO crystal lattice is detected. • The change of optic phonon energy and surface phonon appearing are reveled. • ZnO emission stimulation at the week confinement and electron-light coupling with the

  3. Thermoelectric properties of In{sub 0.2}Co{sub 4}Sb{sub 12} skutterudites with embedded PbTe or ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chubilleau, C.; Lenoir, B.; Candolfi, C.; Masschelein, P. [Université de Lorraine, CNRS, UMR 7198, Institut Jean Lamour, Parc de Saurupt, 54011 Nancy (France); Dauscher, A., E-mail: anne.dauscher@univ-lorraine.fr [Université de Lorraine, CNRS, UMR 7198, Institut Jean Lamour, Parc de Saurupt, 54011 Nancy (France); Guilmeau, E. [Laboratoire CRISMAT, UMR 6508, 6 boulevard Maréchal Juin, 14050 Caen Cedex (France); Godart, C. [ICMPE-CMTR, CNRS-UMR 7182, 2-8 rue H. Dunant, 94320 Thiais (France)

    2014-03-15

    Highlights: • Fabrication of nanostructured skutterudites ZnO or PbTe/In{sub 0.2}Co{sub 4}Sb{sub 12.} • Thermal conductivity modeling accounts for experimental results. • Greater lattice thermal conductivity decrease in In{sub 0.2}Co{sub 4}Sb{sub 12} than in CoSb{sub 3}. • A max ZT of 1.05 is obtained at 700 K in a 2 wt% ZnO-containing sample. -- Abstract: Transport properties of the skutterudite compound In{sub 0.2}Co{sub 4}Sb{sub 12} containing ZnO or PbTe nano-sized particles (2–12 wt%) were investigated by means of electrical resistivity, thermopower and thermal conductivity between 5 and 800 K. The composite powders were prepared by freeze-drying the nanoparticles with micron-sized In{sub 0.2}Co{sub 4}Sb{sub 12} powders. Densification was achieved by spark plasma sintering. All composites were characterized by X-ray powder diffraction and scanning electron microscopy. All the transport coefficients show similar temperature dependences suggesting little influence of the nature, semiconducting or insulating, of the nanoparticles. Both the electrical and the thermal conductivities decrease with increasing the PbTe or ZnO content. The impact of ZnO and PbTe on the thermal conductivity was modelled based on the Debye model taking into account a relaxation time constant reflecting phonon scattering by spherical nanoparticles. A maximum dimensionless figure of merit ZT of 1.05 at 700 K was achieved in a sample containing 2 wt% ZnO, a value quite similar to that of the reference In{sub 0.2}Co{sub 4}Sb{sub 12} compound.

  4. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  5. Doped nanocrystalline ZnO powders for non-linear resistor applications by spray pyrolysis method.

    Science.gov (United States)

    Hembram, Kaliyan; Vijay, R; Rao, Y S; Rao, T N

    2009-07-01

    Homogeneous and doped nanocrystalline ZnO powders (30-200 nm) were synthesized by spray pyrolysis technique. The spray pyrolysed powders were calcined in the temperature range of 500-750 degrees C. Formation of insulating pyrochlore phase started from 700 degrees C during the calcination itself. The calcined powders were compacted and sintered at different temperatures ranging from 900-1200 degrees C for 0.5-4 h. The densification behavior was found to be dependent on calcination temperature of the nanopowder. The resulting discs were found to have density (5.34-5.62 g/cc) in the range of 96-99% of theoretical density. The breakdown voltage value obtained for the nanopowder based non-linear resistor is 10.3 kV/cm with low leakage current density of 0.7 microA/cm2 and coefficient of nonlinearity as high as 193. The activation energy for grain growth of the doped ZnO nanopowder powders is 449.4 +/- 15 kJ/mol.

  6. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    2013-04-01

    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  7. Corrigendum to Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite

    International Nuclear Information System (INIS)

    Bak, S. A.; Song, M. S.; Nam, I.T.; Lee, W.G.

    2015-01-01

    In the published paper entitled Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite [1], we mistakenly used Laponite in our paper. The corrected name is Laponite (BYK Corporations products). So we are making some changes from Laponite to Laponite (BYK Corporations products) in our paper.

  8. The effect of nano-TiO2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH.

    Science.gov (United States)

    Zheng, Wen; Zou, Hai-Feng; Lv, Shao-Wu; Lin, Yan-Hong; Wang, Min; Yan, Fei; Sheng, Ye; Song, Yan-Hua; Chen, Jie; Zheng, Ke-Yan

    2017-09-01

    Security issues of nanoparticles on biological toxicity and potential environmental risk have attracted more and more attention with the rapid development and wide applications of nanotechnology. In this work, we explored the effect and probable mechanism of nano-TiO 2 on antioxidant activity of copper, zinc superoxide dismutase (Cu, Zn-SOD) under natural light and mixed light at physiological pH. Nano-TiO 2 was prepared by sol-hydrothermal method, and then characterized by X-ray Diffraction (XRD) and Transmission electron micrographs (TEM). The Cu, Zn-SOD was purified by sephadex G75 chromatography and qualitatively analyzed by sodium dodecyl sulfate polypropylene amide gel electrophoresis (SDS-PAGE). The effect and mechanism were elucidated base on Fourier Transform Infrared Spectrometer (FT-IR), Circular Dichroism (CD), zeta potential, and electron spin resonance (ESR) methods. Accompanying the results of FT-IR, CD and zeta potential, it could be concluded that nano-TiO 2 had no effect on the antioxidant activity of Cu, Zn-SOD by comparing the relative activity under natural light at physiological pH. But the relative activity of Cu, Zn-SOD significantly decreased along with the increase of nano-TiO 2 concentration under the mixed light. The results of ESR showed the cause of this phenomenon was the Cu(II) in the active site of Cu, Zn-SOD was reduced to Cu(I) by H 2 O 2 and decreased the content of active Cu, Zn-SOD. The reduction can be inhibited by catalase. Excess O 2 ·- produced by nano-TiO 2 photocatalysis under mixed light accumulated a mass of H 2 O 2 through disproportionation reaction in this experimental condition. The results show that nano-TiO 2 cannot affect the antioxidant activity of Cu, Zn-SOD in daily life. The study on the effect of nano-TiO 2 on Cu, Zn-SOD will provide a valid theory support for biological safety and the toxicological effect mechanism of nanomaterials on enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of electron crystallography to structure characterization of ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    Jin-Gyu Kim

    2011-07-01

    Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.

  10. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  11. Nanoparticles of ZnO doped with Mn: structural and morphological characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Maria Aparecida Ribeiro; Lira, Helio de Lucena; Gama, Lucianna, E-mail: m_aparecidaribeiro@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Neiva, Laedna Souto [Universidade Federal do Cariri (UFCA), Juazeiro do Norte, CE (Brazil). Unidade Academica de Materiais; Kiminami, Ruth H. G. A. [Universidade Federal de Sao Carlos (USCar), SP (Brazil). Departamento de Engenharia de Materiais

    2017-07-15

    In this study, the effects of dopant concentrations on the structural and morphological characteristics of Zn{sub 1-x}Mn{sub x} O powders (x= 0.025, 0.05, 0.075, and 0.1 mole) synthesized by the Pechini method has been investigated. The powder was characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) specific surface, energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and Spectroscopy with Fourier transform (FTIR). An XRD analysis of the powder showed the formation of ZnO phase with a typical single phase wurtzite structure. The EDX analysis revealed Mn incorporated in the ZnO structure. The particle size calculated by BET ranged from 24 to 63 nm, confirming the nanometric size of the powder particles. The SEM analysis revealed irregular shaped particle agglomerates and the presence of nanosheets. From FTIR it was confirmed the wurtzite structure in ZnO and ZnO nanoparticles doped with Mn. (author)

  12. Synthesis and characterization of Li{sub 4}SiO{sub 4} nano-powders by a water-based sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin, E-mail: zywen@mail.sic.ac.c [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Xu Xiaogang; Wang Xiuyan; Lin Jiu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-08-01

    The water-based sol-gel process for the synthesis of Li{sub 4}SiO{sub 4} nano-powders was reported for the first time. LiOH.H{sub 2}O and aerosil SiO{sub 2} were used as the starting materials with citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) as the chelating agent. Li{sub 4}SiO{sub 4} powders with particle size as small as 100 nm were successfully synthesized at the temperature as low as 675 deg. C. Phase analysis, morphology, sintering behavior of the powders and ionic conductivity of the sintered bodies were investigated systematically. The experimental results showed that the powders obtained by the water-based sol-gel process (SG) possessed excellent sinterability, exhibiting a linear shrinkage of 5.2% while sintered to 900 deg. C, more than 3 times that of the powders obtained by solid state reaction (SSR). The bulk conductivity of the SG sintered bodies was much higher than that of the SSR samples at the same testing temperature.

  13. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method

    International Nuclear Information System (INIS)

    Liu Youyong; Cao Chuanbao

    2010-01-01

    A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO 4 /C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO 4 . Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO 4 /C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO 4 /C presents enhanced discharge capacities (159, 147 and 135 mAh g -1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.

  14. Structure and electromagnetic properties of NiZn spinel ferrite with nano-sized ZnAl{sub 2}O{sub 4} additions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zongliang, E-mail: zzlma@163.com; Zhang, Huaiwu; Yang, Qinghui; Jia, Lijun

    2015-11-05

    In this study, nanocrystalline ZnAl{sub 2}O{sub 4} (ZA) (x = 0–20 wt%) were introduced into Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} ferrite (NZ) by a solid-state reaction method combining a sol–gel auto-combustion method. The effects of ZA addition on the crystalline phase formation, microstructures, magnetic and dielectric properties were systematically investigated. X-ray diffraction and scanning electron microscope results reveal that the added ZA can fully solve into the NZ to form a ceramic with single-phase cubic spinel structure, and the grain size decreases obviously as x > 5 wt%. Meanwhile, the magnetic and dielectric properties exhibit significantly dependent on the ZA addition content. With the increasing addition level of ZA from 0 to 20 wt%, the initial permeability μ{sub i} is found increased initially and then decreased with the maximum 679 at x = 0.5 wt%. For the samples with x ≤ 5 wt%, permittivity ε′ is relatively higher at low frequencies (ε′ = 91–138 at 1 MHz) and dielectric loss tan δ{sub ε} shows distinct peak behavior. When x reaches 10 wt%, however, the ε′ and tan δ{sub ε} show very stable spectra from 1 MHz to 1 GHz. - Highlights: • Various amount of nanocrystalline ZnAl{sub 2}O{sub 4} (ZA) were introduced into NiZn ferrite. • NiZn ferrite can form single-phase spinel ceramic materials with ZA additives. • ZA has significant effects on magnetic and dielectric properties of the ceramics. • It provides a new method for fabricating NiZn ferrite with tunable properties.

  15. Synthesis of Nano-Zinc Oxide Loaded on Mesoporous Silica by Coordination Effect and Its Photocatalytic Degradation Property of Methyl Orange.

    Science.gov (United States)

    Shen, Zhichuan; Zhou, Hongjun; Chen, Huayao; Xu, Hua; Feng, Chunhua; Zhou, Xinhua

    2018-05-09

    Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded on mesoporous silica (ZnO-MCM-3 and ZnO-MCM-9). The material structures were systematically studied by Fourier transform infrared spectroscopy (FTIR), N₂ adsorption/desorption measurements, X-ray powder diffraction (XRD), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet diffused reflectance spectrum (UV-vis DRS), and thermogravimetry (TGA). Methyl orange (MO) was used to investigate the photocatalysis behavior of ZnO-MCM-3 and ZnO-MCM-9. The results confirmed that nano ZnO was loaded in the channels as well as the outside surface of mesoporous silica (MCM-41). The modification of salicylaldimine helped MCM-41 to load more nano ZnO on MCM-41. When the modification amount of salicylaldimine was one-ninth and one-third of the mass of the silicon source, respectively, the load of nano ZnO on ZnO-MCM-9 and ZnO-MCM-3 had atomic concentrations of 1.27 and 2.03, respectively. ZnO loaded on ZnO-MCM-9 had a wurtzite structure, while ZnO loaded on ZnO-MCM-3 was not in the same crystalline group. The blocking effect caused by nano ZnO in the channels reduced the orderliness of MCM-41. The photodegradation of MO can be divided in two processes, which are mainly controlled by the surface areas of ZnO-MCM and the loading amount of nano ZnO, respectively. The pseudo-first-order model was more suitable for the photodegradation process.

  16. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    Energy Technology Data Exchange (ETDEWEB)

    Hilty, F M; Hurrell, R F; Zimmermann, M B [Human Nutrition Laboratory, Institute of Food Science and Nutrition, ETH Zurich (Switzerland); Teleki, A; Buechel, R; Pratsinis, S E [Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich (Switzerland); Krumeich, F, E-mail: michael.zimmermann@ilw.agrl.ethz.c [Electron Microscopy Center (EMEZ), ETH Zurich (Switzerland)

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe{sub 2}O{sub 4}) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  17. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    International Nuclear Information System (INIS)

    Hilty, F M; Hurrell, R F; Zimmermann, M B; Teleki, A; Buechel, R; Pratsinis, S E; Krumeich, F

    2009-01-01

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe 2 O 4 ) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  18. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    Science.gov (United States)

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  19. Nanocomposites of recycled polycarbonate and nano-zinc oxide (rPC/nZnO): effect of gamma radiation and nano oxide content on the thermal properties

    International Nuclear Information System (INIS)

    Carvalho, A.L.F.; Mendes, L.C.; Cestari, S.P.

    2014-01-01

    In order to promote the barrier action to the ultraviolet radiation and increase of mechanical characteristics, nanocomposites of recycled polycarbonate (rPC) and nano-zinc oxide (nZnO) containing 1, 2 and 3 % (wt/wt) of nano oxide were prepared. Since for obtaining nanocomposites and irradiating polymers are promising tools and attractive for improving the material performance, the effects of nano-zinc oxide and gamma radiation, at doses ranged from 10 to 50 kGy, were evaluated in terms of thermal characteristics of the rPC. The rPC/nZnO nanocomposites were characterized by thermogravimetric analysis (TGA) and differential explanatory calorimetry (DSC). There was a progressive decrease of the T_g as function of gamma dosage and nano-zinc oxide content. Initially, the Tonset and Tmax decayed as function of gamma dosage but a recovery was observed. The amount of nano-zinc oxide induced a decreasing of T_o_n_s_e_t and T_m_a_x. (author)

  20. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    Science.gov (United States)

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  1. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  2. ZnO/TiO{sub 2} particles and their solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Kerli, S., E-mail: suleymankerli@ksu.edu.tr [Department of EnergySystemsEngineering, Faculty of Elbistan Technology, Kahramanmaras SutcuImamUniversity, Kahramanmaras (Turkey); Akgül, Ö., E-mail: omeraakgul@gmail.com [Kahramanmaras Sutcu Imam University, Dept. of Physics, 46100 K.Maras-Turkey (Turkey); Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Eng. 61080, Trabzon-Turkey (Turkey)

    2016-03-25

    ZnO/TiO{sub 2} particles were investigated for dye-sensitized solar cells (DSSC). Nano-structured ZnO particles were produced by the hydrothermal method. TiO{sub 2} (P25) nanoparticles, was bought from the company of Degussa. Crystal structures and morphological properties of particles were examined by XRD and SEM. As an application, dye sensitized solar cells were fabricated from nano-structured produced metal oxide particles. The working electrodes of the DSSCs were obtained by mixture of ZnO and TiO{sub 2} powders. I-V characteristics of the cells were measured by using a solar simulator and the efficiency of the solar cells were obtained by using I-V graphs. ZnO cells sensitized with Ruthenium 535-bisTBA (N719) dyes yield higher efficiencies than corresponding TiO{sub 2} cells. By increasing TiO{sub 2} amount in the mixture of ZnO/TiO{sub 2}, it was observed that efficiencies of cells are getting lower.

  3. Influence of ZnO nano-particles addition on thermal analysis, microstructure evolution and tensile behavior of Sn–5.0 wt% Sb–0.5 wt% Cu lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.N., E-mail: alynabieh@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, 41522 Ismailia (Egypt); Eid, E.A., E-mail: dr_eid_hti@yahoo.com [Basic Science Department, Higher Technological Institute, 44629 10th of Ramadan City (Egypt)

    2015-04-24

    Sn–5 wt%Sb–0.5 wt%Cu (plain SSC505) and Sn–5 wt%Sb–0.5 wt%Cu–0.5 wt% ZnO (SSC-ZnO) composite solder alloys have been studied. The variation in thermal behavior, microstructure and tensile characteristics associated with mixing of 0.5 wt% ZnO nano-metric particles to plain SSC505 solder were investigated. A slight increment in the melting temperature [ΔT{sub m}=0.89 °C] was recorded using differential scanning calorimetry (DSC) after addition of ZnO. X-Ray diffraction (XRD) analysis confirmed the existence of β-Sn, SbSn and Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) beside some of ZnO planes in SSC-ZnO composite solder. Field emission scanning electronic microscope (FE-SEM) investigation of SSC-ZnO composite solder revealed a homogenous uniform distribution, size refinement of IMCs and β-Sn grains. Addition of ZnO nano-metric particles into the plain SSC505 enhanced the yield stress σ{sub YS} by ~12% and improved the ultimate tensile strength σ{sub UTS} by ~13%. In addition, adding ZnO nano-metric particles was found to be effective for reducing ductility by ~43% of the plain solder due to the refinement of β-Sn grains within SSC-ZnO composite solder. - Highlights: • Melting point of SSC505-ZnO composite solder is slightly increased by 0.89 {sup ο}C compared with the plain SSC505 solder. • XRD and EDX analysis reflect the presence of SbSn, Cu{sub 6}Sn{sub 5} IMCs. • EF-SEM images of SSC-ZnO composite solder revealed homogenous uniform distribution of β-Sn grains and fine IMC particles. • A detectable improvement in the Young modulus, ultimate tensile strength and yield strength were observed after addition of 0.5 wt% ZnO nano-metric particles.

  4. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  5. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  6. Effect of zno nanoparticles on diameter of bubbfil PVA/ZnO nanofibers

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2015-01-01

    Full Text Available The PVA/ZnO nanofibers are obtained by the bubbfil spinning. Distribution of fiber size is tenable by nano-ZnO concentration. Experiment reveals fiber size distribution changes from Gaussian distribution to Poisson distribution when ZnO concentration varies gradually from 2 wt.% to 15 wt.%.

  7. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  8. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  9. Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications.

    Science.gov (United States)

    Hu, Liang; Yuan, Jun; Ren, Yi; Wang, Yan; Yang, Jia-Qin; Zhou, Ye; Zeng, Yu-Jia; Han, Su-Ting; Ruan, Shuangchen

    2018-06-10

    High-performance photonic nonvolatile memory combining photosensing and data storage with low power consumption ensures the energy efficiency of computer systems. This study first reports in situ derived phosphorene/ZnO hybrid heterojunction nanoparticles and their application in broadband-response photonic nonvolatile memory. The photonic nonvolatile memory consistently exhibits broadband response from ultraviolet (380 nm) to near infrared (785 nm), with controllable shifts of the SET voltage. The broadband resistive switching is attributed to the enhanced photon harvesting, a fast exciton separation, as well as the formation of an oxygen vacancy filament in the nano-heterojunction. In addition, the device exhibits an excellent stability under air exposure compared with reported pristine phosphorene-based nonvolatile memory. The superior antioxidation capacity is believed to originate from the fast transfer of lone-pair electrons of phosphorene. The unique assembly of phosphorene/ZnO nano-heterojunctions paves the way toward multifunctional broadband-response data-storage techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu [KAERI, Taejon (Korea, Republic of); Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M. [Institute of Electrophysics (Russian Federation)

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully.

  11. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M.

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully

  12. Effects of Deposited Metallic Silver on Nano-ZnO for the ...

    African Journals Online (AJOL)

    Silver-deposited nano-ZnO samples with different Ag loadings were prepared by a one-pot solvothermal method. The structure, physico-chemical and optical properties of the products were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), diffuse ...

  13. Mechanical milling of a nano structured ductile iron powder under dry, wet and cryogenic atmospheres; Proceso de molturacion mecanica en medio seco, humedo y criogenico de polvo de hierro ductil nanoestructurado

    Energy Technology Data Exchange (ETDEWEB)

    Cinca, N.; Hurtado, E.; Cano, I. G.; Guilemany, J. M.

    2011-07-01

    The main objective of this study, is to obtain an effective particle and grain size reduction of a nano structured iron powder by mechanical milling under different milling media. One of the main challenges in this study is to work with this material of great ductility.The variables of the study to be optimized have been the following: speed of rotation, powder to ball ratio (PBR) and the percentage of control agent to induce an effective powder fracturing in front of cold welding. The powder has been characterized by a Laser Diffraction Particle Size Analyser, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and, X-ray diffraction.Through the comparative study, it is found that operating under dry milling conditions: there is a more effective particle size reduction of 43 % and grain size reduction of 62 %. In wet conditions has been reduced the amount of oxide, as well as to obtain a more homogenous distribution of the resulting powder. The results under cryogenic media is presented as promising. (Author) 15 refs.

  14. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    International Nuclear Information System (INIS)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon; Lyons, Sean; Higginbotham, Clement

    2011-01-01

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  15. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon [Nanolab Research Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland); Lyons, Sean; Higginbotham, Clement, E-mail: Niall.OClaonadh@DIT.ie, E-mail: Alan.Casey@DIT.ie [Materials Research Institute, Athlone Institute of Technology, Westmeath (Ireland)

    2011-07-06

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  16. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  17. Magnetic and electrical properties of the La doped Mn-Zn ferrite nanoparticles synthesized by the co-precipitation method

    International Nuclear Information System (INIS)

    Chandel, Vipin; Vijeta; Thakur, Atul; Thakur, Preeti

    2013-01-01

    In the present study, nano crystalline Mn-Zn-La ferrite with chemical formula Mn 0.4 Zn 0.6 La 0.3 Fe 1.7 O 4 was successfully synthesized by a co-precipitation method. The prepared powders were presintered at 700℃. The pallets formed were finally sintered at 700℃, 800℃ and 900℃ for 3h reach. The structural and morphological behavior was investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD confirms the formation of the expected spinel structure. Scanning Electron Microscopy (SEM) was used to characterize the microstructure of the ferrite samples i.e. grain morphology, grain size, grain size distribution and shape. Fourier transform infrared spectroscopy (FTIR) confirms the peaks of different molecules in the given sample. Electrical and magnetic properties were studied by using dc resistivity set up and vibrating sample magnetometer (VSM). (author)

  18. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing; Feng Weiyue, E-mail: fengwy@mail.ihep.ac.cn; Zhu Motao; Wang Yun; Wang Meng [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Gu Yiqun [Maternity Hospital of Haidian District (China); Ouyang Hong; Wang Huajian; Li Ming; Zhao Yuliang, E-mail: zhaoyuliang@mail.ihep.ac.cn; Chai Zhifang [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Wang Haifang [Peking University, College of Chemistry and Molecular Engineering (China)

    2009-01-15

    Olfactory tract has been demonstrated to be an important portal for inhaled solid nanoparticle transportation into the central nervous system (CNS). We have previously demonstrated that intranasally instilled Fe{sub 2}O{sub 3} nanoparticles could transport into the CNS via olfactory pathway. In this study, we investigated the neurotoxicity and size effect of repeatedly low-dose (130 {mu}g) intranasal exposure of nano- and submicron-sized Fe{sub 2}O{sub 3} particles (21 nm and 280 nm) to mice. The biomarkers of oxidative stress, activity of nitric oxide synthases and release of monoamine neurotransmitter in the brain were studied. Our results showed that significant oxidative stress was induced by the two sizes of Fe{sub 2}O{sub 3} particles. The activities of GSH-Px, Cu,Zn-SOD, and cNOS significantly elevated and the total GSH and GSH/GSSG ratio significantly decreased in the olfactory bulb and hippocampus after the nano- and submicron-sized Fe{sub 2}O{sub 3} particle treatment (p < 0.05). The nano-sized Fe{sub 2}O{sub 3} generally induced greater alteration and more significant dose-effect response than the submicron-sized particle did. Some slight perturbation of monoamine neurotransmitters were found in the hippocampus after exposure to the two sizes of Fe{sub 2}O{sub 3} particle. The TEM image showed that some ultrastructural alterations in nerve cells, including neurodendron degeneration, membranous structure disruption and lysosome increase in the olfactory bulb, slight dilation in the rough endoplasmic reticulum and lysosome increase in the hippocampus were induced by the nano-sized Fe{sub 2}O{sub 3} treatment. In contrast, in the submicron-sized Fe{sub 2}O{sub 3} treated mice, slightly swollen mitochondria and some vacuoles were observed in the olfactory bulb and hippocampus, respectively. These results indicate that intranasal exposure of Fe{sub 2}O{sub 3} nanoparticles could induce more severe oxidative stress and nerve cell damage in the brain than the

  19. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  20. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    Science.gov (United States)

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not suitable for protection against cadmium intoxication.

  1. Electroluminescence dependence on the organic thickness in ZnO nano rods/Alq3 heterostructure devices.

    Science.gov (United States)

    Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei

    2011-04-01

    ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.

  2. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  3. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces.

    Science.gov (United States)

    Bostancioglu, R Beklem; Gurbuz, Mevlut; Akyurekli, Ayse Gul; Dogan, Aydin; Koparal, A Savas; Koparal, A Tansu

    2017-07-01

    Accelerated Mesenchymal Stem Cells (MSCs) condensation and robust MSC-matrix and MSC-MSC interactions on nano-surfaces may provide critical factors contributing to such events, likely through the orchestrated signal cascades and cellular events modulated by the extracellular matrix. In this study, human adipose tissue derived mesenchymal stem cells (hMSC)', were grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite (HAP) nano-coated surfaces. These metal ions are known to have different chemical and surface properties; therefore we investigated their respective contributions to cell viability, cellular behavior, osteogenic differentiation capacity and substrate-cell interaction. Nano-powders were produced using a wet chemical process. Air spray deposition was used to accumulate the metal ion doped HAP films on a glass substrate. Cell viability was determined by MTT, LDH and DNA quantitation methods Osteogenic differentiation capacity of hMSCs was analyzed with Alizarin Red Staining and Alkaline Phosphatase Specific Activity. Adhesion of the hMSCs and the effect of cell adhesion on biomaterial biocompatibility were explored through cell adhesion assay, immunofluorescence staining for vinculin and f-actin cytoskeleton components, SEM and microarray including 84 known extracellular matrix proteins and cell adhesion pathway genes, since, adhesion is the first step for good biocompability. The results demonstrate that the viability and osteogenic differentiation of the hMSCs (in growth media without osteogenic stimulation) and cell adhesion capability are higher on nanocoated surfaces that include Zn, Ag and/or Cu metal ions than commercial HAP. These results reveal that Zn, Ag and Cu metal ions contribute to the biocompatibility of exogenous material. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  5. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  6. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe 2O 4 containing glass ceramics for the hyperthermia treatment of cancer

    Science.gov (United States)

    Shah, Saqlain A.; Hashmi, M. U.; Alam, S.; Shamim, A.

    2010-02-01

    Glass ceramics of the composition xZnO·25Fe 2O 3·(40- x)SiO 2·25CaO·7P 2O 5·3Na 2O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 °C for 3 h and then rapidly cooled at -10 °C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe 2O 4, CaSiO 3 and Ca 10(PO 4) 6(OH) 2. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe 2O 4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe 2O 4 exhibited ferrimagnetism due to the random distribution of Zn 2+ and Fe 3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe 2O 4 and rapid cooling of the material from 1100 °C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 °C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.

  7. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer

    International Nuclear Information System (INIS)

    Shah, Saqlain A.; Hashmi, M.U.; Alam, S.; Shamim, A.

    2010-01-01

    Glass ceramics of the composition xZnO.25Fe 2 O 3 .(40-x)SiO 2 .25CaO.7P 2 O 5 .3Na 2 O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 deg. C for 3 h and then rapidly cooled at -10 deg. C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe 2 O 4 , CaSiO 3 and Ca 10 (PO 4 ) 6 (OH) 2 . Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe 2 O 4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe 2 O 4 exhibited ferrimagnetism due to the random distribution of Zn 2+ and Fe 3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe 2 O 4 and rapid cooling of the material from 1100 deg. C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 deg. C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.

  8. Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO{sub 2} nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Ibram, E-mail: ibramganesh@arci.res.in

    2017-08-31

    Highlights: • Reported a novel route to synthesize high specific surface area P-doped TiO{sub 2} nano-powder photocatalysts. • Established methylene blue dye-sensitization mechanism of TiO{sub 2} photocatalyst. • Established the effects of methylene blue adsorption on the surface, structural and photocatalytic activity of P-doped TiO{sub 2}. • Established true quantum efficiency determination method for TiO{sub 2} photocatalysis. - Abstract: Different amounts of phosphorus (P)-doped TiO{sub 2} (PDT) nano-powders (P = 0–10 wt.%) were synthesized by following a new emulsion-based sol-gel (EBSG) route and calcined at 400 °C–800 °C for 6 h. These calcined PDT powders were then thoroughly characterized by means of XRD, XPS, SEM, FT-IR, FT-Raman, DRS, BET surface area, zeta-potential, cyclic-voltammetry and photocatalytic evaluation using methylene blue (MB) as a model-pollutant and established the effects of phosphorous doping on structural, surface, band-gap energy, and photocatalytic characteristics of TiO{sub 2} nano-powder formed in EBSG route. The characterization results suggest that the EBSG derived TiO{sub 2} nano-powder after calcination at 400 °C for 6 h is in the form of anatase phase when it was doped with <8 wt.% P, and it is in the amorphous state when doped with >8 wt.% P. Furthermore, these EBSG derived PDT powders own high negative zeta-potentials, high specific surface areas (up to >250 m{sup 2}/g), and suitable band-gap energies (<3.34 eV). Surprisingly, these PDT powders exhibit very high MB adsorption (up to 50%) from its aqueous 0.01 mM, 0.02 mM and 0.03 mM solutions during 30 min stirring in the dark, whereas, the commercial Degussa P-25 TiO{sub 2} nano-powder shows no adsorption. Among various photocatalysts investigated in this study, the 1 wt.% P-doped TiO{sub 2} nano-powder formed in EBSG route exhibited the highest photocatalytic activity for MB degradation reaction.

  9. In vitro cytotoxicity tests of ZnO‐Bi{sub 2}O{sub 3}‐Mn{sub 2}O{sub 3}-based varistor fabricated from ZnO micro and nanoparticle powders on L929 mouse cells

    Energy Technology Data Exchange (ETDEWEB)

    Sendi, Rabab Khalid, E-mail: last-name3@hotmail.com, E-mail: shahromx@hotmail.com, E-mail: ameerah7@hotmail.com; Mahmud, Shahrom, E-mail: last-name3@hotmail.com, E-mail: shahromx@hotmail.com, E-mail: ameerah7@hotmail.com; Munshi, Ayman, E-mail: last-name3@hotmail.com, E-mail: shahromx@hotmail.com, E-mail: ameerah7@hotmail.com [Nano-optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia, 11800, Penang (Malaysia); Seeni, Azman, E-mail: azanseeni@gmail.com [Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Pulau Pinang (Malaysia)

    2014-10-24

    The present study investigated the cytotoxicity of ZnO‐Bi{sub 2}O{sub 3}‐Mn{sub 2}O{sub 3}-varistors. To this effect, ZnO‐Bi{sub 2}O{sub 3}‐Mn{sub 2}O{sub 3} varistors fabricated from ZnO micro-and nanoparticle powders are prepared via conventional ceramic processing method. The effects of ZnO particle size on the properties of ZnO varistors are also investigated. The strong solid-state reaction during sintering may be attributed to the high surface area of the 20 nm ZnO nanoparticles that promote strong surface reaction. The intensity of XRD peaks reflected the high degree of crystallinity of the ZnO nanoparticles. However, the width of the peaks in case of ZnO nanoparticles has increased due to the quantum size effect. The cytotoxicity evaluation of ZnO varistor was conducted on mouse connective tissue fibroblast cells (L929) using Trypan Blue Exclusion Assay analysis. The results show that the four types of varistor samples lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the various concentration range and the toxic effects are obviously displayed in high concentration samples. 20nm-VDR is the most toxic materials followed by 40nm-VDR, P8-VDR, and W4-VDR in a descending order.

  10. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

    Directory of Open Access Journals (Sweden)

    Vinay Kabra

    2014-11-01

    Full Text Available A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current–voltage (I–V and capacitance–voltage (C–V measurements. The effect of UV illumination on the I–V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  11. Simple Preparation of ZnO Nano-layer by Sol-Gel Method as Active Electrode in P3HT/ZnO Heterojunction Solar Cell

    Science.gov (United States)

    Aprilia, Annisa; Herman, Hidayat, Rahmat

    2010-10-01

    Highly transparent undoped ZnO thin films have been prepared on glass and indium tin oxide substrates with simple process by sol-gel route and dip-coating deposition. Gel precursor of ZnO was prepared from zinc acetat dehydrate solution in methanol with the addition of trietylamine as stabilizing agent. Thin layer of gel precursor was prepared by dip coating and then followed by calcination at 400° C for 5 minute in air atmosphere. The thickness of the resulted ZnO thin film produced by ten times coating is about 150 nm. The films shows high transmittance larger than 98% in the visible region (400-800 nm). Absorption is observed in the UV region with absorption onset at about 390 nm indicating varying band gap between 3.18 eV until 3.23 eV depending on the number of coating layer. The AFM image shows that the films seems to be constructed from random stacking of nano-sized ZnO particle in the order of 50 nm. Among the prepared samples, the lowest resistivity is about 1.8×107 Ωm observed in the five-layer coating film. In order to fabricate solar cell structure, P3HT was deposited onto the ZnO thin film layer by spin casting technique and then followed by metal (Au) layer deposition by thermal evaporation. The formed solar cell has the inverted type solar cell with ITO/ZnO/P3HT/Au configuration. By the insertion ZnO layer, the photocurrent was improved by more than ten orders of magnitude in comparison to that of without ZnO layer. The measured photocurrent decreases at large number of coating layer which is supposed to be related with the current limitation by the effective carrier path length in ZnO layer.

  12. Ductility Enhancement of Molybdenum Phase by Nano-sized Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bruce

    2008-07-18

    The objective of this research is to understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of nano-sized metal oxide dispersions. This research combines theoretical, computational, and experimental efforts. The results will help to formulate systematic strategies in searching for better composed Mo-based alloys with optimal mechanical properties. For this project, majority of the research effort was directed to atomistic modeling to identify the mechanisms responsible for the oxygen embrittling and ductility enhancement based on fundamental electronic structure analysis. Through first principles molecular dynamics simulations, it was found that the embrittling impurity species were attracted to the metal oxide interface, consistent with previous experiments. Further investigation on the electronic structures reveals that the presence of embrittling species degrades the quality of the metallic chemical bonds in the hosting matrix in a number of ways, the latter providing the source of ductility. For example, the spatial flexibility of the bonds is reduced, and localization of the impurity states occurs to pin the dislocation flow. Rice’s criterion has been invoked to explain the connections of electronic structure and mechanical properties. It was also found that when impurity species become attracted to the metal oxide interface, some of the detrimental effects are alleviated, thus explaining the observed ductility enhancement effects. These understandings help to develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys (e.g. ODS alloys) for fossil energy materials applications. Based on the theoretical and computational studies, the experimental work includes the preparation of Mo powders mixed with candidate nano-sized metal oxides, which were then vacuum hot-pressed to make the Mo alloys. Several powder mixing methods

  13. Identification of phases in zinc alloy powders using electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Martin G. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Kenik, Edward A. [Oak Ridge National Laboratory, 100 Bethel Valley Rd., Bldg. 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831 (United States); O' Keefe, Matthew J. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)]. E-mail: mjokeefe@umr.edu; Miller, F. Scott [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Johnson, Benedict [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-05-25

    Scanning electron microscopy and electron backscatter diffraction (EBSD) were used for the structural characterization of phases in Zn alloy powders. Commercial Zn alloy powders contained additions of <1000 ppm of Bi, In, Al or Mg. Bismuth and In have extremely low solubility in Zn and form intermetallic Bi-In compounds which segregate to the Zn grain boundaries. The Bi-In phases were <0.3 {mu}m in size, had low melting points, and were not abundant enough for EBSD analysis. Increasing the alloying additions 20-40-fold resulted in Bi-In phases >1 {mu}m that could be used for EBSD analysis for phase characterization. Deformation-free microstructures were obtained by mechanical polishing and ion milling. The Zn matrix was characterized as Zn via EBSD. A BiIn{sub 2} phase was identified in the powder microstructures via EBSD. An In phase with 8-9 wt.% Bi was identified using low voltage energy dispersive spectroscopy and closely matched the composition predicted by the Bi-In phase diagram.

  14. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    Science.gov (United States)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  15. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  16. Determination of size and shape distributions of metal and ceramic powders

    International Nuclear Information System (INIS)

    Jovanovic, DI.

    1961-01-01

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders

  17. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Pure and silicon-coated metal copper nano to submicron-sized powders were prepared by gas evaporation and condensation. This powder was synthesized by using an industrial electron accelerator, ELV-6, with Ar as the carrier gas. Vapour from the liquefied metal surface was transferred to the cold zone by the carrier ...

  19. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  20. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah, E-mail: a.f.shojaie@guilan.ac.ir; Zanjanchi, Mohammad Ali

    2011-03-31

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  1. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2011-01-01

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  2. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  3. Influence of PANI Additions on Methanol Sensing Properties of ZnO Thin Films

    International Nuclear Information System (INIS)

    Mohammad Hafizuddin Jumali; Norhashimah Ramli; Izura Izzuddin; Muhammad Yahaya; Muhamad Mat Salleh

    2011-01-01

    The influence of PANI additions on methanol sensing properties of ZnO thin films at room temperature had been investigated. Commercial poly aniline powder (PANI) was mixed into 3 mL ZnO solution in five different weight percentages namely 1.25, 2.50, 3.75, 5.00 and 6.25 % to obtain ZnO/ PANI composite solutions. These solutions were spin coated onto glass substrate to form thin films. Microstructural studies by FESEM indicated that ZnO/ PANI films showed porous structures with nano size grains. The thickness of the film increased from 55 to 256 nm, proportionate to increment of PANI. The presence of 2 adsorption peaks at ∼310 nm and ∼610 nm in UV-Vis spectrum proved that addition of PANI has modified the adsorption peak of ZnO film. Methanol vapour detection showed that addition of PANI into ZnO dramatically improved the sensing properties of the sensor. The sensors also exhibited good repeatability and reversibility. Sensor with the amount of PANI of 3.75 wt % exhibited the highest sensitivity with response and recovery time was about 10 and 80 s, respectively. The possible sensing mechanism of the sensor was also discussed in this article. (author)

  4. Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-01-01

    Full Text Available In this work, the sol–gel method was used to prepare Ytterbium (Yb(sup3+)) doped ZnO nano-phosphors with different concentrations of Yb(sup3+) ions. Their structural, morphological, photoluminescence, electronic states and the chemical composition...

  5. Characterization of magnetic nano particles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} prepared by the chemical co-precipitation method; Caracterizacion de nanoparticulas magneticas de CoFe{sub 2}O{sub 4} y CoZnFe{sub 2}O{sub 4} preparadas por el metodo de coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Zambrano, G.; Gomez, M. E. [Universidad del Valle, Departamento de Fisica, Laboratorio de Peliculas Delgadas, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Prieto, P. [Universidad del Valle, Centro de Excelencia en Nuevos Materiales, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Espinoza B, F. J., E-mail: javierlo21@gmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2012-07-01

    Magnetic cobalt ferrite nanoparticles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} were prepared by co-precipitation technique from aqueous salt solutions of Co (II), ZnSO{sub 4} and Fe (III), in an alkaline medium. CoFe{sub 2}O{sub 4} powder samples were structurally characterized by X-ray diffraction, showing the presence of the most intense peat at 2{theta} = 413928{sup o} (Co K{alpha}1) corresponding to the (311) crystallographic orientation of the CoFe{sub 2}O{sub 4} spinel phase. The mean size of the crystalline of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} nanoparticles determined from the full width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation was calculated to be 11.4 and 7.0 ({+-} o.2) nm, respectively. Transmission electron microscopy studies permitted determining nanoparticle size of CoZnFe{sub 2}O{sub 4}. Fourier transform infrared spectroscopy was used to confirm the formation of Fe-O bonds, allowing identifying the presence of ferrite spinel structure. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature Herein, the sample showed superparamagnetic behavior, determined by the hysteresis loop finally, due to the hysteresis loop of the CoZnFe{sub 2}O{sub 4} is very small, our magnetic nanoparticles can be considered as a soft magnetic material. These magnetic nanoparticles have interesting technological applications in biomedicine given their biocompatibility, in nano technology, and in ferro fluid preparation. (Author)

  6. Effect of Particle Size on the Structural and Magnetic Properties of ...

    African Journals Online (AJOL)

    The obtained ZnFe2O4 nano powders were thermally annealed from 300 to 600 °C. The structural and magnetic characterization were measured using X-ray diffraction (XRD), scanning electron microscope (SEM), IR measurements and vibrating sample magnetometer (VSM). XRD patterns clearly showed the formation of ...

  7. The effect of nano-size ZrO2 powder addition on the microstructure and superconducting properties of single-domain Y-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Iida, K; Babu, N H; Reddy, E S; Shi, Y-H; Cardwell, D A

    2005-01-01

    The effect of nano-size ZrO 2 powder addition on the microstructure and superconducting properties of Y-Ba-Cu-O single grain bulk superconductors has been investigated. Significant pushing phenomena of Y 2 BaCuO 5 (Y-211) particles, particularly in the c growth sector, were observed even with a small amount of ZrO 2 added to the precursor powder. An increase in Y-211 particle pushing was observed with increasing ZrO 2 content, leading to an inhomogeneous bulk microstructure. In addition, a growth cycle consisting of a Y-211 free layer-porous narrow layer-Y-211 high concentration layer was observed for samples prepared with 0.25 wt% ZrO 2 in both the a and c growth sectors. The extent of the growth of single grain Y-Ba-Cu-O (YBCO) decreased with increasing ZrO 2 content due to increased pushing of Y-211 particles towards molten liquid. The superconducting transition temperature, T c , of the ZrO 2 containing YBCO samples was sharp but depressed slightly (by up to 1 K) compared with an undoped YBCO grain, indicating a relative insensitivity of T c to ZrO 2 content. Finally, the sensitivity of critical current density, J c , to applied magnetic field in large grain bulk YBCO containing ZrO 2 was observed to depend critically on position due to the inhomogeneous sample microstructure

  8. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  10. Effects of nano-silica (NS) additions on durability of SCC mixtures

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Brouwers, H.J.H.; Andrade, C; Gulikers, JJW; Polder, R

    2015-01-01

    In this study, three different types of nano-silica were applied in self-compacting concrete (SCC), one produced by the controlled dissolution of the olivine mineral and two having similar particle size distributions (PSD), but produced through two different processes: fumed powder nano-silica and

  11. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    International Nuclear Information System (INIS)

    Kundu, Samapti; Sain, Sumanta; Yoshio, Masaki; Kar, Tanusree; Gunawardhana, Nanda; Pradhan, Swapan Kumar

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials

  12. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  13. Properties of ZnO Nano rods Arrays Growth via Low Temperature Hydrothermal Reaction

    International Nuclear Information System (INIS)

    Nur Syafinaz Ridhuan; Zainovia Lockman; Azlan Abdul Aziz; Azlan Abdul Aziz; Khairunisak Abdul Razak; Khairunisak Abdul Razak

    2011-01-01

    This work describes properties of 1- D ZnO nano rods (NRs) arrays growth using low temperature hydrothermal method on seeded substrate. The properties of ZnO seed were studied by varying annealed temperature from 250-450 degree Celsius. The optimum oxidation temperature to produce seeded ZnO template was 400 degree Celsius. The formations of ZnO NRs were further studied by varying hydrothermal reaction growth time from 1 to 24 hours. I-V characteristic of ZnO NRs photodetector in dark, ambient light and UV light were also studied. The change in the photoconductivity under UV illumination was found to be 1 order higher in magnitude compared to dark current and ambient light. With an incident wavelength of 370 nm and applied bias of 3V, the responsivity of photodetector was 5.0 mA/ W, which was higher compared to other reported works. The increase of photosensitivity indicated that the produced ZnO NRs were suitable for UV photodetector applications.(author)

  14. Effect of ZnO nano in the blend PET / PC ( 80/20) subjected to UV radiation; Efeito do nano ZnO na mistura PET/PC(80/20) submetida a radiacao UV

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Homero M.; Mendes, Luis C.; Albitres, Gerson A.V.; Cestari, Sibele P.; Mattos, Gabriela C., E-mail: homero@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano

    2015-07-01

    The aim of this research was to reuse recycled poly(ethylene terephthalate) (PET) in blend with polycarbonate (PC) in order to avoid UV degradation in outdoor application. Nanocomposite based on blend of recycled (PET) and polycarbonate (PC) in the ratio of 80/20 with nano zinc oxide (ZnO) at different concentrations was prepared. The blend was subjected to ultraviolet (UV) radiation for accelerated aging chamber, we evaluated the effect of the presence nZnO filler as a barrier to UV rays. Dynamic-mechanical analysis (DMA) and nuclear magnetic resonance in the solid state (NMR). It is the degradation retardant effect at concentrations starting from 3% nZnO. (author)

  15. Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films

    Directory of Open Access Journals (Sweden)

    S.E. Al Garni

    Full Text Available In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25–100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50–100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains. Keywords: ZnSe, Nanosandwiching, Mechanical, Optical gap

  16. Comparative kinetic analysis of89 Sr,60 Co and65 Zn Uptake by human bone powder

    International Nuclear Information System (INIS)

    Abdel-Fatah, A.T.A.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder samples were prepared from recent femurs. The Bone particles range between 30 and 40 MU in diameter. One portion of this powder was prepared fat-free (FFB), the second portion as protein-free (PFB) and the last portion was left as raw bone powder-(RB). The sequence of uptake of 89 Sr by these types of bone powder is : FFB > RB > PFB, while that of 60 Co and 65 Zn is: PFB > FFB > RB. Kinetic analysis of the uptake curves of the 3 isotopes indicated that these processes proceed in 3 distinct steps; very fast initial, moderate intermediate and slow last step. The obtained rates of uptake indicated that : (1) the uptake by PEB is faster in its third step than the other types, (2) the most predominant step in case of 89 Sr and 60 Co is the third step (ion exchange step) while in case of 65 Zn it is the first step (physical adsorption), (3) defatenisation or deproteinisation, in general, inhances the uptake process

  17. Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehta SK

    2009-01-01

    Full Text Available Abstract Colloidal nanodispersions of ZnS have been prepared using aqueous micellar solution of two cationic surfactants of trimethylammonium/pyridinium series with different head groups i.e., cetyltrimethylammonium chloride (CTAC and cetyltrimethylpyridinium chloride (CPyC. The role of these surfactants in controlling size, agglomeration behavior and photophysical properties of ZnS nanoparticles has been discussed. UV–visible spectroscopy has been carried out for determination of optical band gap and size of ZnS nanoparticles. Transmission electron microscopy and dynamic light scattering were used to measure sizes and size distribution of ZnS nanoparticles. Powder X-ray analysis (Powder XRD reveals the cubic structure of nanocrystallite in powdered sample. The photoluminescence emission band exhibits red shift for ZnS nanoparticles in CTAC compared to those in CPyC. The aggregation behavior in two surfactants has been compared using turbidity measurements after redispersing the nanoparticles in water. In situ evolution and growth of ZnS nanoparticles in two different surfactants have been compared through time-dependent absorption behavior and UV irradiation studies. Electrical conductivity measurements reveal that CPyC micelles better stabilize the nanoparticles than that of CTAC.

  18. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

    Science.gov (United States)

    Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian

    2018-03-12

    Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Size and surface AREA analysis of some metallic and intermetallic powders

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Elsayed, A.A.; Abadir, M.F.

    1988-01-01

    The powder characterization of three intermetallic compounds ( Cr B, B 4 c and S ib 4 ) and three metallic powders (Fe, Co, and Ni) has been performed. This included the determination of powder density, chemical analysis, impurity analysis, shape factor, particle size analysis and specific surface area. The particle size analysis for the six powders was carried out using three techniques, namely; the 0-23, the microtrac and the fisher sub sieve and size. It was found that the analysis of the two powders and deviates from the log-normal probability distribution and the deviation was corrected. The specific surface area of the powders was measured using the high speed surface area analysis (BET method), and it was also calculated from surface area analysis findings, the BET technique was found to give the highest specific surface area values, and was attributed to the inclusion of internal porosity in the measurement. 8 fig., 10 tab

  20. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    Directory of Open Access Journals (Sweden)

    Patrizia Bonfanti

    2015-07-01

    Full Text Available The growing global production of zinc oxide nanoparticles (ZnONPs suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1–100 mg/L specifically synthesized for industrial purposes with different sizes, shapes (round, rod and surface coatings (PEG, PVP was tested using the frog embryo teratogenesis assay-Xenopus (FETAX to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.

  1. Obtaining ZnO nanocrystalline through methods of combustion and precipitation

    International Nuclear Information System (INIS)

    Garcia, A.P.; Guaglianoni, W.C.; Cunha, M.A.; Basegio, T.M.; Bergmann, C.P.

    2012-01-01

    Zinc oxide is important technological applications in rubber and industrial paints. The chemical properties and microstructure of ZnO powder depends on the synthesis method employed. In this work, it was obtained nanosized ZnO using different synthesis processes, such as solution combustion and precipitation, varying the concentrations of reactants and the working temperature. The obtained powders were characterized by SEM, BET, XRD, crystallite size determination and thermal analysis (TGA and DTA). It was possible to obtain nanosized ZnO with the methods used. (author)

  2. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  3. Micro-structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited using LAAM

    Science.gov (United States)

    Bi, G.; Sun, C. N.; Nai, M. L.; Wei, J.

    In this paper, deposition of Ni-base Inconel 625 mixed with nano-TiC powders using laser aided additive manufacturing (LAAM) was studied. Micro-structure and mechanical properties were intensively investigated. The results showed that nano-size TiC distributed uniformly throughout the Ni- matrix. Inconel 625 can be reinforced by the strengthened grain boundaries with nano-size TiC. Improved micro-hardness and tensile properties were observed.

  4. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-04-30

    Cerium oxide nanocrystallites were synthesized by a co-precipitation process at a relatively low temperature, using cerium (III) nitrate as the starting material in a water solution with pH in the range of 8-9. The effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K, by XRD analysis. When calcined at temperatures from 473 to 1273 K, face-centered cubic phase crystallization was observed by XRD. The crystallite size of the cerium oxide increased from 12.0 to 48 nm as the calcining temperature increased from 473 to 1273 K, in the pH range 8-9. The activation energy for the growth of cerium oxide nanoparticles was found to have very low values of 17.5 kJ/mol for pH = 8 and 16.0 kJ/mol for pH = 9.

  5. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  6. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  7. Self-assembled formation and transformation of In/CdZnTe(110) nano-rings into camel-humps

    International Nuclear Information System (INIS)

    Cohen-Taguri, G.; Ruzin, A.; Goldfarb, I.

    2012-01-01

    We used in situ scanning tunneling microscopy to monitor in real time the formation of nano-rings at the molecular beam epitaxially grown In/CdZnTe(110) surface, and Auger electron spectroscopy to explore the corresponding compositional changes. In-diffusion of In and segregation of Cd to the surface in course of annealing lead to a formation of elliptically distorted nano-rings, elongated along the fast [110] diffusion direction. Exacerbated diffusion anisotropy in the liquid state, at temperatures above the melting point of In, further distorts the nano-rings into a camel-hump shape.

  8. The effect of heating conditions on the properties of nano- and microstructured Ni-Zn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sutka, A; Mezinskis, G [Institute of Silicate Materials, Riga Technical University, Azenes 14/24, LV-1048 (Latvia); Gross, K A [Department of Materials Engineering, Monash University, VIC 3168 (Australia); Bebris, G [State Forensic Science Bureau, Hospitalu 55, LV-1013 (Latvia); Knite, M, E-mail: andris.sutka@rtu.l [Institute of Technical Physics, Riga Technical University, Azenes 14/24, LV-1048 (Latvia)

    2011-02-15

    The structural, microstructural and morphological, as well as electric and dielectric, properties of nickel-zinc ferrite (Ni{sub 0.3}Zn{sub 0.7}Fe{sub 2}O{sub 4}) derived from sol-gel auto-combustion have been studied after sintering from 900 to 1300 deg. C. The effect of heating rate has not been previously investigated and is reported here. X-ray diffraction showed a pure cubic spinel after calcination. Atomic force microscopy revealed nanosized particles after calcination, but scanning electron microscopy showed nanosized grains after sintering at 900 deg. C. The heating rate has a marked effect on oxidation of Fe{sup 3+} to Fe{sup 2+}, showing an additional approach to control charge carrier concentration in Ni-Zn ferrites (powder and monoliths). The heating rate also influences the average particle size and distribution. Grain size and resistivity of sintered pellets do not show significant change with heating rate, proving that resistivity is mainly dictated by the number of grain boundaries. The dielectric loss tangent curves at room temperature exhibit dielectric relaxation peaks attributed to the similarity in frequency of charge hopping between the localized charge states and external fields. The relaxation peak shifts to higher frequencies for ferrites with nanosized grains.

  9. Structural and optical properties of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano ferrites: Effect of sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant, E-mail: prashant007thakur@gmail.com; Sharma, Rohit; Sharma, Vineet, E-mail: vineet.sharma@juiit.ac.in; Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in

    2017-06-01

    Mn-Zn ferrites have shown various remarkable applications e.g. in magnetic amplifiers, power transformers and electromagnetic interference etc. due to their high initial permeability. Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. Optical properties have been correlated with the structural properties. For structural properties X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR) have been employed. It has been observed that there is an increase in crystallite size with sintering from 973 K to 1373 K and FTIR confirms the formation of bond between metal ion and oxygen ion at the octahedral site and tetrahedral site. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Graphical abstract: Mn–Zn ferrite powder (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) has been prepared by the co-precipitation method and subsequently sintered at three different temperatures i.e. 973 K, 1173 K, 1373 K. A red shift has been confirmed from UV–visible absorption spectra and photoluminescence spectra have been reported with an increase in sintering temperature. - Highlights: • Nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} have been prepared by the co-precipitation method. • There is an increase in crystallite size with sintering from 973 K to 1373 K. • A red shift is found in UV–visible and PL spectra with an increase in sintering temperature.

  10. Preparation of tetrapod-like ZnO/TiO{sub 2} core-shell nanostructures as photocatalytic powder

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, A.; Visentin, F.; De Zorzi, C.; Natali, M.; Gerbasi, R.; Rossetto, G. [ICIS-DPM-CNR, Padova (Italy); El Habra, N. [ICIS-DPM-CNR, Padova (Italy); Dipartimento di Scienze Chimiche, Padova (Italy); Garoli, D. [Dipartimento di Fisica, Padova (Italy); LANN, Padova (Italy); Casarin, M. [Dipartimento di Scienze Chimiche, Padova (Italy)

    2011-08-15

    The coupling of zinc oxide tetrapods (t-ZnO) with anatase TiO{sub 2} in the form of CVD coatings on ZnO nanotetrapods was investigated. t-ZnO/TiO{sub 2} core-shell structures, consisting of uniformly and completely TiO{sub 2} covered ZnO nanotetrapods, were characterized by scanning electron microscopy, X-ray diffraction and UV-Vis spectra. Photocatalytic activity, determined by degradation of a sodium methyl red solution, was found to be comparable to pure t-ZnO, while improved separation easiness was verified that makes the presented powders promising for wastewater treatment. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  12. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  13. Structural stability of nano-sized clusters

    NARCIS (Netherlands)

    De Hosson, JTM; Palasantzas, G; Vystavel, T; Koch, S; Ovidko,; Pande, CS; Krishnamoorti, R; Lavernia, E; Skandan, G

    2004-01-01

    This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during

  14. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  15. Effects of Lithium Dopant on Size and Morphology of Magnesium Oxide Nano powders

    International Nuclear Information System (INIS)

    Mohd Sufri Mastuli; Siti Nur Hazlinda Hasbu; Noraziahwati Ibrahim; Mohd Azizi Nawawi; Mohd Sufri Mastuli

    2014-01-01

    Lithium doped of magnesium oxide powders have been synthesized using the sol-gel method with magnesium acetate tetrahydrate, oxalic acid dihydrate and lithium acetate dihydrate used as the starting materials. The dried sol-gel products were calcined at 950 degree Celsius for 36 h to form the Li doped-MgO samples. The calcined samples were characterized using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The present work is investigated the effect of lithium ion on the band gap energy of studied samples. The band gap energies were obtained from a Tauc plot that drawn based on absorption edge of each sample that measured using a UV-Vis spectrophotometer. It is found that the doped and undoped MgO samples showed a slightly different in their band gap energies. The lithium ion that present in the MgO as a dopant affects the crystallite size and morphology of the final products. Our study shows that the lithium dopant can modified optical properties of the metal oxide which to be beneficial in some industrial applications. (author)

  16. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  17. Composition influence on positron annihilation parameters in ZnO-based nanocrystal semiconductor powders

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C.; Hernandez Fenollosa, M.A.; Donderis, V.; Mari, B. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n, Valencia, 46071 (Spain)

    2007-07-01

    Zn{sub 1-x}Mg{sub x}O powders at various compositions were obtained by mechanical milling from the binary oxides. The progressive incorporation of Mg atoms into the ZnO lattice was monitored by X-ray diffraction (XRD). The evolution of annihilation parameters with milling time and composition were analyzed and related to the possible types of mechanical and substitutional induced defect present. It was concluded that the average lifetime constitute a useful parameter to sense the complete cation substitution in the wurtzite structure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Composition influence on positron annihilation parameters in ZnO-based nanocrystal semiconductor powders

    International Nuclear Information System (INIS)

    Damonte, L.C.; Hernandez Fenollosa, M.A.; Donderis, V.; Mari, B.

    2007-01-01

    Zn 1-x Mg x O powders at various compositions were obtained by mechanical milling from the binary oxides. The progressive incorporation of Mg atoms into the ZnO lattice was monitored by X-ray diffraction (XRD). The evolution of annihilation parameters with milling time and composition were analyzed and related to the possible types of mechanical and substitutional induced defect present. It was concluded that the average lifetime constitute a useful parameter to sense the complete cation substitution in the wurtzite structure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    Science.gov (United States)

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  20. Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application

    Directory of Open Access Journals (Sweden)

    Kazem Marzban

    2017-02-01

    Full Text Available Objective(s: CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD, transmission electron microscopy (TEM and to evaluate the bioactivity sample cell seeding and methylthiazol tetrazolium (MTT assay were performed. Results: X-ray diffraction (XRD analysis showed that the biphasic powder was obtained at 1300°C for 2 h by using a sol-gel method. Transmission electron microscopy (TEM image showed that powder particle size was about 45 nm. Besides, cell culture results indicated that the percentage of viability values was increased by the extension of period. Conclusions: found that the sample is cytocompatible and has cell proliferation potential in culture medium. The present study demonstrates that, the biphasic CaO–MgO–SiO2 system can be used to achieve novel bioactive materials for bone implant application.

  1. Compacted and Sintered Microstructure Depending on Uranium Powder Size in Zr-U Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chang Gun; Jun, Hyun-Joon; Ju, Jung Hwan; Lee, Ho Jin; Lee, Chong-Tak; Kim, Hyung Lae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    In case of the uranium (U) and zirconium (Zr) powders which have been utilized for the production of a metallic fuel in the various nuclear applications, the homogenous distribution of U powders in the Zr-U pellet has influenced significantly on the nuclear fuel performance. The inhomogeneity in a powder process was changed by various intricate factors, e.g. powder size, shape, distribution and so on. Particularly, the U inhomogeneity in the Zr-U pellets occurs by segregation derived from the great gaps of densities between Zr and U during compaction of the mixed powders. In this study, the relationship between powder size and homogeneity was investigated by using the different-sized U powders. The microstructure in Zr-U pellets reveals more homogeneity when the weight ration of Zr and U powders are close to 1. In addition, homogeneous pellets which were produced by fine U powders have higher density because the homogeneity affects the alloying reaction during sintering and the densification behavior of pore induced by powder size.

  2. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  3. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  4. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  5. Quickest single-step one pot mechanosynthesis and characterization of ZnTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Patra, S. [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India)

    2011-05-05

    Research highlights: > First time quickest mechanosynthesis of ZnTe QDs starting from Zn and Te powders. > Cubic ZnTe are formed in a single pot at RT in a single step within 1 h of milling. > The existence of stacking faults and twin faults are evident from HRTEM images. > Distinct blue shift has been observed in UV-vis absorption spectra. > First time report that ZnTe QDs with faults can also show the quantum size effect. - Abstract: ZnTe quantum dots (QDs) are synthesized at room temperature in a single step by mechanical alloying the stoichiometric equimolar mixture (1:1 mol) of Zn and Te powders under Ar within 1 h of milling. Both XRD and HRTEM characterizations reveal that these QDs having size {approx}5 nm contain stacking faults of different kinds. A distinct blue-shift in absorption spectra with decreasing particle size of QDs confirms the quantum size confinement effect (QSCE). It is observed for first time that the QDs with considerable amount of faults can also show the QSCE. Optical band gaps of these QDs increase with increasing milling time and their band gaps can be fine-tuned easily by varying milling time of QDs.

  6. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    Energy Technology Data Exchange (ETDEWEB)

    Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zhu, Gangqiang [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Xu, Yunhua [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  7. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  8. Magnetic behaviour of nano-particles of Fe2.8Zn0.2O4

    Indian Academy of Sciences (India)

    Magnetic behaviour of nano-particles of Fe2.8Zn0.2O4. SUBHASH CHANDER, SEEMA LAKHANPAL, ANJALI KRISHNAMURTHY,. BIPIN K SRIVASTAVA and V K ASWAL∗. Department of Physics, University of Rajasthan, Jaipur 302 004, India. *Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 ...

  9. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Energy Technology Data Exchange (ETDEWEB)

    Safari, A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Farbod, M. [Physics Department, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni–Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100–200 nm and was dependent on the production conditions. - Highlights: • Nanocrystalline Ni ferrite powders are prepared by plasma arc discharge process. • The mean particle size of the as-synthesized ceramic powders is about 100 nm. • The highest saturation magnetization is observed as zinc powders removed completely from the initial mixture.

  10. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  11. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  12. Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Rula M. Allaf

    2014-01-01

    Full Text Available The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

  13. Nano-ZnO Particles’ Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy

    Directory of Open Access Journals (Sweden)

    Sravya Tekumalla

    2016-11-01

    Full Text Available Magnesium based nanocomposites, due to their excellent dimensional stability and mechanical integrity, have a lot of potential to replace the existing commercial Al alloys and steels used in aerospace and automotive applications. Mg-Al alloys are commercially used in the form of AZ (magnesium-aluminum-zinc and AM (magnesium-aluminum-manganese series in automobile components. However, the Mg17Al12 phase in Mg-Al alloys is a low melting phase which results in a poor creep and high temperature performance of the alloys. Rare earth additions modify the phase and hence improve the properties of the materials. In this paper, Ce and nano ZnO particles were added to Mg-Al alloys to attain a favorable effect on their properties. The developed materials exhibited promising properties in terms of thermal expansion coefficient (CTE, hardness, and tensile strength. Further, the ZnO addition refined the microstructure and helped in obtaining a uniform distribution, however without grain size refinement. The increased addition of ZnO and the improvement in the distribution led to an enhancement in the properties, rendering the materials suitable for a wide spectrum of engineering applications.

  14. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe{sub 2}O{sub 4} containing glass ceramics for the hyperthermia treatment of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Saqlain A., E-mail: saqlain007pk@hotmail.co [Biomaterials Lab, Department of Physics, GC University Lahore (Pakistan); Hashmi, M.U. [Biomaterials Lab, Department of Physics, GC University Lahore (Pakistan); Alam, S. [PITMAEM, PCSIR Lahore (Pakistan); Shamim, A. [Biomaterials Lab, Department of Physics, GC University Lahore (Pakistan)

    2010-02-15

    Glass ceramics of the composition xZnO.25Fe{sub 2}O{sub 3}.(40-x)SiO{sub 2}.25CaO.7P{sub 2}O{sub 5}.3Na{sub 2}O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 deg. C for 3 h and then rapidly cooled at -10 deg. C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe{sub 2}O{sub 4}, CaSiO{sub 3} and Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe{sub 2}O{sub 4} crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe{sub 2}O{sub 4} exhibited ferrimagnetism due to the random distribution of Zn{sup 2+} and Fe{sup 3+} cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe{sub 2}O{sub 4} and rapid cooling of the material from 1100 deg. C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 deg. C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.

  15. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  16. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  17. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  18. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  19. The crystallinity of calcium phosphate powders influenced by the conditions of neutralized procedure with citric acid additions

    International Nuclear Information System (INIS)

    Li Chengfeng

    2009-01-01

    Calcium phosphate powders with nano-sized crystallinity were synthesized by neutralization using calcium hydroxide and orthophosphoric acid with the assistance of citric acid. The influence of processing parameters, such as free or additive citric acid, synthetic temperature and ripening time, on the crystallinity of hydroxyapatite were investigated. The results of X-ray diffraction and microstructure observations showed that the crystallinity and morphology of nano-sized hydroxyapatite particles were influenced by the presence or absence of citric acid. It was found that the crystallinities and crystallite sizes of hydroxyapatite powders prepared with the additive citric acid increased with increasing synthetic temperature and ripening time. Especially, the crystallinities of (h k 0) planes were raised and more homogeneously grown particles were obtained with increasing synthetic temperature

  20. The crystallization and physical properties of Al-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fang, T.H. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Hung, F.Y. [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: fyhung@mail.mse.ncku.edu.tw; Ji, L.W. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Chang, S.J.; Young, S.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Hsiao, Y.J. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2008-07-15

    Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 deg. C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.

  1. The crystallization and physical properties of Al-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Chen, K.J.; Fang, T.H.; Hung, F.Y.; Ji, L.W.; Chang, S.J.; Young, S.J.; Hsiao, Y.J.

    2008-01-01

    Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 deg. C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles

  2. Internal distribution of micro- / nano-sized inorganic particles and their cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Kida, Ikuhiro; Akasaka, Tsukasa; Uo, Motohiro; Yawaka, Yasutaka; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Mutoh, Mami [School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Morita, Manabu [Department of Oral Health, Okayama University Graduate School of Medicine, Dentisity and Pharmaceutical Science, Okayama 700-8525 (Japan); Haneda, Koichi [Department of Information Technology and Electronics, Senshu University of Ishinomaki, Ishinomaki 986-8580 (Japan); Yonezawa, Tetsu, E-mail: sabe@den.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-29

    Nano-sized materials have received much attention lately, both in terms of their multiple applications and their biocompatibility. From both viewpoints, understanding the biodistribution of administered nano-materials is very important. In this study, we succeeded in visualizing the biodistribution of administered nano-materials using a scanning X-ray analytical microscope and magnetic resonance imaging method. Quantitative observation was carried out by inductively coupled plasma - atomic emission spectroscopy. We observed that the administered nano-particles accumulated in the liver, lung and spleen of mice. To estimate their cytocompatibility, the nano-particles were exposed to human liver cells. The results suggested that the micro-/ nano- particles have good cytocompatibility, except for copper oxide nano-particles.

  3. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-01-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  4. Ball-milled nano-colloids of rare-earth compounds as liquid gain media for capillary optical amplifiers and lasers

    Science.gov (United States)

    Patel, Darayas; Blockmon, Avery; Ochieng, Vanesa; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wesley, Dennis; Sarkisov, Sergey S.; Darwish, Abdalla M.; Sarkisov, Avedik S.

    2017-02-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community due to their potential applications as biomarkers, fluorescent inks, gain media for lasers and optical amplifiers. Many rare-earth doped materials of different compositions, shapes and size distribution have been prepared by different synthetic methods, such as chemical vapor deposition, sol-gel process, micro-emulsion techniques, gas phase condensation methods, hydrothermal methods and laser ablation. In this paper micro-crystalline powder of the rare-earthdoped compound NaYF4:Yb3+, Er3+ was synthesized using a simple wet process followed by baking in open air. Under 980 nm diode laser excitation strong fluorescence in the 100 nm band around 1531-nm peak was observed from the synthesized micro-powder. The micro-powder was pulverized using a ball mill and prepared in the form of nano-colloids in different liquids. The particle size of the obtained nano-colloids was measured using an atomic force microscope and a dynamic light scatterometer. The size of the nano-particles was close to 100-nm. The nano-colloids were utilized as a filling media in capillary optical amplifiers and lasers. The gain of a 7-cm-long capillary optical amplifier (150-micron inner diameter) was as high as 6 dB at 200 mW pump power. The synthesized nano-colloids and the active optical components using them can be potentially used in optical communication, signal processing, optical computing, and other applications.

  5. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Science.gov (United States)

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  6. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  7. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dalmora, Adilson C. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Institute for Environmental Assessment and Water Studies (IDÆA), Spanish National Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona (Spain); Ramos, Claudete G.; Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Teixeira, Elba C. [Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS (Brazil); Kautzmann, Rubens M.; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500. Bairro Agronomia. CEP: 91501-970 Porto Alegre, RS (Brazil); and others

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO{sub 2}, Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3,} with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano

  8. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    International Nuclear Information System (INIS)

    Dalmora, Adilson C.; Ramos, Claudete G.; Oliveira, Marcos L.S.; Teixeira, Elba C.; Kautzmann, Rubens M.; Taffarel, Silvio R.; Brum, Irineu A.S. de

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO 2 , Al 2 O 3 , and Fe 2 O 3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical

  9. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    International Nuclear Information System (INIS)

    Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M.

    2013-01-01

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  10. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  11. Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

    Directory of Open Access Journals (Sweden)

    K. Hedayati

    2015-10-01

    Full Text Available In this research zinc oxide (ZnO nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet-visible (UV-Vis, Fourier transform infra-red (FT-IR and energy dispersive X-ray (EDX spectroscopy. The structure of nanoparticles was studied using XRD pattern. The crystallite size of ZnO nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the SEM. The grain size of zinc oxide nanoparticles were in suitable agreement with the crystalline size calculated by XRD results. The optical properties of particles were studied with UV-Vis an FTIR absorption spectrum. The Raman spectrum measurements were carried out using a micro-laser Raman spectrometer forms the ZnO nanoparticles. At the end studied the effect of calcined temperature on the photoluminescence (PL emission of ZnO nanoparticles.

  12. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  13. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg-Al-Zn-Ca-La alloy through hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ayman, Elsayed, E-mail: ayman@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Junko, Umeda; Katsuyoshi, Kondoh [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-01-15

    The microstructure and mechanical properties of hot extruded Mg-7Al-1Zn-1Ca powder alloys with an addition of 1.5% La or 3.3% La were investigated. Both rapidly solidified powders, produced via spinning water atomization process, and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powders were consolidated using both cold compaction and spark plasma sintering. The tensile properties of the extruded alloys were then evaluated and correlated to their microstructures. The results showed that the use of rapidly solidified Mg-7Al-1Zn-1Ca alloy powders with La additions could lead to effective grain refinement and super saturation of alloying elements, which in turn resulted in the improved mechanical response. The Mg-7Al-1Zn-1Ca-1.5La alloy extruded at 573 K attained ultimate tensile strength of 450 {+-} xx MPa and elongation of 17 {+-} xx%, superior to the Mg-7Al-1Zn-1Ca-3.3La alloy and other Mg alloys like Mg-Al-Mn-Ca. This may help extend the application of Mg alloys to higher load-carrying parts while maintaining the excellent advantage of light weight.

  14. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  15. Effect of ZnO nano in the blend PET / PC ( 80/20) subjected to UV radiation

    International Nuclear Information System (INIS)

    Pires, Homero M.; Mendes, Luis C.; Albitres, Gerson A.V.; Cestari, Sibele P.; Mattos, Gabriela C.

    2015-01-01

    The aim of this research was to reuse recycled poly(ethylene terephthalate) (PET) in blend with polycarbonate (PC) in order to avoid UV degradation in outdoor application. Nanocomposite based on blend of recycled (PET) and polycarbonate (PC) in the ratio of 80/20 with nano zinc oxide (ZnO) at different concentrations was prepared. The blend was subjected to ultraviolet (UV) radiation for accelerated aging chamber, we evaluated the effect of the presence nZnO filler as a barrier to UV rays. Dynamic-mechanical analysis (DMA) and nuclear magnetic resonance in the solid state (NMR). It is the degradation retardant effect at concentrations starting from 3% nZnO. (author)

  16. Functional behaviour of polypropylene/ZnO-soluble starch nanocomposites

    International Nuclear Information System (INIS)

    Chandramouleeswaran, Subramani; Mhaske, S T; Kathe, A A; Varadarajan, P V; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-01-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis-ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence-revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications

  17. Functional behaviour of polypropylene/ZnO soluble starch nanocomposites

    Science.gov (United States)

    Chandramouleeswaran, Subramani; Mhaske, S. T.; Kathe, A. A.; Varadarajan, P. V.; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-09-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis—ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence—revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications.

  18. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  19. Nanocomposites of recycled polycarbonate and nano-zinc oxide (rPC/nZnO): effect of gamma radiation and nano oxide content on the thermal properties; Nanocompositos de policarbonato reciclado e nanooxido de zinco (rPC/nZnO): efeito da radiacao-gama e do teor de nanooxido nas propriedades termicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A.L.F.; Mendes, L.C.; Cestari, S.P., E-mail: anafcarvalho@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas Eloisa Mano; Souza, M.C.L. [Universidade Estadual da Zona Oeste (UEZO), RJ (Brazil)

    2014-07-01

    In order to promote the barrier action to the ultraviolet radiation and increase of mechanical characteristics, nanocomposites of recycled polycarbonate (rPC) and nano-zinc oxide (nZnO) containing 1, 2 and 3 % (wt/wt) of nano oxide were prepared. Since for obtaining nanocomposites and irradiating polymers are promising tools and attractive for improving the material performance, the effects of nano-zinc oxide and gamma radiation, at doses ranged from 10 to 50 kGy, were evaluated in terms of thermal characteristics of the rPC. The rPC/nZnO nanocomposites were characterized by thermogravimetric analysis (TGA) and differential explanatory calorimetry (DSC). There was a progressive decrease of the T{sub g} as function of gamma dosage and nano-zinc oxide content. Initially, the Tonset and Tmax decayed as function of gamma dosage but a recovery was observed. The amount of nano-zinc oxide induced a decreasing of T{sub onset} and T{sub max}. (author)

  20. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2011-07-01

    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl{sub 2}.6H{sub 2}O, SeCl{sub 4} and hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  1. Fabrication and Magnetic Properties of Fe65Co35–ZnO Nano-Granular Films

    Directory of Open Access Journals (Sweden)

    Wang Guowei

    2010-01-01

    Full Text Available Abstract A series of nano-granular films composed of magnetic metal (Fe65Co35 granules with a few nanometers in size and semiconductor oxide (ZnO have been fabricated by a magnetron sputtering method, and excellent soft magnetic properties have been achieved in a wide metal volume fraction (x range for as-deposited samples due to the exchange coupling between FeCo granules (a ferromagnetic interaction in nano-scale. In a wide range (0.53 < x < 0.71, the films exhibit coercivity H C not exceeding 15 Oe, along with high resistivity. Especially for the sample with x = 0.67, coercivities in hard and easy axes are 1.43 and 7.08 Oe, respectively, 4πM S = 9.85 kg, and ρ reaches 2.06 × 103 μΩ cm. The dependence of complex permeability μ = μ′ − jμ″ on frequency shows that the real part μ′ is more than 100 below 1.83 GHz and that the ferromagnetic resonance frequency reaches 2.31 GHz, implying the promising for high frequency application. The measured negative temperature coefficient of resistivity reveals that may be the weak localized electrons existing in samples mediate the exchange coupling.

  2. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  3. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite

    International Nuclear Information System (INIS)

    Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad; Razali, Ili Rabihah; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat

    2013-01-01

    Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present in the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO 4 2− ) into hydroxyapatite (Ca 10 (PO 4 ) 6−x (SO 4 ) x (OH) 2−x ) lattice via ion exchange process with phosphate group. Concentration of SO 4 2− ions was varied between X = 0.05–0.5, using (Ca (NO 3 ) 2 ·4H 2 O), ((NH 4 ) 2 HPO 4 ) and (Na 2 SO 4 ) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO 4 2− ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure

  4. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  5. Nanocrystallite characterization of milled simulated dry process fuel powders by neutron diffraction

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Kang, Kwon Ho; Moon, Je Sun; Song, Kee Chan; Choi, Yong Nam

    2003-01-01

    The nano-scale crystallite sizes of simulated spent fuel powders were measured by the neutron diffraction line broadening method in order to analyze the sintering behavior of the dry process fuel. The mixed U0 2 and fission product oxide powders were dry-milled in an attritor for 30, 60, and 120 min. The diffraction patterns of the powders were obtained by using the high resolution powder diffractometer in the HANARO research reactor. Diffraction line broadening due to crystallite size was measured using various techniques such as the Stokes' deconvolution, profile fitting methods using Cauchy function, Gaussian function, and Voigt function, and the Warren-Averbach method. The r.m.s. strain, stacking fault, twin and dislocation density were measured using the information from the diffraction pattern. The realistic crystallite size can be obtained after separation of the contribution from the non-uniform strain, stacking fault and twin

  6. A Mössbauer and magnetic study of ball milled Fe-doped ZnO Powders

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Ligia E., E-mail: ligia.zamora@correounivalle.edu.co; Paz, J. C.; Piamba, J. F.; Tabares, J. A.; Alcázar, G. A. Pérez [Universidad del Valle, Departamento de física (Colombia)

    2015-06-15

    The structural and magnetic properties of Fe-doped ZnO are reported in this study, as obtained by mechanical alloying from elemental powders of ZnO and Fe. The properties of Zn{sub 0.90}Fe{sub 0.10}O samples alloying while varying the milling time (6, 12, 24 and 36 h) are also reported. The Rietveld refinement of X-ray Diffraction (XRD) patterns revealed that the system presents two structures: the würtzite structure of ZnO and the bcc structure of α-Fe. The Mössbauer spectra show that the samples present three components: a ferromagnetic component, associated with the Fe phase and two paramagnetic components, associated with the Fe atoms, which penetrate inside the ZnO matrix behaving as Fe{sup 3+} and Fe{sup 2+}. The milling time contributes to an increase in the paramagnetic sites, and a solubility limit of the Fe atoms in the ZnO lattice was detected. The VSM measurements at room temperature detected ferromagnetic behavior with a saturation magnetization of 11 emu/g and a coercive field of 330 Oe for the sample alloyed over 24 h. A similar behavior was shown by the other samples.

  7. Effect of the shape of a nano-object on quantum-size states

    International Nuclear Information System (INIS)

    Dzyuba, Vladimir; Kulchin, Yurii; Milichko, Valentin

    2012-01-01

    In this paper, we propose an original functional method that makes it easy to determine the effect of any deviation in the shape of a nano-object from the well-studied shape (e.g., spherical) on the quantum characteristics of charge localized inside the nano-object. The maximum dimension of the object is determined by the magnitude of influence of quantum-size effects on quantum states of charge, and is limited by 100 nm. This method is ideologically similar to the perturbation theory, but the perturbation of the surface shape, rather than the potential, is used. Unlike the well-known variational methods of theoretical physics, this method is based on the assumption that the physical quantity is a functional of surface shape. Using the method developed, we present the quantum-size state of charges for two different complex shapes of nano-objects. The results from analyzing the quantum-size states of charge in the nano-objects with a deformed spherical shape indicated that the shape perturbations have a larger effect on the probability density of locating a particle inside the nano-object than on the surface energy spectrum and quantum density of the states.

  8. Effect of nano-TiO{sub 2} particles size on the corrosion resistance of alkyd coating

    Energy Technology Data Exchange (ETDEWEB)

    Deyab, M.A., E-mail: hamadadeiab@yahoo.com; Keera, S.T.

    2014-08-01

    The coating system containing various sizes (∼10, 50, 100, 150 nm) of nano-TiO{sub 2} were prepared and investigated for corrosion protection of carbon steel in 1.0 M H{sub 2}SO{sub 4} using polarization, EIS and transmission electron microscopy (TEM) techniques. It was found that nano-TiO{sub 2} particles improved the corrosion resistance of alkyd coatings. The corrosion resistance occurs via physical adhesion on the metal surface. O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size. The inhibition efficiency was found to increase with decreasing the size of nano-TiO{sub 2} and with decreasing the temperature. - Highlights: • Nano-TiO{sub 2} coating were prepared and used for corrosion protection of C-steel. • Nano-TiO{sub 2} particles in coating are effective to improve the corrosion resistance. • Nano-TiO{sub 2} coating inhibit both anodic and cathodic reactions. • Corrosion inhibition efficiency increases with decrease in the size of nano-TiO{sub 2}. • O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size.

  9. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  10. In-situ PXRD studies of ZnO nanoparticle growth: How do various salts influence the hydrothermal growth of ZnO?

    DEFF Research Database (Denmark)

    Bøjesen, Espen Drath

    ZnO is a material of great scientific and everyday relevance; it is used widely in all sorts of application. Synthesis of ZnO nanoparticles can be performed by a wide assortment of methods and a tremendous variety of sizes and shapes, it has been suggested that ZnO is the one known compound showing...... the broadest range of nanostructures. Previously many different in-situ characterization methods have been used to investigate the ZnO formation under various synthesis conditions; these include UV-VIS and SAXS. These methods were primarily used to give information on particle size of ZnO formed using soft...... chemical methods and non-aqueous solvents. In our work we have studied the formation of ZnO during hydrothermal syntheses using in-situ powder X-ray diffraction, thus enabling us to extract crystallographic as well as microstructural information. The data was analyzed using Rietveld refinement and whole...

  11. Effects of micro-sized and nano-sized WO_3 on mass attenauation coefficients of concrete by using MCNPX code

    International Nuclear Information System (INIS)

    Tekin, H.O.; Singh, V.P.; Manici, T.

    2017-01-01

    In the present work the effect of tungsten oxide (WO_3) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO_3 and micro-WO_3 into concrete sample. The mass attenuation coefficients of pure concrete and WO_3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO_3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO_3 significanlty improve shielding properties than micro-WO_3. It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. - Highlights: • It was found that size of the WO_3 affected the mass attenuation coefficients of concrete in all photon energies.

  12. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    Science.gov (United States)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  13. Facile Synthesis of Porous ZnMnO3 Spherulites with a High Lithium Storage Capability

    International Nuclear Information System (INIS)

    Liu, Xinru; Zhao, Chenhao; Zhang, He; Shen, Qiang

    2015-01-01

    Graphical abstract: Porous ZnMnO 3 spherulites show an enhanced high lithium storage capability when potentially applied as a lithium-ion battery anode for the first time. - Highlights: • Composite Zn 0.5 Mn 0.5 CO 3 microspheres are facilely co-precipitated. • Porous ZnMnO 3 spherulites can be used as a lithium-ion battery anode. • Porous ZnMnO 3 spherulites show superior electrochemical properties. • A synergistic effect of Zn-O and Mn-O components in cubic ZnMnO 3 is proposed. - Abstract: In this paper, pure-phase ZnMnO 3 porous spherulites are uniquely synthesized through the thermal decomposition of Zn-Mn binary carbonate precursors facilely co-precipitated at room temperature, possessing an average diameter of 1.2 ± 0.3 μm and acquiring porosity with a specific surface area of 24.3 m 2 g −1 . When tentatively applied as lithium-ion battery anodes for the first time, these porous spherulites deliver an initial discharge capacity of 1294 mAh g −1 at 500 mA g −1 and retain an reversible value of 879 mAh g −1 over 150 cycles. By comparison, the equimolar powder mixture of nano-sized ZnO and MnO 2 synergistically shows a higher lithium storage capability than the two unary transition metal oxides, but lower than anode material ZnMnO 3 . Aside from its nanostructured characteristics, an inner atomic synergistic effect within the cubic lattices may account for the superior electrochemical performance of well-crystallized ZnMnO 3

  14. Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries.

    Science.gov (United States)

    Kale, Sayali B; Kalubarme, Ramchandra S; Mahadadalkar, Manjiri A; Jadhav, Harsharaj S; Bhirud, Ashwini P; Ambekar, Jalinder D; Park, Chan-Jin; Kale, Bharat B

    2015-12-21

    Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. ∼6365 μmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2S4. The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which

  15. Separation of Trace Amount Zn (II Using Additional Carbonyl and Carboxyl Groups Functionalized-Nano Graphene

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2013-01-01

    Full Text Available A novel and selective method for the fast determination of trace amounts of Zn(IIions in water samples has been developed.  The first additional carbonyl and carboxyl functionalized-nano graphene (SPFNano graphene. The presence of additional carbonyl and carboxyl groups located at the edge of the sheets makes GO sheets strongly hydrophilic, allowing them to readily swell and disperse in water. Based on these oxygen functionalities, different model structures of GO were used as absorbent for extraction of Zn (II   ions by solid phase extraction method. The complexes were eluted with HNO3 (2M10% V.V-1 methanol in acetone and determined the analyte by flame atomic absorption spectrometry.  The procedure is based on the selective formation of Zn (II at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified carbonyl and carboxyl functionalized-nano graphene oxide molecules covalently bonded together followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effect of potential interfering ions, pH, SPFNano graphene, amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about 1000mL providing a preconcentration factor of 500. The maximum capacity of the disks was found to be 456± 3 µg for Zn2+.The limit of detection of the proposed method is 5ng per 1000mL.The method was applied to the extraction and recovery of Zn in different water samples.

  16. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  17. Processes of microstructural evolution during high-energy mechanical treatment of ZnO and black NiO powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M., E-mail: kakazey@hotmail.com [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Vlasova, M. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Vorobiev, Y. [Unidad Querétaro del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Querétaro (Mexico); Leon, I. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Cabecera Gonzalez, M. [Facultad de Ciencias Químicas e Ingeniería, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Chávez Urbiola, Edgar Arturo [Unidad Querétaro del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Querétaro (Mexico)

    2014-11-15

    Kinetics of microstructural evolution in ZnO and NiO black powder mixture during prolonged high-energy mechanical ball milling were investigated by Scanning Electron Microscopy, Laser Particle Sizer, X-ray diffraction, Electron Paramagnetic Resonance, Fourier Transform Infrared Spectroscopy and UV–vis Diffuse Reflection methods. The use of these methods allows us to control the macrostructural processes (ZnO particles and NiO granules grinding, the deagglomeration and “secondary agglomeration”), the microstructural processes (formation and annealing of different native defects in ZnO [V{sub Zn}{sup −}:Zn{sub i}{sup 0} (I), V{sub Zn}{sup −} (II), and (V{sub Zn}{sup −}){sub 2}{sup −} (III) centers] and NiO black) and the mechanothermal processes in samples. This allows to establish the relationship between microstructural evolution and the properties of the samples depending on the duration of the mechanical processing.

  18. Synthesis and characterization of CdO nano particles by the sol-gel method

    Science.gov (United States)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  19. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  20. Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment

    Directory of Open Access Journals (Sweden)

    Labus Nebojša

    2017-01-01

    Full Text Available Commercial Mn-Zn powder (Mn0.63Zn0.37Fe2O4, 93 wt. % and Fe2O3 7 wt. % was milled 0.5, 1, 2 and 4 hours in a planetary ball mill. The goal was to observe intensive milling influences on oxidation and reduction processes that will happen during subsequent heating. Powders were characterized with XRD, SEM and particle seizer. Subsequent heating was monitored on TGA/DTA in an air atmosphere. After compaction of the milled powders, sintering was also performed in a dilatometric device. Sintered specimens were characterized micro structurally with SEM on a fresh breakage. Obtained differential TGA diagrams suggest intensive changes during prolonged milling of the oxidation kinetics on heating. Ferrite powders changed with milling as well as with second run heating were characterized to enable determination of the potentially best ratio of milling and heating to be applied to obtain the desired microstructure. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI172057 and Grant no. III45014

  1. Size effect in barium titanate powders synthesized by different hydrothermal methods

    International Nuclear Information System (INIS)

    Sun Weian

    2006-01-01

    The size effect in barium titanate (BaTiO 3 ) was investigated both experimentally and theoretically. Tetragonal BaTiO 3 powders with average sizes from 80 to 420 nm were directly prepared by different hydrothermal methods. The tetragonality of the hydrothermal BaTiO 3 decreased with decreasing particle size, which exhibited a dependence on the synthesis method. A phenomenological model for the size effect was proposed to interpret the experimental observations. The influence of the defects, mainly the lattice hydroxyl, on the size effect was investigated to understand the correlation between the size effect and synthesis condition. The permittivities of BaTiO 3 powder at different particle sizes were calculated, which predicted a maximum permittivity of over 16 000 around the room-temperature critical size of ∼70 nm. The prediction was in good accordance with the experimental data reported recently

  2. Preparation and characterizations of CuO doped ZnO nano-structure for the photocatalytic degradation of 4-chlorophenol under visible light

    Directory of Open Access Journals (Sweden)

    Afsaneh Shokri

    2016-12-01

    Full Text Available In the present investigation, a ZnO nanostructure was synthesized by means of precipitation and sonochemical methods. The X-ray diffraction (XRD pattern indicated that the wurtzite structure of ZnO had a hexagonal symmetry and there was no impurity. The average ZnO particles crystallite size was calculated at about 41 nm. The SEM and TEM images revealed nanostructure ZnO particles with a cauliflower-like and rod morphology with dimensions of 85, 79 and 117 nm. In order to investigate the increment of ZnO photoactivity under visible light, the CuO doped ZnO nanostructures were fabricated by a wet impregnation method using copper oxide as the copper source and ZnO as the precursor. The XRD analysis confirmed that the CuO phase was present in the as-prepared sample and the average size of nano crystalline decreased to about 36 nm. The DRS spectra indicated the extended absorption of CuO-ZnO to the visible range as a result of band gap reduction to 2.9 eV (in comparison of 3.2 eV in ZnO. In order to investigate the photocatalytic activity of the synthesized photocatalyst, the degradation of 4-Chlorophenol under visible light was performed. Sixteen experiments using full factorial were executed by adjusting four parameters (amount of catalyst, initial concentration of 4-Chlorophenol, pH, and time of irradiation. An empirical expression was proposed and successfully used to model the photocatalytic process with a high correlation, and an optimal experimental region was also obtained. According to the developed model for degradation and the subsequent ANOVA test using Design Expert software, the time of irradiation with a 46.57% effect played the most important role in the photocatalytic activity, while the influences of parameters on each other were negligible. Optimal experimental conditions for 4-Chlorophenol concentration (0.01 g/L were found at an initial pH =8 and a catalyst loading of 0.07 g/L. The results indicated that CuO-ZnO can remove 95

  3. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    International Nuclear Information System (INIS)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J

    2009-01-01

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi 2 O 3 or ZnS and Bi 2 O 3 powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  4. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J, E-mail: balemanl@fis.ucm.e [Departamento de Fisica de Materiales, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2009-11-21

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi{sub 2}O{sub 3} or ZnS and Bi{sub 2}O{sub 3} powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  5. Influence of the synthesis route and parameters on the thermoluminescence response of ZnO phosphors

    International Nuclear Information System (INIS)

    Orante B, V.; Bernal, R.; Brown, F.; Castano, V.M.; Cruz V, C.

    2007-01-01

    Full text: ZnO nano phosphors obtained by thermal annealing of chemically synthesized ZnS powder has been recently reported to exhibit striking properties to be used as thermoluminescence (TL) dosimeters for intermediate and high doses of ionizing radiation. Encouraged by these results, we began a research focused to improve the process of fabrication of ZnO phosphors, by varying the chemical route and parameters of synthesis in each route. We essayed three different chemical ways to obtain ZnO. In each case, different sintering processes were applied to the product obtained from the chemical reaction. TL is very sensitive to impurities traces, whose incorporation is influenced by the synthesis history, so that we obtain that general features of TL glow curves can be tuned by controlling the synthesis parameters. (Author)

  6. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jin Chul; Ahn, Chang Hyuk; Jang, Dae Gyu; Yoon, Young Han [Korea Institute of Construction Technology, Water Resource and Environment Research Department (Korea, Republic of); Kim, Jong Kyu; Campos, Luiza [University College London, Department of Civil, Environmental, and Geomatic Engineering (United Kingdom); Ahn, Hosang, E-mail: hahn@kict.re.kr [Korea Institute of Construction Technology, Water Resource and Environment Research Department (Korea, Republic of)

    2013-12-15

    Highlights: • Stable nano-ZnO/Laponite composites (NZLc) as an alternative to TiO{sub 2} were produced. • Nanoscale ZnO complexed with NZLc was found to be an effective photocatalyst. • TCE removal efficiency of NZLc was greater than that of bare nanoscale ZnO. • Nanoscale ZnO-mediated photodegradation varied with experimental conditions. • Developed NZLc overcame drawbacks (e.g., filtration and recovery of photocatalysts). -- Abstract: The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO{sub 2} to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO{sub 2} powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources.

  7. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites

    International Nuclear Information System (INIS)

    Joo, Jin Chul; Ahn, Chang Hyuk; Jang, Dae Gyu; Yoon, Young Han; Kim, Jong Kyu; Campos, Luiza; Ahn, Hosang

    2013-01-01

    Highlights: • Stable nano-ZnO/Laponite composites (NZLc) as an alternative to TiO 2 were produced. • Nanoscale ZnO complexed with NZLc was found to be an effective photocatalyst. • TCE removal efficiency of NZLc was greater than that of bare nanoscale ZnO. • Nanoscale ZnO-mediated photodegradation varied with experimental conditions. • Developed NZLc overcame drawbacks (e.g., filtration and recovery of photocatalysts). -- Abstract: The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO 2 to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO 2 powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources

  8. Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yafen; Fan, Jianfeng, E-mail: fanjianfeng@tyut.edu.cn; Zhang, Hua; Zhang, Qiang; Gao, Jing; Dong, Hongbiao, E-mail: hd38@leicester.ac.uk; Xu, Bingshe

    2017-03-15

    Grain sizes of AZ91 alloy powders were markedly refined to about 15 nm from 100 to 160 μm by an optimized hydrogenation-disproportionation-desorption-recombination (HDDR) process. The effect of temperature, hydrogen pressure and processing time on phase and microstructure evolution of AZ91 alloy powders during HDDR process was investigated systematically by X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The optimal HDDR process for preparing nanocrystalline Mg alloy powders is hydriding at temperature of 350 °C under 4 MPa hydrogen pressure for 12 h and dehydriding at 350 °C for 3 h in vacuum. A modified unreacted core model was introduced to describe the mechanism of grain refinement of during HDDR process. - Highlights: • Grain size of the AZ91 alloy powders was significantly refined from 100 μm to 15 nm. • The optimal HDDR technology for nano Mg alloy powders is obtained. • A modified unreacted core model of grain refinement mechanism was proposed.

  9. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    Science.gov (United States)

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  10. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study

    International Nuclear Information System (INIS)

    Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang

    2016-01-01

    Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy

  11. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  12. Zn2+ in-situ substitution behavior during the formation of BaTiO3 coatings from plasma-sprayed powders collected in liquid nitrogen

    Science.gov (United States)

    Liu, Zhe; Xing, Zhiguo; Wang, Haidou; Xue, Zifan; Chen, Shuying; Cui, Xiufang; Jin, Guo

    2018-04-01

    The dielectric performance of BaTiO3 ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value (εr ≈ 923) was measured in BaTiO3 coatings with ZnO added at 6 wt%. The Curie temperature (Tc) was in the range of 111 °C-121 °C for all of the ZnO-modified BaTiO3 coatings. Tc shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn2+ ions were incorporated into the BaTiO3 lattice where they substituted into the Ti4+ sites, and the composite powders (BaTiO3 + 6 wt% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO3 indicated that the ZnTi'' defects caused by the dopants acted as carriers in the doped BaTiO3 coatings.

  13. ZnTiO3 ceramic nanopowder microstructure changes during compaction

    Directory of Open Access Journals (Sweden)

    Labus N.

    2013-01-01

    Full Text Available ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterized. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.

  14. Effect of Al2O3 nano-filler on properties of glass-based seals for solid oxide fuel cells.

    Science.gov (United States)

    Lee, Dong Bok; Choi, Myong-Jae; Park, Sung; Lee, Jae Chun

    2013-01-01

    This study compares the viscosity and strength of three glass-based seals prepared with or without nano or micron-sized alumina powder used as filler material. Measurements of the viscosity and bending strength of the glass-based seals showed that addition of the nano-sized alumina powder to the glass increased both the high-temperature viscosity and the strength of the sintered glass matrix. Strength tests and observations of the microstructure of the fracture surface of the seal samples confirmed the strengthening of the glass network structure. Conversion of non-bridging oxygen to bridging oxygen is presumed to occur upon the addition of alumina to the glass sample. The strengthening of the alumina-glass composite seal was attributed to the alumina nano-filler and prolonged heat treatment at elevated temperatures.

  15. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn.

    Science.gov (United States)

    Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K

    2016-05-01

    Nano-ZnO particles have been reported to be toxic to many aquatic organisms, although it is debated whether this is caused by nanoparticles per sé, or rather dissolved Zn. This study investigated the role of dissolved Zn in nano-ZnO toxicity to Lemna minor. The technical approach was based on modulating nano-ZnO dissolution by either modifying the pH of the growth medium and/or surface coating of nano-ZnO, and measuring resulting impacts on L. minor growth and physiology. Results show rapid and total dissolution of nano-ZnO in the medium (pH 4.5). Quantitatively similar toxic effects were found when L. minor was exposed to nano-ZnO or the "dissolved Zn equivalent of dissolved nano-ZnO". The conclusion that nano-ZnO toxicity is primarily caused by dissolved Zn was further supported by the observation that phytotoxicity was absent on medium with higher pH-values (>7), where dissolution of nano-ZnO almost ceased. Similarly, the reduced toxicity of coated nano-ZnO, which displays a slower Zn dissolution, is also consistent with a major role for dissolved Zn in nano-ZnO toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Science.gov (United States)

    Safari, A.; Gheisari, Kh.; Farbod, M.

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni-Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100-200 nm and was dependent on the production conditions.

  17. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad; Razali, Ili Rabihah [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia,81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor DarulTa’zim (Malaysia)

    2013-06-01

    Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present in the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO{sub 4}{sup 2−}) into hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6−x}(SO{sub 4}){sub x}(OH){sub 2−x}) lattice via ion exchange process with phosphate group. Concentration of SO{sub 4}{sup 2−} ions was varied between X = 0.05–0.5, using (Ca (NO{sub 3}){sub 2}·4H{sub 2}O), ((NH{sub 4}){sub 2}HPO{sub 4}) and (Na{sub 2}SO{sub 4}) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO{sub 4}{sup 2−} ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure.

  18. In-situ PXRD Study on the Annealing of SrFe12O19 Nano Particles

    DEFF Research Database (Denmark)

    Gjørup, Frederik; Saura-Múzquiz, Matilde; Christensen, Mogens

    Nano sized strontium hexaferrite is synthesized using a hydrothermal flow synthesis, at temperature and pressure above waters critical point. The nano particles are hexagonal platelets, with the easy axis of magnetization along the short c-axis of the platelet. The nano powders are normally pressed...... and annealed to form mechanically stable pellets. This study uses In-situ Powder X-Ray Diffraction (PXRD) to examine the particle growth during annealing of the powder, with emphasis on the ratio between the axes of the platelets (a/c-ratio). By applying an external magnetic field before annealing......, the particles will align along the field lines of the external magnet, and the contact surfaces along the c-axis should increase. It will be examined whether the external magnetic field increases the growth along the c-axis relative to the a/b-axis, compared to annealing without prior magnetization....

  19. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos. Rodovia Washington Luiz, km 235, 13.565-905, PO Box 676, São Carlos, SP (Brazil)

    2013-11-15

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  20. Nanoquasicrystalline Al–Fe–Cr–Nb alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Audebert, F.; Galano, M.; Rios, C. Triveño; Kasama, H.; Peres, M.; Kiminami, C.; Botta, W.J.; Bolfarini, C.

    2013-01-01

    Highlights: •The feasibility to produce nanoquasicrystalline Al–Fe–Cr–Nb bars was investigated. •Refined microstructures were obtained for a melt atomization temperature >1250 °C. •Icosahedral particles were obtained in atomized powder sizes under 75 μm. •Large fraction of icosahedral particles can be retained in bars extruded at 375 °C. •Nanoquasicrystalline bars showed high ability to retain high strength at 250 °C. -- Abstract: Nano-quasicrystalline Al–Fe–Cr based alloys produced by rapid solidification processes exhibit high strength at elevated temperatures. Nevertheless, the quasicrystalline particles in these systems become unstable at high temperature limiting the industrial applications. In early works, it was observed that the use of Nb or Ta increases the stability of the Al–Fe–Cr quasicrystalline phase delaying the microstructural transformation to higher temperatures. Thus, these nano-quasicrystalline Al-based alloys have become promising new high strength material to be used at elevated temperatures in the automotive and aeronautical industries. In previous works, nano-quasicrystalline Al–Fe–Cr–Nb based alloys were obtained by rapid solidification using the melt-spinning technique. In order to obtain bulk alloys for industrial applications other fabrication routes such as powder production by gas atomization followed by compaction and extrusion are required. In the present work, the production of Al–Fe–Cr–Nb based alloys by powder atomization at laboratory scale was investigated. The powders obtained were sieved in different ranges of sizes and the microstructures were characterised by means of X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive of X-ray analysis. Mechanical properties have been measured by compression tests at room temperature and at 250 °C. It was observed that a very high temperature is required to produce these alloys by gas atomization; the icosahedral

  1. Room temperature ferromagnetism and half metallicity in nickel doped ZnS: Experimental and DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Muhammad Saeed [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan); Malik, Mohammad Azad, E-mail: Azad.malik@manchester.ac.uk [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Riaz, Saira; Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan)

    2015-06-15

    The nickel doped nanocrystalline ZnS thin films were deposited onto glass substrates by chemical bath deposition (CBD). Also ZnS:Ni nanoparticles were synthesized by CBD/co-precipitation method. Powder X-ray diffraction (p-XRD) studies demonstrate that both thin films and nanoparticles correspond to sphalerite (cubic) phase of ZnS with slight shift towards higher 2θ values due to incorporation of nickel in the ZnS lattice. The crystallite sizes estimated by Scherrer equation were 4 and 2.6 nm for ZnNiS thin films and nanoparticles, respectively. Scanning Electron Microscopy (SEM) images reveal that the morphology of thin films is based on quasi-spherical particles with nano scale dimensions. Energy Dispersive X-ray (EDX) spectroscopy confirms that the as-deposited thin films have a stoichiometry consistent with the nickel doped ZnS. Full-potential linearized augmented plane wave (FP-L/APW) method based on spin-polarized density functional theory (DFT) was employed to investigate the electronic and magnetic properties of ZnNiS for the doping concentration. Exchange-correlation functional was studied using generalized gradient approximation (GGA + U) method. Electronic band structures and density of states (DOS) demonstrate 100% spin polarization (half metallicity) with ferromagnetic exchange interactions. Superconducting quantum interference device (SQUID) analysis confirms the theoretical observation of ferromagnetism in nickel doped ZnS. These ZnS based half metallic ferromagnets seem to have virtuous applications in future spintronic devices. - Highlights: • ZnS.Ni thin films and nanoparticles were deposited onto glass substrates by CBD. • p-XRD correspond to sphalerite (cubic) phase of ZnS with slight shift in peaks. • DFT was employed to investigate the properties of ZnS.Ni. • DOS demonstrate 100% spin polarization with ferromagnetic exchange interactions. • SQUID analysis confirms the theoretical observations of nickel doped ZnS.

  2. On the sol-gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders

    Energy Technology Data Exchange (ETDEWEB)

    Thota, Subhash; Dutta, Titas; Kumar, Jitendra [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India)

    2006-03-01

    Transition metal containing ZnO powders (Zn{sub 1-x}M{sub x}O, 0{<=}x{<=}0.30; M = Ni, Mn, Co) have been synthesized by a sol-gel process using zinc acetate dihydrate, respective acetate and oxalic acid as precursors with ethanol as a solvent. The process essentially involves gel formation, drying at 80 {sup 0}C for 24 h to provide the oxalate, and calcination at 500 {sup 0}C for 2 h to undergo an exothermic reaction and yield Zn{sub 1-x}M{sub x}O powder. Their XRD patterns correspond to a wurtzite hcp structure similar to that of pure ZnO, but with the lattice parameters varying slightly with type and extent of doping. It is shown that the dissolution of nickel and cobalt in ZnO is less than 10 at.%, whereas that of manganese lies between 10 and 15 at.%. Other phases that emerge include NiO (hexagonal, a = 2.954 A, c = 7.236 A), ZnCo{sub 2}O{sub 4} (cubic, a = 8.094 A) and ZnMnO{sub 3} (cubic, a = 8.35 A) in the Ni, Co and Mn containing ZnO systems, respectively. Observations of hysteresis loops both at 10 and 320 K and the nature of ESR spectra provide evidence for the ferromagnetic state in nickel containing ZnO powder. Besides, the deviation occurs in the magnetization versus temperature curves in zero field cooled (ZFC) and field cooled (FC) conditions (blocking temperature T{sub B} being 32 K for 5 at.% Ni). The magnetic behaviour of manganese and cobalt doped zinc oxide is, however, different, namely (i) no hysteresis loops (ii) decrease in magnetization with increase of Mn or Co content, and (iii) identical M-T curves under ZFC and FC conditions. The inverse susceptibility versus temperature curves of Zn{sub 1-x}Mn{sub x}O compounds reveal ferrimagnetism with Neel temperature T{sub N} of 4 K for x = 0.02, but antiferromagnetism for x = 0.15 and 0.25 with Curie-Weiss temperature of -43 and -30 K, respectively.

  3. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    International Nuclear Information System (INIS)

    Tzvetkov, George; Kaneva, Nina; Spassov, Tony

    2017-01-01

    Highlights: • Meso-/macro-porous nano-ZnO covered pollen grains are prepared at room temperature. • A possible formation mechanism of the core-shell microparticles was proposed. • Adsorptive removal of Malachite Green from water by the biocomposite is studied. - Abstract: A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn"2"+-organic complexes followed by a treatment in Zn(CH_3COO)_2/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV–vis spectroscopy measurements along with N_2 adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m"2 g"−"1 and total pore volume of 0.26 cm"3 g"−"1. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g"−"1 is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  4. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  5. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  6. Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method

    Science.gov (United States)

    Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia

    2018-01-01

    Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.

  7. Synthesis of uniform nano-structured lead oxide by sonochemical method and its application as cathode and anode of lead-acid batteries

    International Nuclear Information System (INIS)

    Karami, Hassan; Karimi, Mohammad Ali; Haghdar, Saeed

    2008-01-01

    This paper discusses the results of a research aimed at investigating the synthesis of nano-structured lead oxide through reaction of lead nitrate solution and sodium carbonate solution by the sonochemical method. At the first, lead carbonate was obtained in a synthesized solution and then, after filtration, it was calcinated at the temperature of 320 deg. C so that nano-structured lead oxide can be produced. The effects of different parameters on particle size and morphology of final lead oxide powder were optimized by a 'one at a time' method. The prepared lead oxide powder was characterized by scanning electron microscopy (SEM), transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Under optimum conditions, uniformed and homogeneous nano-structured lead oxide powder with more spongy morphology and particle size of 20-40 nm was obtained. The synthesized lead oxide, as anode and cathode of lead-acid batteries, showed an excellent discharge capacity (140 mA h/g)

  8. Effect of Zn on the structural and electrical properties of high temperature HgBa2Ca2Cu3O8+δ superconductor

    Science.gov (United States)

    Omar, Bilal A.; Fathi, Sabah J.; Jassim, Kareem A.

    2018-05-01

    Bulk polycrystalline HgBa2Ca2-yZnyCu3O8+δ compound samples with y =0.0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, are synthesized by a solid state reaction process. Study identifies Zinc partial substitution on superconductivity behavior. Structural properties are studied by using X-ray powder pattern, the high temperature phase superconductor (Hg-1223) of the tetragonal structure didn't change with the partial substitution of Zn ions in Ca site, lattice parameters c, c/a are established to vary Zn-substitution. The surface morphology has been studied by using atomic force microscopes (AFM), showed that all specimens have good crystalline and homogeneous surface. Also give a best nano size value is 83.29 nm at y=0.05. Four probe technique is used to measure Tc. The highest Tc and oxygen content were found to be Tc=132 K for y=0.05 after that, Tc decreases from 132 K to 115 K with increasing Zn. In addition, dielectric properties (dielectric constant, dielectric loss factor, and the alternating electrical conductivity) are characterized directly by relating with Zn concentration.

  9. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  10. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R. Raj [Department of ECE, Gojan School of Business and Technology, Chennai (India); Rajendran, K. [Department of Electronics, Government Arts College for Women, Ramanathapuram, TN (India); Sambath, K. [Department of ECS, Sri Krishna Arts and Science College, Coimbatore, TN (India)

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  11. Effective degradation and mineralization of real textile effluent by sonolysis, photocatalysis, and sonophotocatalysis using ZnO nano catalyst

    Directory of Open Access Journals (Sweden)

    Gunvant Sonwane

    2016-07-01

    Full Text Available In this study, the ultrasonic, photocatalytic and sonophotocatalytic degradation of organics in textile industrial effluent was studied using ZnO nano catalyst, ZnO nano catalyst was synthesized by using sol-gel method. The structure and morphology of the catalyst were investigated using scanning election microscopy (SEM, electron dispersive X-ray spectroscopy (EDS and X-ray diffraction pattern (XRD. The percentage removal of textile influents was determined by using TOC.  The effects of various operational parameters such as, contact time, catalyst loading, and solution pH on the degradation efficiency were studied. The increase in degradation efficiency with the increase in catalyst loading, contact time. Neutral pH is suitable for degradation of textile industrial effluents, and comparative study shows that the sonophotocatalyst is effective for degradation technique than ultrasonic and photocatalytic degradation of textile industrial effluent.

  12. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  13. High-throughput continuous hydrothermal flow synthesis of Zn-Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice.

    Science.gov (United States)

    Kellici, Suela; Gong, Kenan; Lin, Tian; Brown, Sonal; Clark, Robin J H; Vickers, Martin; Cockcroft, Jeremy K; Middelkoop, Vesna; Barnes, Paul; Perkins, James M; Tighe, Christopher J; Darr, Jawwad A

    2010-09-28

    High-throughput continuous hydrothermal flow synthesis has been used as a rapid and efficient synthetic route to produce a range of crystalline nanopowders in the Ce-Zn oxide binary system. High-resolution powder X-ray diffraction data were obtained for both as-prepared and heat-treated (850 degrees C for 10 h in air) samples using the new robotic beamline I11, located at Diamond Light Source. The influence of the sample composition on the crystal structure and on the optical and physical properties was studied. All the nanomaterials were characterized using Raman spectroscopy, UV-visible spectrophotometry, Brunauer-Emmett-Teller surface area and elemental analysis (via energy-dispersive X-ray spectroscopy). Initially, for 'as-prepared' Ce(1-x)Zn(x)O(y), a phase-pure cerium oxide (fluorite) structure was obtained for nominal values of x=0.1 and 0.2. Biphasic mixtures were obtained for nominal values of x in the range of 0.3-0.9 (inclusive). High-resolution transmission electron microscopy images revealed that the phase-pure nano-CeO(2) (x=0) consisted of ca 3.7 nm well-defined nanoparticles. The nanomaterials produced herein generally had high surface areas (greater than 150 m(2) g(-1)) and possessed combinations of particle properties (e.g. bandgap, crystallinity, size, etc.) that were unobtainable or difficult to achieve by other more conventional synthetic methods.

  14. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  15. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  16. The effect of precursor powder size on the microstructure and integranular properties of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    I. Abdolhosseini

    2006-09-01

    Full Text Available  We have studied the effect of precursor powder size on the microstructure and intergranular behavior of polycrystalline Bi2223 superconductors using the XRD, SEM, electrical resistivity and AC susceptibility techniques. Polycrystalline Bi2223 superconductors were prepared from the powders with different milling times. The XRD results show that by decreasing the precursor powder size the Bi2223 phase fraction increases. It was found that the grain size and grain connectivity improved by decreasing the precursor powder size. Analysis of the temperature dependence of the AC susceptibility near the transition temperature (Tc has been done employing Beans critical state model. The observed variation of intergranular critical current densities (Jc with temperature indicates that the decreasing of precursor powder size in the Bi2223 system cases an increase in the intergranular critical current density.

  17. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  18. Influence of Homogenization and Micro/Nano Source of Starting Powders on Format Ion of the Single YAP Phase

    Directory of Open Access Journals (Sweden)

    Michalik D.

    2016-12-01

    Full Text Available Manufacturing high purity polycrystalline YAlO3 (YAP ceramics could replace monocrystalline YAP thus recently it is an interesting task for low cost producers of scintillators. The paper presents influence of different source of initial oxide powders (micro/nano powders of Y2O3 and Al2O3 and the method of their homogenization on the formation of a YAP phase. The solid state reaction method was used to prepare YAP powder or ceramic pellets. After preheating, all samples in the form of powders and pellets were heat-treated in the temperature range of 1050-1650 °C. DTA method was applied for examination of the phase crystallization in the tested system. X-ray diffraction method (XRD was used for characterization of the phase composition. X-ray microanalysis (EDS was used to control homogeneity in the small areas. Morphology of the resultant samples are presented on SEM pictures. The results show a significant influence of the starting powders on the homogeneity, purity and temperature of formation of the main phase.

  19. Defects and the optical absorption in nanocrystalline ZnO

    International Nuclear Information System (INIS)

    Dutta, Sreetama; Chattopadhyay, Sanjay; Sutradhar, Manas; Sarkar, Anindya; Chakrabarti, Mahuya; Sanyal, Dirtha; Jana, Debnarayan

    2007-01-01

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO

  20. Defects and the optical absorption in nanocrystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sreetama [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chattopadhyay, Sanjay [Department of Physics, Taki Government College, Taki 743429 (India); Sutradhar, Manas [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sarkar, Anindya [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Chakrabarti, Mahuya [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Jana, Debnarayan [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India)

    2007-06-13

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO.