WorldWideScience

Sample records for nano-sized gold particle

  1. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  2. Photopyroelectric Techniques for thermo-optical characterization of gold nano-particles

    International Nuclear Information System (INIS)

    Chávez-Sandoval, B E; Balderas-López, J A; Padilla-Bernal, G; Moreno-Rivera, M A; Franco-Hernández, M O; Martínez-Jiménez, A; García-Franco, F

    2015-01-01

    Since the first methodology, proposed by Turkevich, to produce gold nanoparticles (AuNPs), improvements have been made as to allow better controllability in their size and shape. These two parameters play important role for application of gold nanoparticles since they determine their optical and thermal properties. Two photopyroelectric techniques for the measurement of the thermal diffusivity and the optical absorption coefficient for nano-particles are introduced. These thermo-physical properties were measured for the colloidal systems at different nano-particle's sizes and, for optical properties, at three different wavelengths (405 nm, 488 nm and 532 nm). No significant difference, on thermal properties, was found in the range of nano-particles' sizes studied in this work; in opposition optical properties shown more sensitive to this parameter

  3. The anomalous physical and chemical properties of gold nano-particles

    International Nuclear Information System (INIS)

    Cortie, M.B.

    2003-01-01

    Full text: Although gold is the most inert of all metallic elements, it has been discovered during the last two decades that it has interesting properties as a nano-particle. Some of the properties of interest include its activity as a heterogeneous catalyst, particularly at low temperatures, its optical properties, and the tendency of its nano-particles to adopt non-crystallographic structures. There are a number of curious aspects to catalysis by gold that are attracting academic and industrial investigation and much is still not understood about the mechanism by which they work. For example, apparently similar preparation techniques result in activities of hugely varying magnitude. In the present talk I assess the what is known about gold nano-particles, with particular reference to their physical, electronic, crystallographic and catalytic properties. It is shown that there is much evidence in favour of the belief that it is the unique electronic structure of these particles that imbues them with catalytic activity. If this is true then tighter control of the electronic structure would allow for the design of more specific and more active catalysts

  4. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military c...

  6. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  7. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  8. Internal distribution of micro- / nano-sized inorganic particles and their cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Kida, Ikuhiro; Akasaka, Tsukasa; Uo, Motohiro; Yawaka, Yasutaka; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Mutoh, Mami [School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Morita, Manabu [Department of Oral Health, Okayama University Graduate School of Medicine, Dentisity and Pharmaceutical Science, Okayama 700-8525 (Japan); Haneda, Koichi [Department of Information Technology and Electronics, Senshu University of Ishinomaki, Ishinomaki 986-8580 (Japan); Yonezawa, Tetsu, E-mail: sabe@den.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-29

    Nano-sized materials have received much attention lately, both in terms of their multiple applications and their biocompatibility. From both viewpoints, understanding the biodistribution of administered nano-materials is very important. In this study, we succeeded in visualizing the biodistribution of administered nano-materials using a scanning X-ray analytical microscope and magnetic resonance imaging method. Quantitative observation was carried out by inductively coupled plasma - atomic emission spectroscopy. We observed that the administered nano-particles accumulated in the liver, lung and spleen of mice. To estimate their cytocompatibility, the nano-particles were exposed to human liver cells. The results suggested that the micro-/ nano- particles have good cytocompatibility, except for copper oxide nano-particles.

  9. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  10. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  11. Particle size and kind of mica in synthesis of nontoxic bronze and gold pearlescent pigments based on nanoencapsulated hematite

    Directory of Open Access Journals (Sweden)

    Maryam Hosseini-Zori

    2015-12-01

    Full Text Available Nano-encapsulated iron oxide in Zirconium oxide-coated mica pigments are thermally stable,innocuous to human health, non-combustible, and they do not conduct electricity. They could beapplied in several industries such as thermoplastics, cosmetics, food packaging, children toys, paints,automobiles coating, security purposes, and banknotes. Nowadays, they are highly desirable inceramic decoration. In the present study, intensively dark gold to bronze colored mica clay pigments,which were based on mica flakes covered with a layer of nano-iron oxide-Zirconium oxide particles,were prepared by homogeneous precipitation of iron nitrate and Zirconium chloride ammonia in thepresence of mica flakes in two kinds of ore clay-based phlogopite and muscovite minerals. The finalcolor was obtained by thermal annealing of precipitates at a temperature of 800◦C. The pigments werecharacterized by X-Ray Diffraction, Particle size analysis, Scanning electron microscopy,Transmission electron microscopy, X-Ray fluorescence, and Simultaneous thermal analysis. Resultsindicate that nano-encapsulated iron oxide in zirconia particles have been formed on mica flakes andkinds of clay-mica can be related to obtained shade from dark gold to bronze pearl. Higher particlesize of mica flakes about phlogopite type of mica introduced pearl effects with higher L* changes indifferent angles. Muscovite performed higher hue and better pearl effect than phlogopite.

  12. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  13. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  14. Stacked dipole line source excitation of active nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    This work investigates electromagnetic properties of cylindrical active coated nano-particles excited by a stac- ked electric dipole line source. The nano-particles consist of a silica nano-core, layered by silver, gold, or copper nano-shell. Attention is devoted to the influence of the source...... location and dipole orientation, the gain constant, and the nano-particle material composition on the electromagnetic field distributions and radiated powers. The results are contrasted to those for the magnetic line source illumination of the nano-particles....

  15. Synthesis of gold nano particles with enlargement size by gamma Co-60 irradiation and investigation of anti oxidation effect

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Gold nanoparticles (AuNPs) with size in the range of 10-53 nm were synthesized by gamma Co-60 irradiation using water-soluble chitosan (WSC) as stabilizer and size enlargement by seed approach. Absorption wavelength (λ max ) was measured by UV-Vis spectroscopy and particle size was determined from TEM images. Results showed that value of λ max increased from 523 nm (seed particles) to 525, 537 and 549 nm and the size of AuNPs increased from 10 nm (seed particles) to 20, 38 and 53 nm, respectively, for concentration ratio of Au 3+ /Au 0 (seed) of 2.5, 5 and 10. Antioxidant effect of AuNPs with size of 10, 20, 38 and 53 nm was investigated using free radical 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS .+ ). Results indicated that the smaller the particle size was (10 nm) the stronger the antioxidant effect attained. Thus, AuNPs/WSC synthesis by gamma Co-60 irradiation are promising for applications as antioxidants in cosmetics and in other fields as well. (author)

  16. Dimerization of eosin on nanostructured gold surfaces: Size regime dependence of the small metallic particles

    Science.gov (United States)

    Ghosh, Sujit Kumar; Pal, Anjali; Nath, Sudip; Kundu, Subrata; Panigrahi, Sudipa; Pal, Tarasankar

    2005-08-01

    Gold nanoparticles of variable sizes have been exploited to study their influence on the absorption and emission spectral characteristics of eosin, a fluorescent dye. It has been found that smaller particles of gold stimulate J-aggregation of eosin on the surface of metal particles whereas larger particles cannot induce any kind of aggregation amongst the dye molecules. The size regime dependence of the gold nanoparticles has been attributed to the intercluster interactions induced by the dye molecules for smaller gold nanoparticles and consequently, close packing of the dye molecules around the gold surface engenders intermolecular interactions amongst the dye molecules leading to dimerization.

  17. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration

    NARCIS (Netherlands)

    De Jong, Wim H.; Hagens, Werner I.; Krystek, Petra; Burger, Marina C.; Sips, Adriënne J A M; Geertsma, Robert E.

    2008-01-01

    A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the

  18. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    International Nuclear Information System (INIS)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng; Wei, Shizhong; Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang

    2016-01-01

    The nano-sized ZrO 2 -reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO 2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO 2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO 2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  19. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film

    International Nuclear Information System (INIS)

    Min Zhirong; Ming Qiuzhang; Hai Chunliang; Han Minzeng

    2003-01-01

    Preparation of nano-CdS particles with surface thiol modification by microemulsion method and their influences on the particle size distribution in highly filled polystyrene-based composites were studied. The modified nano-CdS was characterized by X-ray photoelectron spectroscopy (XPS), light absorption and emission measurements to reveal the morphologies of the surface modifier, which are consistent with the surface molecules packing calculation. The morphologies of the surface modifier exerted a great influence not only on the optical performance of the particles themselves, but also on the size distribution of the particle in polystyrene matrix. A monolayer coverage with tightly packed thiol molecules was believed to be most effective in promoting a uniform particle size distribution and eliminating the surface defects that cause radiationless recombination. Control of the particles size distribution in polystyrene can be attained by adjusting surface coverage status of the thiol molecules based on the strong interaction between the surface modifier and the matrix

  20. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    International Nuclear Information System (INIS)

    Binupriya, A.R.; Sathishkumar, M.; Vijayaraghavan, K.; Yun, S.-I.

    2010-01-01

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  1. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    Energy Technology Data Exchange (ETDEWEB)

    Binupriya, A.R. [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Sathishkumar, M., E-mail: cvemuthu@nus.edu.sg [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Yun, S.-I., E-mail: siyun@chonbuk.ac.kr [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2010-05-15

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  2. Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weizong; Li, Lulu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Valdez, James A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Saber, Mostafa [Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201 (United States); Zhu, Yuntian, E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-02-15

    Radiation resistance of Fe–14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700–1500 He bubbles at the depth of about 150–700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5–4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  3. Application of nano- and micro-sized particles of cattle manure on soybean growth

    Directory of Open Access Journals (Sweden)

    Hesam Aryanpour

    2017-10-01

    Full Text Available Background: Cattle manure (CM is the most common organic fertilizer used by farmers. However, its usually slow decomposition leads to the use of chemical fertilizers. Therefore, experiments on nano- and micro-sized particles of CM were conducted to evaluate the possibility of accelerating its decomposition in soil. Methods: The effects of a sole application of CM in different sizes (nano-, micro-, and natural-sized particles in two ranges (5 and 20 Mg ha-1 and the combined application of CM and chemical fertilizers on the plant growth characteristics of soybean (cv. JS 335 were studied at Gorgan University. Nano- and micro-sized particles of CM were produced using a ball mill, and their half-life in soil was measured. Soil properties were measured before planting. Grain yield, 1000 grain weight, number of pods per plant, biological yield, plant height, and nutrient contents in plant shoot material were measured. Results: The results showed that the use of nano-sized particles of CM (nCM caused a significant increase in yield and yield components. Increasing the amount of crushing resulted in an increased rate of CM mineralization and in proper nitration before the formation of nodes in the roots. A significantly higher yield was obtained with nCM than with chemical fertilizer, and due to the nCM particles’ half-life in soil, the plants were allowed to absorb nutrients for a longer time period. Conclusion: The nCM has two major advantages over chemical fertilizers in that it does not release nutrients as quickly as chemical fertilizers and the loss of nutrients from soil is low.

  4. Effect of nano-TiO{sub 2} particles size on the corrosion resistance of alkyd coating

    Energy Technology Data Exchange (ETDEWEB)

    Deyab, M.A., E-mail: hamadadeiab@yahoo.com; Keera, S.T.

    2014-08-01

    The coating system containing various sizes (∼10, 50, 100, 150 nm) of nano-TiO{sub 2} were prepared and investigated for corrosion protection of carbon steel in 1.0 M H{sub 2}SO{sub 4} using polarization, EIS and transmission electron microscopy (TEM) techniques. It was found that nano-TiO{sub 2} particles improved the corrosion resistance of alkyd coatings. The corrosion resistance occurs via physical adhesion on the metal surface. O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size. The inhibition efficiency was found to increase with decreasing the size of nano-TiO{sub 2} and with decreasing the temperature. - Highlights: • Nano-TiO{sub 2} coating were prepared and used for corrosion protection of C-steel. • Nano-TiO{sub 2} particles in coating are effective to improve the corrosion resistance. • Nano-TiO{sub 2} coating inhibit both anodic and cathodic reactions. • Corrosion inhibition efficiency increases with decrease in the size of nano-TiO{sub 2}. • O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size.

  5. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng [Xi' an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi' an, Shaanxi Province (China); Wei, Shizhong [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China); Henan University of Science and Technology, Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Luoyang (China); Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China)

    2016-03-15

    The nano-sized ZrO{sub 2}-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO{sub 2} particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO{sub 2} particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO{sub 2} particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  6. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.

    Science.gov (United States)

    Alkilany, Alaaldin M; Lohse, Samuel E; Murphy, Catherine J

    2013-03-19

    Since the late 1980s, researchers have prepared inorganic nanoparticles of many types--including elemental metals, metal oxides, metal sulfides, metal selenides, and metal tellurides--with excellent control over size and shape. Originally many researchers were primarily interested in exploring the quantum size effects predicted for such materials. Applications of inorganic nanomaterials initially centered on physics, optics, and engineering but have expanded to include biology. Many current nanomaterials can serve as biochemical sensors, contrast agents in cellular or tissue imaging, drug delivery vehicles, or even as therapeutics. In this Account we emphasize that the understanding of how nanomaterials will function in a biological system relies on the knowledge of the interface between biological systems and nanomaterials, the nano-bio interface. Gold nanoparticles can serve as excellent standards to understand more general features of the nano-bio interface because of its many advantages over other inorganic materials. The bulk material is chemically inert, and well-established synthetic methods allow researchers to control its size, shape, and surface chemistry. Gold's background concentration in biological systems is low, which makes it relatively easy to measure it at the part-per-billion level or lower in water. In addition, the large electron density of gold enables relatively simple electron microscopic experiments to localize it within thin sections of cells or tissue. Finally, gold's brilliant optical properties at the nanoscale are tunable with size, shape, and aggregation state and enable many of the promising chemical sensing, imaging, and therapeutic applications. Basic experiments with gold nanoparticles and cells include measuring the toxicity of the particles to cells in in vitro experiments. The species other than gold in the nanoparticle solution can be responsible for the apparent toxicity at a particular dose. Once the identity of the toxic

  7. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, I-Lun; Huang, Yuh-Jeen, E-mail: yjhuang@mx.nthu.edu.tw [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences (China)

    2013-09-15

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum-in this case, fetal bovine serum-in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 {mu}m) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn{sup 2+} release contributes to cytotoxicity. Although more extracellular Zn{sup 2+} release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  8. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dalmora, Adilson C. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Institute for Environmental Assessment and Water Studies (IDÆA), Spanish National Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona (Spain); Ramos, Claudete G.; Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Teixeira, Elba C. [Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS (Brazil); Kautzmann, Rubens M.; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500. Bairro Agronomia. CEP: 91501-970 Porto Alegre, RS (Brazil); and others

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO{sub 2}, Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3,} with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle

  9. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    International Nuclear Information System (INIS)

    Dalmora, Adilson C.; Ramos, Claudete G.; Oliveira, Marcos L.S.; Teixeira, Elba C.; Kautzmann, Rubens M.; Taffarel, Silvio R.; Brum, Irineu A.S. de

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO 2 , Al 2 O 3 , and Fe 2 O 3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical

  10. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  11. Determination of concentration levels of arsenic, gold and antimony in particle-size fractions of gold ore using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Nyarku, M.

    2009-02-01

    Instrumental Neutron Activation Analysis (INAA) has been used to quantify the concentrations of arsenic, gold and antimony in particle-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd, was first fractionated into fourteen (14) particle-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 microns and grains >2000 microns were not considered for analysis. Results of the sieving were analysed with easysieve software. The < 36 microns sub fraction was found to be the optimum, hosting bulk of all three elements. For arsenic, the element was found to be highly concentrated in < 36 to +100 microns size fractions and erratically distributed from +150 microns fraction and above. For gold, in exception of the sub fraction <36 which had exceptionally high concentration, the element is distributed in all the size fractions but slightly 'plays out' in the +150 to +400 microns fractions. Antimony occurrence in the sample was relatively high in <36 microns size fraction followed by 600 - 800, 800 - 1000, 400 - 600 and 36 - 40 microns size fractions in that order. Gold content in the sample was far higher than that of arsenic and antimony. Gold concentration in the composite sample was in the range 564 - 8420 ppm. Arsenic levels were higher as compared to antimony. The range of arsenic concentration in the composite sample was 14.33 - 186.92 ppm. Antimony concentration was in the range 1.09 - 9.48 ppm. (au)

  12. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing; Feng Weiyue, E-mail: fengwy@mail.ihep.ac.cn; Zhu Motao; Wang Yun; Wang Meng [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Gu Yiqun [Maternity Hospital of Haidian District (China); Ouyang Hong; Wang Huajian; Li Ming; Zhao Yuliang, E-mail: zhaoyuliang@mail.ihep.ac.cn; Chai Zhifang [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Wang Haifang [Peking University, College of Chemistry and Molecular Engineering (China)

    2009-01-15

    Olfactory tract has been demonstrated to be an important portal for inhaled solid nanoparticle transportation into the central nervous system (CNS). We have previously demonstrated that intranasally instilled Fe{sub 2}O{sub 3} nanoparticles could transport into the CNS via olfactory pathway. In this study, we investigated the neurotoxicity and size effect of repeatedly low-dose (130 {mu}g) intranasal exposure of nano- and submicron-sized Fe{sub 2}O{sub 3} particles (21 nm and 280 nm) to mice. The biomarkers of oxidative stress, activity of nitric oxide synthases and release of monoamine neurotransmitter in the brain were studied. Our results showed that significant oxidative stress was induced by the two sizes of Fe{sub 2}O{sub 3} particles. The activities of GSH-Px, Cu,Zn-SOD, and cNOS significantly elevated and the total GSH and GSH/GSSG ratio significantly decreased in the olfactory bulb and hippocampus after the nano- and submicron-sized Fe{sub 2}O{sub 3} particle treatment (p < 0.05). The nano-sized Fe{sub 2}O{sub 3} generally induced greater alteration and more significant dose-effect response than the submicron-sized particle did. Some slight perturbation of monoamine neurotransmitters were found in the hippocampus after exposure to the two sizes of Fe{sub 2}O{sub 3} particle. The TEM image showed that some ultrastructural alterations in nerve cells, including neurodendron degeneration, membranous structure disruption and lysosome increase in the olfactory bulb, slight dilation in the rough endoplasmic reticulum and lysosome increase in the hippocampus were induced by the nano-sized Fe{sub 2}O{sub 3} treatment. In contrast, in the submicron-sized Fe{sub 2}O{sub 3} treated mice, slightly swollen mitochondria and some vacuoles were observed in the olfactory bulb and hippocampus, respectively. These results indicate that intranasal exposure of Fe{sub 2}O{sub 3} nanoparticles could induce more severe oxidative stress and nerve cell damage in the brain than the

  13. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  14. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    Science.gov (United States)

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  15. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent

    International Nuclear Information System (INIS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2015-01-01

    Highlights: • Submicron-sized spherical particles of gold were prepared using laser irradiation for the source gold nanoparticles stabilized by NaCl. • The source gold nanoparticles agglomeration was controlled both by the NaCl concentration of and by laser irradiation. • The formation process and the laser-fluence dependence of the particle size of gold nanoparticles in NaCl solutions differs from those in citrate solutions. • We revealed that properties of ligands are significantly important to prepare submicron-sized spherical particles and to control their size. - Abstract: Laser-induced melting in liquids (LIML) was applied to prepare spherical submicron-sized particles of gold (AuSMPs) from gold nanoparticles (AuNPs) stabilized using NaCl. Because undesirable byproducts, which might be generated when organic reagents such as citrate are used as the stabilizing reagent, are not generated from NaCl by laser irradiation, AuSMPs fabricated from AuNPs stabilized by NaCl will be low toxic. The AuSMPs were obtained by laser irradiation of the source AuNPs in NaCl solutions stabilized by NaCl at the proper concentration. Similar to the preparation of AuSMPs from AuNPs stabilized by citrate, the agglomeration of the source AuNPs, which is necessary to obtain AuSMPs, was controlled both by the NaCl concentration and by laser irradiation. However, the formation process and the laser-fluence dependence of the particle size of AuSMPs differed for various NaCl solutions and citrate solutions

  16. Illumination wavelength and time dependent nano gold photo-deposition and CO oxidation

    Directory of Open Access Journals (Sweden)

    Siewhui Chong

    Full Text Available In this study, nano gold (Au was deposited on titanium dioxide (TiO2 of different morphologies and crystallinities by photo-deposition method under LED irradiation with various wavelengths and irradiation times. The reactivity of carbon monoxide (CO oxidation of the as-prepared catalysts was examined and correlated with the characteristics of TiO2 support and gold particles. Characterization and activity tests showed that the effective illumination wavelength of photo-deposition is strongly determined by the band-gap of TiO2. Au/Cubic-TiO2 (450 nm, 5 min yielded comparatively highest CO conversion of 71%, followed by Au/P25 (375 nm, 1 min and Au/ST21 (340 nm, 1 min. When the photon energy of the LED is lower than the band-gap of TiO2, CO conversion rate increases with the irradiation time due to the decrease in gold particle size which could possibly due to the lower speed of photo-deposition compared to that of concentration diffusion. Keywords: Gold, Catalyst, TiO2, Photodeposition, Carbon monoxide, Oxidation

  17. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  18. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  19. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  20. Nano sized Particles of Silica and Its Derivatives for Applications in Various Branches of Food and Nutrition Sectors

    International Nuclear Information System (INIS)

    Kasaai, M. R.

    2015-01-01

    Nano sized particles of silica and its derivatives have been identified as versatile for a broad range of science, technology, and engineering applications. In this paper, an effort has been made to provide a short review from the available literature information on their applications in various branches of food and nutrition sectors. The information provided in this paper describes various parameters affecting their performances and efficiencies. The properties and applications of nano silica and its derivatives have been compared with micro silica and bulk-silica for their performances. The use of nano sized particles of silica and its derivatives provides a number of advantages. Their efficiencies and performances are significantly higher than those of the traditional ones

  1. Validation of a particle tracking analysis method for the size determination of nano- and microparticles

    Science.gov (United States)

    Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert

    2017-08-01

    Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

  2. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  5. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  6. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles

    Directory of Open Access Journals (Sweden)

    Tatiana Borisova

    2018-06-01

    Full Text Available Nerve cells take a special place among other cells in organisms because of their unique function mechanism. The plasma membrane of nerve cells from the one hand performs a classical barrier function, thereby being foremost targeted during contact with micro- and nano-sized particles, and from the other hand it is very intensively involved in nerve signal transmission, i.e., depolarization-induced calcium-dependent compound exocytosis realized via vesicle fusion following by their retrieval and calcium-independent permanent neurotransmitter turnover via plasma membrane neurotransmitter transporters that utilize Na+/K+ electrochemical gradient as a driving force. Worldwide traveling air pollution particulate matter is now considered as a possible trigger factor for the development of a variety of neuropathologies. Micro- and nano-sized particles can reach the central nervous system during inhalation avoiding the blood–brain barrier, thereby making synaptic neurotransmission extremely sensitive to their influence. Neurosafety of environmental, engineered and planetary particles is difficult to predict because they possess other features as compared to bulk materials from which the particles are composed of. The capability of the particles to absorb heavy metals and organic neurotoxic molecules from the environment, and moreover, spontaneously interact with proteins and lipids in organisms and form biomolecular corona can considerably change the particles‘ features. The absorption capability occasionally makes them worldwide traveling particulate carriers for delivery of environmental neurotoxic compounds to the brain. Discrepancy of the experimental data on neurotoxicity assessment of micro- and nano-sized particles can be associated with a variability of systems, in which neurotoxicity was analyzed and where protein components of the incubation media forming particle biocorona can significantly distort and even eliminate factual particle

  7. Study on Sumbawa gold ore liberation using rod mill: effect of rod-number and rotational speed on particle size distribution

    Science.gov (United States)

    Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.

    2018-01-01

    Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.

  8. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  9. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  10. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  11. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  12. Nano-pyramid arrays for nano-particle trapping

    NARCIS (Netherlands)

    Sun, Xingwu; Veltkamp, Henk-Willem; Berenschot, Johan W.; Gardeniers, Johannes G.E.; Tas, Niels Roelof

    2016-01-01

    Abstract In this paper we present the drastic miniaturization of nano-wire pyramids fabricated by corner lithography. A particle trapping device was fabricated in a well-defined and symmetrical array. The entrance and exit hole-size can be tuned by adjusting fabrication parameters. We describe here

  13. Making PMMA, PMA, PVAc and PSt nano particles using radiation

    International Nuclear Information System (INIS)

    Hidi, P.; Napper, D.H.; Sangster, D.F.

    2000-01-01

    Full text: During the last decade considerable research effort has been directed to making very small (10-50 nm diam.) nano size polymer particles. Most of the techniques described used more than one surfactant at high concentrations and resulted in relatively low polymer concentration. We have developed methods to make nano size polymer particles from methyl methacrylate (MMA), methyl acrylate (MA), vinyl acetat (Vac) and styrene (St) with a single anionic surfactant and gamma radiation. We succeeded in making nano particles in up to 15% concentration and with much higher polymer/ surfactant ratio than the earlier methods. With the radiation technique we can obtain high yield of polymer and can control the particle size of the polymer in the 2 S 2 0 8 ) instead of gamma irradiation. At present we prefer gamma initiation, because we have much better control and reproducibility of the exothermic polymerisation reaction, hence the critical parameters can be evaluated more accurately. We have started to use the different nano particles prepared for adsorption studies, as seeds for polymerisation and for making transparent gels with nano structure. We are also looking for other applications of the nano particles. It should be noted that the surface area of 1 gram of 20 nm diameter spheres is 300m 2

  14. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...

  15. Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Jang J.G.

    2017-06-01

    Full Text Available Rapid synthesis of gold nanoparticles (AuNPs by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonylimide ([EMIM]TFSI with gold trichloride (AuCl3. To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM, energy-dispersive spectroscopy (EDS, and transmission electron microscopy (TEM. The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.

  16. Improvement of Gold Leaching from a Refractory Gold Concentrate Calcine by Separate Pretreatment of Coarse and Fine Size Fractions

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-05-01

    Full Text Available A total gold extraction of 70.2% could only be reached via direct cyanidation from a refractory As-, S- and C-bearing gold concentrate calcine, and the gold extraction varied noticeably with different size fractions. The reasons for unsatisfactory gold extraction from the calcine were studied through analyses of chemical composition, chemical phase and SEM-EDS of different sizes of particles. It was found that a significant segregation of compositions occurred during the grinding of gold ore before flotation. As a result, for the calcine obtained after oxidative roasting, the encapsulation of gold by iron oxides was easily engendered in finer particles, whilst in coarser particles the gold encapsulation by silicates was inclined to occur likely due to melted silicates blocking the porosity of particles. The improvement of gold leaching from different size fractions was further investigated through pretreatments with alkali washing, acid pickling or sulfuric acid curing-water leaching. Finally, a novel process was recommended and the total gold extraction from the calcine could be increased substantially to 93.6% by the purposeful pretreatment with alkali washing for the relatively coarse size fraction (+37 μm and sulfuric acid curing–water leaching for the fine size fraction (−37 μm.

  17. Phospholipid-assisted synthesis of size-controlled gold nanoparticles

    International Nuclear Information System (INIS)

    He Peng; Zhu Xinyuan

    2007-01-01

    Morphology and size control of gold nanoparticles (AuNPs) by phospholipids (PLs) has been reported. It was found that gold entities could form nanostructures with different sizes controlled by PLs in an aqueous solution. During the preparation of 1.5 nm gold seeds, AuNPs were obtained from the reduction of gold complex by sodium borohydride and capped by citrate for stabilization. With the different ratios between seed solution and growth solution, which was composed by gold complex and PLs, gold seeds grew into larger nanoparticles step by step until enough large size up to 30 nm. The main discovery of this work is that common biomolecules, such as PLs can be used to control nanoparticle size. This conclusion has been confirmed by transmission electron micrographs, particle size analysis, and UV-vis spectra

  18. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    Science.gov (United States)

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  19. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  20. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  1. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    Science.gov (United States)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  2. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries

    International Nuclear Information System (INIS)

    Schmuelling, Guido; Meyer, Hinrich-Wilhelm; Placke, Tobias; Winter, Martin; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen

    2014-01-01

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnO x and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry. (paper)

  3. Role of the anisotropy in the interactions between nano- and micro-sized particles

    OpenAIRE

    Rovigatti, Lorenzo

    2012-01-01

    The present Thesis focuses on the thermodynamic and dynamic behaviour of anisotropically interacting colloids by means of theoretical and numerical techniques. Colloidal suspensions, i.e. micro-- and nano--sized particles dispersed in a continuous phase, are a topic of great interest in several fields, including material science, soft matter and biophysics. Common in everyday life in the form of soap, milk, cream, etc., colloids have been used for decades as models for atomic and molecula...

  4. Ultrafast Dynamics of Metallo-Dielectric Core-Shell Particles

    NARCIS (Netherlands)

    Shan, X.

    2008-01-01

    Optical properties of metallic nano-structures have attracted a lot of attention in the past decades. In this thesis, we focus on nano-sized silica-core gold-shell particles, study the linear, nonlinear and acoustic vibrations of the particles. The linear optical properties in the visible range of

  5. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.

    2009-01-01

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  6. DNA damage due to perfluorooctane sulfonate based on nano-gold embedded in nano-porous poly-pyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Xu, Laihui; Kang, Tianfang; Cheng, Shuiyuan

    2013-11-01

    DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system.

  7. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  8. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    International Nuclear Information System (INIS)

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin

    2015-01-01

    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  9. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Science.gov (United States)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  10. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong, E-mail: cchen19@tigers.lsu.edu; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W. [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States); Gimble, Jeffrey M., E-mail: Jeffrey.Gimble@pbrc.edu [Tulane University School of Medicine, Center for Stem Cell Research & Regenerative Medicine (United States); Hayes, Daniel J., E-mail: danielhayes@lsu.edu [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States)

    2015-04-15

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell–particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  11. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study

    International Nuclear Information System (INIS)

    Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang

    2016-01-01

    Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy

  12. To see or not to see: Imaging surfactant coated nano-particles using HIM and SEM

    International Nuclear Information System (INIS)

    Hlawacek, Gregor; Ahmad, Imtiaz; Smithers, Mark A.; Kooij, E. Stefan

    2013-01-01

    Nano-particles are of great interest in fundamental and applied research. However, their accurate visualization is often difficult and the interpretation of the obtained images can be complicated. We present a comparative scanning electron microscopy and helium ion microscopy study of cetyltrimethylammonium-bromide (CTAB) coated gold nano-rods. Using both methods we show how the gold core as well as the surrounding thin CTAB shell can selectively be visualized. This allows for a quantitative determination of the dimensions of the gold core or the CTAB shell. The obtained CTAB shell thickness of 1.0 nm–1.5 nm is in excellent agreement with earlier results using more demanding and reciprocal space techniques. - Author-Highlights: • CTAB coated gold nano-rods were imaged using high resolution imaging tools. • Selective imaging of either the gold core or CTAB shell is possible with HIM and SEM. • CTAB shell thickness measured using HIM and SEM agrees well with literature values

  13. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  14. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    Science.gov (United States)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  15. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    Science.gov (United States)

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  17. Max–min Bin Packing Algorithm and its application in nano-particles filling

    International Nuclear Information System (INIS)

    Zhu, Dingju

    2016-01-01

    With regard to existing bin packing algorithms, higher packing efficiency often leads to lower packing speed while higher packing speed leads to lower packing efficiency. Packing speed and packing efficiency of existing bin packing algorithms including NFD, NF, FF, FFD, BF and BFD correlates negatively with each other, thus resulting in the failure of existing bin packing algorithms to satisfy the demand of nano-particles filling for both high speed and high efficiency. The paper provides a new bin packing algorithm, Max–min Bin Packing Algorithm (MM), which realizes both high packing speed and high packing efficiency. MM has the same packing speed as NFD (whose packing speed ranks no. 1 among existing bin packing algorithms); in case that the size repetition rate of objects to be packed is over 5, MM can realize almost the same packing efficiency as BFD (whose packing efficiency ranks No. 1 among existing bin packing algorithms), and in case that the size repetition rate of objects to be packed is over 500, MM can achieve exactly the same packing efficiency as BFD. With respect to application of nano-particles filling, the size repetition rate of nano particles to be packed is usually in thousands or ten thousands, far higher than 5 or 500. Consequently, in application of nano-particles filling, the packing efficiency of MM is exactly equal to that of BFD. Thus the irreconcilable conflict between packing speed and packing efficiency is successfully removed by MM, which leads to MM having better packing effect than any existing bin packing algorithm. In practice, there are few cases when the size repetition of objects to be packed is lower than 5. Therefore the MM is not necessarily limited to nano-particles filling, and can also be widely used in other applications besides nano-particles filling. Especially, MM has significant value in application of nano-particles filling such as nano printing and nano tooth filling.

  18. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  19. Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Ohsawa, Hiroki; Yamanaka, Akinori

    2011-01-01

    In this paper, a new fabrication method for an ordered nano-dot array is developed. Combination of coating, nano-plastic forming and annealing processes is studied to produce uniformly sized and ordered gold nano-dot array on a quartz glass substrate. The experimental results reveal that patterning of a groove grid on the gold-coated substrate with NPF is effective to obtain the ordered gold nano-dot array. In the proposed fabrication process, the size of the gold nano-dot can be controlled by adjusting the groove grid size. A minimum gold nano-dot array fabricated on a quartz-glass substrate was 93 nm in diameter and 100 nm in pitch. Furthermore, the mechanism of nano-dot array generation by the presented process is investigated. Using a theoretical model it is revealed that the proposed method is capable of fabrication of smaller nano-dots than 10 nm by controlling process conditions adequately.

  20. Effect of nano particle sizes on the third-order optical non-linearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics

    International Nuclear Information System (INIS)

    Badran, Hussain Ali; Ajeel, Khalid I.; Lazim, Haidar Gazy

    2016-01-01

    Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10"−"7 cm"2/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), or Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO_2 layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V_o_c, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO_2 sol–gel, were investigated at different particle sizes, using the z-scan technique.

  1. Effect of nano particle sizes on the third-order optical non-linearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Badran, Hussain Ali, E-mail: badran_hussein@yahoo.com [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Ajeel, Khalid I. [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Lazim, Haidar Gazy [Misan University, Basic Education College, Science Department, Misan (Iraq)

    2016-04-15

    Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10{sup −7} cm{sup 2}/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), or Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO{sub 2} layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V{sub oc}, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO{sub 2} sol–gel, were investigated at different particle sizes, using the z-scan technique.

  2. Study of preparation and survey of radioisotopes tracer applications of gold nanoparticles in the multi-phase industrial processes

    International Nuclear Information System (INIS)

    Huynh Thai Kim Ngan; Trinh Cong Son; Duong Thi Bich Chi; Tran Tri Hai; Nguyen Huu Quang; Bui Trong Duy; Le Trong Nghia; Ngo Duc Tin

    2014-01-01

    Gold nanoparticles (AuNPs) were prepared by Turkevich and Brust method. The labeled gold in liquids is the colloidal form with nano size particle of gold. This particles is of high dispersity in the liquid phase that makes them a good physical tracer. The stability and dissolve of AuNPs in solvents such as water, toluene are hereafter discussed. The size of AuNPs was determined through UV-Visible spectroscopy (UV-Vis) and transmission electron microscope (TEM). (author)

  3. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lu, Gui; Hu, Han; Sun, Ying; Duan, Yuanyuan

    2013-01-01

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger

  4. From Gold Nano-particles through Nano-wire to Gold Nano-layers on Substrate

    Czech Academy of Sciences Publication Activity Database

    Švorčík, V.; Kolská, Z.; Slepička, P.; Siegel, J.; Hnatowicz, Vladimír

    2010-01-01

    Roč. 2010, G (2010), s. 1-57. ISBN 978-1-61668-009-1 Institutional support: RVO:61389005 Keywords : thin films * Au nano layers * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism https://www.novapublishers.com/catalog/product_info.php?products_id=12909

  5. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Suraja, P V; Binitha, N N; Yaakob, Z; Silija, P P, E-mail: binithann@yahoo.co.in [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-02-15

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4{center_dot}3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  6. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  7. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, M., E-mail: msakthi81986@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu (India); Department of Chemistry, Ganadipathy Tulsi' s Jain Engineering College, Kaniyambadi, Vellore 632 102, Tamilnadu (India); Franklin, D.S., E-mail: loyolafrank@yahoo.co.in [Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, Tamilnadu (India); Sudarsan, S., E-mail: srsudarsan29@gmail.com [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Chitra, G., E-mail: chitramuralikrishnan@gmail.com [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Guhanathan, S., E-mail: sai_gugan@yahoo.com [PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore 632 002, Tamilnadu (India)

    2017-06-01

    The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.

  8. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels

    International Nuclear Information System (INIS)

    Sakthivel, M.; Franklin, D.S.; Sudarsan, S.; Chitra, G.; Guhanathan, S.

    2017-01-01

    The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.

  9. A comparative evaluation of drilling techniques for deposits containing free gold using radioactive gold particles as tracers

    International Nuclear Information System (INIS)

    Clarkson, R.

    1998-01-01

    In the summers of 1992 and 1994, the author designed and carried out a statistically valid research program using radioactivated gold particles as tracers (radiotracers). Two types of fully cased normal circulation (N / C) drills, two types of reverse circulation (R/C) drills and three solid auger drills were evaluated under a variety of field conditions. A frozen cylindrical core of compacted gravels containing four sizes ( 1.2, 0.60, 0.30 and 0.15 mm), (+l4,+28,+48and+100 mesh)of radiotracers was placed in 44 drill holes and the holes were re drilled. Scintillometers were used to track free gold losses due to spillage and blow-by around the collar (top) of the hole. Some gold particles were located in temporary traps in the drilling equipment and these particles would have contaminated subsequent samples (as carry-over). Several myths commonly attributed to particular drilling methods were dispelled. There was no significant difference between the recovery of the four sizes of gold particles with any of the drills tested. Observations and down-hole scintillometer records indicated that the free gold particles did not follow the bit down the hole and were either carried out of the hole or forced onto the sides of the hole at or above the depth at which the radioactive gold was positioned. A comparative evaluation of the results of these tests is presented

  10. Airflow structures and nano-particle deposition in a human upper airway model

    Science.gov (United States)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  11. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    Science.gov (United States)

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  12. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    Science.gov (United States)

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  13. Characteristic of Water Pervaporation Using Hydrophilic Composite Membrane Containing Functional Nano Sized NaA zeolites

    International Nuclear Information System (INIS)

    Oh, Duckkyu; Lee, Yongtaek

    2013-01-01

    The NaA zeolite particles were dispersed in a poly(vinyl alcohol) (PVA) matrix to prepare a composite membrane. The nano sized zeolite particles of NaA were synthesized in the laboratory and the mean size was approximately 60 nm. Pervaporation characteristics such as a permeation flux and a separation factor were investigated using the membrane as a function of the feed concentration from 0.01 to 0.05 mole fraction and the weight % of NaA particles between 0 wt% and 5 wt% in the membrane. Also, the micro sized particles of 5 mm were dispersed in the membrane for a comparison purpose. When the ethanol concentration in the feed solution was 0.01 mole fraction, the flux of water significantly increased from 600 g/m 2 /hr to 2000 g/m 2 /hr as the content of the nano NaA particles in the membrane increased from 0 wt% to 5 wt%, while the NaA particles improved the separation factor from 1.5 to 7.9. When the flux of water through the membrane containing nano sized particles was roughly 15% increased compared to the micro sized particles, whereas the separation factor of water was found to be approximately 5% increased. It can be said that the role of the nano sized NaA particles is quite important since both the flux and the separation factor are strongly affected

  14. Engineered nano particles: Nature, behavior, and effect on the environment.

    Science.gov (United States)

    Goswami, Linee; Kim, Ki-Hyun; Deep, Akash; Das, Pallabi; Bhattacharya, Satya Sundar; Kumar, Sandeep; Adelodun, Adedeji A

    2017-07-01

    Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-05-04

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiC x /Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiC x /Cu composite had higher ultimate compression strength (σ UCS ), yield strength (σ 0.2 ), and electric conductivity, compared with those of spherical-TiC x /Cu composite. The σ UCS , σ 0.2 , and electrical conductivity of cubic-TiC x /Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiC x /Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiC x /Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiC x /Cu composite with 46 nm in size. The σ UCS , σ 0.2 , and electrical conductivity of spherical-TiC x /Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiC x /Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiC x particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiC x particles with small size led to the compression strength reduction of the composites.

  16. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  17. Size fractional gold assaying of gold bearing rocks from the Amansie West District of Ghana by instrumental neutron activation: implication for gold extraction process by small-scale miners. Technical report for 2004/2005

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D. K.; Adomako, D.

    2005-01-01

    This paper examines the possibility of improving the extraction process of gold from gold bearing rocks by small-scale gold miners in Ghana. The investigation involved crushing of 25 hard rock gold ore samples with a total weight of 7,126.98g to fine particles to form a composite sample and screening at a range of grind sizes. This was followed by the determination of gold distribution as a function of 'particle size' in the composite sample using INAA. The following concentrations of gold for the corresponding particle sizes are reported: 63-125 μm, 161±0.75 mg/kg; Sub 63 μm, 16.4 ± 0.17 mg/kg; 250-355 μm, 4.66 ± 0. 07; 355-425μm, 1.55 ± 0.06 mg/kg; 1000-2000 μm, 1.27±005 mg/kg; 125-250 μm, 0.53 ± 0.03 mg/kg; 425-1000 μm, 0.180 ± 0.008 mg/kg. An estimate for gold in the composite sample based on particle size yielded an average value of 3.80 mg/kg. (au)

  18. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  19. Electrochemical magneto-immunosensing of Salmonella based on nano and micro-sized magnetic particles

    International Nuclear Information System (INIS)

    Brandão, D; Liébana, S; Alegret, S; Pividori, M I; Campoy, S; Cortés, P

    2013-01-01

    A very simple and rapid method for the detection of S. enterica is reported. In this approach, the bacteria were captured and preconcentrated with magnetic particles through an immunological reaction. A second polyclonal antibody labeled with peroxidase was used for the electrochemical immunosensing based on a magneto-electrode. Different nano and micro-sized magnetic particles were evaluated in this approach. The 'IMS/m-GEC electrochemical immunosensing' system shows a limit of detection of 5×10 4 and 1×10 4 CFU mL −1 in BHI culturing media when micro and nanoparticles are used respectively. These LOD were achieved in a total assay time of 1 h without any previous culturing preenrichment step. Moreover, this system was able to clearly distinguish between food pathogenic bacteria such as S. enterica and E. coli. The features of this approach were discussed and compared with conventional culture methods.

  20. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    such as pH, Total Suspended Solid(TSS), turbidity, and electrical conductivity.The five sites where stormwater was sampled from used two different methods of stormwater treatment: settling and filtration, and four different treatment techniques: detention ponds, stormwater pond, disc filter and combined...... sedimentation tanks. From all sites, inlet and outlet stormwater were collected,and pollutant concentrations were quantified as well as the removal efficiencies calculated. The colloidal and nano-sized particle-enhanced transportation of pollutants was also scrutinised in the stormwater.The μm-range PSD...

  1. Visual Observation of Bubble Departure Characteristics in the Nano-particle Coated Heating Surface

    International Nuclear Information System (INIS)

    Han, Won Soek; Yoo, Shin; Lee, Jae Young

    2010-01-01

    Although the great enhancement of the thermal conductivity of the nanofluids, the fluid mixed with small amount of the nano meter sized particles, has been known, many experimental data of the boiling heat transfer reported degraded heat transfer rate than the fresh fluid. However, the great enhancement of the critical heat flux in nanofluids has been reported by many investigators. Due to the opaque scattering of the nano particles in nano fluids, direct observation of the bubble dynamics in the boiling process has not been made. However, it has been known that the boiling heat transfer characteristics of the heater coated by the nano particles in the fresh water are almost similar to that in the nano fluid. Recently, consensus has been made in the understanding of the CHF enhancement of nanofluids or nano-particle coated heater as the surface phenomena. Therefore, in the present paper, we do experimental study to observe the bubble departure in the pool boiling process with the nano-particle coated heater

  2. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  3. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products

    Science.gov (United States)

    Yang, Yu; Capco, David G.; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles. PMID:27798677

  4. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    Science.gov (United States)

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  5. NanoDLSay: a new platform technology for biomolecular detection and analysis using gold nanoparticle probes coupled with dynamic light scattering

    Science.gov (United States)

    Bogdanovic, Jelena; Huo, Qun

    2010-04-01

    Most analytical techniques that are routinely used in biomedical research for detection and quantification of biomolecules are time-consuming, expensive and labor-intensive, and there is always a need for rapid, affordable and convenient methods. Recently we have developed a new platform technology for biomolecular detection and analysis: NanoDLSay. NanoDLSay employs antibody-coated gold nanoparticles (GNPs) and dynamic light scattering, and correlates the specific increase in particle size after antigen-antibody interaction to the target antigen concentration. We applied this technology to develop an assay for rapid detection of actin, a protein widely used as a loading control in Western Blot analysis. GNPs were coated with two types of polyclonal anti-actin antibodies, and used in the assay to detect two types of actin: β- and bovine skeletal muscle actin in RIPA buffer. The results of our study revealed some complex aspects of actin binding characteristics, which depended on the type of actin reagent and anti-actin antibody used. A surprising finding was a reverse dose-response relationship between the actin concentration and the average particle size in the assay solution, which we attributed to the effect of RIPA buffer. Our results indicate that RIPA may also interfere in other types of nanoparticle-based assays, and that this interference deserves further study.

  6. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  7. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-12-17

    Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.

  8. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  9. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  10. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  11. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  12. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  13. Synthesis and characterization of chemically ordered FePt magnetic nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, K. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Balaji, T., E-mail: theerthambalaji@yahoo.co [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Lingappa, Y. [Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Reddy, M.R.P.; Kumar, Arbind; Prakash, T.L. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India)

    2010-08-15

    Monodispersed FePt alloy magnetic nano-particles are prepared by reduction of platinum acetyl acetonate and iron acetyl acetonate salts together in the presence of oleic acid and oleyl amine stabilizers by polyol process. The particle size of FePt is in the range of 2-3 nm confirmed by transmission electron microscopy (TEM). As-synthesized FePt nano-particles are chemically disordered with face centre cubic (fcc) structure where as after vacuum annealing these particles changed to face centre tetragonal (fct) ordered structure confirmed by the X-ray diffraction technique. Magnetic coercivity of 5.247 KOe was observed for fct structure.

  14. In-situ follow up of gold nano-particles nucleation-growth

    International Nuclear Information System (INIS)

    Abecassis, Benjamin

    2006-01-01

    In this thesis, we assess the formation mechanism of gold nanoparticles in situ in liquid media (homogeneous or in microemulsion) by small angle scattering techniques. The first part details several important concepts which are useful for an appropriate understanding of the rest of the thesis along with an overview of the literature on the subject. We then present results of time resolved synchrotron small angle X ray scattering and UV-visible experiment performed in situ during the formation of gold nanoparticles in organic solvent. We show that it is possible to follow the nucleation and growth of the particles in real time with a time resolution of a few hundreds milliseconds. We show that depending on the chemical nature of the ligand the nucleation and growth can be either simultaneous or separated in time. In the latter case, the growth is limited by surface reaction of the monomer at the particles surface. We also show that when the produced nanoparticles have an average radius larger than 5 nm, they self-assemble into ordered super-lattice which exhibit a cubic face center crystallographic structure. In a third part, by using a combination of complementary techniques we study water/oil/octyl-ammonium-octanoate microemulsions in the reverse micelles part of the phase diagram. The structure of these 'catanionic' microemulsions are revealed as a function of the water content, the temperature and the surface charge. The different observed topologies (sphere, rod-like or connected worm-like) and the phase transitions are compared to a recent theory which takes into account the curvature energy of the surfactant film. Finally, we show that these microemulsions can be used efficiently to synthesise gold nanoparticles. We show that the template effect, often cited to explain the formation of nanoparticles in reverse micelles is in our case not relevant. It is also noteworthy possible to separate and purify the as-produced nanoparticles by slightly

  15. SU-F-T-662: Feasibility Study of Fe3O4/TaOx Nano Particles as a Radiosensitizer for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University (Korea, Republic of); Lee, N [School of Advanced Materials Engineering College of Engineering, Kookmin Uiniversity (Japan); Shin, S; Choi, C; Han, Y; Park, H; Choi, D; Lim, D [Samsung Medical Center, Sungkyunkwan University School of Medicine radiation oncology (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the feasibility of using multifunctional Fe{sub 3}O{sub 4}/TaOx(core / shell) nano particles developed for CT and MRI contrast agent as dose enhancing radiosensitizers. Methods: Firstly, to verify the imaging detectability of Fe{sub 3}O{sub 4}/TaOx nano particles, in-vivo tests were conducted. Approximately 600 mg/kg of 19 nm diameter Fe{sub 3}O{sub 4}/TaOx nano particles dispersed in phosphate buffered saline(PBS) were injected to ten nude Balb/c mice through the tail vein. Difference between pre- and post-injection images was analyzed by computing the pixel histogram and correlation coefficient factor using MATLAB in the user defined ROI. Secondly, to quantify the potential therapeutic enhancement with nano materials, DER (Dose Enhancement Ratio) and number of SER (Secondary Electron Ratio) were computed using TOPAS(ver.2.0 P-03) MC simulation. Results: In CT, MRI imaging, the aorta, the blood vessel, and the liver were clearly visualized after intravenous injection of Fe{sub 3}O{sub 4}/TaOx nano particles. There was large different between pre and post-injection images of Histogram data and Coefficients of correlation factor in CT and MR are 0.006, 0.060, respectively. When 70 MeV protons were irradiated for a Gold, Tantalum, TaOx, Fe{sub 3}O{sub 4}/TaOx, Fe{sub 3}O{sub 4} nano particle, DER was 2.59, 2.41, 1.68, 1.54 and 1.36 respectively. Similarly, SER increment was 2.31, 2.15, 1.56, 1.46, and 1.27 for Gold, Tantalum, TaOx, Fe{sub 3}O{sub 4}/TaOx, Fe{sub 3}O{sub 4} nano particle, respectively. Conclusion: Fe{sub 3}O{sub 4}/TaOx nano particles have potential as a multifunctional agent which enhances the accuracy in cancer detection through visualization of developed tumor lesion and increases the therapeutic effect in proton therapy. The dose enhancement with Fe{sub 3}O{sub 4}/TaOx was estimated as half of the Gold. However, tumor targeting such as combined with magnetic field may overcome the low DER. This research was supported by the

  16. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  17. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory.

    Science.gov (United States)

    Hwang, Geelsu; Ahn, Ik-Sung; Mhin, Byung Jin; Kim, Ju-Young

    2012-09-01

    Due to the increasing production and application of nanoparticles, their release into the environment would be inevitable, which requires a better understanding of their fate in the environment. When considering their toxic behavior or biodegradation as their fate, their adhesion to the cell surface must be the first step to be thoroughly studied. In this study, nano-sized polymeric particles of urethane acrylate with various hydrophobicity and ionic properties were synthesized as model nanoparticles, and their adhesion to Pseudomonas putida strains was monitored. The higher hydrophobicity and positive charge density on the particle surface exhibited the larger adhesion to the bacteria, whereas negative charge density on the particle hindered their adhesion to the bacteria, albeit high hydrophobicity of particle. These observations were successfully explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase

    OpenAIRE

    Madras, Giridhar; McCoy, Benjamin J

    2006-01-01

    We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...

  19. NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles.

    Science.gov (United States)

    Wong, Jennifer; D'Sa, Dexter; Foley, Matthew; Chan, John Gar Yan; Chan, Hak-Kim

    2014-11-01

    To demonstrate the novel application of nano X-ray computed tomography (NanoXCT) for visualizing and quantifying the internal structures of pharmaceutical particles. An Xradia NanoXCT-100, which produces ultra high-resolution and non-destructive imaging that can be reconstructed in three-dimensions (3D), was used to characterize several pharmaceutical particles. Depending on the particle size of the sample, NanoXCT was operated in Zernike Phase Contrast (ZPC) mode using either: 1) large field of view (LFOV), which has a two-dimensional (2D) spatial resolution of 172 nm; or 2) high resolution (HRES) that has a resolution of 43.7 nm. Various pharmaceutical particles with different physicochemical properties were investigated, including raw (2-hydroxypropyl)-beta-cyclodextrin (HβCD), poly (lactic-co-glycolic) acid (PLGA) microparticles, and spray-dried particles that included smooth and nanomatrix bovine serum albumin (BSA), lipid-based carriers, and mannitol. Both raw HβCD and PLGA microparticles had a network of voids, whereas spray-dried smooth BSA and mannitol generally had a single void. Lipid-based carriers and nanomatrix BSA particles resulted in low quality images due to high noise-to-signal ratio. The quantitative capabilities of NanoXCT were also demonstrated where spray-dried mannitol was found to have an average void volume of 0.117 ± 0.247 μm(3) and average void-to-material percentage of 3.5%. The single PLGA particle had values of 1993 μm(3) and 59.3%, respectively. This study reports the first series of non-destructive 3D visualizations of inhalable pharmaceutical particles. Overall, NanoXCT presents a powerful tool to dissect and observe the interior of pharmaceutical particles, including those of a respirable size.

  20. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Dong-Yeol Yang

    2015-11-01

    Full Text Available This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder using an in situ one-step process via radio frequency (RF thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the rate of surface evaporation. The simulation is conducted to determine the variation of the input power and the distance from the plasma torch to the feeding nozzle. It was demonstrated experimentally that the nano-powder ratio in the micro-nano-powder mixture can be controlled by adjusting the feeding rate, plasma power, feeding position and quenching effect during plasma treatment. The ratio of nano-particles in the micro-nano-powder mixture was controlled in a range from 0.1 (wt. % to 30.7 (wt. %.

  1. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  2. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  3. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  4. Large area nano-patterning /writing on gold substrate using dip - pen nanolithography (DPN)

    Science.gov (United States)

    Saini, Sudhir Kumar; Vishwakarma, Amit; Agarwal, Pankaj B.; Pesala, Bala; Agarwal, Ajay

    2014-10-01

    Dip Pen Nanolithography (DPN) is utilized to pattern large area (50μmX50μm) gold substrate for application in fabricating Nano-gratings. For Nano-writing 16-MHA ink coated AFM tip was prepared using double dipping procedure. Gold substrate is fabricated on thermally grown SiO2 substrate by depositing ˜5 nm titanium layer followed by ˜30nm gold using DC pulse sputtering. The gratings were designed using period of 800nm and 25% duty cycle. Acquired AFM images indicate that as the AFM tip proceeds for nano-writing, line width decreases from 190nm to 100nm. This occurs probably due to depreciation of 16-MHA molecules in AFM tip as writing proceeds.

  5. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  6. Suppression of coffee ring: (Particle) size matters

    Science.gov (United States)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  7. Seeds mediated synthesis of giant gold particles on the glass surface

    Science.gov (United States)

    Vasko, A. A.; Borodinova, T. I.; Marchenko, O. A.; Snegir, S. V.

    2018-03-01

    Herein, we present the protocols of synthesis of two types of gold particles which are in the great interest for the purpose of molecular electronics. The first type is the flat prisms with a triangular/hexagonal shape and a lateral size up to 80 µm. They were synthesized directly on a glass surface pretreated with (3-aminopropyl)-triethoxysilane molecules. The second type of particles was synthesized with using gold seeds with diameter of 18 nm. These seeds were deposited on a glass surface coated with APTES. The resulted three-dimensional structures with a form close to spherical increase in size up to 0.5-0.08 µm. Moreover, these particles grew up separately and did not merge during 48 h of synthesis.

  8. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products.

    Science.gov (United States)

    Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.

  9. Breaking gold nano-junctions simulation and analysis

    DEFF Research Database (Denmark)

    Lauritzen, Kasper Primdal

    , to predict the structure of a gold junction just as it breaks. This method is based on artificial neural networks and can be used on experimental data, even when it is trained purely on simulated data. The method is extended to other types of experimental traces, where it is trained without the use......Simulating the movements of individual atoms allows us to look at and investigate the physical processes that happen in an experiment. In this thesis I use simulations to support and improve experimental studies of breaking gold nano-junctions. By using molecular dynamics to study gold nanowires, I...... can investigate their breaking forces under varying conditions, like stretching rate or temperature. This resolves a confusion in the literature, where the breaking forces of two different breaking structures happen to coincide. The correlations between the rupture and reformation of a gold junction...

  10. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    OpenAIRE

    Dong-Yeol Yang; Youngja Kim; Min Young Hur; Hae June Lee; Yong-Jin Kim; Tae-Soo Lim; Ki-Bong Kim; Sangsun Yang

    2015-01-01

    This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder) using an in situ one-step process via radio frequency (RF) thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the r...

  11. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  12. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    Science.gov (United States)

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  13. Geometrical effects on the electron residence time in semiconductor nano-particles.

    Science.gov (United States)

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ(r) in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r(2) model) or through the whole particle (r(3) model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ(r). It has been observed that by increasing the coordination number n, the average value of electron residence time, τ̅(r) rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ̅(r) is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ̅(r). Our simulations indicate that for volume distribution of traps, τ̅(r) scales as d(2). For a surface distribution of traps τ(r) increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  14. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  15. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  16. Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: Size does not matter

    International Nuclear Information System (INIS)

    Venkatpurwar, V.P.; Rhodes, S.; Oien, K.A.; Elliott, M.A.; Tekwe, C.D.; Jørgensen, H.G.; Kumar, M.N.V. Ravi

    2015-01-01

    Highlights: • The particulate delivery allows an increase in dose range without accrual of toxicities. • The altered haematological and biochemical changes are drug, but not particle dependent. • PLGA nano/microparticles are safe on subacute peroral dosing over 28 days. • Nano-toxicology, drug needs to be considered. - Abstract: Biodegradable nanoparticles are being considered more often as drug carriers to address pharmacokinetic/pharmacodynamic issues, yet nano-product safety has not been systematically proven. In this study, haematological, biochemical and histological parameters were examined on 28 day daily dosing of rats with nano- or micro-particle encapsulated cyclosporine (CsA) to confirm if any changes observed were drug or carrier dependent. CsA encapsulated poly(lactide-co-glycolide) [PLGA] nano- (nCsA) and micro-particles (mCsA) were prepared by emulsion techniques. CsA (15, 30, 45 mg/kg) were administered by oral gavage to Sprague Dawley (SD) rats over 28 days. Haematological and biochemical metrics were followed with tissue histology performed on sacrifice. Whether presented as nCsA or mCsA, 45 mg/kg dose caused significant loss of body weight and lowered food consumption compared to untreated control. Across the doses, both nCsA and mCsA produce significant decreases in lymphocyte numbers compared to controls, commensurate with the proprietary product, Neoral ® 15. Dosing with nCsA showed higher serum drug levels than mCsA presumably owing to the smaller particle size facilitating absorption. The treatment had no noticeable effects on inflammatory/oxidative stress markers or antioxidant enzyme levels, except an increase in ceruloplasmin (CP) levels for high dose nCsA/mCsA group. Further, only subtle, sub-lethal changes were observed in histology of nCsA/mCsA treated rat organs. Blank (drug-free) particles did not induce changes in the parameters studied. Therefore, it is extremely important that the encapsulated drug in the nano-products is

  17. Solid oxide fuel cell cathode infiltrate particle size control and oxygen surface exchange resistance determination

    Science.gov (United States)

    Burye, Theodore E.

    Over the past decade, nano-sized Mixed Ionic Electronic Conducting (MIEC) -- micro-sized Ionic Conducting (IC) composite cathodes produced by the infiltration method have received much attention in the literature due to their low polarization resistance (RP) at intermediate (500-700°C) operating temperatures. Small infiltrated MIEC oxide nano-particle size and low intrinsic MIEC oxygen surface exchange resistance (Rs) have been two critical factors allowing these Nano-Micro-Composite Cathodes (NMCCs) to achieve high performance and/or low temperature operation. Unfortunately, previous studies have not found a reliable method to control or reduce infiltrated nano-particle size. In addition, controversy exists on the best MIEC infiltrate composition because: 1) Rs measurements on infiltrated MIEC particles are presently unavailable in the literature, and 2) bulk and thin film Rs measurements on nominally identical MIEC compositions often vary by up to 3 orders of magnitude. Here, two processing techniques, precursor nitrate solution desiccation and ceria oxide pre-infiltration, were developed to systematically produce a reduction in the average La0.6Sr0.4Co0.8Fe 0.2O3-delta (LSCF) infiltrated nano-particle size from 50 nm to 22 nm. This particle size reduction reduced the SOFC operating temperature, (defined as the temperature where RP=0.1 Ocm 2) from 650°C to 540°C. In addition, Rs values for infiltrated MIEC particles were determined for the first time through finite element modeling calculations on 3D Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) reconstructions of electrochemically characterized infiltrated electrodes.

  18. Size-selective separation of polydisperse gold nanoparticles in supercritical ethane.

    Science.gov (United States)

    Williams, Dylan P; Satherley, John

    2009-04-09

    The aim of this study was to use supercritical ethane to selectively disperse alkanethiol-stabilized gold nanoparticles of one size from a polydisperse sample in order to recover a monodisperse fraction of the nanoparticles. A disperse sample of metal nanoparticles with diameters in the range of 1-5 nm was prepared using established techniques then further purified by Soxhlet extraction. The purified sample was subjected to supercritical ethane at a temperature of 318 K in the pressure range 50-276 bar. Particles were characterized by UV-vis absorption spectroscopy, TEM, and MALDI-TOF mass spectroscopy. The results show that with increasing pressure the dispersibility of the nanoparticles increases, this effect is most pronounced for smaller nanoparticles. At the highest pressure investigated a sample of the particles was effectively stripped of all the smaller particles leaving a monodisperse sample. The relationship between dispersibility and supercritical fluid density for two different size samples of alkanethiol-stabilized gold nanoparticles was considered using the Chrastil chemical equilibrium model.

  19. Development of gold nanoparticle radiotracers for investigating multiphase system in process industries

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Jaafar Abdullah; Engku Fahmi Engku Chik; Noraishah Othman

    2010-01-01

    This paper describes the development of colloidal 197 Au-SiO 2 with core-shell structure nanoparticle radiotracers. Using conventional citrate-reduction method, gold nanoparticles were prepared from its corresponding metal salts in aqueous solution then coated with uniform shells of amorphous silica via a sol-gel reaction. This target material of radiotracer application used to investigate multiphase system in process industries without disturbing the system operation. The citrate-reduction-based method provides gold nanoparticles with higher concentration and narrow size distribution. By using transmission electron microscopy (TEM), the resultant of particle size and silica coatings could be varied from tens to several hundred of nanometers by controlling the catalyzer and precipitation time. 197 Au-SiO 2 core-shell nano structure is good to prevent the particles from getting conglomerate resulting in a big mass. In addition, silica surface offer very good chances that make the hydrophobicity behavior on the gold nanoparticles. EDXRF spectrum has proven that 197 Au-SiO 2 core-shell nanoparticles sample consists purely of a gold and silica particles. (author)

  20. Nano-imprint gold grating as refractive index sensor

    International Nuclear Information System (INIS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-01-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  1. Effect of gold nano-particle layers on ablative acceleration of plastic foil targets

    Czech Academy of Sciences Publication Activity Database

    Dhareshwar, L.J.; Gupta, N.K.; Chaurasia, S.; Ayyub, P.; Kulkarni, N.; Badziak, J.; Pisarczyk, T.; Kasperczuk, A.; Parys, P.; Rosinski, M.; Wolowski, J.; Krouský, Eduard; Krása, Josef; Mašek, Karel; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Velyhan, Andriy; Margarone, Daniele; Mezzasalma, A.; Pisarczyk, P.

    2010-01-01

    Roč. 244, č. 2 (2010), 022018/1-022018/8 ISSN 1742-6588 R&D Projects: GA MŠk(CZ) LC528; GA MŠk(CZ) 7E08094 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser pulse absorption * nano-particle coating * lateral thermal conduction Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Ali Kamiar

    2013-08-01

    Full Text Available Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical characterization. Polymer gel dosimetry was used for evaluation of the enhancement of absorbed dose. Diffusion method in agar media was used for investigation of anti-bacterial effect. Results: Gold nanoparticles synthesized in size range from 57 nm to 346 nm by planning different formulation. Gold nanoparticle in 57 nm size increased radiation dose effectiveness with the magnitude of about 21 %. At the concentration of 400 ppm, Nano gold exhibited significant anti-bacterial effect against E. coli clinical strains. Conclusion: It is concluded that gold nanoparticles can be applied as dose enhancer in radiotherapy. The Investigation of anti-bacterial efficacy showed that gold nanoparticle had significant effect against E. coli clinical strains.

  3. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    Science.gov (United States)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  4. Ultraviolet spectra of CeO2 nano-particles

    International Nuclear Information System (INIS)

    Tsunekawa, S.; Sivamohan, R.; Ohsuna, T.; Kasuya, A.; Takahashi, H.; Tohji, K.

    1998-01-01

    Full text: Quantum size effect is generally expected in nanometer size materials. The effect has been observed in many metal clusters and semiconducting nano-particles, but seldom in oxides, because the size control of crystalline oxides is generally difficult due to the ionic bond character. CeO 2 (ceria) is one of the rare-earth oxides and the size effect is worth studying from the viewpoint of an ultraviolet (u.v.) spectroscopy and applications. This report describes the first observation of a blue shift of u.v. spectra in ceria nano-particles of 2-5 nm in diameter with its deviation within 20%. A ceria aqueous sol (pH ≅ 2.5) having particle sizes under 6 nm in diameter was produced by ultrafiltration with a polyether sulfone membrane (SIP-1013, Asahi Chemical Industry Co.) from an original ceria aqueous sol (pH ≅ 1.5) having particle sizes extending over a wide range. Obtained sol contains a high concentration of Ce 3+ ions because of the high acidity. In order to separate ceria particles from Ce 3+ ions and fractionate the particle size, two kinds of anion-type surfactants were used in microemulsification process with toluene and water. One is sodium dodecylbenzene sulfonate (SD-BS) which is 2 nm in length and another is sodium octyl sulfonate (SOS) which is 1.2 nm in length. U.v. spectroscopic measurements and high resolution transmission electron microscopic (HRTEM) observations were performed for (SOS) t , (SOS+SOS) t , and (SDBS+SOS+SDBS) t , where (SOS) t is a ceria suspension in toluene obtained by an emulsification with SOS surfactant, (SOS+SOS) t indicates the same product obtained by the further emulsification with SOS for an aqueous phase of the emulsion with SOS, and (SDBS+SOS+SDBS) t means that obtained by an additional emulsification with SDBS for an aqueous phase obtained by two successive emulsifications with SDBS and SOS. Optical density data for (SOS) t , (SOS+SOS) t , and (SDBS+SOS+SDBS) t show absorption edges at 4076 Angstroms, 3997

  5. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Imani, M. [Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Costa, B.F.O. [CEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2012-11-15

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe{sup 3+} and Fe{sup 2+}], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations <0.1 mg/mL. Surface functionalization was performed by conformal coating of the NPs with a thin shell of gold ({approx}4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe{sub 3}O{sub 4} core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure. - Highlights: Black-Right-Pointing-Pointer Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. Black-Right-Pointing-Pointer The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH{sub 4}OH concentrations. Black-Right-Pointing-Pointer Mono-dispersed SPIONs can be prepared

  6. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation.

    Science.gov (United States)

    Song, Jieun; Kim, Dukhan; Lee, Dongil

    2011-11-15

    We report a facile synthetic route for size-controlled preparation of gold nanoparticles. Nearly monodisperse gold nanoparticles with core diameters of 1-6 nm were obtained by reducing AuP(Phenyl)(3)Cl with tert-butylamine borane in the presence of dodecanethiol in the solvent mixture of benzene and CHCl(3). Mechanism studies have shown that the size control is achieved by the solvent-controlled nucleation in which the nuclei concentration increases with increasing the fraction of CHCl(3), leading to smaller particles. It was also found that, following the solvent-controlled nucleation, particle growth occurs via ligand replacement of PPh(3) on the nuclei by Au(I)thiolate generated by the digestive etching of small particles. This synthetic strategy was successfully demonstrated with other alkanethiols of different chain length with which size-controlled, monodisperse gold nanoparticles were prepared in remarkable yield without requiring any postsynthesis treatments.

  7. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    Science.gov (United States)

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  8. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    Science.gov (United States)

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  10. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  11. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  12. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles.

    Science.gov (United States)

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-09-15

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005-10 mM) and high sensitivity (~993.91 µA mM -1 cm -2 ; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection.

  13. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  14. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  15. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  16. The Clinical Test of Nano gold Cosmetic for Recovering Skin Damage Due to Chemicals: Special Case

    Science.gov (United States)

    Taufikurohmah, T.; Wardana, A. P.; Tjahjani, S.; Sanjaya, I. G. M.; Baktir, A.; Syahrani, A.

    2018-01-01

    Manufacturing of Nano gold cosmetics was done at PT. Gizi Indonesia. Clinical trials to cosmetics data supported that cosmetics are able to treat skin health which has been reported partially. For special cases, the recovery process of facial skin damage should also receive attention including cases of facial skin damage caused by chemicals such as phenol, HCl, aqua regia or other harsh chemicals. The problem determined whether the Nano gold is able to recover skin damage due to the harsh chemicals. This clinical trial data on the forms of early skin damage caused by phenol was delivered in the forms of facial photos patients. The recovery progress of facial skin condition was obtained every week for two months. The data included the forms of widespread wounds during the recovery process. This statement supported by anova statistical analysis of the widespread wound changing every week for 8 times. The conclusion is skin damage due to Phenol impregnation can be recovered with the use of Nano gold cosmetics for 8 weeks. This results support the manufacturing of Nano gold cosmetics for the needs of society. It also suggest that Nano gold material can be used for medicine manufacturing in the future.

  17. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  18. Study of the effect of Titanium dioxide nano particle size on efficiency of the dye-sensitized Solar cell using natural Pomegranate juice

    Directory of Open Access Journals (Sweden)

    A Behjat

    2015-01-01

    Full Text Available Dye-sensitized solar cell (DSSC using natural Pomegranate juice as dye-sensitizeris fabricated and characterized. DSSCS consist of a working electrode, a redox electrolyte containing iodide and tri-iodide ions and a counter electrode. A nanocrystalline TiO2 semiconductor with a wide band-gap coated with a monolayer dye-sensitizer is used as working electrode. The effect of titanium dioxide (TiO2 nanoparticle size on efficiency of the DSSC based Pomegranate juice as a sensitizer is studied. For monolayer structure, we used two sizes of TiO2 nanoparticle (25 nm and 100 nm and a mixture of these two sizes. The highest efficiency of 0.61% was obtained with mixture of 25 and 100 nm TiO2 nano-particles in working electrode. For double-layer structure, we used 100 and 400 nm size TiO2 particles as light-scattering. The best efficiency was obtained using 400 nm TiO2 as light-scattering particles.

  19. Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method

    Science.gov (United States)

    Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen

    2017-09-01

    Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.

  20. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  1. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    Science.gov (United States)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  2. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); Guo Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); West China Eye Center of Huaxi Hospital, Sichuan University, Chengdu 610064 (China); Fan Hongsong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)], E-mail: leewave@126.com; Zhang Xingdong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)

    2008-11-15

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  3. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations.

    Science.gov (United States)

    Mesbahi, Asghar; Ghiasi, Hosein

    2018-06-01

    The shielding properties of ordinary concrete doped with some micro and nano scaled materials were studied in the current study. Narrow beam geometry was simulated using MCNPX Monte Carlo code and the mass attenuation coefficient of ordinary concrete doped with PbO 2 , Fe 2 O 3 , WO 3 and H 4 B (Boronium) in both nano and micro scales was calculated for photon and neutron beams. Mono-energetic beams of neutrons (100-3000 keV) and photons (142-1250 keV) were used for calculations. The concrete doped with nano-sized particles showed higher neutron removal cross section (7%) and photon attenuation coefficient (8%) relative to micro-particles. Application of nano-sized material in the composition of new concretes for dual protection against neutrons and photons are recommended. For further studies, the calculation of attenuation coefficients of these nano-concretes against higher energies of neutrons and photons and different particles are suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  5. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  6. Effect of concentration of imperata cylindrica L leaf extraction synthesis process of gold nanoparticles

    International Nuclear Information System (INIS)

    Iwan Syahjoko Saputra; Yoki Yulizar; Sudirman

    2018-01-01

    Gold Nanoparticles (Gold NPs) successful was performed using HAuCl 4 precursor as Au 3+ ion source with 7 x 10 -4 M concentration. There search aims to knows effect of concentration variation of Imperata cylindrica L leaf extract on synthesis process of gold nanoparticles. There search used of green synthesis method. Colloid of nanoparticles which is formed in analyzed using UV - Vis Spectrophotometer, FT-IR Spectroscopy, PSA, PZC, XRD and TEM. The results of synthesis showed the best concentration of Imperata cilyndrica L leaf extract at 3.46 %, happen a shift of wave length at UV-Vis from 216 nm to 530 nm with 1.779 absorbance value. The PSA analysis showed a particle size of 51.87 nm and a PZC value of -19.2 mV. The result of FT - IR indicated a shift of wave number in the hydroxyl group from 3354 cm -1 to 3390 cm -1 and showed a interaction of hydroxyl group at imperata cylindrica L leaf extract with Au 3+ ion. TEM analysis shows the morphology of Gold NPs that spherical shape with a particle size of 20 nm. XRD calculation results show crystallite size of gold nano particles is 15.47 nm. (author)

  7. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  8. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  9. Synthesis of gold nano-catalysts supported on carbon nanotubes by using electroless plating technique

    International Nuclear Information System (INIS)

    Ma Xicheng; Li Xia; Lun Ning; Wen Shulin

    2006-01-01

    Gold nanoparticles supported on carbon nanotubes were prepared by using electroless plating technique. High-resolution transmission electron microscopy (HRTEM) has shown that spherical gold nanoparticles were homogeneously dispersed on the surfaces of the carbon nanotubes with a distribution of particle sizes sharply at around 3-4 nm in diameter. The results presented in this work will probably provide new catalysts with better performances

  10. Self-assembly of micro- and nano-scale particles using bio-inspired events

    International Nuclear Information System (INIS)

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  11. Au-Nano-particle Deposition on alumina surfaces for environmental application-a density functional study

    International Nuclear Information System (INIS)

    Chatterjee, Abhijit

    2009-01-01

    Full text: It has been found that nanometer size gold particles on different oxide supports can act as catalysts, suggestions include quantum size effects, availability of low coordinated sites, and strain or combined effects of the gold particles and the oxide support. From photo dissociation spectroscopy and theory it has been inferred that the 2D / 3D structural transition occurs between five and seven atoms depending on charge state neutrals and singly positively charged ions. Here we will look into the interaction of gold particles over different sites of the aluminum -oxide surface to tune the catalytic activity of the novel material using first principle periodic calculations and compare them with the reactivity index to formulate a priori rule for metal cluster interaction. The catalytic application is aimed to CO adsorption type reactions for a greener environment. (author)

  12. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  13. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha

    2015-05-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  14. From porous gold nanocups to porous nanospheres and solid particles - A new synthetic approach

    KAUST Repository

    Ihsan, Ayesha; Katsiev, Habib; AlYami, Noktan; Anjum, Dalaver H.; Khan, Waheed S.; Hussain, Irshad

    2015-01-01

    We report a versatile approach for the synthesis of porous gold nanocups, porous gold nanospheres and solid gold nanoparticles. Gold nanocups are formed by the slow reduction of gold salt (HAuCl4{dot operator}3H2O) using aminoantipyrene (AAP) as a reducing agent. Adding polyvinylpyrrolidone (PVP) to the gold salt followed by reduction with AAP resulted in the formation of porous gold nanospheres. Microwave irradiation of both of these porous gold particles resulted in the formation of slightly smaller but solid gold particles. All these nanoparticles are thoroughly characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and bright-field tomography. Due to the larger size, porous nature, low density and higher surface area, these nanomaterials may have interesting applications in catalysis, drug delivery, phototherapy and sensing.

  15. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  16. Effects of micro-sized and nano-sized WO_3 on mass attenauation coefficients of concrete by using MCNPX code

    International Nuclear Information System (INIS)

    Tekin, H.O.; Singh, V.P.; Manici, T.

    2017-01-01

    In the present work the effect of tungsten oxide (WO_3) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO_3 and micro-WO_3 into concrete sample. The mass attenuation coefficients of pure concrete and WO_3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO_3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO_3 significanlty improve shielding properties than micro-WO_3. It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. - Highlights: • It was found that size of the WO_3 affected the mass attenuation coefficients of concrete in all photon energies.

  17. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  18. Zinc oxide nano-particles as sealer in endodontics and its sealing ability

    Directory of Open Access Journals (Sweden)

    Maryam Javidi

    2014-01-01

    Full Text Available Aims: The aim of this study was to evaluate the sealing ability of new experimental nano-ZOE-based sealer. Settings and Design: Three types of nano-ZOE-based sealer (calcined at different temperatures of 500, 600 and 700°C with two other commercially available sealers (AH26 and micro-sized zinc oxide eugenol sealer were used. Materials and Methods: Zinc oxide nano-particles were synthesized by a modified sol-gel method. The structure and morphology of the prepared powders were characterized using x-ray diffraction (XRD and transmission electron microscopy (TEM techniques. The instrumented canals of 60 single-rooted teeth were divided into five groups (n = 10, with the remaining ten used as controls. The canals were filled with gutta-percha using one of the materials mentioned above as sealer. After 3, 45 and 90 days, the samples were connected to a fluid filtration system. Statistical Analysis Used: The data were analyzed using Student′s t-test. Results: The XRD patterns and TEM images revealed that all the synthesized powders had hexagonal wurtzite structures with an average particle size of about 30-60 nm at different calcination temperatures. Microleakage in AH26 groups was significantly more than that in three groups of ZnO nano-particles at all the three evaluation intervals. Apical microleakage of ZnO micro-powders was significantly more than that of all the materials, but the sealing ability of ZnO nano-powder sealers did not differ significantly. Conclusion: The results of this study showed that the synthesized ZnO nano-powder sealers are suitable for use as a nano-sealer in root canal therapy to prevent leakage; however, further studies should be carried out to verify their safety.

  19. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    Science.gov (United States)

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  1. Optical properties of individual nano-sized gold particle pairs. Mie-scattering, fluorescence, and Raman-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Olk, Phillip

    2008-07-01

    This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source - a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis - scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. (orig.)

  2. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  3. Assessing the plasmonics of gold nano-triangles with higher order laser modes

    Directory of Open Access Journals (Sweden)

    Laura E. Hennemann

    2012-10-01

    Full Text Available Regular arrays of metallic nano-triangles – so called Fischer patterns – are fabricated by nano-sphere lithography. We studied such gold nano-triangle arrays on silicon or glass substrates. A series of different samples was investigated with a parabolic mirror based confocal microscope where the sample is scanned through the laser focus. By employing higher order laser modes (azimuthally and radially polarised laser beams, we can excite the Fischer patterns using either a pure in-plane (x,y electric field or a strongly z-directional (optical axis of the optical microscope electric field. We collected and evaluated the emitted luminescence and thereby investigated the respectively excited plasmonic modes. These varied considerably: firstly with the light polarisation in the focus, secondly with the aspect ratio of the triangles and thirdly with the employed substrate. Moreover, we obtained strongly enhanced Raman spectra of an adenine (sub-monolayer on gold Fischer patterns on glass. We thus showed that gold Fischer patterns are promising surface-enhanced Raman scattering (SERS substrates.

  4. Effect of the shape of a nano-object on quantum-size states

    International Nuclear Information System (INIS)

    Dzyuba, Vladimir; Kulchin, Yurii; Milichko, Valentin

    2012-01-01

    In this paper, we propose an original functional method that makes it easy to determine the effect of any deviation in the shape of a nano-object from the well-studied shape (e.g., spherical) on the quantum characteristics of charge localized inside the nano-object. The maximum dimension of the object is determined by the magnitude of influence of quantum-size effects on quantum states of charge, and is limited by 100 nm. This method is ideologically similar to the perturbation theory, but the perturbation of the surface shape, rather than the potential, is used. Unlike the well-known variational methods of theoretical physics, this method is based on the assumption that the physical quantity is a functional of surface shape. Using the method developed, we present the quantum-size state of charges for two different complex shapes of nano-objects. The results from analyzing the quantum-size states of charge in the nano-objects with a deformed spherical shape indicated that the shape perturbations have a larger effect on the probability density of locating a particle inside the nano-object than on the surface energy spectrum and quantum density of the states.

  5. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  6. Electromagnetics of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t......, the optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion.......This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation...

  7. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  8. Experimental equivalent cluster-size distributions in nano-metric volumes of liquid water

    International Nuclear Information System (INIS)

    Grosswendt, B.; De Nardo, L.; Colautti, P.; Pszona, S.; Conte, V.; Tornielli, G.

    2004-01-01

    Ionisation cluster-size distributions in nano-metric volumes of liquid water were determined for alpha particles at 4.6 and 5.4 MeV by measuring cluster-size frequencies in small gaseous volumes of nitrogen or propane at low gas pressure as well as by applying a suitable scaling procedure. This scaling procedure was based on the mean free ionisation lengths of alpha particles in water and in the gases measured. For validation, the measurements of cluster sizes in gaseous volumes and the cluster-size formation in volumes of liquid water of equivalent size were simulated by Monte Carlo methods. The experimental water-equivalent cluster-size distributions in nitrogen and propane are compared with those in liquid water and show that cluster-size formation by alpha particles in nitrogen or propane can directly be related to those in liquid water. (authors)

  9. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

    DEFF Research Database (Denmark)

    Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.

    2011-01-01

    We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...

  10. Gold-Copper alloy “nano-dumplings” with tunable compositions and plasmonic properties

    International Nuclear Information System (INIS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2016-01-01

    The unique yet tunable optical properties of plasmonic metal nanoparticles have made them attractive targets for a wide range of applications including nanophotonics, molecular sensing, catalysis etc. Such diverse applications that require precisely stable / reproducible plasmonic properties depend sensitively on the particle morphology ie. the shape, size and constituents. Herein, we systematically study the size / shape controlled synthesis of gold-copper “dumpling” shaped alloy nanoparticles by simultaneous reduction of gold and copper salts in the PVP-methanol solute-solvent system, by effectively utilizing the efficient but mild reduction as well as capping abilities of Poly (N-vinylpyrrolidone). Introduction of copper salts not only yielded the alloy nanoparticles, but also slowed down the growth process to maintain high mono-dispersity of the new shapes evolved. Copper and gold has different lattice constants (0.361 and 0.408 nm respectively) and hence doping/addition/replacement of copper atoms to gold FCC unit cell introduces strain into the lattice which is key parameter to the shape evolution in anisotropic nanoparticles. Synthesized alloy nanoparticles were characterized by UV-visible absorption spectroscopy, XRD and TEM imaging.

  11. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    Science.gov (United States)

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  12. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    International Nuclear Information System (INIS)

    Sen, Sabyasachi; Gogurla, Narendar; Banerji, Pallab; Guha, Prasanta K.; Pramanik, Panchanan

    2015-01-01

    Graphical abstract: - Highlights: • β-FeSi 2 nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi 2 . • HRTEM and FESEM images indicate the β-FeSi 2 average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi 2 is p-type with hole density of 4.38 × 10 18 cm −3 and mobility 8.9 cm 2 /V s. - Abstract: Nano-particles of β-FeSi 2 have been synthesized by chemical reduction of a glassy phase of [Fe 2 O 3 , 4SiO 2 ] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi 2 semiconducting phase. The average crystallite size of β-FeSi 2 is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi 2 phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi 2 nano-particles is p-type with hole concentration of 4.38 × 10 18 cm −3 and average hole mobility of 8.9 cm 2 /V s at 300 K

  13. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  14. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  15. Linear and ultrafast nonlinear plasmonics of single nano-objects

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual

  16. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  17. Synthesis of supported metallic nano-particles and their use in air depollution

    International Nuclear Information System (INIS)

    Barrault, J.; Valange, S.; Tatibouet, J.M.; Thollon, St.; Herlin-Boime, N.; Giraud, S.; Ruiz, J.Ch.; Bergaya, B.; Joulin, J.P.; Delbianco, N.; Gabelica, Z.; Daturi, M.

    2009-01-01

    The main objectives of the 'NACACOMO' Consortium ('Nano-materials: Catalysts for the Conversion of organic Molecules. Uses in fine chemicals and environment protection ') consisted in generating novel catalysts composed of nanoparticles of metals (Pt, Pd, Ag...) and/or oxides (TiO 2 ...) stabilized and well distributed over the surface of a support (foams, ceramics), by monitoring both the particle size and the 'coating' process itself, using new technologies: CVD, plasma-spray, laser pyrolysis, supercritical preparation, which were compared to conventional soft chemistry recipes. The most accurate characterization of particle morphology, local structure, texture, spatial arrangement but also of their reactivity, were achieved by privileging the utilization of various in situ methods. Details on formation mechanisms of a solid nano-particle at the atomic level (nucleation, growth and particle (re)distribution over the support...) could be obtained in selected cases, with opportunities for scaling up and shaping. The (chemical) nature of the so-obtained nano-materials was monitored for selected catalytic applications involving the development of environmental friendly processes, such as oxidation of VOC, with a priority for aromatics and chlorinated compounds. (authors)

  18. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  19. Angular reflectance of suspended gold, aluminum and silver nanospheres on a gold film: Effects of concentration and size distribution

    International Nuclear Information System (INIS)

    Aslan, Mustafa M.; Wriedt, Thomas

    2010-01-01

    In this article, we describe a parametric study of the effects of the size distribution (SD) and the concentration of nanospheres in ethanol on the angular reflectance. Calculations are based on an effective medium approach in which the effective dielectric constant of the mixture is obtained using the Maxwell-Garnett formula. The detectable size limits of gold, aluminum, and silver nanospheres on a 50-nm-thick gold film are calculated to investigate the sensitivity of the reflectance to the SD and the concentration of the nanospheres. The following assumptions are made: (1) the total number of particles in the unit volume of suspension is constant, (2) the nanospheres in the suspension on a gold film have a SD with three different concentrations, and (3) there is no agglomeration and the particles have a log-normal SD, where the effective diameter, d eff and the effective variance, ν eff are given. The dependence of the reflectance on the d eff , ν eff , and the width of the SD are also investigated numerically. The angular variation of the reflectance as a function of the incident angle shows a strong dependence on the effective size of the metallic nanospheres. The results confirm that the size of the nanospheres (d eff o and 75 o for a given concentration with a particular SD.

  20. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mihály T.; Bertóti, Imre, E-mail: bertoti.imre@ttk.mta.hu; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-15

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN){sub 2}. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5–30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60–200 nm size and well faceted Au particles develop together with a fibrous (CN){sub n} polymer phase, and the Au crystallites are covered by a 3–5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4–20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar{sup +} ion bombardment with 2500 eV energy, 5–30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications. - Graphical abstract: Proposed scheme of the decomposition mechanism of AuCN samples: heat treatment in Ar flow (a) and in sealed ampoule (b); Ar{sup +} ion treatment at 300 eV (c) and at 2500 eV (d). Cross section sketches

  1. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    International Nuclear Information System (INIS)

    Rodenbough, Philip P.; Song, Junhua; Chan, Siu-Wai; Walker, David; Clark, Simon M.; Kalkan, Bora

    2015-01-01

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size

  2. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbough, Philip P. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Chemistry Department, Columbia University, New York, New York 10027 (United States); Song, Junhua; Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Walker, David [Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 (United States); Clark, Simon M. [ARC Center of Excellence for Core to Crust Fluid Systems and Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2019, Australia and The Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232 (Australia); Kalkan, Bora [Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.

  3. Synthesis and characterization of CaCO3 (calcite) nano particles from cockle shells (Anadara granosa Linn) by precipitation method

    Science.gov (United States)

    Widyastuti, Sri; Intan Ayu Kusuma, P.

    2017-06-01

    Calcium supplements can reduce the risk of osteoporosis, but they are not automatically absorbed in the gastrointestinal tract. Nanotechnology is presumed to have a capacity in resolving this problem. The preparation and characterization of calcium carbonate nano particle to improve the solubility was performed. Calcium carbonate nano particles were synthesized using precipitation method from cockle shells (Anadara granosa Linn). Samples of the cockle shells were dried in an oven at temperature of 50°C for 7 (seven) days and subsequently they were crushed and blended into fine powder that was sieved through 125-μm sieve. The synthesis of calcium carbonate nanocrystals was done by extracting using hydro chloride acid and various concentrations of sodium hydroxide were used to precipitate the calcium carbonate nano particles. The size of the nano particles was determined by SEM, XRD data, and Fourier transform infrared spectroscopy (FT-IR). The results of XRD indicated that the overall crystalline structure and phase purity of the typical calcite phase CaCO3 particles were approximately 300 nm in size. The method to find potential applications in industry to yield the large scale synthesis of aragonite nano particles by a low cost but abundant natural resource such as cockle shells is required.

  4. Effect of Nano-sized Carbon Black Particles on Lung and Circulatory System by Inhalation Exposure in Rats

    Directory of Open Access Journals (Sweden)

    Jong-Kyu Kim

    2011-09-01

    Conclusion: We successfully generated nano-CBPs in the range of 83.3-87.9 nm at a maximum concentration of 4.2 × 106 particles/cm3 in a nose-only inhalation chamber system. This reliable method can be useful to investigate the biological and toxicological effects of inhalation exposure to nano-CBPs on experimental rats.

  5. Effect of nano size 3% wt TaC particles dispersion in two different metallic matrix composites

    International Nuclear Information System (INIS)

    Gomes, U.U.; Oliveira, L.A.; Souza, C.P.; Menezes, R.C.; Furukava, M.; Torres, Y.

    2009-01-01

    This work studies the characteristics of two different metallic matrixes composites, ferritic and austenitic steels, reinforced with 3% wt nano size tantalum carbide by powder metallurgy. The starting powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of the nano sized carbide dispersion on the matrix microstructures and its consequences on the mechanical properties were identified. The preliminary results showed that the sintering were influenced by morphology and the distribution of carbide and the alloys. (author)

  6. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, F., E-mail: filippo.benetti@unitn.it; Fedel, M. [BIOtech Research Centre (Italy); Minati, L.; Speranza, G. [Fondazione Bruno Kessler (Italy); Migliaresi, C. [BIOtech Research Centre (Italy)

    2013-06-15

    Material interaction with blood proteins is a critical issue, since it could influence the biological processes taking place in the body following implantation/injection. This is particularly important in the case of nanoparticles, where innovative properties, such as size and high surface to volume ratio can lead to a behavioral change with respect to bulk macroscopic materials and could be responsible for a potential risk for human health. The aim of this work was to compare gold nanoparticles (AuNP) and planar surfaces to study the role of surface curvature moving from the macro- to the nano-size in the process of blood protein adsorption. In the course of the study, different protocols were tested to optimize the analysis of protein adsorption on gold nanoparticles. AuNP with different size (10, 60 and 200 nm diameter) and surface coatings (citrate and polyethylene glycol) were carefully characterized. The stabilizing action of blood proteins adsorbed on AuNP was studied measuring the variation of size and solubility of the nanoparticles following incubation with single protein solutions (human serum albumin and fibrinogen) and whole blood plasma. In addition, we developed a method to elute proteins from AuNP to study the propensity of gold materials to adsorb plasma proteins in function of dimensional characteristics and surface chemistry. We showed a different efficacy of the various eluting media tested, proving that even the most aggressive agent cannot provide a complete detachment of the protein corona. Enhanced protein adsorption was evidenced on AuNP if compared to gold laminae (bare and PEGylated) used as macroscopic control, probably due to the superior AuNP surface reactivity.

  7. Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size

    International Nuclear Information System (INIS)

    Matarrubia, J; García-Cabañes, A; Plaza, J L; Agulló-López, F; Carrascosa, M

    2014-01-01

    The role of light modulation m and particle size on the morphology and spatial resolution of nano-particle patterns obtained by photovoltaic tweezers on Fe : LiNbO 3 has been investigated. The impact of m when using spherical as well as non-spherical (anisotropic) nano-particles deposited on the sample surface has been elucidated. Light modulation is a key parameter determining the particle profile contrast that is optimum for spherical particles and high-m values (m ∼ 1). The minimum particle periodicities reachable are also investigated obtaining periodic patterns up to 3.5 µm. This is a value at least one order of magnitude shorter than those obtained in previous reported experiments. Results are successfully explained and discussed in light of the previous reported models for photorefraction including nonlinear carrier transport and dielectrophoretic trapping. From the results, a number of rules for particle patterning optimization are derived. (paper)

  8. Study the scratch resistance of UV-cured epoxy acrylate in the presence of nano alumina particles via nano indentation

    International Nuclear Information System (INIS)

    Bastani, S.; Ebrahimi, M.; Kardar, P.

    2007-01-01

    In this research, an epoxy acrylate resin was synthesized, then the synthesized resin was used along with different multifunctional acrylate monomers and with a photoinitiator in different formulations and cured with UV radiation. The experiments were designed based on mixture method by using Design-Expert software. To investigate the effect of nano particles on the some of physical and mechanical properties of the UV cured resins, the suspension of nano alumina in TPGDA, was used in formulations. The hardness of prepared films was evaluated by using konig hardness tester and nano indentater. The scratch resistance and gloss of the films were also determined. The results showed that the visibility of scratch decreased when the nano particles were used. It seems that the self-healing property of the film improved in the presence of nano particles. The hardness of the samples with nano particles was found to be less than that the samples of without any nano particles. It was observed that the gloss of the films with the nano particles, almost was the same as the film without nano particles. (Author)

  9. Monitoring of magnetic nano-particles in EOR by using the CSEM modeling and inversion.

    Science.gov (United States)

    Heo, J. Y.; KIM, S.; Jeong, G.; Hwang, J.; Min, D. J.

    2016-12-01

    EOR, which injects water, CO2, or other chemical components into reservoirs to increase the production rate of oil and gas, has widely been used. To promote efficiency of EOR, it is important to monitor distribution of injected materials in reservoirs. Using nano-particles in EOR has advantages that the size of particles is smaller than the pore and particles can be characterized by various physical properties. Specifically, if we use magnetic nano-particles, we can effectively monitor nano-particles by using the electromagnetic survey. CSEM, which can control the frequency range of source, is good to monitor magnetic nano-particles under various reservoir circumstances. In this study, we first perform numerical simulation of 3D CSEM for reservoir under production. In general, two wells are used for EOR: one is for injection, and the other is for extraction. We assume that sources are applied inside the injection well, and receivers are deployed inside the extraction well. To simulate the CSEM survey, we decompose the total fields into primary and secondary fields in Maxwell's equations. For the primary fields, we calculate the analytic solutions of the layered earth. With the calculated primary fields, we compute the secondary fields due to anomalies using the edge-based finite-element method. Finally, we perform electromagnetic inversion for both conductivity and permeability to trace the distribution of magnetic nano-particles. Since these two parameters react differently according to the frequency range of sources, we can effectively describe the distribution of magnetic nano-particles by considering two parameters at the same time. Acknowledgements This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830), and by the International Cooperation (No. 2012-8510030010) of KETEP, and by the Dual Use Technology Program, granted

  10. Synthesis of Uranium-di-Oxide nano-particles by pulsed laser ablation in ethanol and their characterisation

    International Nuclear Information System (INIS)

    Kumar, Aniruddha; Prasad, Manisha; Shail, Shailini

    2015-01-01

    The importance of actinide based nano-structures is well known in the area of biology, nuclear medicine, and nuclear industry. Pulsed laser ablation in liquid is recognised as an attractive technique for production of nano-structures of different metals and metal oxides with high purity. In this paper, we report synthesis of uranium-di-oxide nano particles by pulsed laser ablation in ethanol. The second harmonic emission of an electro- optically Q-switched nano-second Nd-YAG laser was used as the coherent source here. The structural and optical properties of the fabricated Uranium-di-oxide nano- particles were investigated by XRD, SEM, TEM, EDX and UV- Vis-NIR spectrophotometry. The mean size of the particles was found to be dependent on the laser ablation parameters. XRD and TEM analysis confirmed the phase of the synthesised material as pure crystalline Uranium-di- oxide with Face Centred Cubic structure. UV- Vis- NIR absorption spectra of the colloidal solution show high absorption in the UV regime. (author)

  11. Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles

    International Nuclear Information System (INIS)

    Song Zuwei; Ma Junfeng; Sun Huyuan; Sun Yong; Fang Jingrui; Liu Zhengsen; Gao Chang; Liu Ye; Zhao Jingang

    2009-01-01

    CoWO 4 nano-particles were successfully synthesized at a low temperature of 270 deg. C by a molten salt method, and effects of such processing parameters as holding time and salt quantity on the crystallization and development of CoWO 4 crystallites were initially studied. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL), respectively. Experimental results showed that the well-crystallized CoWO 4 nano-particles with ca. 45 nm in diameter could be obtained at 270 deg. C for a holding time of 8 h with 6:1 mass ratio of the salt to CoWO 4 precursor, and XRD analysis evidenced that the as-prepared sample was a pure monoclinic phase of CoWO 4 with wolframite structure. Their PL spectra revealed that the CoWO 4 nano-particles displayed a very strong PL peak at 453 nm with the excitation wavelength of 230 nm, and PL properties of CoWO 4 crystallites relied on their crystalline state, especially on their particle size.

  12. Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation

    International Nuclear Information System (INIS)

    Al-Hilli, S. M.; Willander, M.

    2006-01-01

    Zinc oxide nano-particles have been used by cosmetic industry for many years because they are extensively used as agents to attenuate (absorb and/or scatter) the ultraviolet radiation. In the most UV-attenuating agent is formulated in which the metal oxide nano-particles are incorporated into liquid media or polymer media are manufactured, such as sunscreens and skin care cosmetics. In this paper we study the wavelength dependence on the particle size (r eff = 10-100 nm) by solving the scattering problem of hexagonal ZnO particle for different shapes (plate, equal ratio, column) using the discrete dipole approximation method to find the absorption, scattering, and extinction efficiencies for the UV region (30-400 nm). A new modified hexagonal shape is introduced to determine the scattering problem and it is assumed in this study that the wavelength is comparable to the particle size. From these results, we conclude that the optimum particle radius to block the UV radiation is between r eff = 40-80 nm

  13. Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation

    Science.gov (United States)

    Al-Hilli, S. M.; Willander, M.

    2006-02-01

    Zinc oxide nano-particles have been used by cosmetic industry for many years because they are extensively used as agents to attenuate (absorb and/or scatter) the ultraviolet radiation. In the most UV-attenuating agent is formulated in which the metal oxide nano-particles are incorporated into liquid media or polymer media are manufactured, such as sunscreens and skin care cosmetics. In this paper we study the wavelength dependence on the particle size ( r eff = 10-100 nm) by solving the scattering problem of hexagonal ZnO particle for different shapes (plate, equal ratio, column) using the discrete dipole approximation method to find the absorption, scattering, and extinction efficiencies for the UV region (30-400 nm). A new modified hexagonal shape is introduced to determine the scattering problem and it is assumed in this study that the wavelength is comparable to the particle size. From these results, we conclude that the optimum particle radius to block the UV radiation is between r eff = 40-80 nm.

  14. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  15. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  16. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  17. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  18. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    Science.gov (United States)

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations...... are considered in the presence of active coated nano-particles. It is demonstrated that in addition to offering a means to determine the orientation of a single molecule or the over-all orientation of the molecules surrounding it, the nature of the far-field response from the active coated nano...

  20. Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process

    Directory of Open Access Journals (Sweden)

    V. Kishan

    2017-02-01

    Full Text Available The aim of present study is to analyze the influence of volume percentage (vol.% of nano-sized particles (TiB2: average size is 35 nm on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process (FSP. The microstructure of the fabricated surface nanocomposites is examined using optical microscopy (OM and scanning electron microscope (SEM for distribution of TiB2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 μm along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB2 particles, the microhardness is increased up to 132 Hv and it is greater than as-received Al alloy's microhardness (104 Hv. It is also observed that at 4 volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.

  1. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  2. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    International Nuclear Information System (INIS)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B.F.O.

    2012-01-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe 3+ and Fe 2+ ], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations 3 O 4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core–shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core–shell nanostructure. - Highlights: ► Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. ► The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH 4 OH concentrations. ► Mono-dispersed SPIONs can be prepared by nano-emulsion procedure at w=23, [Fe]=2.12 M, and [NH 4 OH]=30%. Under this condition, NPs with dimension of 9±3 nm and magnetic saturation of 54 emu/g are obtained. The synthesized SPIONs exhibited acceptable biocompatibility, >80% viability after 24 h incubation in L929 cells at concentrations <0

  3. Uptake and effect of nano-and ionic gold on the polychaete, Capitella teleta

    DEFF Research Database (Denmark)

    Dai, Lina; Banta, Gary Thomas; Selck, Henriette

    2010-01-01

    they will sorb to organic matter in the water column and subsequently accumulate in sediments. Thus, metal ENPs may pose a high risk for aquatic organisms, especially for deposit feeders. However, studies of their bioavailability in the aquatic environment are limited, and the toxic mechanisms of metal ENPs...... environment via sewage treatment plants, waste handling or aerial deposition. Compared to ‘common metal’, metal ENPs have high reactivity due to their small size which may have implications for bioavailability and thus toxicity in aquatic organisms. Due to the chemical and physiological properties of metals...... in aquatic invertebrates is not yet clear. There is a long history of using gold (Au) in pharmacy and material science. We examined the toxicity of sediment-associated Au in three different forms (nano sized, micro sized and ionic Au). The deposit feeder, Capitella teleta, was exposed to 5 concentrations...

  4. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    International Nuclear Information System (INIS)

    Lu Xiaoyan; Jin Tingting; Jin Yachao; Wu Leihong; Hu Bin; Tian Yu; Fan Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury. (paper)

  5. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method

    International Nuclear Information System (INIS)

    Liu Youyong; Cao Chuanbao

    2010-01-01

    A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO 4 /C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO 4 . Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO 4 /C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO 4 /C presents enhanced discharge capacities (159, 147 and 135 mAh g -1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.

  6. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions

    International Nuclear Information System (INIS)

    Qiu, Danfeng; Wang, Song; Zheng, Yuanqin; Deng, Zhaoxiang

    2013-01-01

    In response to an increasing demand for understanding electrochemical processes on the nanometer scale, it now becomes possible to monitor electron transfer reactions at the single-nanoparticle level, namely particle collision electrochemistry. This technique has great potential in the development of research tools towards single-particle electrocatalysis and selective and multiplexed particle sizing. However, one existing problem that may discourage these applications is the relatively weak colloidal stability of nanoparticles in an electrolytic solution. Here we report on a facile but efficient way to achieve a good stability of gold nanoparticles in an acidic media so that ‘zero-aggregation’ collisions can be achieved at a carbon ultramicroelectrode. This allows us to obtain anodic dissolution currents from individual nanoparticles in a ‘one particle at a time’ manner, based on which accurate particle sizing with a resolution of 1–2 nm can be achieved. Our work strongly suggests that to maintain a well dispersed nanoparticle solution during a particle impact electrochemical experiment is critically important for accurate particle sizing, as well as other applications that require information to be extracted from individual nanoparticles (not their aggregates). (paper)

  7. Size measurement of gold and silver nanostructures based on their extinction spectrum: limitations and extensions

    Directory of Open Access Journals (Sweden)

    A A Ashkarran

    2013-09-01

    Full Text Available  This paper reports on physical principles and the relations between extinction cross section and geometrical properties of silver and gold nanostructures. We introduce some simple relations for determining geometrical properties of silver and gold nanospheres based on the situation of their plasmonic peak. We also applied, investigated and compared the accuracy of these relations using other published works in order to make clear the effects of shape, size distribution and refractive index of particles’ embedding medium. Finally, we extended the equations to non-spherical particles and investigated their accuracy. We found that modified forms of the equations may lead to more exact results for non-spherical metal particles, but for better results, modified equations should depend on shape and size distribution of particles. It seems that these equations are not applicable to particles with corners sharper than cubes' corners i.e. nanostructures with spatial angles less than π/2 sr.

  8. Amplified CPEs enhancement of chorioamnion membrane mass transport by encapsulation in nano-sized PLGA particles.

    Science.gov (United States)

    Azagury, Aharon; Amar-Lewis, Eliz; Appel, Reut; Hallak, Mordechai; Kost, Joseph

    2017-08-01

    Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A gold electrode modified with hemoglobin and the chitosan Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide

    International Nuclear Information System (INIS)

    Wang, Yuan-Hong; Yu, Chun-Mei; Pan, Zhong-Qin; Wang, Yu-Fei; Guo, Jian-Wei; Gu, Hai-Ying

    2013-01-01

    We report on a novel electrochemical biosensor that was fabricated by immobilizing hemoglobin (Hb) onto the surface of a gold electrode modified with a chitosan Fe 3 O 4 nano-composite. The Fe 3 O 4 nanoparticles were prepared by co-precipitation and have an average size of 25 nm. They were dispersed in chitosan solution to obtain the chitosan Fe 3 O 4 nano-composite particles with an average diameter of 35 nm as verified by transmission electron microscopy. X-ray diffraction patterns and Fourier transform IR spectroscopy confirmed that the crystallite structure of the Fe 3 O 4 particles in the nano-composite has remained unchanged. At pH 7.0, Hb gives a pair of redox peaks with a potential of about −0.21 V and −0.36 V. The Hb on the film maintained its biological activity and displays good electrocatalytic reduction activity towards hydrogen peroxide. The linear range for the determination of H 2 O 2 is from 2.3 μM to 9.6 mM, with a detection limit at 1.1 μM concentration (at S/N = 3). The apparent Michaelis-Menten constant is 3.7 mM and indicates the high affinity of Hb for H 2 O 2 . This biosensor also exhibits good reproducibility and long-term stability. Thus, it is expected to possess potential applications in the development of the third-generation electrochemical biosensors (author)

  10. Gradual growth of gold nanoseeds on silica for SiO2-gold homogeneous nano core/shell applications by the chemical reduction method

    International Nuclear Information System (INIS)

    Rezvani Nikabadi, H; Shahtahmasebi, N; Rezaee Rokn-Abadi, M; Bagheri Mohagheghi, M M; Goharshadi, E K

    2013-01-01

    In this paper, a facile method for the synthesis of gold nanoseeds on the functionalized surface of silica nanoparticles has been investigated. Mono-dispersed silica particles and gold nanoparticles were prepared by the chemical reduction method. The thickness of the Au shell was well controlled by repeating the reduction time of HAuCl 4 on silica/3-aminopropyltriethoxysilane (APTES)/initial gold nanoparticles. The prepared SiO 2 -gold core/shell nanoparticles were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and ultraviolet visible (UV-Vis) spectroscopy. The TEM images indicated that the silica nanoparticles were spherical in shape with 100 nm diameters and functionalizing silica nanoparticles with a layer of bi-functional APTES molecules and tetrakis hydroxy methyl phosphonium chloride. The gold nanoparticles show a narrow size of up to 5 nm and by growing gold nanoseeds over the silica cores a red shift in the maximum absorbance of UV-Vis spectroscopy from 524 to 637 nm was observed.

  11. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  12. Hydrothermal synthesis of NiFe2O4 nano-particles: structural ...

    Indian Academy of Sciences (India)

    2. Experimental. In order to synthesize NiFe2O4 nano-particles, Ni(NO3)2· ... Nickel and iron nitrates are dissolved in distilled ... are in good agreement with standard JCPDS: 86-2267. The ... in order to evaluate micro-strain (ε) and crystallite size (D) using the ..... Impedance spectroscopic studies are useful for investigating.

  13. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  14. Laser induced morphology change of silver colloids: formation of nano-size wires

    International Nuclear Information System (INIS)

    Tsuji, Takeshi; Watanabe, Norihisa; Tsuji, Masaharu

    2003-01-01

    We have performed laser irradiation at 355 nm onto spherical silver colloids in pure water, which were prepared by laser ablation of silver plate in pure water. In addition to size-reduced particles due to fragmentation, we have found that nano-size wire structures were formed in solution for the first time. The width of the wires was in the 10-100 nm range, and the length of long wires was more than 1 μm. Electron diffraction patterns revealed that these wires were composed of pure silver. It was suggested that the wires were formed via fusion of particles photo-thermally melted by laser irradiation

  15. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  16. Toward efficient modification of large gold nanoparticles with DNA

    NARCIS (Netherlands)

    Gill, R.; Göeken, Kristian L; Subramaniam, V.

    2014-01-01

    DNA-coated gold nanoparticles are one of the most researched nano-bio hybrid systems. Traditionally their synthesis has been a long and tedious process, involving slow salt addition and long incubation steps. This stems from the fact that both DNA and gold particles are negatively charged, therefore

  17. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  18. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    Science.gov (United States)

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  19. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.

    Science.gov (United States)

    de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis

    2018-04-20

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  20. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    Science.gov (United States)

    Vasconcelos, Helena

    2018-01-01

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108

  1. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

    Energy Technology Data Exchange (ETDEWEB)

    Loskutov, Alexander I., E-mail: ailoskutov@yandex.ru [Moscow State Technological University STANKIN (Russian Federation); Guskova, Olga A. [Leibniz Institute of Polymer Research Dresden (Germany); Grigoriev, Sergey N.; Oshurko, Vadim B. [Moscow State Technological University STANKIN (Russian Federation); Tarasiuk, Aleksei V. [Russian Academy of Medical Sciences, FSBI “Zakusov Institute of Pharmacology” (Russian Federation); Uryupina, Olga Ya. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2016-08-15

    A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

  2. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    Science.gov (United States)

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  3. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  4. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  5. In-situ PXRD Study on the Annealing of SrFe12O19 Nano Particles

    DEFF Research Database (Denmark)

    Gjørup, Frederik; Saura-Múzquiz, Matilde; Christensen, Mogens

    Nano sized strontium hexaferrite is synthesized using a hydrothermal flow synthesis, at temperature and pressure above waters critical point. The nano particles are hexagonal platelets, with the easy axis of magnetization along the short c-axis of the platelet. The nano powders are normally pressed...... and annealed to form mechanically stable pellets. This study uses In-situ Powder X-Ray Diffraction (PXRD) to examine the particle growth during annealing of the powder, with emphasis on the ratio between the axes of the platelets (a/c-ratio). By applying an external magnetic field before annealing......, the particles will align along the field lines of the external magnet, and the contact surfaces along the c-axis should increase. It will be examined whether the external magnetic field increases the growth along the c-axis relative to the a/b-axis, compared to annealing without prior magnetization....

  6. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  7. Effect of TiC nano-particles on the mechanical properties of an Al-5Cu alloy after various heat treatments

    Science.gov (United States)

    Zhang, Qingquan; Zhang, Wei; Tian, Weisi; Zhao, Qinglong

    2017-12-01

    In this paper, the effects of TiC nano-particles on the mechanical properties of Al-5Cu alloy were investigated. Adding TiC nano-particles can effectively refine grain size and secondary dendritic arm. The ultimate tensile strength, yield strength and elongation of the Al-5Cu alloy in each of the three states (i.e. as-cast, solid-solution state and T6 state) were also improved by adding TiC nano-particles. Moreover, the elastic-plastic plane-strain fracture toughness (K J) and work of fracture ( wof) of Al-5Cu containing TiC were significantly higher than those of Al-5Cu without TiC after aging for 10 h. The addition of TiC nano-particles also led to finer and denser ‧ precipitates.

  8. A tetraethylene glycol coat gives gold nanoparticles long in vivo half-lives with minimal increase in size

    Directory of Open Access Journals (Sweden)

    Willett JDS

    2017-03-01

    Full Text Available Julian DS Willett, Marlon G Lawrence, Jennifer C Wilder, Oliver Smithies† Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA †Dr Oliver Smithies passed away on January 10, 2017 Abstract: In this study, we describe the experiments determining whether coating gold nanoparticles with tetraethylene glycol (TEG provides pharmacologically relevant advantages, such as increased serum half-life and resistance to protein adsorption. Monodisperse TEG-coated, NaBH4-reduced gold nanoparticles with a hydrodynamic size comparable to albumin were synthesized by reducing gold chloride with NaBH4 under alkaline conditions in the presence of TEG-SH. The particles were characterized by gel electrophoresis, column chromatography, and transmission electron microscopy. The nanoparticles were subsequently injected intravenously into mice, and their half-lives and final destinations were determined via photometric analysis, light microscopy (LM, and transmission electron microscopy. The TEG particles had a long half-life (~400 minutes that was not influenced by splenectomy. After 500 minutes of injection, TEG particles were found in kidney proximal tubule cell vesicles and in spleen red and white pulp. The particles induced apoptosis in the spleen red pulp but not in white pulp or the kidney. Some of the TEG particles appeared to have undergone ligand exchange reactions that increased their charge. The TEG particles were shown to be resistant to nonspecific protein adsorption, as judged by gel electrophoresis and column chromatography. These results demonstrate that naturally monodisperse, small-sized gold nanoparticles coated with TEG have long in vivo plasma half-lives, are minimally toxic, and are resistant to protein adsorption. This suggests that a TEG coating should be considered as an alternative to a polyethylene glycol coating, which is polydisperse and of much larger size. Keywords

  9. Synthesis of nano-Au doped SiO2 aerogels by seeding method

    International Nuclear Information System (INIS)

    Ren Hongbo; Wan Xiaobo; Zhang Lin; Du Aiming; Xiu Peng

    2006-01-01

    A new approach to synthesize gold nano cluster doped aerogel on the basis of surface-catalyzed reduction of metal ions was described. Au nano particles were formed in a silica aerogel matrix by hydroxylamine seeding method of reducing gold ions on the silica colloidal surface. Subsequently, the pH value of system was adjusted to about 7-8, the gel formed within 2 h. After aging for 2 d, the gels were washed in aceton, and then dried supercritically (from CO 2 ) to yield aerogels. The reduction process was attributed to hydroxylamine-induced surface catalysis. Au clusters in the aerogel monoliths were characterized with optical adsorption, transmission electron microscopy. These techniques have shown the cluster size and weight content in the aerogels. Brunauer-emmett-teller surface area measurements show that the specific surface area of silica aerogels and doped aerogels are higher than 800 m 2 /g. (authors)

  10. How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work

    NARCIS (Netherlands)

    Babick, Frank; Mielke, Johannes; Wohlleben, Wendel; Weigel, Stefan; Hodoroaba, Vasile Dan

    2016-01-01

    Abstract: Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available

  11. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  12. Nano-magnetic particles used in biomedicine: core and coating materials.

    Science.gov (United States)

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available We have prepared a series of nano-sized aluminium nitride (nano-AlN/cycloaliphatic epoxy/trimethacrylate (TMPTMA systems and investigated their morphology, thermal conductivity, thermal stability and curing behavior. Experimental results show that the thermal conductivity of composites increases with the nano-AlN filler content, the maximum value is up to 0.47 W/(m.K. Incorporation of a small amount of the nano-AlN filler into the epoxy/TMPTMA system improves the thermal stability. For instance, the thermal degradation temperature at 5% weight loss of nano-AlN/epoxy/TMPTMA system with only 1 wt% nano-AlN was improved by ~8ºC over the neat epoxy/TMPTMA system. The effect of nano-AlN particles on the cure behavior of epoxy/TMPTMA systems was studied by dynamic differential scanning calorimetry. The results showed that the addition of silane treated nano-AlN particles does not change the curing reaction mechanism and silane treated nano-AlN particles could bring positive effect on the processing of composite since it needs shorter pre-cure time and lower pre-temperature, meanwhile the increase of glass transition temperature of the nanocomposite improves the heat resistance.

  14. Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Organophilic nano ZnO particles have been synthesized in various diols (ethylene glycol – EG, 1,2 propane diol – PD, 1,4 butane diol – BD and tetra(ethylene glycol – TEG in the presence of p-toluenesulfonic acid, p-TsOH, as an end capping agent. The addition of p-TsOH reduces the ZnO particle size and increases its crystallite size. With increasing diol main chain length the ZnO particle size increases (EG (32 nm < PD (33 nm < BD (72 nm < TEG (86 nm. Using the assynthesized and unmodified ZnO nanocomposites with poly(methyl methacrylate, PMMA, matrix have been prepared by the in-situ bulk polymerization of methyl methacrylate, MMA. The addition of surface modifiers is avoided which is an advantage for the application since they can influence other properties of the material. ZnO particles, especially those with smaller particle sizes (EG – 32 nm, PD – 33 nm showed enhanced effect on the thermal stability of PMMA, ultraviolet, UV, absorption and transparency for visible light. Transparent materials with high UV absorption and with enhanced resistance to sunlight were obtained by optimizing the nanocomposite preparation procedure using ZnO particles of about 30 nm size in concentrations between 0.05 and 0.1 wt%. The reported nanocomposite preparation procedure is compatible with the industrial process of PMMA sheet production.

  15. Latex particle template lift-up guided gold wire-networks via evaporation lithography

    KAUST Repository

    Lone, Saifullah; Vakarelski, Ivan Uriev; Chew, Basil; Wang, Zhihong; Thoroddsen, Sigurdur T

    2014-01-01

    We describe a hybrid methodology that combines a two dimensional (2D) monolayer of latex particles (with a pitch size down to 1 μm) prepared by horizontal dry deposition, lift-up of a 2D template onto flat surfaces and evaporation lithography to fabricate metal micro- and nano wire-networks. This journal is

  16. Particles size distribution effect on 3D packing of nanoparticles in to a bounded region

    International Nuclear Information System (INIS)

    Farzalipour Tabriz, M.; Salehpoor, P.; Esmaielzadeh Kandjani, A.; Vaezi, M. R.; Sadrnezhaad, S. K.

    2007-01-01

    In this paper, the effects of two different Particle Size Distributions on packing behavior of ideal rigid spherical nanoparticles using a novel packing model based on parallel algorithms have been reported. A mersenne twister algorithm was used to generate pseudo random numbers for the particles initial coordinates. Also, for this purpose a nano sized tetragonal confined container with a square floor (300 * 300 nm) were used in this work. The Andreasen and the Lognormal Particle Size Distributions were chosen to investigate the packing behavior in a 3D bounded region. The effects of particle numbers on packing behavior of these two Particle Size Distributions have been investigated. Also the reproducibility and the distribution of packing factor of these Particle Size Distributions were compared

  17. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang (Indonesia)

    2016-04-19

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  18. Microscopic Gold Particle-Based Fiducial Markers for Proton Therapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Lim, Young Kyung; Kwak, Jungwon; Kim, Dong Wook; Shin, Dongho; Yoon, Myonggeun; Park, Soah; Kim, Jin Sung; Ahn, Sung Hwan; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Pyo, Hong Ryeol; Kim, Dae Yong M.D.; Cho, Kwan Ho

    2009-01-01

    Purpose: We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. Methods and Materials: We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. Results: The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. Conclusion: Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.

  19. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    Science.gov (United States)

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Synthesis and characterization of CdO nano particles by the sol-gel method

    Science.gov (United States)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  1. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  2. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  3. Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics

    International Nuclear Information System (INIS)

    Marra, J

    2011-01-01

    The expanding production and use of nanomaterials increases the chance of human exposure to engineered nanoparticles (NP), also referred to as ultrafine particles (UFP; ≤ 100 - 300 nm). This is particularly true in workplaces where they can become airborne and thereafter inhaled by workers during nanopowder processing. Considering the suspected hazard of many engineered UFPs, the general recommendation is to take measures for minimizing personal exposure while monitoring the UFP pollution for assessment and control purposes. The portable Aerasense NanoTracer accomplishes this UFP monitoring, either intermittently or in real time. This paper reviews its design and operational characteristics and elaborates on a number of application extensions and constraints. The NanoTracer's output signals enable several UFP exposure metrics to be simultaneously inferred. These include the airborne UFP number concentration and the number-averaged particle size, serving as characteristics of the pertaining UFP pollution. When non-hygroscopic particles are involved, the NanoTracer's output signals also allow an estimation of the lung-deposited UFP surface area concentration and the lung-deposited UFP mass concentration. It is thereby possible to distinguish between UFP depositions in the alveolar region, the trachea-bronchial region and the head airway region, respectively, by making use of the ICRP particle deposition model.

  4. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  5. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  6. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  7. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  8. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  9. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    Science.gov (United States)

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  11. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  12. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    Directory of Open Access Journals (Sweden)

    José M. M. M. de Almeida

    2018-04-01

    Full Text Available It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2 substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  13. Improving the Vase life of Cut Carnation ‘Tempo’ (Dianthus carryophyllusL. Flower by Silver Thiosulphate and Silver Nano-Particles

    Directory of Open Access Journals (Sweden)

    D. Hashemabadi

    2014-08-01

    Full Text Available Nanometer-sized silver particle can be act as an anti-microbial compound. Thus, in this research, the efficacy of silver thiosulphate and silver nano-particles as antimicrobial agents in extending the vase-life of cut carnation flowers was evaluated. A factorial experiment carried out based on randomized completely blocks design with two factors: silver thiosulphate (0, 0.1, 0.2 and 0.3 mM and silver nano-particles (0, 5, 10 and 15 mg/L. Mean comparison of the data showed that the combined treatments of 0.3 mM silver thiosulphate + 15 mg/L silver nano-particles had the highest vase life, water uptake and super oxide dismutase enzyme. Thus, the mentioned above treatment was proposed to increase prolong vase life and improvement of water relations and control of stem end blockage. Based to results of this study, silver thiosulphate and silver nano-particles can be used for increasing postharvest longevity of cut carnation "Tempo".

  14. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    International Nuclear Information System (INIS)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-01-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody–antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 µg/ml and 100 µg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 10 2 to 10 5 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for

  15. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianhan, E-mail: jianhan@cau.edu.cn [Ministry of Agriculture Key Laboratory of Agricultural Information Acquisition Technology (Beijing), 17 East Tsinghua Road, China Agricultural University, Mailbox 125, Beijing 100083 (China); Li, Min [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Li, Yanbin [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Chen, Qi [Modern Precision Agriculture System Integration Research Key Laboratory of Ministry of Education, China Agricultural University, Beijing 100083 (China)

    2015-03-15

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody–antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 µg/ml and 100 µg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 10{sup 2} to 10{sup 5} cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are

  16. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  17. Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing

    Directory of Open Access Journals (Sweden)

    Mengxing Chen

    2017-03-01

    Full Text Available It is reported that the ductility and strength of a metal matrix composite could be concurrently improved if the reinforcing particles were of the size of nanometers and distributed uniformly. In this paper, we revealed that gas atomization solidification could effectively disperse TiB2 nanoparticles in the Al alloy matrix due to its fast cooling rate and the coherent orientation relationship between TiB2 particles and α-Al. Besides, nano-TiB2 led to refined equiaxed grain structures. Furthermore, the composite powders with uniformly embedded nano-TiB2 showed improved laser absorptivity. The novel composite powders are well suited for selective laser melting.

  18. Phytofabricated gold nanoparticles and their biomedical applications.

    Science.gov (United States)

    Ahmad, Bashir; Hafeez, Nabia; Bashir, Shumaila; Rauf, Abdur; Mujeeb-Ur-Rehman

    2017-05-01

    In a couple of decades, nanotechnology has become a trending technology owing to its integrated science collection that incorporates variety of fields such as chemistry, physics, medicine, catalytic processes, food processing industries, electronics and energy sectors. One of the emerging fields of nanotechnology that has gained momentous admiration is nano-biotechnology. Nano-biotechnology is an integrated combination of biology with nanotechnology that encompasses the tailoring, and synthesis of small particles that are less than 100nm in size and subsequent exploitation of these particles for their biological applications. Though the variety of physical techniques and chemical procedures are known for the nanoparticles synthesis, biological approach is considered to be the preferred one. Environmental hazards and concerns associated with the physical and chemical approaches of nanoparticles synthesis has added impetus and zenith to the biological approach involving the use of plants and microorganisms. The current review article is focused on the synthesis of plant-derived (phytochemical) gold nanoparticles alongside their scope in biomedical applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    International Nuclear Information System (INIS)

    Christensen, Axel Norlund; Jensen, Torben R.; Bahl, Christian R.H.; DiMasi, Elaine

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2 O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2 O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition. - Graphical abstract: Nano size crystals of goethite, α-FeOOH formed from amorphous iron(III) hydroxide after 23 years, and transforms faster to α-Fe 2 O 3 upon heating

  20. Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Nie Eryong; Liu Donglai; Zhang Yunsen; Bai Xue; Yi Liang; Jin Yong; Jiao Zhifeng [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Sun Xiaosong, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2011-08-15

    This paper is focusing on the synthesis of Zn{sub 1-x}Fe{sub x}S nano-particles with x = 0, 0.1 and 0.2 by chemical co-precipitation method, the prepared of which are characterized by XRD, EDS, TEM, PL, magnetization versus field behavior and M-T curve. In the XRD patterns, Zn{sub 1-x}Fe{sub x}S nano-particles are shown of cubic zinc blende structure, and the broadening diffraction peaks consistent with the small-size characteristic of nano-materials. The diameter of nano-particles is between 3.3 and 5.5 nm according to the HR-TEM images. The EDS data confirm the existence of Fe ions in Fe-doped ZnS nanoparticles. There we found that Fe-doping did not import new energy bands or defect states, but reduced the intensity of PL peaks. The magnetization versus field behaviors were illustrated by the M-H curves at both 5 K and 300 K, respectively, where no remanence or coercive force was observed. This phenomenon indicates that the Zn{sub 1-x}Fe{sub x}S (x = 0.1) nano-particles are superparamagnetic. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves further reveal that the blocking temperature (T{sub B}) of the superparamagnetic behavior might be below 5 K.

  1. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    Science.gov (United States)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  2. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  3. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  4. REAL TIME MEASUREMENT OF ULTRAFINE AND NANO PARTICLES AND SIGNIFICANCE OF OPERATING GEARS

    Directory of Open Access Journals (Sweden)

    H. A. NAKHAWA

    2017-03-01

    Full Text Available This research paper focuses on characterization of ultrafine and nanoparticle emissions from diesel vehicle to investigate their physical characterization in terms of number and size as they are more vulnerable and responsible for toxicity, mutagenicity and carcinogenicity. An investigation has been carried out to identify the significance of different operating gears, clutch, declutch and gear change operations for their contributions to particle number(PN on urban and extra urban part of the driving cycle. A bi-modal particle size distribution pattern was observed for both urban and extra urban parts where almost all the particles are below 200 nm and particle number peaks appear at 7 to 8 nm and at 70 nm. Nano particles contribute approximately, 70% of total particle number over urban part. Experimental investigation shows that the most significant gear for their contribution to particle number are 3rd and 5th gears on urban and extra urban part of the driving cycle respectively.

  5. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  6. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  8. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    Science.gov (United States)

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  9. Dynamics of magnetic nano-particle assembly

    International Nuclear Information System (INIS)

    Kondratyev, V N

    2010-01-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  10. Photochemical fabrication of size-controllable gold nanoparticles on chitosan and their application on catalytic decomposition of acetaldehyde

    International Nuclear Information System (INIS)

    Yu, Chung-Chin; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Chen, Bo-Chuen

    2010-01-01

    In this work, we report a new pathway to prepare size-controllable gold nanoparticles (NPs) on chitosan (Ch) in aqueous solutions for improving catalytic decomposition of acetaldehyde by pure gold NPs at room temperature. First, Au substrates were cycled in deoxygenated aqueous solutions containing 0.1N NaCl and 1 g/L Ch from -0.28 to +1.22 V vs Ag/AgCl at 500 mV/s for 200 scans. Then the solutions were irradiated with UV lights of different wavelengths to prepare size-controllable Au NPs on Ch. Experimental results indicate that the particle sizes of prepared NPs are increased when UV lights with longer wavelengths were employed. The particle sizes of resulted Au NPs can be controlled from 10 to 50 nm. Moreover, the decomposition of acetaldehydes in wines can be significantly enhanced by ca. 190% of magnitude due to the contribution of the adsorption of Au NPs on Ch.

  11. A new technique to detect antibody-antigen reaction (biological interactions) on a localized surface plasmon resonance (LSPR) based nano ripple gold chip

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Iram, E-mail: iiram.qau@gmail.com [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Widger, William, E-mail: widger@uh.edu [Department of Biology and Biochemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Chu, Wei-Kan, E-mail: wkchu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2017-07-31

    Highlights: • The nano ripple LSPR chip has monolayer molecule-coating sensitivity and specific selectivity. • Gold nano-ripple sensing chip is a low cost, and a label-free method for detecting the antibody-antigen reaction. • The plasmonic resonance shift depends upon the concentration of the biomolecules attached on the surface of the nano ripple pattern. - Abstract: We demonstrate that the gold nano-ripple localized surface plasmon resonance (LSPR) chip is a low cost and a label-free method for detecting the presence of an antigen. A uniform stable layer of an antibody was coated on the surface of a nano-ripple gold pattern chip followed by the addition of different concentrations of the antigen. A red shift was observed in the LSPR spectral peak caused by the change in the local refractive index in the vicinity of the nanostructure. The LSPR chip was fabricated using oblique gas cluster ion beam (GCIB) irradiation. The plasmon-resonance intensity of the scattered light was measured by a simple optical spectroscope. The gold nano ripple chip shows monolayer scale sensitivity and high selectivity. The LSPR substrate was used to detect antibody-antigen reaction of rabbit X-DENTT antibody and DENTT blocking peptide (antigen).

  12. How comparable are size-resolved particle number concentrations from different instruments?

    Science.gov (United States)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  13. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    Science.gov (United States)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  14. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning

    Science.gov (United States)

    Yu, Huan; Yu, Jian Zhen

    2012-07-01

    Size distributions of thirteen polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC) in the range of 0.01-18 μm were measured using a nano Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) in an urban location in Guangzhou, China in July 2006. PAH size distributions were fit with five modes and the respective mass median aerodynamic diameters (MMAD) are: Aitken mode (MMAD: ˜0.05 μm), three accumulation modes AMI, AMII, AMIII (MMAD: 0.13-0.17 μm, 0.4-0.45 μm, and 0.9-1.2 μm, respectively), and coarse mode (MMAD: 4-6 μm). Seven-ring PAH was mainly in AMII and AMIII. Five- and six-ring PAHs were found to be abundant in all the three AM. Three- and four-ring PAHs had a significant presence in the coarse mode in addition to the three AM. Size-resolved gas-particle partition coefficients of PAHs (Kp) were estimated using measured EC and OC data. The Kp values of a given PAH could differ by a factor of up to ˜7 on particles in different size modes, with the highest Kp associated with the AMI particles and the lowest Kp associated with the coarse mode particles. Comparison of calculated overall Kp with measured Kp values in Guangzhou by Yang et al. (2010) shows that adsorption on EC appeared to be the dominant mechanism driving the gas-particle partitioning of three- and four-ring PAHs while absorption in OM played a dominant role for five- and six-ring PAHs. The calculated equilibrium timescales of repartitioning indicate that five- to seven-ring PAHs could not achieve equilibrium partitioning within their typical residence time in urban atmospheres, while three- and four-ring PAHs could readily reach new equilibrium states in particles of all sizes. A partitioning flux is therefore proposed to replace the equilibrium assumption in modeling PAH transport and fate.

  15. Nucleation and dissociation of nano-particles in gas phase

    International Nuclear Information System (INIS)

    Feiden, P.

    2007-09-01

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na n and heterogeneous Na n X particles (X = (NaOH) 2 or (Na 2 O) 2 ). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na + (NaOH) p et Na + (NaF) p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na + Na + (NaOH) p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  16. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  17. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    Science.gov (United States)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  18. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    Science.gov (United States)

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. An active nano-supported interface designed from gold nanoparticles embedded on ionic liquid for depositing DNA

    International Nuclear Information System (INIS)

    Lu Liping; Kang Tianfang; Cheng Shuiyuan; Guo Xiurui

    2009-01-01

    The use of an active nano-interface designed from gold nanoparticles embedded on ionic liquid for DNA damage resulted from formalehyde (HCHO) is reported in this article. The active nano-interface was fabricated by depositing gold nanoparticles on the ionic liquid 1-butyl-3-methylimidazolium tetrafluroborate ([bmim][BF 4 ]). A glassy carbon electrode modified by this composite film was fabricated to immobilize DNA for probing into the damage resulted from HCHO. The modifying process was characterized by X-ray photoelectron spectroscopy, atomic force microscopy and electrochemistry involving electrochemical impedance spectroscopy. It was found that the modified film performs effectively in studying the DNA damage by electrocatalytic activity toward HCHO oxidation.

  20. [Drug delivery systems using nano-sized drug carriers].

    Science.gov (United States)

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  1. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  2. Nano-sized particles, processes of making, compositions and uses thereof

    Science.gov (United States)

    O'Brien, Stephen [New York, NY; Yin, Ming [Los Alamos, NM

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  3. Study of nano-nitramine explosives: preparation, sensitivity and application

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-06-01

    Full Text Available Nano-nitramine explosives (RDX, HMX, CL-20 are produced on a bi-directional grinding mill. The scanning electron microscope (SEM observations show that the prepared particles are semi-spherical, and the narrow size distributions are characterized using the laser particle size analyzer. Compared with the micron-sized samples, the nano-products show obvious decrease in friction and impact sensitivities. In the case of shock sensitivities, nano-products have lower values by 59.9% (RDX, 56.4% (HMX, and 58.1% (CL-20, respectively. When nano-RDX and nano-HMX are used in plastic bonded explosives (PBX as alternative materials of micron-sized particles, their shock sensitivities are significantly decreased by 24.5% (RDX and 22.9% (HMX, and their detonation velocities are increased by about 1.7%. Therefore, it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants (CMDBs so that some of their properties would be improved.

  4. Optimized synthesis of nano-sized LiFePO4/C particles with excellent rate capability for lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Houbin; Miao, Cui; Meng, Yan; He, Yan-Bing; Xu, Qiang; Zhang, Xinhe; Tang, Zhiyuan

    2014-01-01

    Olivine-type LiFePO 4 /C composite with excellent rate capability and cycling stability is synthesized by an optimized ethylene glycol assisted solution-phase method. In an attempt to improve the electrochemical performance, the size of LiFePO 4 /C particle is reduced by optimizing the reaction time and temperature. The results show that the LiFePO 4 /C synthesized at 130 °C for 5 h consists of well-distributed nano-particles of size about 50 nm in diameter and 100 nm in length, which is uniformly coated with a carbon layer about 3.0 nm in thickness. The material synthesized at 130 °C exhibits the least charge-transfer resistance than the LiFePO 4 /C synthesized at 120 and 140 °C. The specific capacity of optimized LiFePO 4 /C at discharge rate of 0.1 C can reach to 166.5 mAhg −1 , nearly to the theoretical capacity. Even at high rate of 5, 10, 20 and 30 C, the specific capacities of 132.3, 120.4, 97.3 and 66.6 mAhg −1 are achieved, respectively, with no significant capacity fading after 100 cycles. This is a promising method used in industrialization to synthesize LiFePO 4 /C composite with excellent performance

  5. Study on Sumbawa gold recovery using centrifuge

    Science.gov (United States)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  6. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles...

  7. Controlled Synthesis of Gold Nanoparticles Using Aspergillus terreus IF0 and Its Antibacterial Potential against Gram Negative Pathogenic Bacteria

    International Nuclear Information System (INIS)

    Priyadarshini, E.; Pradhan, N.; Sukla, L.B.; Panda, P.K.; Pradhan, N.

    2014-01-01

    Biosynthesis of monodispersed nanoparticles, along with determination of potential responsible biomolecules, is the major bottleneck in the area of bio nano technology research. The present study focuses on an eco friendly, ambient temperature protocol for size controlled synthesis of gold nanoparticles, using the fungus Aspergillus terreus IF0. Gold nanoparticles were formed immediately, with the addition of chloroauric acid to the aqueous fungal extract. Synthesized nanoparticles were characterized by UV-Vis spectroscopy, TEM-EDX, and XRD analysis. Particle diameter and dispersity of nanoparticles were controlled by varying the ph of the fungal extract. At ph 10, the average size of the synthesized particles was in the range of 10–19 nm. Dialysis to obtain high and low molecular weight fraction followed by FTIR analysis revealed that biomolecules larger than 12 kDa and having –CH, –NH, and –SH functional groups were responsible for bioreduction and stabilization. In addition, the synthesized gold nanoparticles were found to be selectively bactericidal against the pathogenic gram negative bacteria, Escherichia coli.

  8. Time Series Modeling of Nano-Gold Immunochromatographic Assay via Expectation Maximization Algorithm.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui

    2013-12-01

    In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.

  9. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  10. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  11. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    Science.gov (United States)

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  12. Development of nano-sized α-Al2O3:C films for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.

    2011-01-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon (α-Al 2 O 3 :C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized α-Al 2 O 3 samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized α-Al 2 O 3 :C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized α-Al 2 O 3 :C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized α-Al 2 O 3 :C, in view of their improved resolution provided by nano-particulates. (author)

  13. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens.

    Science.gov (United States)

    Murphin Kumar, Paskalis Sahaya; MubarakAli, Davoodbasha; Saratale, Rijuta Ganesh; Saratale, Ganesh Dattatraya; Pugazhendhi, Arivalagan; Gopalakrishnan, Kumar; Thajuddin, Nooruddin

    2017-12-01

    Algae could offer a potential source of fine chemicals, pharmaceuticals and biofuels. In this study, a green synthesis of dispersed cuboidal gold nanoparticles (AuNPs) was achieved using red algae, Gelidium amansii reacted with HAuCl 4 . It was found to be 4-7 nm sized cubical nanoparticles with aspect ratio of 1.4 were synthesized using 0.5 mM of HAuCl 4 by HRSEM analysis. The crystalline planes (111), (200), (220), (311) and elemental signal of gold was observed by XRD and EDS respectively. The major constitutes, galactose and 3,6-anhydrogalactose in the alga played a critical role in the synthesis of crystalline AuNPs with cubical dimension. Further, the antibacterial potential of synthesized AuNPs was tested against human pathogens, Escherichia coli and Staphylococcus aureus. The synthesized AuNPs found biocompatible up to 100 ppm and high concentration showed an inhibition against cancer cell. This novel report could be helped to exploration of bioresources to material synthesis for the application of biosensor and biomedical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites

    International Nuclear Information System (INIS)

    Noor Azman, N.Z.; Siddiqui, S.A.; Hart, R.; Low, I.M.

    2013-01-01

    The effect of particle size, filler loadings and x-ray tube voltage on the x-ray transmission in WO 3 -epoxy composites has been investigated using the mammography unit and a general radiography unit. Results indicate that nano-sized WO 3 has a better ability to attenuate the x-ray beam generated by lower tube voltages (25–35 kV) when compared to micro-sized WO 3 of the same filler loading. However, the effect of particle size on x-ray transmission was negligible at the higher x-ray tube voltages (40–120 kV). - Highlights: ► Investigated the effect of particle size of WO 3 on the x-ray attenuation ability. ► Nano-sized WO 3 has a better ability to attenuate lower x-ray energies (22–49 kV p ). ► Particle size has negligible effect at the higher x-ray energy range (40–120 kV p ).

  15. Systemic antibody response to nano-size calcium phospate biocompatible adjuvant adsorbed HEV-71 killed vaccine

    OpenAIRE

    Saeed, Mohamed Ibrahim; Omar, Abd Rahaman; Hussein, Mohd Zobir; Elkhidir, Isam Mohamed; Sekawi, Zamberi

    2015-01-01

    Purpose Since 1980s, human enterovirus-71 virus (HEV-71) is one of the common infectious disease in Asian Pacific region since late 1970s without effective commercial antiviral or protective vaccine is unavailable yet. The work examines the role of vaccine adjuvant particle size and the route of administration on postvaccination antibody response towards HEV-71 vaccine adsorbed to calcium phosphate (CaP) adjuvant. Materials and Methods First, CaP nano-particles were compared to a commercial m...

  16. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  17. Femtosecond investigation of electronic and vibrational dynamics of metal nano-objects and local order in glasses

    International Nuclear Information System (INIS)

    Burgin, Julien

    2007-01-01

    In this Ph.D. work we have investigated the electronic and vibrational properties of metallic nano objects as a function of their size, shape and composition, and studied the vibrational modes in glasses, using femtosecond time-resolved spectroscopy. In mono-metallic copper clusters, acceleration of the electron-lattice energy exchanges for sizes smaller than 10 nm has been demonstrated, confirming previous results in gold and silver clusters. The small size regime, i.e., nanoparticles smaller than 2 nm, has been addressed. The results show the limit of the classical confined material approach. In bi-metallic clusters, electron-lattice interaction has been shown to reflect their composition for gold-silver materials, but exhibits a more complex behavior in the case of segregated nickel-silver particles. The impact of shape, structure and environment on the acoustic vibrations of metallic nano-objects has also been studied. Measurements performed in ensemble or pairs of prisms yielded evidence for local fluctuations of their coupling with the substrate. Nano-structuration effects have been demonstrated in nano-columns and segregated components. The vibrational modes associated to local order in glasses have been investigated using a high sensitivity impulsive stimulated Raman scattering technique. The 'defect modes' of normal and densified silica, associated to vibrations of ring structures, have been observed and characterized, yielding information on the evolution of the ring density. Performing similar measurements in germania, we have demonstrated the existence of a vibrational mode due to a similar ring structure and determined its characteristics [fr

  18. submitter The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a ...

  19. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  20. Control of cancer growth using single input autonomous fuzzy Nano-particles

    Directory of Open Access Journals (Sweden)

    Fahimeh Razmi

    2015-04-01

    Full Text Available In this paper a single input fuzzy controller is applied on autonomous drug-encapsulated nanoparticles (ADENPs to restrict the cancer growth. The proposed ADENPs, swarmly release the drug in local cancerous tissue and effectively decreases the destruction of normal tissue. The amount of released drug is defined considering to feed backed values of tumor growth rate and the used drug. Some significant characteristics of Nano particles compared to Nano-robots is their ability to recognize the cancerous tissue from the normal one and their simple structure. Nano particles became an attractive topic in Nano science and many efforts have been done to manufacture these particles. Simulation results show that the proposed controlling method not only decreases the cancerous tissue effectively but also reduces the side effects of drug impressively.

  1. Evaluation of minimum quantity lubrication grinding with nano-particles and recent related patents.

    Science.gov (United States)

    Li, Changhe; Wang, Sheng; Zhang, Qiang; Jia, Dongzhou

    2013-06-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a supply system for the grinding fluid in nano-particle jet MQL, which produced MQL lubricant by adding solid nano-particles in degradable grinding fluid. The MQL supply device turns the lubricant to the pulse drops with fixed pressure, unchanged pulse frequency and the same drop diameter. The drops will be produced and injected in the grinding zone in the form of jet flow under high pressure gas and air seal. As people become increasingly demanding on our environment, minimum quantity lubrication has been widely used in the grinding and processing. Yet, it presents the defect of insufficient cooling performance, which confines its development. To improve the heat transfer efficiency of MQL, nano-particles of a certain mass fraction can be added in the minimum quantity of lubricant oil, which concomitantly will improve the lubrication effects in the processing. In this study, the grinding experiment corroborated the effect of nano-particles in surface grinding. In addition, compared with other forms of lubrication, the results presented that the grinding force, the friction coefficient and specific grinding energy of MQL grinding have been significantly weakened, while G ratio greatly rose. These are attributed to the friction oil-film with excellent anti-friction and anti-wear performance, which is generated nano-particles at the wheel/workpiece interface. In this research, the cooling performance of nano-particle jet MQL was analyzed. Based on tests and experiments, the surface temperature was assayed from different methods, including flood lubricating oil, dry grinding, MQL grinding and nano-particle jet MQL grinding. Because of the outstanding heat transfer

  2. Use of coal-oil agglomerates for particulate gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Calvez, J.P.S.; Kim, M.J.; Wong, P.L.M.; Tran, T. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering and Industrial Chemistry

    1998-09-01

    The underlying principles by which gold is recovered by coal-oil agglomerates was investigated. The effects of various parameters such as oil:coal ratios, agglomerate:ore ratios, pH and coal particle size on gold recovery were evaluated using synthetic gold bearing samples, bituminous coal, and diesel oil and kerosene. The effects of sulfides on gold recovery and the depth of gold particle penetration within the agglomerates were also investigated. Results showed that gold recovery was increased by increasing agglomerate:ore ratio, decreasing oil:coal ratio and decreasing coal particle size. There was no significant difference in gold recoveries at pH range of 4-12 and at up to 5% sulfides in the feed.

  3. Enhanced photo-response of porous silicon photo-detectors by embeddingTitanium-dioxide nano-particles

    Science.gov (United States)

    Ali, Hiba M.; Makki, Sameer A.; Abd, Ahmed N.

    2018-05-01

    Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA / cm2), in 15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs. It has been detected that through XRD measurement, (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range.The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.

  4. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Erik B. Melchiorre

    2018-02-01

    Full Text Available Placer gold from the Devils Nest deposits at Rich Hill, Arizona, USA, was studied using a range of micro-analytical and microbiological techniques to assess if differences in (paleo-environmental conditions of three stratigraphically-adjacent placer units are recorded by the gold particles themselves. High-angle basin and range faulting at 5–17 Ma produced a shallow basin that preserved three placer units. The stratigraphically-oldest unit is thin gold-rich gravel within bedrock gravity traps, hosting elongated and flattened placer gold particles coated with manganese-, iron-, barium- (Mn-Fe-Ba oxide crusts. These crusts host abundant nano-particulate and microcrystalline secondary gold, as well as thick biomats. Gold surfaces display unusual plumate-dendritic structures of putative secondary gold. A new micro-aerophilic Betaproteobacterium, identified as a strain of Comamonas testosteroni, was isolated from these biomats. Significantly, this ‘black’ placer gold is the radiogenically youngest of the gold from the three placer units. The middle unit has well-rounded gold nuggets with deep chemical weathering rims, which likely recorded chemical weathering during a wetter period in Arizona’s history. Biomats, nano-particulate gold and secondary gold growths were not observed here. The uppermost unit is a pulse placer deposited by debris flows during a recent drier period. Deep cracks and pits in the rough and angular gold from this unit host biomats and nano-particulate gold. During this late arid period, and continuing to the present, microbial communities established within the wet, oxygen-poor bedrock traps of the lowermost placer unit, which resulted in biological modification of placer gold chemistry, and production of Mn-Fe-Ba oxide biomats, which have coated and cemented both gold and sediments. Similarly, deep cracks and pits in gold from the uppermost unit provided a moist and sheltered micro-environment for additional gold

  5. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  6. Corrosion Studies of Platinum Nano-Particles for Fuel Cells

    DEFF Research Database (Denmark)

    Shim, Signe Sarah

    The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been character......The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been...... characterized during oxygen reduction reaction (ORR) condition using identical location (IL) transmission electron microscopy (TEM). A TEM grid was used as the working electrode in an electrochemical setup allowing a direct correlation between the electrochemical response and the TEM analysis. The main results...... thirds and one monolayer of gold on platinum supported on carbon were synthesized by an inverse micelle method. The results obtained appear independent of the gold coverage. It has been shown that the electrochemical active surface areas of the platinum and platinum gold particles synthesized...

  7. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  8. Preparation of stable tea seed oil nano-particle emulsions by a low energy method with non-ionic surfactants

    Directory of Open Access Journals (Sweden)

    M. Kanlayavattanakul

    2017-06-01

    Full Text Available Tea seed oil nano-particle emulsions were prepared. Non-ionic surfactants containing Tween 80 and Span 80 (1:1, w/w were mixed with propanol (3-9:1, w/w to give Smix, which was thereafter mixed with tea seed oil. The mixture was titrated with water at 150 rpm to give clear or bluish and bluish-white emulsions. Twelve nano-particle emulsions with 64.64 to 72.73% Smix, 16.66 to 27.27% oil and 9.09 to 16.67% water with particle sizes between 207.00 to 430.10 nm, PDI of 0 to 0.4, ζ-potential of -42.00 to -49.63 mV, pH of 7.04 to 7.32 and 151.33 to 241.93 cps, were stable following an accelerated stability test and long term storage at room temperature and 4 and 45 ºC for 90 days, although one system (16.66% oil and 66.67% Smix was separated. This nano-particle emulsion formulation is concise and feasible for an industrial development of topical products containing tea seed oil.

  9. Preparation of stable tea seed oil nano-particle emulsions by a low energy method with non-ionic surfactants

    International Nuclear Information System (INIS)

    Kanlayavattanakul, M.; Lourith, N.

    2017-01-01

    Tea seed oil nano-particle emulsions were prepared. Non-ionic surfactants containing Tween 80 and Span 80 (1:1, w/w) were mixed with propanol (3-9:1, w/w) to give Smix, which was thereafter mixed with tea seed oil. The mixture was titrated with water at 150 rpm to give clear or bluish and bluish-white emulsions. Twelve nano-particle emulsions with 64.64 to 72.73% Smix, 16.66 to 27.27% oil and 9.09 to 16.67% water with particle sizes between 207.00 to 430.10 nm, PDI of 0 to 0.4, ζ-potential of -42.00 to -49.63 mV, pH of 7.04 to 7.32 and 151.33 to 241.93 cps, were stable following an accelerated stability test and long term storage at room temperature and 4 and 45 ºC for 90 days, although one system (16.66% oil and 66.67% Smix) was separated. This nano-particle emulsion formulation is concise and feasible for an industrial development of topical products containing tea seed oil. [es

  10. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Directory of Open Access Journals (Sweden)

    Wan Zhixiang

    2005-07-01

    Full Text Available Abstract Background Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR-based assays and enzyme-linked immunosorbent assays (ELISA are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS method was applied to detect HBV and HCV antibodies rapidly and simultaneously. Methods Chemically modified glass slides were used as solid supports (named chip, on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. Results We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05 existed between the results determined by our assay and ELISA respectively. Conclusion

  11. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound

    DEFF Research Database (Denmark)

    Roursgaard, Martin; Poulsen, Steen Seier; Poulsen, Lars K.

    2010-01-01

    -response profiles of nano- and micro-sized particles. The potency of the two samples cannot be compared; during the milling process, a substantial part of the quartz was converted to amorphous silica and contaminated with corundum. For screening, BALF PMN, either TNF-a or IL-1ß at 16 hours post instillation may...

  12. Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2017-02-01

    Full Text Available The nano-sized SiCp/Al–Cu composites were successfully fabricated by combining semisolid stirring with ball milling technology. Microstructures were examined by an olympus optical microscope (OM, field emission scanning electron microscope (FESEM and transmission electron microscope (TEM. Tensile properties were studied at room temperature. The results show that the α-Al dendrites of the composites were strongly refined, especially in the composite with 3 wt. % nano-sized SiCp, of which the morphology of the α-Al changes from 200 μm dendritic crystal to 90 μm much finer equiaxial grain. The strength and ductility of the composites are improved synchronously with the addition of nano-sized SiCp particles. The as-cast 3 wt. % nano-sized SiCp/Al–Cu composite displays the best tensile properties, i.e., the yield strength, ultimate tensile strength (UTS and fracture strain increase from 175 MPa, 310 MPa and 4.1% of the as-cast Al–Cu alloy to 220 MPa, 410 MPa and 6.3%, respectively. The significant improvement in the tensile properties of the composites is mainly due to the refinement of the α-Al dendrites, nano-sized SiCp strengthening, and good interface combination between the SiCp and Al–Cu alloys.

  13. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    Science.gov (United States)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  14. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    Science.gov (United States)

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Gao Ruorui; Zhang Yue; Yu Wei; Xiong Rui; Shi Jing

    2012-01-01

    MnFe 2 O 4 nano-particles with an average size of about 7 nm were synthesized by the thermal decomposition method. Based on the magnetic hysteresis loops measured at different temperatures the temperature-dependent saturation magnetization (M S ) and coercivity (H C ) are determined. It is shown that above 20 K the temperature-dependence of the M S and H C indicates the magnetic behaviors in the single-domain nano-particles, while below 20 K, the change of the M S and H C indicates the freezing of the spin-glass like state on the surfaces. By measuring the magnetization–temperature (M–T) curves under the zero-field-cooling (ZFC) and field-cooling procedures at different applied fields, superparamagnetism behavior is also studied. Even though in the ZFC M–T curves peaks can be observed below 160 K, superparamagnetism does not appear until the temperature goes above 300 K, which is related with the strong inter-particle interaction. - Highlights: ► MnFe 2 O 4 nano-particles with size of 7 nm were prepared. ► The surface spin-glass like state is frozen below 20 K. ► The peaks in ZFC magnetization–temperature curves are observed below 160 K. ► The inter-particle interaction inhibits the superparamagnetism at room temperature.

  16. The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Ting; Shi, Shaojun; Kong, Fanjun; Yang, Gang; Qian, Bin; Yin, Fan

    2016-01-01

    Graphical abstract: After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation of the active material and conductive carbon, but also results in the falling of active material from the current collector. Nano-FNO can remain the excellent capacity after dozens of cycles. - Abstract: Nano-sized FeNbO 4 (Nano-FNO) with an average diameter of 120 nm is facilely prepared by co-precipitation method. Bulk FeNbO 4 (Micro-FNO) as a comparison synthesized by conventional solid-state synthesis has an average grain size of 3–10 μm. In the high-resolution transmission electron microscopy (HRTEM) images, Nano-FNO reveals an ordered single crystal structure, but Mirco-FNO is composed of disordered crystallites with different crystal orientation. Nano-FNO as anode material delivers the initial capacity of 475 mAh g −1 which is much higher than Micro-FNO electrode of 250 mAh g −1 .After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation between the active material and conductive carbon, but also results in the falling of active material from the current collector. Compared with the weakened electrochemical performances of Micro-FNO, Nano-FNO remains the excellent capacity after dozens of cycles. The charge transfer resistances of Nano-FNO and Micro-FNO after several cycles are further studied by fitting their electrochemical impedance spectra.

  17. Synthesis of nano-sized PbSe from octeno-1,2,3-selenadiazole

    International Nuclear Information System (INIS)

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Viswanath, A.K.; Patil, K.R.

    2007-01-01

    Reaction between trioctylphosphine selenide (TOPSe), generated from an organo-selenium compound, i.e. octeno-1,2,3-selenadiazole in tri-octylphosphine (TOP), and lead acetate has resulted formation of PbSe nano-crystals (cubes). TOPSe generated from the current method is first of its kind approach and is a novel concept. Characteristic absorption bands between 1.8-2.1 μm in near infra-red spectrum (NIR) are observed from sonicated PbSe crystals. X-ray diffraction (XRD) pattern revealed rock-salt crystal structure of PbSe with crystallite size of less than 10 nm. Observations made by scanning electron microscopy (SEM) revealed well-defined particles of the cubical crystals. XPS analysis showed that nano-crystals of PbSe were prone to air-oxidation due to 'not-so-efficient' capping

  18. Incorporation of self-organised gold nano crystals in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films: Modification of superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Westerhausen, Markus; Koch, Stefanie; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany); Treiber, Sebastian [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2012-07-01

    Using pulsed laser deposition we are able to fabricate and examine Yttrium-Barium-Copper-Oxide (YBCO) thin films of high quality. A particular point of interest thereby is the influence of a pre-deposited gold layer with a well-defined film thickness. During the growth of the YBCO thin film the intermediate gold layer self assembles into crystalline nano particles, which modify the growth conditions and hence the physical properties of the growing YBCO. We report on the modification of structural and superconducting properties of our YBCO thin films (such as rocking curve widths, critical temperature T{sub c} and critical current density j{sub c}) comparing conventional to Au added YBCO. The temperature dependence of the critical current density thereby was determined using transport measurements as well as magneto-optical measurements. Furthermore investigations of the flux noise of our gold modified YBCO films are presented.

  19. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  20. The use of nano-sized eggshell powder for calcium fortification of cow?s and buffalo?s milk yogurts.

    Science.gov (United States)

    El-Shibiny, Safinaze; El-Gawad, Mona Abd El-Kader Mohamed Abd; Assem, Fayza Mohamed; El-Sayed, Samah Mosbah

    2018-01-01

    Calcium is an essential element for the growth, activity, and maintenance of the human body. Eggshells are a waste product which has received growing interest as a cheap and effective source of dietary calcium. Yogurt is a food which can be fortified with functional additives, including calcium. The aim of this study was to produce yogurt with a high calcium content by fortification with nano-sized eggshell powder (nano-ESP). Nano-sized ESP was prepared from pre-boiled and dried eggshell, using a ball mill. Yogurt was prepared from cow’s milk supplemented with 3% skimmed milk powder, and from buffalo’s milk fortified with 0.1, 0.2 and 0.3% and 0.1, 0.3 and 0.5% nano-ESP respectively. Electron microscopic transmission showed that the powder consisted of nano-sized crystalline struc- tures (~10 nm). Laser scattering showed that particles followed a normal distribution pattern with z-average of 590.5 nm, and had negative zeta-potential of –9.33 ±4.2 mV. Results regarding changes in yogurt composi- tion, acid development, calcium distribution, biochemical changes, textural parameters and sensory attributes have been presented and discussed. The addition of up to 0.3% nano-ESP made cow and buffalo high-calcium yogurts with an acceptable composition and quality. High-calcium yogurt may offer better health benefits, such as combating osteoporosis.

  1. Nano-particles for therapeutical purposes: an innovative approach for the radiotherapy of cancer

    International Nuclear Information System (INIS)

    Borghi, E.; Said, P.; Pottier, A.; Levy, L.

    2010-01-01

    Nano-technology can be used to manage and assemble substances in unprecedented ways in the history of products for human health. Underlying this revolution are the possibilities for using new therapeutic processes and separating a drug's various functions (distribution, effects, etc.). This is not possible with classical drugs. Nano-medicine has made it possible to develop new approaches to treating cancer, by using nano-particles with physical effects at the scale of the malignant cell. Hard metallic oxide nano-particles have been designed so that they can play a therapeutic role when activated by x-rays. The x-rays irradiation will free electrons from the metallic oxide, these electrons will lose energy through collisions with water molecules and will create free radicals in the cells. These free radicals are very reactive and will damage the covalent bounds of the molecules located around the nano-particles. Clinical tests on man are expected to begin very soon. These 'x-ray-activable' nano-particles might set off a revolution in the practice of radiotherapy for destroying or controlling malignant tumors

  2. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  3. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  4. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Bahl, Christian R. H.; DiMasi, Elaine

    2007-04-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co K α radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.

  5. Deposition kinetics of nanocolloidal gold particles

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Hakbijl, Mark; Wormeester, Herbert; Poelsema, Bene

    2005-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane (APTES), is investigated in situ using single wavelength optical reflectometry. A well-defined flow of colloids towards the

  6. Parametric investigations on the influence of nano-second Nd{sup 3+}:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Nandini, E-mail: nandinipatra2007@gmail.com [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R. [Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Singh, Vipul [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India)

    2016-03-15

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm{sup 2}, 30 J/cm{sup 2} and 20 J/cm{sup 2}) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni{sub 4}Ti{sub 3} and Ni{sub 3}Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm{sup 2} fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm{sup 2}. Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  7. Preparation of Lipid Nano emulsions Incorporating Curcumin for Cancer Therapy

    International Nuclear Information System (INIS)

    Anuchapreeda, S.; Anuchapreeda, S.; Fukumori, Y.; Ichikawa, H.; Okonogi, S.

    2012-01-01

    The aim of this study was to develop a new formulation of a curcumin lipid nano emulsion having the smallest particle size, the highest loading, and a good physical stability for cancer chemotherapy. Curcumin lipid nano emulsions were prepared by a modified thin-film hydration method followed by sonication. Soybean oil, hydrogenated L-α-phosphatidylcholine from egg yolk, and co surfactants were used to formulate the emulsions. The resultant nano emulsions showed mean particle diameter of 47-55 nm, could incorporate 23-28 mg curcumin per 30 mL, and were stable in particle size for 60 days at 4 degree C. The cytotoxicity studies of curucumin solution and curcumin-loaded nano emulsion using B16F10 and leukemic cell lines showed IC 50 values ranging from 3.5 to 30.1 and 22.2 to 53.7μM, respectively. These results demonstrated the successful incorporation of curcumin into lipid nano emulsion particles with small particle size, high loading capacity, good physical stability, and preserved cytotoxicity

  8. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  9. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Science.gov (United States)

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  10. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  11. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley; Chowdhury, Snehaunshu; Roberts, William L.

    2017-01-01

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  12. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  13. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    Science.gov (United States)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  14. Comparison of flux motion in type-II superconductors including pinning centers with the shapes of nano-rods and nano-particles by using 3D-TDGL simulation

    International Nuclear Information System (INIS)

    Ito, Shintaro; Ichino, Yusuke; Yoshida, Yutaka

    2015-01-01

    Highlights: • We constructed the 3D-TDGL simulator to calculate the flux motion. • We assumed two superconductors including only nano-rods and only nano-particles. • We succeeded to simulate the flux motion for various magnetic field angles. • If anyone introduce nano-rod, controlling the “single-kink” motion is very important. • The introduction of nano-particles is effective to pin the “single-kink” motion. - Abstract: Time-dependent Ginzburg–Landau (TDGL) equations are very useful method for simulation of the motion of flux quanta in type-II superconductors. We constructed the 3D-TDGL simulator and succeeded to simulate the motion of flux quanta in 3-dimension. We carried out the 3D-TDGL simulation to compare two superconductors which included only pinning centers with the shape of nano-rods and only nano-particle-like pinning centers in the viewpoint of the flux motion. As a result, a motion of “single-kink” caused the whole motion of a flux quantum in the superconductor including only the nano-rods. On the other hand, in the superconductor including the nano-particles, the flux quanta were pinned by the nano-particles in the various magnetic field applied angles. As the result, no “single-kink” occurred in the superconductor including the nano-particles. Therefore, the nano-particle-like pinning centers are effective shape to trap flux quanta for various magnetic field applied angles.

  15. Validity of Dynamic Light Scattering Method to Analyze a Range of Gold and Copper Nanoparticle Sizes Attained by Solids Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Yu. V. Golubenko

    2014-01-01

    Full Text Available Nanoparticles of metals possess a whole series of features, concerned with it’s sizes, this leads to appearing or unusual electromagnetic and optical properties, which are untypical for particulates.An extended method of receiving nanoparticles by means of laser radiation is pulse laser ablation of hard targets in liquid medium.Varying the parameters of laser radiation, such as wavelength of laser radiation, energy density, etc., we can operate the size and shape of the resultant particles.The greatest trend of application in medicine have the nanoparticles of iron, copper, silver, silicon, magnesium, gold and zinc.The subject matter in this work is nanoparticles of copper and gold, received by means of laser ablation of hard targets in liquid medium.The aim of exploration, represented in the article, is the estimation of application of the dynamic light scattering method for determination of the range of nanoparticles sizes in the colloidal solution.For studying of the laser ablation process was chosen the second harmonic of Nd:YAG laser with the wavelength of 532 nm. Special attention was spared for the description of the experiment technique of receiving of nanoparticles.As the liquid medium ethanol and distillation water were used.For exploration of the received colloidal system have been used the next methods: DLS, transmission electron microscopy (TEM and scanning electron microscopy (SEM.The results of measuring by DLS method showed that colloidal solution of the copper in the ethanol is the steady system. Copper nanoparticle’s size reaches 200 nm and is staying in the same size for some time.Received system from the gold’s nanoparticles is polydisperse, unsteady and has a big range of the nanoparticle’s sizes. This fact was confirmed by means of photos, got from the TEM FEI Tecnai G2F20 + GIF and SEM Helios NanoLab 660. The range of the gold nanoparticle’s sizes is from 5 to 60 nm. So, it has been proved that the DLS method is

  16. [Preparation of nano-nacre artificial bone].

    Science.gov (United States)

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  17. Antibacterial performance of nano polypropylene filter media containing nano-TiO{sub 2} and clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham, E-mail: e.naghashzargar@tx.iut.ac.ir; Semnani, Dariush, E-mail: d-semnani@cc.iut.ac.ir [Isfahan University of Technology, Department of Textile Engineering (Iran, Islamic Republic of)

    2015-10-15

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO{sub 2} were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO{sub 2} nanoparticles.

  18. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    International Nuclear Information System (INIS)

    Ma, H.; Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M.; Glenn, T.C.; Williams, P.L.

    2011-01-01

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: → Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. → This phototoxicity was well-correlated to photocatalytic ROS generation. → Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. → Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. → Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  19. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H., E-mail: mah77@uga.edu [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States); Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M. [Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 (United States); Glenn, T.C.; Williams, P.L. [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

    2011-06-15

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: > Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. > This phototoxicity was well-correlated to photocatalytic ROS generation. > Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. > Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. > Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  20. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  1. Particle size dependent confinement and lattice strain effects in LiFePO4.

    Science.gov (United States)

    Shahid, Raza; Murugavel, Sevi

    2013-11-21

    We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.

  2. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.

    1990-01-01

    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  3. PLA micro- and nano-particles.

    Science.gov (United States)

    Lee, Byung Kook; Yun, Yeonhee; Park, Kinam

    2016-12-15

    Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nano-Protrusive Gold Nanoparticle-Hybridized Polymer Thin Film as a Sensitive, Multipatternable, and Antifouling Biosensor Platform.

    Science.gov (United States)

    Lee, Jeong-Hoon; Park, Byung-Soo; Ghang, Hyun-Gu; Song, Hyunjoon; Yang, Sung Yun

    2018-04-25

    Hybrid films consisting of anisotropic octahedral gold nanoparticles (AuNPs) and polymers had their surfaces functionalized and were immobilized on surface plasmon resonance (SPR) sensors for biomolecule detection. Specifically, carboxylated octahedral AuNPs (C-Oh-AuNPs) and poly(allylamine hydrochloride) (PAH) were assembled as ultrathin films by using a layer-by-layer process. The ionic strength generated from the functional groups of C-Oh-AuNP and PAH influenced the composition, its surface morphology, and the reactivity of the film toward further chemical reactions such as the synthesis of spherical AuNPs (S-AuNPs). We were thus able to control the size and the structure of the C-Oh-AuNP and S-AuNPs converted to nano-raspberry-shaped particles. This hierarchical AuNP hybrid film exhibits much more sensitive and stable detection of biomolecules than regular flat chip systems, and this result may be due to the SPR of the AuNP at its surface being able to markedly enhance the local optical field of the chip. The micropatterning of the hybrid coating was also studied by using a soft lithographic patterning method. We, in particular, worked on creating multiplex patterns having different combinations of shapes and fluorescent colors. We expect our hybrid coating system with multicode biomolecular arrays to be used as a powerful platform for biosensor applications.

  5. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate.

    Science.gov (United States)

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed.

  6. Development of nano-sized {alpha}-Al{sub 2}O{sub 3}:C films for application in digital radiology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edna C., E-mail: edca@cdtn.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear; Fontainha, Crissia C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Dept. de Propedeutica Complemetar; Oliveira, Vitor H.; Ferraz, Wilmar B.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon ({alpha}-Al{sub 2}O{sub 3}:C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized {alpha}-Al{sub 2}O{sub 3} samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized {alpha}-Al{sub 2}O{sub 3}:C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized {alpha}-Al{sub 2}O{sub 3}:C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized {alpha}-Al{sub 2}O{sub 3}:C, in view of their improved resolution provided by nano-particulates. (author)

  7. Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth

    Czech Academy of Sciences Publication Activity Database

    Siegel, J.; Záruba, K.; Švorčík, V.; Kroumanová, Kristýna; Burketová, Lenka; Martinec, Jan

    2018-01-01

    Roč. 13, APR 10 (2018), č. článku 95. ISSN 1556-276X R&D Projects: GA ČR GA17-10907S; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Concentration * Gold nanoparticles * Root growth * Size Subject RIV: JJ - Other Materials OBOR OECD: Plant sciences, botany Impact factor: 2.833, year: 2016

  8. Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking

    Science.gov (United States)

    Lim, Jitkang

    The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of

  9. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  11. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    Science.gov (United States)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  12. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  13. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng; Grigoropoulos, Costas

    2014-01-01

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  14. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng

    2014-03-14

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  15. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  16. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Katata, Lebogang, E-mail: lebzakate@yahoo.com; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda [Materials Science and Manufacturing, Centre of Polymers and Composites, Council for Scientific and Industrial Research (South Africa)

    2012-11-15

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 {mu}g/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L{sub 8} orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 {+-} 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 {+-} 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 {+-} 2.48 nm and 0.093 {+-} 0.02.

  17. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    International Nuclear Information System (INIS)

    Katata, Lebogang; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda

    2012-01-01

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L 8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.

  18. Induktionsopvarmning af nano-guldkrystaller i en MR-skanner

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2007-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature  the idea arose, for a new non-invasive thermotherapy technique, based on radio  frequency inductive heating of nano gold particles in an MR-scanner. Thermot-  herapy is getting considerably attention...... at the moment, especially in the fields of  lasers, they though have some problems concerning the placement of the tumor  in the human body. Local heating by MR has tremendous advance in compa-  rison too lasers. The first step is to validate the hypothesis of the inductive  heating of the gold nano particles...... trough the low energy radio frequencies. If  the method is demonstrated to be feasible, next step is testing in cell line trials Methods   Inductive heating of highly conductive nanodimension metals, in an MR-scanner.  Non-invasive thermometry of the local areas around the metals. Results...

  19. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    Science.gov (United States)

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  20. Directive properties of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, W.

    2012-01-01

    and optical gain constant on the directivities. While significant variations in the directivities are realized in the cylindrical cases for different source locations within and slightly outside the nano-particles and values of the optical gain constant, the corresponding spherical cases exhibit negligible...

  1. Coal-oil assisted flotation for the gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.; Seyrankaya, A.; Cilingir, Y. [Dokuz Eylul University, Izmir (Turkey). Mining Engineering Department

    2005-09-01

    Using coal-oil agglomeration method for free or native gold recovery has been a research subject for many researchers over the years. In this study, a new approach 'coal-oil assisted gold flotation' was used to recover gold particles. The coal-oil-gold agglomeration process considers the preferential wetting of coal and gold particles. The method takes advantage of the greater hydrophobicity and oleophilicity of coal and gold compared to that the most gangue materials. Unlike the previous studies about coal-oil-gold agglomeration, this method uses a very small amount of coal and agglomerating agents. Some experiments were conducted on synthetic gold ore samples to reveal the reaction of the coal-oil assisted gold flotation process against the size and the number of gold particles in the feed. It was observed that there is no significant difference in process gold recoveries for feeds assaying different Au. Although there was a slight decrease for coarse gold particles, the process seems to be effective for the recovery of gold grains as coarse as 300 {mu} m. The decrease in the finest size ({lt} 53 {mu} m) is considered to be the decrease in the collision efficiency between the agglomerates and the finest gold particles. The effect of changing coal quantity for constant ore and oil amounts was also investigated. The experiments showed that the process gives very similar results for both artificial and natural ore samples; the best results have been obtained by using 30/1 coal-oil ratio.

  2. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  3. Structural stability of nano-sized clusters

    NARCIS (Netherlands)

    De Hosson, JTM; Palasantzas, G; Vystavel, T; Koch, S; Ovidko,; Pande, CS; Krishnamoorti, R; Lavernia, E; Skandan, G

    2004-01-01

    This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during

  4. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Porthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  5. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  6. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  7. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    International Nuclear Information System (INIS)

    AbdEl-Rehim, H.; Hegazy, E.A.; Eid, A.; Amr; Ali, A.

    2010-01-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  8. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, H.; Hegazy, E. A.; Eid, A.; Amr,; Ali, A., E-mail: ha_rehim@hotmail.com [National Centre for Radiation Research, Research Centre (NCRRT), Atomic Energy Authority NCRRT, P.O.Box 29, Nasr City, Cairo (Egypt)

    2010-07-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  9. Stable Poly(methacrylic acid Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation

    Directory of Open Access Journals (Sweden)

    Marcello Iacono

    2015-08-01

    Full Text Available The synthesis of polymer brush decorated silica nano-particles is demonstrated by activator regeneration by electron transfer atom transfer radical polymerization (ARGET ATRP grafting of poly(tert-butyl methacrylate. ATRP initiator decorated silica nano-particles were obtained using a novel trimethylsiloxane derivatised ATRP initiator obtained by click chemistry. Comparison of de-grafted polymers with polymer obtained from a sacrificial initiator demonstrated good agreement up to 55% monomer conversion. Subsequent mild deprotection of the tert-butyl ester groups using phosphoric acid yielded highly colloidal and pH stable hydrophilic nano-particles comprising approximately 50% methacrylic acid groups. The successful bio-conjugation was achieved by immobilization of Horseradish Peroxidase to the polymer brush decorated nano-particles and the enzyme activity demonstrated in a conversion of o-phenylene diamine dihydrochloride assay.

  10. Nano Size Crystals of Geothite, alpha-FeOOH: Synthesis and Thermal Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen,A.; Jensen, T.; Bahl, C.; DiMasi, E.

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, {alpha}-FeOOH crystallized from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co K{alpha} radiation showed that the only iron containing crystalline phase present in the recovered product was {alpha}-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of {alpha}-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of {alpha}-FeOOH transformed to {alpha}-Fe{sub 2}O{sub 3} in the temperature range 444--584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from {alpha}-Fe{sub 2}O{sub 3} to follow the decrease of intensity from {alpha}-FeOOH in agreement with the topotactic phase transition.

  11. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  12. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  13. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)

  14. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  15. Patterning of gold nano-octahedra using electron irradiation combined with thermal treatment and post-cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Nam; Kum, Jong Min [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering (Korea, Republic of); Lee, Hyeok Moo [Korea Atomic Energy Research Institute (KAERI), Research Division for Industry and Environment (Korea, Republic of); Cho, Sung Oh, E-mail: socho@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering (Korea, Republic of)

    2012-03-15

    A novel approach to pattern nanocrystalline gold (Au) octahedra is presented based on electron irradiation combined with thermal treatment and post-cleaning process using HAuCl{sub 4}-loaded poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) as a precursor material. The BCP tends to cross-link under electron irradiation, and thus a patterned film can be prepared by selectively irradiating an electron beam onto a precursor film using a shadow mask. A post-thermal treatment leads to the formation of crystalline Au nano-octahedra inside the patterned film with a help of the BCP acting as a capping agent. Subsequently, the BCP can be removed by O{sub 2} plasma etching combined with oxidative degradation, with the Au nanoparticles remaining. As a result, a patterned film consisting of high-purity nanocrystalline Au octahedra is fabricated. The sizes of the Au octahedral nanoparticles can be readily controlled from 49 to 101 nm by changing the thickness of the precursor film. The patterned Au nano-octahedra films exhibit excellent surface-enhanced Raman scattering behavior with the maximum enhancement factor of {approx}10{sup 6}.

  16. Synthesis of nanometer-size inorganic materials for the examination of particle size effects on heterogeneous catalysis

    Science.gov (United States)

    Emerson, Sean Christian

    The effect of acoustic and hydrodynamic cavitation on the precipitation of inorganic catalytic materials, specifically titania supported gold, was investigated. The overall objective was to understand the fundamental factors involved in synthesizing nanometer-size catalytic materials in the 1--10 nm range in a cavitating field. Materials with grain sizes in this range have been associated with enhanced catalytic activity compared to larger grain size materials. A new chemical approach was used to produce titania supported gold by co-precipitation with higher gold yields compared to other synthesis methods. Using this approach, it was determined that acoustic cavitation was unable to influence the gold mean crystallite size compared to non-sonicated catalysts. However, gold concentration on the catalysts was found to be very important for CO oxidation activity. By decreasing the gold concentration from a weight loading of 0.50% down to approximately 0.05%, the rate of reaction per mole of gold was found to increase by a factor of 19. Hydrodynamic cavitation at low pressures (6.9--48 bar) was determined to have no effect on gold crystallite size at a fixed gold content for the same precipitation technique used in the acoustic cavitation studies. By changing the chemistry of the precipitation system, however, it was found that a synergy existed between the dilution of the gold precursor solution, the orifice diameter, and the reducing agent addition rate. Individually, these factors were found to have little effect and only their interaction allowed gold grain size control in the range of 8--80 nm. Further modification of the system chemistry and the use of hydrodynamic cavitation at pressures in excess of 690 bar allowed the systematic control of gold crystallite size in the range of 2--9 nm for catalysts containing 2.27 +/- 0.17% gold. In addition, it was shown that the enhanced mixing due to cavitation led to larger gold yields compared to classical syntheses. The

  17. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, A. L. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon esq. Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Cabrera L, L. I. [UNAM-UAEM, Centro Conjunto de Investigacion en Quimica Sustentable, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico)

    2015-07-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  18. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Gonzalez M, A. L.; Cabrera L, L. I.

    2015-01-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  19. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  20. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment.

    Science.gov (United States)

    Liao, Chung-Min; Chio, Chia-Pin; Chen, Wei-Yu; Ju, Yun-Ru; Li, Wen-Hsuan; Cheng, Yi-Hsien; Liao, Vivian Hsiu-Chuan; Chen, Szu-Chieh; Ling, Min-Pei

    2011-06-15

    Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition fraction and internal organic-specific PAHs doses. A probabilistic risk assessment framework was developed to estimate potential lung cancer risk. We reanalyzed particle size distribution, total-PAHs, particle-bound benzo(a)pyrene (B[a]P) and PM concentrations. A dose-response profile describing the relationships between external B[a]P concentration and lung cancer risk response was constructed based on population attributable fraction (PAF). We found that 90% probability lung cancer risks ranged from 10(-5) to 10(-4) for traffic-related nano and ultrafine particle-bound PAHs, indicating a potential lung cancer risk. The particle size-specific PAF-based excess annual lung cancer incidence rate due to PAHs exposure was estimated to be less than 1 per 100,000 population, indicating a mild risk factor for lung cancer. We concluded that probabilistic risk assessment linked PAF for limiting cumulative PAHs emissions to reduce lung cancer risk plays a prominent role in future government risk assessment program. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling

    Directory of Open Access Journals (Sweden)

    VIŠESLAVA RAJKOVIĆ

    2009-05-01

    Full Text Available The powder Cu– Al2O3 composites were produced by high-energy milling. Various combinations of particle size and mixtures and approximately constant amount of Al2O3 were used as the starting materials. These powders were separately milled in air for up to 20 h in a planetary ball mill. The copper matrix was reinforced by internal oxidation and mechanical alloying. During the milling, internal oxidation of pre-alloyed Cu-2 mass %-Al powder generated 3.7 mass % Al2O3 nano-sized particles finely dispersed in the copper matrix. The effect of different size of the starting copper and Al2O3 powder particles on the lattice parameter, lattice distortion and grain size, as well as on the size, morphology and microstructure of the Cu– Al2O3 composite powder particles was studied.

  2. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  3. Impact of gold nanoparticles combined to X-Ray irradiation on bacteria

    International Nuclear Information System (INIS)

    Simon-Deckers, A.; Gouget, B.; Carriere, M.; Brun, E.; Sicard-Roselli, C.

    2008-01-01

    Recent increase of multi drug-resistant bacteria represents a crucial issue of public health. As innovative approaches are required to face that problem, those emerging from nano-technology are of great interest. In that context we propose the possibility to use gold nano-particles combined with ionising radiation to destroy pathogenic bacteria. For that, we investigated the potential X-Rays enhanced reduction of bacterial cell viability, following nanoparticle exposure, on a bacterial model, Escherichia coli. Our first concern was to confirm the absence of toxicity of the colloidal solution used. Then, we developed an X-Ray irradiation system and showed that gold nanoparticles increased the efficiency of ionising radiation to induce bacteria cell death. (authors)

  4. UV-Visible intensity ratio (aggregates/single particles) as a measure to obtain stability of gold nanoparticles conjugated with protein A

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M. A. [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico); Garcia-Perez, B. E. [Instituto Politecnico Nacional, Departamento de Inmunologia, ENCB (Mexico); Jaramillo-Flores, M. E. [Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, ENCB (Mexico); Gayou, V. L.; Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [Instituto Politecnico Nacional, CIBA-Tlaxcala (Mexico)

    2013-05-15

    We have analyzed the titration process of gold nanoparticles with several amounts of protein A (0.3, 0.5, 1, 3, 6, and 9 {mu}g/ml) in the presence of NaCl, which induces aggregation if the surface of particles is not fully covered with protein A. The colloidal solutions with different particle size (16, 18, 20, 33 nm) were synthesized by citrate reduction to be conjugated with protein A. UV-Visible spectroscopy was used to measure the absorption of the surface plasmon resonance of gold nanoparticles as a function of the concentration of protein A. Such dependence shows an aggregation region (0 < x<6 {mu}g/ml), where the amount of protein A was insufficient to cover the surface of particles, obtaining aggregation caused by NaCl. The next part is the stability region (x {>=} 6 {mu}g/ml), where the amount of protein used covers the surface of particles and protects it from the aggregation. In addition to that the ratio between the intensities of both: the aggregates and of the gold nanoparticle bands was plotted as a function of the concentration of protein A. It was determined that 6 {mu}g/ml is a sufficient value of protein A to stabilize the gold nanoparticle-protein A system. This method provides a simple way to stabilize gold nanoparticles obtained by citrate reduction, with protein A.

  5. Investigation of effective parameters in preparation and controlling lithium fluoride nano size powder

    International Nuclear Information System (INIS)

    Naderi, S.; Sarraf Mamoory, F.; Riahi Noori, N.

    2007-01-01

    In this research, the reaction of LiOH + HF+LiF+H 2 O has been selected and some precipitation parameters such as pH, temperature, time, super saturation, q d agitation type have been studied, and controlled. The morphology, phase analysis and particle size of the resulting powders were analyzed by SEM, XRD and LPSA. Finally, at temperature 2S d ig C , pH of about 2-3, reaction time less than 1 sec, and agitation by ultrasonic bath, the pure nano lithium fluoride powders of about 100 nm were produced

  6. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    Science.gov (United States)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  7. Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

    Directory of Open Access Journals (Sweden)

    M. A. Moghri Moazzen

    2012-09-01

    Full Text Available ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. The particle  size  and structure of the products have been confirmed by XRD. The FT-IR study  confirms  the  presence  of  functional  groups.  Also,  the morphology  and  size  distribution  of  ZnO  nanoparticles  was analyzed by TEM images. The optical properties were investigated by UV–Visible  spectroscopy. The XRD  results  show  that  the  size of  the prepared nanoparticles  is  in  the  range  of 20–40 nm, which this value  is  in good agreement with  the TEM  results. The FT-IR spectrum clearly indicates the formation of an interfacial chemical bond between Zn and O. Also  the UV absorption depends on  the particles  size  and morphology,  so  the  optical properties  enhances with  decreasing  nanoparticles  size.  Moreover  the  direct precipitation technique is a feasible method for production of ZnO nanopowders.

  8. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  9. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  10. Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elnaz Shaabani

    2017-04-01

    Full Text Available Objective(s: Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanoparticles coated with citrate and curcumin and of two different sizes via chemical routes. UV-Vis absorbance spectroscopy, Dynamic Light Scattering and Transmission Electron Microscopy were applied to study the average particle size, size stability of the samples and zeta potential. Fourier transform infrared, Raman Spectroscopy and Fluorescence Spectroscopy were applied for detection of curcumin on the surface of GNPs. The antioxidant activity was evaluated using DPPH assay and Cytotoxicity was evaluated by MTT assay.Results: Particles were synthesized of 6 and 16 nm size. The average particle size was found to be 21.7 ± 5.7 by TEM. The zeta potential on the surface of Cur-GNPs was negative and larger than 25 mV which is a sign of their high stability. The stability of these particles (with different coatings but with similar sizes at different time intervals (up to 3 months and also in different media like cell culture medium, different buffers, glucose and at different pH conditions have been investigated thoroughly. Appearance of functional groups assigned to curcumin in FTIR and SERS spectra are sign of presence of curcumin in the sample. The quenching of the fluorescence in the presence of GNPs reveals the clear indication of the capping and binding of curcumin with GNPs. Cur-GNP1 (16 nm were found to exhibit highest antioxidant activity than other gold nanoparticles. Cytotoxicity evaluation using MTT assay on L929 cell line proved curcumin coated gold nanoparticles were non-toxic up to 40 ppm.Conclusion: The results revealed that larger curcumin

  11. Synthesis and characterization of nano silver ferrite composite

    International Nuclear Information System (INIS)

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  12. Influence of particle size on appearance and in vitro efficacy of sunscreens

    Directory of Open Access Journals (Sweden)

    Débora Granemann e Silva

    2013-06-01

    Full Text Available Nanotechnology applies to diverse sectors of science. In cosmetic area, investments have strengthened the idea that nanoproducts provide innumerable benefits to consumers. Extreme exposition to solar light can cause undesirable effects, thus, adding UV filters in cosmetic products are often used as prevention. Ethylhexyl methoxycinnamate and benzophenone-3 are UV filters widely used in sunscreen formulations, this UV filters absorb UVB and UVA radiation, respectively. In this study, sunscreen formulations were developed as nano and macroemulsion, but composed by the same raw material. Nanoemulsion was obtained by phase inversion temperature method (PIT. Physical and functional properties were evaluated by visual analysis, particle size distribution and by diffuse reflectance spectrophotometry. Achieved nanoemulsion showed bluish brightness aspect, less apparent consistency than macroemulsion, stability longer than 48 hours (22.0 ± 2.0 °C and bimodal particle size distribution with average (mean sizes around 10 nm (61% and 4.5 µm (39%. Macroemulsion showed milky aspect, higher consistency than nanoemulsion, instability after 48 hours (22.0 ± 2.0 °C and bimodal particle size distribution with average (mean size around 202 nm (9% and 10.4 µm (91%. Effectiveness profile of sunscreen formulations remained apparently similar, based on achieved results of in vitro SPF, UVA/UVB ratio and critical wavelength assays.

  13. Concrete surface with nano-particle additives for improved wearing resistance to increasing truck traffic.

    Science.gov (United States)

    2012-07-01

    This study focused on the use of nanotechnology in concrete to improve the wearing resistance of concrete. The nano : materials used were polymer cross-linked aerogels, carbon nanotubes, and nano-SiO2, nano-CaCO3, and nano-Al2O3 : particles. As an in...

  14. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  15. Dispersion and deagglomerat1on of nano-SiO2 particles with a silane modification reagent in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Stojanović Dušica B.

    2007-01-01

    Full Text Available The supercritical CO2 method was used in order to perform deagglomeration and improve the dispersion of nano-SiO2 particles. γ-Met-hacryloxypropyltrimethoxysilane was used as the surface modification reagent. The conventional method for coating nano-SiO2 particles was used as the comparison method. Considerable improvement of the dispersion and deagglomeration was found using supercritical CO2. Analysis of the TEM micrographs and DLS results showed the reduction of the average size of the agglomerates with the silane coupling reagent. Thermogravimetric analysis (TGA showed that the particles treated in super­critical CO2 were more thermally stable than particles treated by conventional method. Encapsulation of several particles coated with the silane coupling reagent was observed in certain parts of the primary particles. A chemical reaction takes place between the modification reagent, MEMO silane, and active hydroxyl groups on the surface of the nano-SiO2 particles. A larger quantity of MEMO silane reacted using the con­ventional method instead of the supercritical method. On the other hand, the reacted silane molecules were better arranged around the particle surface in the supercritical method because of the formation of covalent or self-assembled structures. Polycondensed structures were preferentially obtained in the conventional method. This was achieved by using supercritical CO2, which has a high solvating power such as organic solvents and physical properties (low viscosity, low surface tension and high diffusion coefficient similar to gases on the other side. These properties enable the sufficient and uniform wettability of nano-SiO2 particle surfaces. These results are important for obtaining nanofillers with improved dispersion and polymer wettability. Such nanofillers can be used to obtain composite materials with considerably improved mechanical characteristics.

  16. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  17. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  18. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  19. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nyarku, M.; Nyarko, B.J.B.; Serfor-Armah, Y.; Osae, S.

    2010-01-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 μm and grains >2000 μm were not considered for analysis. Result of the sieving was analysed with easysieve (registered) software. The<36 μm subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100 μm size fractions and erratically distributed in from 150 μm fraction and above. For gold, with the exception of the subfraction <36 μm which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly 'played out' in 150-400 μm size fractions. Antimony occurrence in the sample was relatively high in <36 μm size fraction followed by 600, 800, 400 and 36 μm size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420 ppm as compared to 14.33-186.92 ppm for arsenic and 1.09-9.48 ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established.

  20. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oxide nano particles modified by 2-benzothiazolylthiosuccinic acid

    International Nuclear Information System (INIS)

    Dang Quyet Thang; Trinh Anh Truc; Pham Gia Vu; To Thi Xuan Hang

    2015-01-01

    In this study, ZnO nanoparticle was synthesized and modified by a corrosion inhibitor 2-benzothiazolylthiosuccinic acid (BTSA) for corrosion protection of a carbon steel surface. The TEM, SEM and IR analyses were used for characterized the synthesized products. The nano ZnO size in the about 20 nm and the IR analyze shows the presence of BTSA on the ZnO surface. The corrosion inhibition of nano ZnO and nano ZnO bearing BTSA in the NaCL 0.1 M solution was characterized using electrochemical techniques. In the NaCl 0.1 M, both nano ZnO and nano ZnO-BTSA have the inhibition property for carbon steel surface. The inhibition efficiency of ZnO-BTSA in higher than of pure ZnO. The polarization curves indicate that ZnO is anodic inhibitor while the ZnO-BTSA is a mixed-type inhibitor. (author)

  2. PLGA/Nano-Zn O Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    International Nuclear Information System (INIS)

    Stankovic, A.; Stevanovic, M.; Sezen, M.; Milenkovic, M.; Kaisarevic, S.; Andric, N.

    2016-01-01

    Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (Zn O) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical Zn O nanoparticles (nano-Zn O) have been synthesized via microwave synthesis method. In addition to obtaining nano-Zn O, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-Zn O) and this was done by a simple physicochemical solvent/non solvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-Zn O particles are spherical, uniform, and with diameters below 1μ. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG_2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth micro dilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans)

  3. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Ana Stanković

    2016-01-01

    Full Text Available Copolymer poly (DL-lactide-co-glycolide (PLGA is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans.

  4. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  5. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  6. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...

  7. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  8. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment

    International Nuclear Information System (INIS)

    Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao

    2014-01-01

    The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations

  9. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  10. Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles

    International Nuclear Information System (INIS)

    Gutrath, Benjamin S; Buchkremer, Anne; Timper, Jan; Leifert, Annika; Simon, Ulrich; Beckmann, Martin F; Schmitz, Georg; Eckert, Thomas; Richtering, Walter

    2012-01-01

    Photoacoustic (PA) imaging attracts a great deal of attention as an innovative modality for longitudinal, non-invasive, functional and molecular imaging in oncology. Gold nanoparticles (AuNPs) are identified as superior, NIR-absorbing PA contrast agents for biomedical applications. Until now, no systematic comparison of the optical extinction and PA efficiency of water-soluble AuNPs of various geometries and small sizes has been performed. Here spherical AuNPs with core diameters of 1.0, 1.4 and 11.2 nm, nanorods with longitudinal/transversal elongation of 38/9 and 44/12 nm and hollow nanospheres with outer/inner diameters of 33/19, 57/30, 68/45 and 85/56 nm were synthesized. The diode laser set-up with excitations at 650, 808, 850 and 905 nm allowed us to correlate the molar PA signal intensity with the molar extinction of the respective AuNPs. Deviations were explained by differences in heat transfer from the particle to the medium and, for larger particles, by the scattering of light. The molar PA intensity of 1.0 nm AuNPs was comparable to the commonly used organic dye methylene blue, and rapidly increased with the lateral size of AuNPs. (paper)

  11. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  12. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  13. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    Science.gov (United States)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu

    2015-09-01

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH4. By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY2- to EY3-. The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods.

  14. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology (China)

    2015-09-15

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH{sub 4}. By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY{sup 2−} to EY{sup 3−}. The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods.

  15. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    International Nuclear Information System (INIS)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH 4 . By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY 2− to EY 3− . The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods

  16. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Elijah J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pinto, Roger A. [Department of Chemical Engineering, University of Michigan, Ann Arbor (United States); Shi, Xiangyang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Qingguo, E-mail: qhuang@uga.edu [Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer nZVIs were synthesized using a layer-by-layer or poly(acrylic acid) stabilization approach. Black-Right-Pointing-Pointer These nZVIs were used to degrade TCE and PCB. Black-Right-Pointing-Pointer nZVI coatings impacted reactivity by altering pollutants/particle interactions. Black-Right-Pointing-Pointer Smaller nZVI particle size led to greater reactivity. - Abstract: Nano-scale zerovalent iron (nZVI) has been studied in recent years for environmental remediation applications such as the degradation of chlorinated organic contaminants. To overcome limitations related to the transport of nZVI, it is becoming common to add a polymer stabilizer to limit aggregation and enhance the particle reactivity. Another method investigated to enhance particle reactivity has been to limit particle size through novel synthesis techniques. However, the relative impacts of particle size and interactions of the chemicals with the coatings are not yet well understood. The purpose of this study was to investigate the mechanisms of particle size and polymer coating or polyelectrolyte multilayer (PEM) synthesis conditions on degradation of two common chlorinated contaminants: trichloroethylene (TCE) and polychlorinated biphenyls (PCBs). This was accomplished using two different synthesis techniques, a layer-by-layer approach at different pH values or iron reduction in the presence of varying concentrations of poly(acrylic acid). nZVI produced by both techniques yielded higher degradation rates than a traditional approach. The mechanistic investigation indicated that hydrophobicity and sorption to the multilayer impacts the availability of the hydrophobic compound to the nZVI and that particle size also had a large role with smaller particles having stronger dechlorination rates.

  17. Near-field enhanced femtosecond laser nano-drilling of glass substrate

    International Nuclear Information System (INIS)

    Zhou, Y.; Hong, M.H.; Fuh, J.Y.H.; Lu, L.; Lukyanchuk, B.S.; Wang, Z.B.

    2008-01-01

    Particle mask assisted near-field enhanced femtosecond laser nano-drilling of transparent glass substrate was demonstrated in this paper. A particle mask was fabricated by self-assembly of spherical 1 μm silica particles on the substrate surface. Then the samples were exposed to femtosecond laser (800 nm, 100 fs) and characterized by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The nano-hole array was found on the glass surface. The hole sizes were measured from 200 to 300 nm with an average depth of 150 nm and increased with laser fluence. Non-linear triple-photon absorption and near-field enhancement were the main mechanisms of the nano-feature formation. Calculations based on Mie theory shows an agreement with experiment results. More debris, however, was found at high laser fluence. This can be attributed to the explosion of silica particles because the focusing point is inside the 1 μm particle. The simulation predicts that the focusing point will move outside the particle if the particle size increases. The experiment performed under 6.84 μm silica particles verified that no debris was formed. And for all the samples, no cracks were found on the substrate surface because of ultra-short pulse width of femtosecond laser. This method has potential applications in nano-patterning of transparent glass substrate for nano-structure device fabrication

  18. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  19. Superparamagnetism and spin-glass like state for the MnFe{sub 2}O{sub 4} nano-particles synthesized by the thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gao Ruorui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Zhang Yue, E-mail: yue-zhang@mail.hust.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu Wei [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Xiong Rui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Shi Jing [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); International Center for Material Physics, Shen Yang 110015 (China)

    2012-08-15

    MnFe{sub 2}O{sub 4} nano-particles with an average size of about 7 nm were synthesized by the thermal decomposition method. Based on the magnetic hysteresis loops measured at different temperatures the temperature-dependent saturation magnetization (M{sub S}) and coercivity (H{sub C}) are determined. It is shown that above 20 K the temperature-dependence of the M{sub S} and H{sub C} indicates the magnetic behaviors in the single-domain nano-particles, while below 20 K, the change of the M{sub S} and H{sub C} indicates the freezing of the spin-glass like state on the surfaces. By measuring the magnetization-temperature (M-T) curves under the zero-field-cooling (ZFC) and field-cooling procedures at different applied fields, superparamagnetism behavior is also studied. Even though in the ZFC M-T curves peaks can be observed below 160 K, superparamagnetism does not appear until the temperature goes above 300 K, which is related with the strong inter-particle interaction. - Highlights: Black-Right-Pointing-Pointer MnFe{sub 2}O{sub 4} nano-particles with size of 7 nm were prepared. Black-Right-Pointing-Pointer The surface spin-glass like state is frozen below 20 K. Black-Right-Pointing-Pointer The peaks in ZFC magnetization-temperature curves are observed below 160 K. Black-Right-Pointing-Pointer The inter-particle interaction inhibits the superparamagnetism at room temperature.

  20. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method

    International Nuclear Information System (INIS)

    Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J.

    2012-01-01

    Highlights: ► Nano structured fly ash has been produced by 30 h milling time. ► Al–fly ash nano composites were produced by ultrasonic cavitation route. ► A homogeneous distribution of nano fly ash particles was observed in the matrix. ► No additional contamination in the nano composites from the atmosphere. ► Presence of nano fly ash leads to improvement in the strength of the composites. -- Abstract: In this paper an attempt has been made to modify the micro sized fly ash into nano structured fly ash using high energy ball mill. Ball milling was carried out for the total duration of 30 h. The sample was taken out after every 5 h of milling for characterizing. The nano structured fly ash was characterized for its crystallite size and lattice strain by using X-ray diffractometer. It was found that a steady decrease in the crystallite size and increased lattice strain was observed with milling time; the crystallite size at 30 h milling time was found to be 23 nm. The fresh fly ash particles are mostly spherical in shape; whereas the shape of the 30 h milled fly ash particles is irregular and the surface morphology is rough. Al–fly ash nano composites were produced by ultrasonic cavitation route successfully. Scanning electron microscopy images of nano composites reveal a homogeneous distribution of the nano fly ash particles in the AA 2024 matrix. Energy dispersive spectroscopy analysis of nano composites reveals that the fabricated nano composite did not contain any additional contamination from the atmosphere. As the amount of nano fly ash is increasing the hardness of the composite also increasing. The nano fly ash addition leads to improvement in the compression strength of the composites.

  1. 197Au Moessbauer study of nano-sized gold catalysts supported on Mg(OH)2 and TiO2

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Nasu, S.; Tsubota, S.; Haruta, M.

    2000-01-01

    We have studied nano-sized Au catalysts supported on Mg(OH) 2 and TiO 2 using 197 Au Moessbauer spectroscopy. 197 Au Moessbauer spectra observed for Au/Mg(OH) 2 catalysts can be decomposed into one singlet with zero isomer shift and several doublets. One of the doublets shows an isomer shift that is typical for Au I , and other doublets are due to Au III . The relative area of the Au I component shows the maximum value for a specimen calcined at 523 K, which also shows the highest catalytic activity

  2. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design.

    Science.gov (United States)

    Rao, M R P; Bajaj, A

    2014-12-01

    Telmisartan, an orally active nonpeptide angiotensin II receptor antagonist is a BCS Class II drug having aqueous solubility of 9.9 µg/ml and hence oral bioavailability of 40%. The present study involved preparation of nanosuspensions by evaporative antisolvent precipitation technique to improve the saturation solubility and dissolution rate of telmisartan. Various stabilizers such as TPGS, PVPK 30, PEG 6000 were investigated of which TPGS was found to provide maximum decrease in particle size and accord greater stability to the nanosuspensions. Box-Behnken design was used to investigate the effect of independent variables like stabilizer concentration, time and speed of stirring on particle size of nanosuspensions. Pharmacodynamic studies using Goldblatt technique were undertaken to evaluate the effect of nano-sizing on the hypotensive effect of the drug. Concentration of TPGS and speed of rotation were found to play an important role in particle size of the nanosuspensions whereas time of stirring displayed an exponential relationship with particle size. Freeze dried nanocrystals obtained from nanosuspension of least particle size were found to have increased saturation solubility of telmisartan in different dissolution media. The reconstituted nanosuspension was found to reduce both systolic and diastolic blood pressure without affecting pulse pressure and heart rate. Statistical tools can be used to identify key process and formulation parameters which play a significant role in controlling the particle size in nanosuspensions. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    Science.gov (United States)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  4. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  5. Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

    Directory of Open Access Journals (Sweden)

    M. Jafar-Tafreshi

    2012-12-01

    Full Text Available Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO33.9H2O and ammonium sulfate ((NH42SO4. The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were characterized by both X- ray diffraction and FTIR measurements. These two analyses determined the temperature at which the aluminum sulfate is converted to γ-alumina nano particles. The specific surface area and pore size distribution for  γ-alumina nano particles were determined by BET measurement. TEM measurement confirmed the size of the particles obtained by XRD and BET analyses.

  6. Higher order mode excitation in eccentric active nano-particles for tailoring of the near-field radiation

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We examine the excitation of resonant modes inside eccentrically layered cylindrical active nano-particles. The nano-particle is a three-layer structure comprised of a silica core, a free-space middle layer, and an outer shell of silver. It is shown that a concentric configuration, initially desi...... of the gain constant, is shown to be controlled by the direction of the core displacement. The present eccentric active nano-particles may provide alternative strategies for directive near-field radiation relative to the existing designs....

  7. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Inkjet printing or printing in general has emerged as a very attractive method for the fabrication of low cost and large size electronic systems. However, most of the printed designs rely on nano-particle based metallic inks which are printed on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink is demonstrated for tunable antennas applications. The ink has been characterized for high frequency and magnetostatic properties. Finally as a proof of concept, a microstrip patch antenna is realized using the proposed fabrication technique which shows a tuning range of 12.5 %.

  8. Experimental Analysis of Damping and Tribological Characteristics of Nano-CuO Particle Mixed Lubricant in Ball Bearings

    Science.gov (United States)

    Prakash, E.; Sivakumar, K.

    2015-12-01

    Experimental analysis of damping capacity and tribological characteristics of nano CuO added Servosystem 68 lubricant is attempted. CuO nano particles were synthesized by aqueous precipitation method and characterized. Prior to dispersion into lubricant, CuO nano particles were coated with 0.2 wt.% surfactant (Span-80) to stabilize the nano fluid. Tribological characteristics of particle added lubricant were tested in ASTM D 4172 four ball wear tester. Scanning electron microscopy test results of worn surfaces of nano CuO particle added lubricant were smoother than base lubricant. The particle added lubricant was applied in a new ball bearing and three defected ball bearings. When particle added lubricant was used, the ball defected bearing's vibration amplitude was reduced by 21.94% whereas it was 16.46% for new bearing and was ≤ 11% for other defected bearings. The formation of protection film of CuO over ball surface and regime of full film lubrication near the ball zone were observed to be reason for improved damping of vibrations.

  9. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    Science.gov (United States)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  10. Enhancing local absorption within a gold nano-sphere on a dielectric surface under an AFM probe

    International Nuclear Information System (INIS)

    Talebi Moghaddam, Sina; Ertürk, Hakan; Mengüç, M. Pınar

    2016-01-01

    This study considers enhancing localized absorption by a gold nanoparticle (NP) placed over a substrate where an atomic force microscope (AFM) tip is in close proximity of the particle. The gold NP and AFM tip are interacting with a surface evanescent wave, resulting a near-field coupling between the tip and NP and consequently enhances the absorption. This concept can be used for selective heating of NPs placed over a surface that enables precise manufacturing at nanometer scales. Different tip positions are considered to identify the optimal tip location and the corresponding enhancement limits. The effects of these interactions on the absorption profiles of dielectric core/gold shell NPs are also studied. It is observed that using core–shell nanoparticles with a dielectric core leads to further enhancement of the absorption efficiency and a more uniform distribution of absorption over the shell. Discrete dipole approximation coupled with surface interactions (DDA-SI) is employed throughout the study, and it is vectorized to improve its computational efficiency. - Highlights: • Plasmonic coupling between solid or core-shell nanoparticles, dielectric surface and Si AFM tip is investigated for achieving localized heating for nano-manufacturing. • Absorption efficiency enhancement limits for core-shell and solid nanoparticles are identified using an AFM tip for surface evanescent wave heating. • The effect of tip location, relative to surface wave direction is outlined, identifying optimal locations, and heat absorption distribution over core-shell and solid nanoparticles. • While using a Si AFM tip enhances absorption, using a dielectric core result in further enhancement in absorption with a more uniform distribution. • DDA-SI-v developed by vectorizing the formulations of DDA-SI for improved computational efficiency.

  11. Synthesis and application of multiple rods gold-zinc oxide nano structures in the photo catalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Arab Chamjangali, M.; Bagherian, G.; Bahramian, B.; Fahimi Rad, B.

    2015-01-01

    Zinc oxide and gold-zinc oxide (Au-Zn O) nano structures with multiple rods (multi pods) morphology were successfully prepared. Au-Zn O nano structures were synthesized via a simple precipitation route method in the presence of oligo aniline-coated gold nanoparticles. The Au-Zn O catalyst obtained was applied for the degradation of methyl orange in an aqueous solution under UV irradiation Effects of the operational parameters such as the solution p H, amount of photocatalyst, and dye concentration on the photo catalytic degradation and decolorisation of methyl orange were studied. Detailed studies including kinetic study and regeneration of catalyst were carried out on the optimal conditions for the photodegradation of methyl orange by Au-Zn O multi pods in aqueous solution. Effect of foreign species on the photodegradation of methyl orange was also studied. An enhancement of the photo catalytic activities for photodegradation of methyl orange was observed when the gold nanoparticles were loaded on the zinc oxide multi pods. The proposed catalyst was applied for the degradation of methyl orange in synthetic wastewater samples with satisfactory results.

  12. One-step synthesis of gold-polyaniline core-shell particles

    International Nuclear Information System (INIS)

    Wang Zhijuan; Yuan Junhua; Han Dongxue; Niu Li; Ivaska, Ari

    2007-01-01

    A one-step method has been developed for synthesizing gold-polyaniline (Au-PANI) core-shell particles by using chlorauric acid (HAuCl 4 ) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au-PANI particles was also proposed based on the results of control experiments

  13. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  14. Boundary lubrication by nano-particles; Lubrification limite par les nanoparticules

    Energy Technology Data Exchange (ETDEWEB)

    Cizaire, L.

    2003-09-15

    The replacement of aggressive organic molecules by mineral particles which could reduce friction and wear has been the main idea of this research work. The aim is thus to reduce product concentration in lubricant and pollutant gas emission. Boundary lubrication regime is well suited for this type of study in particular for being discriminative in tested nano-particles efficacy. We are firstly being interested in an anti-wear additive. A physical and chemical study of dialysed over based calcium sulfonates by EFTEM, XPS and ToF-SIMS lead to describe nano-particles as calcium carbonate core, still amorphous by the residual presence of calcium hydroxide and surrounded by di-dodecyl-benzene sulfonate surfactant chains. Their anti-wear action has been investigated by coupling many tribo-meters with different contact geometry. Rubbing surfaces were protected by a thick tribo-film being on surfaces without any scratches. When additive is in contact area under high pressure and shearing, micellar structure is broken. Hydro-carbonated chains initially control friction by being broken up and then with increasing of contact severity, sulfonate chains are expulsed out of the tribo-film. Tribo-film growth corresponds then to agglomeration and crystallization of calcium carbonate core striped of detergent chains. We have shown then friction reduction capabilities of inorganic-fullerene (IF) MoS{sub 2} nano-particles. Lubricating power of MoS{sub 2} layers is as good whatever the layers number leading thinking that friction value is intrinsic character of compound nature. Fullerene nano-particles were described by HR-TEM as a concentric and closed multi-layered structure. Coupling of Raman, XRD and EXAFS have shown that MoS{sub 2} layers were well organised in hexagonal form with distortion in Mo-Mo bonds reaching 1% of initial length. Chemical stability of such structure, in particular in regard of oxidation, is very impressive. XPS, XANES and ToF-SIMS analyses have lead to

  15. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN disperse