WorldWideScience

Sample records for nano-sized crystal grains

  1. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient

    International Nuclear Information System (INIS)

    Li, Jianjun; Soh, A K

    2012-01-01

    Surface nano-crystallized (SNC) materials with a graded grain size distribution on their surfaces have been attracting increasing scientific interest over the past few decades due to their good synergy of high strength and high ductility. However, to date most of the existing studies have focused on the individual contribution of three different aspects, i.e. grain size gradient (GSG), work-hardened region and surface compressive residual stresses, which were induced by surface severe plastic deformation processes, to the improved strength of SNC materials as compared with that of their coarse grained (CG) counterparts. And the ductility of these materials has hardly been studied. In this study, a combination of theoretical analysis and finite element simulations was used to investigate the role of GSG in tuning the ductility of SNC materials. It was found that the ductility of an SNC material can be comparable to that of its CG counterpart, while it simultaneously possessed a much higher strength than its CG core if the optimal GSG thickness and grain size of the topmost phase were adopted. A design map that can be used as a guideline for fabrication of SNC materials was also plotted. Our predictions were also compared with the corresponding experimental results. (paper)

  2. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    International Nuclear Information System (INIS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-01-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (∼4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (∼5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing. (paper)

  3. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  4. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  5. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu

    International Nuclear Information System (INIS)

    Zhong Yong; Ping Dehai; Song Xiaoyan; Yin Fuxing

    2009-01-01

    In this work, a serial of pure copper sample with different grain sizes from nano- to micro-scale were prepared by sparkle plasma sintering (SPS) and following anneal treatment at 873 K and 1073 K, respectively. The grain size distributions of these samples were determined by both X-ray diffraction (XRD) profile analysis and transmission electronic microscope (TEM) micrograph counting. Although these two methods give similar distributions of grain size in the case of as-SPS sample with nano-scale grain size (around 10 nm), there are apparent discrepancies between the grain size distributions of the annealed samples obtained from XRD and TEM, especially for the sample annealed at 1073 K after SPS with micro-scale grain size (around 2 μm), which TEM counting provides much higher values of grain sizes than XRD analysis does. It indicates that for large grain-sized material, XRD analysis lost its validity for determination of grain size. It might be due to some small sized substructures possibly existed in even annealed (large grain-sized) samples, whereas there is no substructures in as-SPS (nanocrystalline) sample. Moreover, it has been found that the effective outer cut-off radius R e derived from XRD analysis coincides with the grain sizes given by TEM counting. The potential relationship between grain size and R e was discussed in the present work. These results might provide some new hints for deeper understanding of the physical meaning of XRD analysis and the parameters derived.

  6. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  7. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  8. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  9. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  10. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    International Nuclear Information System (INIS)

    Christensen, Axel Norlund; Jensen, Torben R.; Bahl, Christian R.H.; DiMasi, Elaine

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2 O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2 O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition. - Graphical abstract: Nano size crystals of goethite, α-FeOOH formed from amorphous iron(III) hydroxide after 23 years, and transforms faster to α-Fe 2 O 3 upon heating

  12. A triple-scale crystal plasticity modeling and simulation on size effect due to fine-graining

    International Nuclear Information System (INIS)

    Kurosawa, Eisuke; Aoyagi, Yoshiteru; Tadano, Yuichi; Shizawa, Kazuyuki

    2010-01-01

    In this paper, a triple-scale crystal plasticity model bridging three hierarchical material structures, i.e., dislocation structure, grain aggregate and practical macroscopic structure is developed. Geometrically necessary (GN) dislocation density and GN incompatibility are employed so as to describe isolated dislocations and dislocation pairs in a grain, respectively. Then the homogenization method is introduced into the GN dislocation-crystal plasticity model for derivation of the governing equation of macroscopic structure with the mathematical and physical consistencies. Using the present model, a triple-scale FE simulation bridging the above three hierarchical structures is carried out for f.c.c. polycrystals with different mean grain size. It is shown that the present model can qualitatively reproduce size effects of macroscopic specimen with ultrafine-grain, i.e., the increase of initial yield stress, the decrease of hardening ratio after reaching tensile strength and the reduction of tensile ductility with decrease of its grain size. Moreover, the relationship between macroscopic yielding of specimen and microscopic grain yielding is discussed and the mechanism of the poor tensile ductility due to fine-graining is clarified. (author)

  13. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  14. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    Science.gov (United States)

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  15. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  16. Effect of microscopic structure on deformation in nano-sized copper and Cu/Si interfacial cracking

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp; Nakano, Takuya; Kitamura, Takayuki

    2013-03-01

    The purpose of this work is to examine the effect of microscopic structure on the mechanical properties of nano-sized components (nano-components). We developed a bending specimen with a substructure that can be observed by means of a transmission electron microscope (TEM). We examined the plastic behavior of a Cu bi-crystal and the Cu/Si interfacial cracking in a nano-component. TEM images indicated that an initial plastic deformation takes place near the interface edge (the junction between the Cu/Si interface and the surface) in the Cu film with a high critical resolved shear stress (400–420 MPa). The deformation developed preferentially in a single grain. Interfacial cracking took place at the intersection between the grain boundary and the Cu/Si interface, where a high stress concentration existed due to deformation mismatch. These results indicate that the characteristic mechanical behavior of a nano-component is governed by the microscopic stress field, which takes into account the crystallographic structure. - Highlights: ► A nano-component specimen including a bi-crystal copper layer was prepared. ► A loading test with in-situ transmission electron microscopy was conducted. ► The plastic and cracking behaviors were governed by microscopic stress. ► Stress defined under continuum assumption was still present in nano-components.

  17. Nano Size Crystals of Geothite, alpha-FeOOH: Synthesis and Thermal Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen,A.; Jensen, T.; Bahl, C.; DiMasi, E.

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, {alpha}-FeOOH crystallized from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co K{alpha} radiation showed that the only iron containing crystalline phase present in the recovered product was {alpha}-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of {alpha}-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of {alpha}-FeOOH transformed to {alpha}-Fe{sub 2}O{sub 3} in the temperature range 444--584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from {alpha}-Fe{sub 2}O{sub 3} to follow the decrease of intensity from {alpha}-FeOOH in agreement with the topotactic phase transition.

  18. Oxide nano crystals for in vivo imaging

    International Nuclear Information System (INIS)

    Heinrich, E.

    2005-01-01

    For small animal, fluorescence imaging is complementary with other techniques such as nuclear imaging (PET, SPECT). In vivo imaging studies imply the development of new luminescent probes, with a better sensitivity and a better biological targeting. These markers must filled biological and optical conditions. Our goal is to study new doped lanthanides oxide nano-crystals, their properties, their functionalization and their ability to target biological molecules. Characterizations of Y 2 O 3 :Eu and Y 2 SiO 5 :Eu nano-crystals (light diffusion, spectrometry, microscopy) allowed the determination of their size, their fluorescence properties but also their photo-bleaching. Means of stabilization of the nanoparticles were also studied in order to decrease their aggregation. Gd 2 O 3 :Eu nano-crystals were as well excited by X rays. Nano-crystals of Y 2 SiO 5 :Eu were functionalized, and organic ligands grafting evidenced by fluorescence and NMR. The functionalized nano-crystals could then recognized biological targets (streptavidin-biotin) and be incubated in the presence of HeLa cells. This report deals with the properties of these nano-crystals and their ability to meet the optical and biological conditions required for the application of in vivo imaging. (author)

  19. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  20. Effect of noise-induced nucleation on grain size distribution studied via the phase-field crystal method

    International Nuclear Information System (INIS)

    Hubert, J; Cheng, M; Emmerich, H

    2009-01-01

    We contribute to the more detailed understanding of the phase-field crystal model recently developed by Elder et al (2002 Phys. Rev. Lett. 88 245701), by focusing on its noise term and examining its impact on the nucleation rate in a homogeneously solidifying system as well as on successively developing grain size distributions. In this context we show that principally the grain size decreases with increasing noise amplitude, resulting in both a smaller average grain size and a decreased maximum grain size. Despite this general tendency, which we interpret based on Panfilis and Filiponi (2000 J. Appl. Phys. 88 562), we can identify two different regimes in which nucleation and successive initial growth are governed by quite different mechanisms.

  1. Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method

    International Nuclear Information System (INIS)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I; Chia, Chih-Ta; Yen, Fu-Su

    2013-01-01

    CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  2. Comparative Study of Magnetic Ordering and Electrical Transport in Bulk and Nano-Grained Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} Manganites

    Energy Technology Data Exchange (ETDEWEB)

    Arun, B. [Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), CSIR, Trivandrum (India); Suneesh, M.V. [Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum (India); Vasundhara, M., E-mail: vasu.mutta@gmail.com [Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum (India)

    2016-11-15

    We have prepared bulk and nano-sized Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} manganites by solid state and low-temperature mild solgel methods respectively. Both the compounds crystallized into an orthorhombic structure with Pbnm space group confirmed from Rietveld refinement of X-ray powder diffraction patterns. Nano-grained compound shows an average particle size of 22 nm with broad grain size distribution revealed from the Transmission electron micrographs. It appeared that the long range ferromagnetic order becomes unstable upon the reduction of the samples dimension down to nano meter scale. DC magnetization and AC susceptibility results showed frustration of spins in nano-grained compound and thereby it could lead to a cluster glass-like behaviour. Temperature dependence of electrical resistivity under different magnetic fields shows the broad maxima at higher temperatures and a low temperature upturn in both the compounds, however, the latter is more prominent in the nano grained compound. Combination of Kondo effect with electron and phonon interactions govern the low temperature resistivity and a small polaron hopping mechanism dominates at high temperatures for both the compounds. The magnetoresistance is understood by the effect of spin polarized tunneling through the grain boundary. The experimental results revealed that the reduction in particle size influences severely on the magnetic, electrical and magneto transport properties. - Highlights: • Long range ferromagnetic ordered state become unstable in case of nano compound. • It shows broad magnetic transition and cluster glass nature. • Kondo effect with electron-phonon interactions dominate the resistivity at low temperature.

  3. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  4. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  5. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    International Nuclear Information System (INIS)

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  6. Sputtering of nano-grains by energetic ions

    CERN Document Server

    Bringa, E M

    2002-01-01

    Sputtering from grains with a size of tens of nanometers is important in a number of astrophysical environments having a variety of plasma properties and can have applications in nano-technology. Since energy deposition by incident ions or electrons can create 'hot' regions in a small grain, thermal spike (TS) models have been applied to estimate the sputtering. The excitations produced by a fast ion are often assumed to form a 'hot' cylindrical track. In this paper we use molecular dynamics (MD) calculations to describe the energy transport and sputtering due to the creation of a 'hot' track in a grain with one quarter million atoms. We show the enhancement due to grain size and find that TS models work over a limited range of excitation densities. Discrepancies of several orders of magnitude are found when comparing our MD results for sputtering of small dust grains to those obtained by the astrophysical community using spike models.

  7. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [University of Tennessee (UT); Gao, Yanfei [ORNL; Nieh, T. G. [University of Tennessee, Knoxville (UTK)

    2018-01-01

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

  8. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Bahl, Christian R. H.; DiMasi, Elaine

    2007-04-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co K α radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.

  9. Influence of nano-size inclusions on spall fracture of copper single crystals

    International Nuclear Information System (INIS)

    Razorenov, S. V.; Ivanchihina, G. E.; Kanel, G. I.; Herrmann, B.; Zaretsky, E. B.

    2007-01-01

    Spall experiments have been carried out for copper in different structural states. The samples were copper single crystals, crystals of Cu+0.1% Si, copper crystals with silica particles of 180 nm average size, and polycrystalline copper. In experiments, the free surface velocity histories were recorded with the VISAR. The recovered samples were studied using optical microscopy and SEM. Solid solution Cu+0.1% Si demonstrates slower spall process than pure copper crystals. At longer pulse durations its spall strength is slightly less than that of pure crystals but approaches the latter with decreasing pulse duration. Fracture of copper with silica inclusions is completed much faster. The spall strength of this material is close to that of Cu+0.1% Si crystals at longer pulse duration and approaches the strength of polycrystalline copper with decreasing the load duration. Fractography of the spall surfaces correlates with the free surface velocity histories. The main fracture surface of the Cu+0.1% Si grains consists of net of dimples ∼4 μm to 40 μm mean diameter. The fracture surfaces of copper with silica inclusions is covered by a net of dimples of 1 μm to 5 μm size

  10. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  11. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    International Nuclear Information System (INIS)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng; Wei, Shizhong; Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang

    2016-01-01

    The nano-sized ZrO 2 -reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO 2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO 2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO 2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  12. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsiang [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Chia, Chih-Ta [Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan (China); Yen, Fu-Su [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  13. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  14. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Giriraj, E-mail: grsharma@gmail.com [SRJ Government Girls’ College, Neemuch (M P) (India); Dad, R. C. [Government P G College, Mandsaur (M P) (India); Ghosh, S. [School of Studies in Physics, Vikram University, Ujjain, (M P) (India)

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered.

  15. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng [Xi' an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi' an, Shaanxi Province (China); Wei, Shizhong [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China); Henan University of Science and Technology, Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Luoyang (China); Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China)

    2016-03-15

    The nano-sized ZrO{sub 2}-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO{sub 2} particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO{sub 2} particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO{sub 2} particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  16. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    International Nuclear Information System (INIS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    2007-01-01

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface

  17. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  18. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  19. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng; Grigoropoulos, Costas

    2014-01-01

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  20. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng

    2014-03-14

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  1. Experimental studies of Micro- and Nano-grained UO2: Grain Growth Behavior, Sufrace Morphology, and Fracture Toughness

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Jamison, Laura M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Yao, Tiankai [Rensselaer Polytechnic Inst., Troy, NY (United States); Bhattacharya, Sumit [Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)

    2016-01-01

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO2; (2) investigation of surface morphology in micrograined UO2; (3) Nano-indentation experiments on nano- and micro-grained UO2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO2.

  2. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D

    DEFF Research Database (Denmark)

    Berger, Alfons; Herwegh, Marco; Schwarz, Jens-Oliver

    2011-01-01

    data for grain size data are either 1D (i.e. line intercept methods), 2D (area analysis) or 3D (e.g., computed tomography, serial sectioning). These data have been used for different data treatments over the years, whereas several studies assume a certain probability function (e.g., logarithm, square......-piezometers or grain size sensitive flow laws. Such compatibility is tested for different data treatments using one- and two-dimensional measurements. We propose an empirical conversion matrix for different datasets. These conversion factors provide the option to make different datasets compatible with each other...... is important for studies of nucleation and growth of minerals. The shape of the crystal size distribution of garnet populations is compared between different 2D and 3D measurements, which are serial sectioning and computed tomography. The comparison of different direct measured 3D data; stereological data...

  3. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    Science.gov (United States)

    Armstrong, R. W.; Balasubramanian, N.

    2017-08-01

    It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (tested at very low imposed strain rates.

  4. Plasticity analysis of nano-grain-sized NiAl alloy in an atomic scale

    International Nuclear Information System (INIS)

    Wang Jingyang; Wang Xiaowei; Rifkin, J.; Li Douxing

    2001-12-01

    The molecular dynamics method is used to simulate a uniaxial tensile deformation of 3.8nm nano-NiAl alloy with curved amorphous-like interfaces at 0K. Plastic deformation behaviour is studied by examining the strain-stress relationship and the microstructural evolution characteristic. Atomic level analysis showed that the micro-strain is essentially heterogeneous in simulated nano-phase samples. The plastic deformation is not only attributed to the plasticity of interfaces, but also accompanied with the plastic shear strain mechanism inside lattice distortion regions and grains. (author)

  5. Grain size dependence of wear in ceramics

    International Nuclear Information System (INIS)

    Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-01-01

    Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies

  6. Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2017-02-01

    Full Text Available The nano-sized SiCp/Al–Cu composites were successfully fabricated by combining semisolid stirring with ball milling technology. Microstructures were examined by an olympus optical microscope (OM, field emission scanning electron microscope (FESEM and transmission electron microscope (TEM. Tensile properties were studied at room temperature. The results show that the α-Al dendrites of the composites were strongly refined, especially in the composite with 3 wt. % nano-sized SiCp, of which the morphology of the α-Al changes from 200 μm dendritic crystal to 90 μm much finer equiaxial grain. The strength and ductility of the composites are improved synchronously with the addition of nano-sized SiCp particles. The as-cast 3 wt. % nano-sized SiCp/Al–Cu composite displays the best tensile properties, i.e., the yield strength, ultimate tensile strength (UTS and fracture strain increase from 175 MPa, 310 MPa and 4.1% of the as-cast Al–Cu alloy to 220 MPa, 410 MPa and 6.3%, respectively. The significant improvement in the tensile properties of the composites is mainly due to the refinement of the α-Al dendrites, nano-sized SiCp strengthening, and good interface combination between the SiCp and Al–Cu alloys.

  7. Effect of reversion annealing on the formation of nano/ultrafine grained structure in 201 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, Mohammad; Najafizadeh, Abbas; Kermanpur, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rezaee, Ahad, E-mail: a.rezaee@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The secondary increase in the martensite content after reversion annealing. Black-Right-Pointing-Pointer Formation of thermally induced martensite due to carbide precipitation. Black-Right-Pointing-Pointer The smallest average grain size of 70 nm is achieved by annealing at 850 Degree-Sign C for 15 s. Black-Right-Pointing-Pointer A fully austenitic structure with grain size of 100 nm and 1370 MPa yield strength. - Abstract: The formation of nano/ultrafine grain structure in a 201 austenitic stainless steel was investigated by the martensite thermomechanical treatment. Cast ingots were first homogenized, then hot-forged and solution-annealed to reduce the initial grain size. Cold rolling was then conducted down to 90% reduction in thickness, followed by reversion annealing at a temperature in the range of 1023-1173 K for 15-1800 s. The effect of reversion parameters on grain refinement was investigated. The resulting microstructures were characterized by a scanning electron microscopy equipped with X-ray energy-dispersive spectrometer, an X-ray diffractometer and a Feritscope. The hardness was measured by the Vickers method. The results show that a nano/ultrafine-grained structure formed in the initial stages of the reversion, but significant grain growth took place during the entire course of reversion. Initially lowered, the volume fraction of martensite increased again during the reversion treatment due to carbide precipitation. A fully austenitic nano grained 201 stainless steel with the average grain size of 100 nm was produced, possessing a yield strength of about 1370 MPa.

  8. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  9. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles

    International Nuclear Information System (INIS)

    Li, Tianshu; Liu, Li; Zhang, Bin; Li, Ying; Yan, Fengkai; Tao, Nairong; Wang, Fuhui

    2014-01-01

    Highlights: • Nanometer-grains (NG) and bundles of nano-twins (NT) is synthesized in 316L. • (NG + NT) and NT enhance the concentration of active Fe Fe in the passive film. • (NG + NT) and NT enhance the passive ability. • A Cr 0 -enriched layer forms at the passive film/metal interface. - Abstract: The passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains (NG) and nano-twin bundles (NT) are investigated. The electrochemical results indicate that the spontaneous passivation ability and growth rate of passive film are improved. The X-ray photoelectron spectroscopy (XPS) shows that a Cr 0 -enriched layer forms at the passive film/metal interface. More nucleation sites afforded by the nanostructures and the enhanced diffusion rate of charged species across the passive film are believed to be responsible for the improved passive ability. The PDM model is introduced to elaborate the microscopic process of passivation

  10. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  11. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  12. Crystallization kinetics of Ga metallic nano-droplets under As flux

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Sanguinetti, S

    2013-01-01

    We present an experimental investigation of the crystallization dynamics of Ga nano-droplets under As flux. The transformation of the metallic Ga contained in the droplets into a GaAs nano-island proceeds by increasing the size of a tiny ring of GaAs which is formed just after the Ga deposition at the rim of a droplet. The GaAs crystallization rate depends linearly on the liquid–solid interface area. The maximum growth rate is set by the As flux impinging on the droplet, thus showing an efficient As incorporation and transport despite the predicted low solubility of the As in metallic Ga at the crystallization temperatures. (paper)

  13. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  14. The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Ting; Shi, Shaojun; Kong, Fanjun; Yang, Gang; Qian, Bin; Yin, Fan

    2016-01-01

    Graphical abstract: After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation of the active material and conductive carbon, but also results in the falling of active material from the current collector. Nano-FNO can remain the excellent capacity after dozens of cycles. - Abstract: Nano-sized FeNbO 4 (Nano-FNO) with an average diameter of 120 nm is facilely prepared by co-precipitation method. Bulk FeNbO 4 (Micro-FNO) as a comparison synthesized by conventional solid-state synthesis has an average grain size of 3–10 μm. In the high-resolution transmission electron microscopy (HRTEM) images, Nano-FNO reveals an ordered single crystal structure, but Mirco-FNO is composed of disordered crystallites with different crystal orientation. Nano-FNO as anode material delivers the initial capacity of 475 mAh g −1 which is much higher than Micro-FNO electrode of 250 mAh g −1 .After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation between the active material and conductive carbon, but also results in the falling of active material from the current collector. Compared with the weakened electrochemical performances of Micro-FNO, Nano-FNO remains the excellent capacity after dozens of cycles. The charge transfer resistances of Nano-FNO and Micro-FNO after several cycles are further studied by fitting their electrochemical impedance spectra.

  15. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  16. Martensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties

    Directory of Open Access Journals (Sweden)

    Mohammad Shirdel

    2015-06-01

    Full Text Available Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjected to heavy cold rolling to produce a nearly complete martensitic structure. Subsequently, a wide range of annealing temperatures (600 to 800°C and times (1 to 240 min were employed to assess the reversion behavior and to find the best annealing condition for the production of the nano/ultrafine grained austenitic microstructure. Microstructural characterizations have been performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and magnetic measurement, whereas the mechanical properties were assessed by tensile and hardness tests. After thermomechanical treatment, a very fine austenitic structure was obtained, which was composed of nano sized grains of ~ 85 nm in an ultrafine grained matrix with an average grain size of 480 nm. This microstructure exhibited superior mechanical properties: high tensile strength of about 1280 MPa with a desirable elongation of about 41%, which can pave the way for the application of these sheets in the automotive industry.

  17. Direct Identification of Atomic-Like Electronic Levels in InAs Nano crystal Quantum Dots

    International Nuclear Information System (INIS)

    Millo, O.; Katz, D.

    1999-01-01

    The size dependent level structure of InAs nano crystals in the range 2-7 nm in diameter is investigated using both tunneling and optical spectroscopies. The tunneling measurements are performed using a cryogenic scanning tunneling microscope on individual nano crystals that, are attached to a gold substrate via dithiol molecules. The tunneling I-V characteristics manifest an interplay between single electron charging and quantum size effects. We are able to directly identify quantum confined states of isolated InAs nano crystals having s and p symmetries. These states are observed in the I-V curves as two and six-fold single electron charging multiplets. Excellent agreement is found between the strongly allowed optical transitions [1] and the spacing of levels detected in the tunneling experiment. This correlation provides new information on the quantum-dot level structure, from which we conclude that the top-most valence band state has both s and p characteristics. The interplay between level structure singles electron charging of the nano crystals obeys an atomic-like Aufbau sequential electron level occupation

  18. Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene

    Science.gov (United States)

    Tsubokawa, Y.; Ishikawa, M.

    2017-12-01

    Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of physical properties of Earth's mantle.

  19. Precipitation behavior and grain refinement of burnishing Al-Zn-Mg alloy

    Directory of Open Access Journals (Sweden)

    Ce Pang

    2018-02-01

    Full Text Available Burnishing is a unique strengthening approach to improve the strength of surface layer and remains the ductility of the interior of metallic materials. In this work, burnishing treatment was employed to improve the surface microstructure of naturally aged Al-Zn-Mg alloys after solid solution. Transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction and nano-indentation were used to characterize the effects of the burnishing on the microstructures of surface layer and Guinier-Preston (GP zones. It was indicated that GP zones uniformly distributed and dispersed in the matrix before burnishing, and the amount of GP zones decreased dramatically after burnishing processing. Additionally, the grains in the surficial layer were refined into nano-crystals with an average grain size of 78 nm. Burnishing treatment not only led to formation of large number of dislocation substructures in the sub-surface and near-matrix surface, but also promoted the precipitation of metastable η' phase at grain boundaries. The synergistic effects of the grain refinement, dislocation multiplication and the precipitation of η' phase strengthen the burnished layer of Al-Zn-Mg alloy. Keywords: Al-Zn-Mg alloy, Burnishing, Nano-crystal, Precipitation, Grain refinement

  20. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Electrochemical and surface characterisation of oxide films on nano-grain nickel films electrodeposited on INCOLOY-800

    International Nuclear Information System (INIS)

    Navin Vinayak, S.; Sunitha, Y.; Rangarajan, S.; Narasimhan, S.V.

    2008-01-01

    Nano materials have different properties from the corresponding bulk materials because of fine grain size, large fraction of surface atoms, high surface energy and high grain boundary volume fraction. For similar reasons, the nano-alloy coatings show superior high-temperature corrosion resistance and are generally more resistant to stress corrosion cracking. Hence, it is of interest to know the materials performance, if the structural materials used in nuclear reactors are made of nano-grains. In Indian PHWRs, Incoloy-800 is being used as the steam generator tubing material. It's corrosion resistance property is very important as it forms not only the pressure boundary between the radioactive primary water and non-active secondary water but also from the view point of loss of heavy water, in case of any corrosion damage. In this paper, the corrosion resistance of the oxide films formed on nano-grain nickel film electrodeposited on Incoloy-800 (a) in the presence of saccharine (WS) and (b) in the absence of saccharine (WOS) were compared with that formed on Commercial Ni foil, using electrochemical dc polarization and ac impedance techniques. The surface morphology, elemental analysis and grain size were studied with SEM, EDX and XRD techniques respectively. The nano-grain nickel films were prepared on Incoloy-800 by electrodeposition using Watt's Bath with saccharine sodium as a surfactant. The oxide films were developed by exposing them to LiOH solution (pH-10.0) at 245 deg C for 3 days (A-group) and 7 days (B-group). XRD results showed that the grain size of Ni formed in the absence of saccharine (WOS) was ∼ 60 nm and did not change after being autoclaved. But, for Ni formed in the presence of saccharine (WS), the grain size was ∼ 16 nm which increased to 40-50 nm after being autoclaved. With both A and B-group specimens, the PDAP curves showed an active-passive transition, a passive region and a transpassive region in 2N H 2 SO 4 . However, the critical

  2. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    International Nuclear Information System (INIS)

    Rodenbough, Philip P.; Song, Junhua; Chan, Siu-Wai; Walker, David; Clark, Simon M.; Kalkan, Bora

    2015-01-01

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size

  3. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbough, Philip P. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Chemistry Department, Columbia University, New York, New York 10027 (United States); Song, Junhua; Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Walker, David [Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 (United States); Clark, Simon M. [ARC Center of Excellence for Core to Crust Fluid Systems and Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2019, Australia and The Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232 (Australia); Kalkan, Bora [Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.

  4. Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC

    International Nuclear Information System (INIS)

    Swaminathan, N.; Kamenski, Paul J.; Morgan, Dane; Szlufarska, Izabela

    2010-01-01

    Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ∼20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.

  5. Grain dissection as a grain size reducing mechanism during ice microdynamics

    Science.gov (United States)

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron

  6. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Venkateswarlu, M.; Cheng, M.Y.; Ragavendran, K.; Hwang, B.J. [Nano-Electrochemistry Lab., Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 106 (China); Weng, J.H. [Department of Chemical and Materials Engineering, Tunghai University, Taichung 407 (China); Santhanam, R. [Solid State and Surface Sciences Lab., Department of Physics, Southern University, Baton Rouge, LA-70808 (United States); Lee, J.F.; Chen, J.M.; Liu, D.G. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu (China)

    2010-03-15

    Nanostructured transition metal oxides are of great interest as a new generation of anode materials for high energy density lithium-ion batteries. In this work, research has been focused on the nano-sized (grain size {proportional_to}7 nm) CoO anode material and this material delivers charge capacity of 900 mAh g{sup -1} that exceeds the theoretical value of 715 mAh g{sup -1}. Possible reason for this unaccounted and unexplained anomalous capacity of the nano-sized CoO material has been suggested by thermogravimetric analysis. A mechanism for this interesting behavior has been systematically evaluated by using X-ray absorption spectroscopy. The anomalous capacity is proposed to be associated with the formation of oxygen-rich CoO material. The results obtained from the nano-sized CoO material have been compared with relatively larger-sized material (grain size {proportional_to}32 nm). (author)

  7. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  8. Influence of nano-inclusions' grain boundaries on crack propagation modes in materials

    International Nuclear Information System (INIS)

    Karakasidis, T.E.; Charitidis, C.A.

    2011-01-01

    The effect of nano-inclusions on materials' strength and toughness has attracted great interest in recent years. It has been shown that tuning the morphological and microstructural features of materials can tailor their fracture modes. The existence of a characteristic size of inclusions that favours the fracture mode (i.e. transgranular or intergranular) has been experimentally observed but also predicted by a 2D model based on energetic arguments which relates the crack propagation mode to the ratio of the interface area between the crystalline inclusion and the matrix with the area of the crystallite inclusion in a previous work. In the present work, a 3D model is proposed in order to extend the 2D model and take into account the influence of the size of grain boundary zone on the toughening/hardening behavior of the material as it was observed experimentally in the literature. The model relates crack propagation mode to the ratio of the volume of the grain boundary zone between the crystalline inclusion and the matrix with the volume of the nano-inclusion. For a ratio below a critical value, transgranular propagation is favoured while for larger values, intergranular propagation is favoured. We also demonstrate that the extent of the grain boundary region also can significantly affect this critical value. The results of the model are in agreement with the literature experimental observations related to the toughening/hardening behavior as a function of the size of crystalline inclusions as well as the width of the grain boundary regions.

  9. Synthesis of nano-sized PbSe from octeno-1,2,3-selenadiazole

    International Nuclear Information System (INIS)

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Viswanath, A.K.; Patil, K.R.

    2007-01-01

    Reaction between trioctylphosphine selenide (TOPSe), generated from an organo-selenium compound, i.e. octeno-1,2,3-selenadiazole in tri-octylphosphine (TOP), and lead acetate has resulted formation of PbSe nano-crystals (cubes). TOPSe generated from the current method is first of its kind approach and is a novel concept. Characteristic absorption bands between 1.8-2.1 μm in near infra-red spectrum (NIR) are observed from sonicated PbSe crystals. X-ray diffraction (XRD) pattern revealed rock-salt crystal structure of PbSe with crystallite size of less than 10 nm. Observations made by scanning electron microscopy (SEM) revealed well-defined particles of the cubical crystals. XPS analysis showed that nano-crystals of PbSe were prone to air-oxidation due to 'not-so-efficient' capping

  10. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  11. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2014-01-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of lithium fluoride nano crystals doped with silver

    International Nuclear Information System (INIS)

    Rosario M, B. R.; Ramirez C, G.; Encarnacion E, E. K.; Sosa A, M. A.

    2017-10-01

    Thermoluminescence (Tl) is the emission of light by certain materials to be heated below its incandescence temperature, having previously been exposed to an exciting agent such as ionizing radiation. Lithium fluoride (LiF) is the thermoluminescent material used in the manufacture of Tl-100 dosimeters. What morphological characteristics (size, crystallinity) do the nano crystals of pure lithium fluoride (LiF) have when doped with silver (Ag) by the precipitation method? The objective of this study was to synthesize and characterize the LiF nano crystals doped with silver (Ag) in concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 and 0.2%. The samples were synthesized using as reagents; distilled water, ammonium fluoride (NH 4 F), lithium chloride (LiCl), silver nitrate (AgNO 3 ); and materials such as: 0.1 mg precision balance, spatulas, test piece, magnetic stirrer, beaker, volumetric flask, burette, burette clamp, key and magnetic stirring wand. In the characterization process we used and X-ray diffractometer (XRD) with which we obtained the X-ray diffraction spectrum with well-defined peaks that are characteristic of LiF. Using the Scherrer equation we calculate the sizes of nano crystals. This study demonstrates that is possible to synthesize LiF using new dopant materials. (Author)

  13. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  14. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  15. Estimation of Single-Crystal Elastic Constants of Polycrystalline Materials from Back-Scattered Grain Noise

    International Nuclear Information System (INIS)

    Haldipur, P.; Margetan, F. J.; Thompson, R. B.

    2006-01-01

    Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented

  16. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  17. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  18. Application of nano- and micro-sized particles of cattle manure on soybean growth

    Directory of Open Access Journals (Sweden)

    Hesam Aryanpour

    2017-10-01

    Full Text Available Background: Cattle manure (CM is the most common organic fertilizer used by farmers. However, its usually slow decomposition leads to the use of chemical fertilizers. Therefore, experiments on nano- and micro-sized particles of CM were conducted to evaluate the possibility of accelerating its decomposition in soil. Methods: The effects of a sole application of CM in different sizes (nano-, micro-, and natural-sized particles in two ranges (5 and 20 Mg ha-1 and the combined application of CM and chemical fertilizers on the plant growth characteristics of soybean (cv. JS 335 were studied at Gorgan University. Nano- and micro-sized particles of CM were produced using a ball mill, and their half-life in soil was measured. Soil properties were measured before planting. Grain yield, 1000 grain weight, number of pods per plant, biological yield, plant height, and nutrient contents in plant shoot material were measured. Results: The results showed that the use of nano-sized particles of CM (nCM caused a significant increase in yield and yield components. Increasing the amount of crushing resulted in an increased rate of CM mineralization and in proper nitration before the formation of nodes in the roots. A significantly higher yield was obtained with nCM than with chemical fertilizer, and due to the nCM particles’ half-life in soil, the plants were allowed to absorb nutrients for a longer time period. Conclusion: The nCM has two major advantages over chemical fertilizers in that it does not release nutrients as quickly as chemical fertilizers and the loss of nutrients from soil is low.

  19. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-01-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal

  20. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  1. The role of grain size in He bubble formation: Implications for swelling resistance

    Science.gov (United States)

    El-Atwani, O.; Nathaniel, J. E.; Leff, A. C.; Muntifering, B. R.; Baldwin, J. K.; Hattar, K.; Taheri, M. L.

    2017-02-01

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  2. The role of grain size in He bubble formation: Implications for swelling resistance

    Energy Technology Data Exchange (ETDEWEB)

    El-Atwani, O., E-mail: oelatwan25@gmail.com [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Nathaniel, J.E.; Leff, A.C. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Muntifering, B.R. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Baldwin, J.K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM (United States); Hattar, K. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Taheri, M.L. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States)

    2017-02-15

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm{sup 2} show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm{sup 2} possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  3. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  4. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    International Nuclear Information System (INIS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-01-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%

  5. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  6. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  7. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  8. Lead sulfide nano crystal preparation and characterization

    International Nuclear Information System (INIS)

    Sasani Ghamsari, M.

    1999-01-01

    Nanometer sized semiconductor particles have attracted much attention duo to their novel electronic and optical optical proportion, originating from quantum confinement. Pb S is one of the most important semiconductor material. In this project Pb S semiconductor nano crystal is synthesized in order to decrease particle size and study the modifications of their optical properties in relation to their size. The synthesis is carried out by using the technique of colloid chemistry. In this method we use lead nitrate extra pure and H2 S gas which is solved in the water. EDTA is used for controlling of particle size. A fast evolution of the optical absorption spectrum will be noticed following synthesis. Immediately after the synthesis reaction. The sample, exhibit a structured absorption spectrum with well defined excitonic peak in 240 nm theoretical relations is that shown this peak belong to 5 A particles. X-ray diffraction is used to establish the identity, phase and the size of these clusters

  9. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Directory of Open Access Journals (Sweden)

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  10. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  11. Evaluation of Pure Aluminium Inoculated with Varying Grain Sizes of an Agro-waste based Inoculant

    Directory of Open Access Journals (Sweden)

    Adeyemi I. Olabisi

    2017-04-01

    Full Text Available Pure Aluminium and its alloy are widely utilized in Engineering and Industrial applications due to certain significant properties such as softness, ductility, corrosion resistance, and high electrical conductivity which it possesses. Addition of an agro-waste based grain refiner to the melt can alter the characteristics positively or negatively. Therefore, the aim of this paper is to investigate the inoculating capability of an agro-waste based inoculant and the effect of adding varying sizes of its grains on some of the properties of pure aluminium after solidification. The beneficial outcome of this investigation would enhance the economic value of the selected agro-waste and also broaden the applications of aluminium in Engineering. The assessed properties include; microstructure, micro hardness, ductility, and tensile strength. The agro-waste used as the grain refiner is pulverised cocoa bean shells (CBS. Three sets of test samples were produced using dry sand moulding process, with each melt having a specified grain size of the inoculant added to it (150, 225 and 300microns respectively. Ladle inoculation method was adopted. The cast samples after solidification were machined to obtain various shapes/sizes for the different analysis. The microstructural examination showed that the mechanical properties are dependent on the matrix as the aluminium grains became more refined with increasing grain size of the inoculant. I.e. Due to increasing grain size of the inoculant, the micro hardness increased (56, 61, 72HB as the aluminium crystal size became finer. Meanwhile, the tensile strength (284, 251, 223N/mm2 and ductility (1.82, 0.91, 0.45%E decreased as grain size of the inoculant increased. The overall results showed that the used agro-waste based inoculant has the capability of refining the crystal size of pure aluminium as its grain size increases. This will make the resulting aluminium alloy applicable in areas where hardness is of

  12. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  13. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Bichitra Nandi, E-mail: bichitra.ganguly@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dutta, Sreetama; Roy, Soma [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Röder, Jens [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Physical Chemistry, RWTH-Aachen, Aachen (Germany); Johnston, Karl [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Experimental Physics, University of the Saarland, Saarbrücken (Germany); Martin, Manfred [Physical Chemistry, RWTH-Aachen, Aachen (Germany)

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using {sup 111m}Cd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  14. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  15. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  16. The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice: Insights from Numerical Models and Ice Core Microstructure Analysis

    Directory of Open Access Journals (Sweden)

    Florian Steinbach

    2017-09-01

    Full Text Available The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modeling and analyzed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD have been used together with c-axis orientations using an optical technique (Fabric Analyser. Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighboring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modeling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be

  17. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    Science.gov (United States)

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to

  18. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  19. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Ki; Lee, Young-Hie, E-mail: yhlee@kw.ac.kr [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); Lee, Seung-Hwan [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); In Kim, Soo; Woo Lee, Chang [Department of Nano and Electronic Physics, Kookmin University, Seoul (Korea, Republic of); Rag Yoon, Jung [R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); Lee, Sung-Gap [Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju (Korea, Republic of)

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  20. Improvement of the mechanical properties of spark plasma sintered hap bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Veljović Đ.

    2013-01-01

    Full Text Available Composites based on HAP and oxidized multi-walled carbon nanotubes (o-MWCNT and monophase HAP materials were processed by spark plasma sintering. Starting from stoichiometric nano-sized HAP powder, monophase bioceramics were obtained with a density close to the theoretical one and with an average grain size of several hundred nanometers to micron dimensions. It was shown that decreasing the sintering temperature resulted in a decrease of the grain size, which affected an increase in the fracture toughness and hardness. The fracture toughness of an HAP/ o-MWCNT bioceramic processed at 900°C for only 5 min was 30 % higher than that of monophase HAP materials obtained under the same conditions. The addition of MWCNT during SPS processing of HAP materials caused a decrease in the grain size to the nano-dimension, which was one of the reasons for the improved mechanical properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i FP7-REGPOT-2009-1 NANOTECH FTM, Grant Agreement Number: 245916

  1. A new route for the synthesis of submicron-sized LaB6

    International Nuclear Information System (INIS)

    Lihong, Bao; Wurentuya,; Wei, Wei; Tegus, O.

    2014-01-01

    Submicron crystalline LaB 6 has been successfully synthesized by a solid-state reaction of La 2 O 3 with NaBH 4 at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation of LaB 6 cubic structure. - Highlights: • Single-phased LaB 6 have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature

  2. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  3. The crystallization kinetic model of nano-CaCO3 in CO2-ammonia-phosphogypsum three-phase reaction system

    Science.gov (United States)

    Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang

    2018-06-01

    Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.

  4. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    International Nuclear Information System (INIS)

    Li Junjie; Zhu Dunwan; Yin Jianwei; Liu Yuxi; Yao Fanglian; Yao Kangde

    2010-01-01

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca 2+ ] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca 2+ ]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio ≤ 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  5. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    Energy Technology Data Exchange (ETDEWEB)

    Li Junjie [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China); Zhu Dunwan [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300072 (China); Yin Jianwei; Liu Yuxi [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Fanglian, E-mail: yaofanglian@tju.edu.cn [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Kangde [Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China)

    2010-07-20

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca{sup 2+}] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca{sup 2+}]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio {<=} 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  6. Grain-size sorting and slope failure in experimental subaqueous grain flows

    NARCIS (Netherlands)

    Kleinhans, M.G.; Asch, Th.W.J. van

    2005-01-01

    Grain-size sorting in subaqueous grain flows of a continuous range of grain sizes is studied experimentally with three mixtures. The observed pattern is a combination of stratification and gradual segregation. The stratification is caused by kinematic sieving in the grain flow. The segregation is

  7. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    Science.gov (United States)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  8. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  9. Effect of milling on the damping behavior of nano-structured copper

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, Narasimalu; Thein, Maung Aye; Gupta, Manoj

    2004-02-05

    In the present study, elemental Cu powder was mechanically milled (MMed) for 10 h to reduce the grain (crystalline) size in the nano-range (<100 nm). The mechanically milled powder (10 h-MMed) and elemental powder without mechanical milling (MM) (0 h-MMed) was consolidated by die-cold compaction and were further hot extruded at different temperatures to maintain a crystallite size within the nano-range. Further, the specimen was tested by a novel free-free type suspended beam arrangement, coupled with circle-fit approach to determine damping characteristics. The characterization results help to understand the effect of the nano-size grains on the overall damping capacity of the bulk samples compared to a normal micro-crystalline sample. Results show that the damping capacity of the nano-grained material increases due to the presence of process induced microstructural changes similar to the damping behavior of a micro-grain sized specimen.

  10. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  11. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  12. A new look at grain size and load effects in the hardness of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany)

    1998-05-01

    A simple model describes the load effect (size effect) in the hardness, assuming an increasing microplastic deformability, when the further extension of the plastic zone growth and multiplication of pre-existing elements of plasticity are more effective than the generation of new dislocations or twins in the virgin material around the indentation site. The model explains experiments with sintered alumina which indicate a reduced load effect in increasingly fine-grained microstructures due to a grain size effect that is more pronounced at higher testing loads (larger indents) than in the microhardness range. A large difference between the hardness of plastically deformed volumes in single crystals and in polycrystalline microstructures consisting of grains with the same size, respectively, reveals a substantial contribution of the grain boundaries to plastic deformation at the indentation site even at room temperature and even for coarser microstructures. (orig.) 18 refs.

  13. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  14. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films.

    Science.gov (United States)

    Ciesielski, Richard; Schäfer, Frank; Hartmann, Nicolai F; Giesbrecht, Nadja; Bein, Thomas; Docampo, Pablo; Hartschuh, Achim

    2018-03-07

    Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

  15. Nano dots and nano crystals detectors applications and questions

    International Nuclear Information System (INIS)

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  16. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  17. Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires

    International Nuclear Information System (INIS)

    Talaat, A.; Val, J.J. del; Zhukova, V.; Ipatov, M.; Klein, P.; Varga, R.; González, J.; Churyukanova, M.; Zhukov, A.

    2016-01-01

    We present a new-Fe 38.5 Co 38.5 B 18 Mo 4 Cu 1 Hitperm glass-coated microwires obtained by Taylor-Ulitovsky technique with nanocrystalline structure consisting of about 23 nm of BCC α-FeCo and an amorphous precursors in as-prepared samples. Annealing resulted in a considerable decrease of such nano-grains down to (11 nm). Obtained results are discussed in terms of the stress diffusion of limited crystalline growth and the chemical composition. Rectangular hysteresis loops have been observed on all annealed samples that are necessary conditions to obtain fast domain wall propagation. An enhancement of the domain wall velocity as well as mobility after annealing has been obtained due to the structural relaxation of such grains with positive magnetostriction. These structure benefits found in the nanocrystalline Hitperm glass-coated microwires are promising for developing optimal magnetic properties. - Highlights: • Grains size refinement upon annealing. • Enhancement of the domain wall velocity as well as mobility after annealing. • Nanocrystalline structure in as-prepared microwires.

  18. Attraction of likely charged nano-sized grains in dust-electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net [Physical-Chemical Institute for Environmental and Human Protection, Odessa 65082 (Ukraine)

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. The equilibrium state between attraction and repulsion of grains is demonstrated.

  19. Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R. [Laboratory of Materials, Process, Environment and Quality, Cady Ayyad University, National School of Applied Sciences, Safi (Morocco); Laboratoire de Magnetisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Universite Mohammed V-Agdal, Faculte des Sciences, B.P. 1014 Rabat (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Laboratoire de Magnetisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Universite Mohammed V-Agdal, Faculte des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnetisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Universite Mohammed V-Agdal, Faculte des Sciences, B.P. 1014 Rabat (Morocco)

    2012-11-15

    In this paper we use the Monte Carlo simulations to investigate the magnetic properties of an Ising ferromagnetic-antiferromagnetic model. The system is based on a nano-graphene structure-like bilayer with two bloc sizes: N=24 and 42 spins. For each size N, the upper layer A is formed with spin -3/2, whereas the lower layer B is composed of spin -5/2. We only consider the first nearest-neighbor interactions between the sites i and j. The magnetic properties are studied, in the absence as well as in the presence of a crystal magnetic field, and an external magnetic field. The increasing temperature and crystal field as well as the inter-layer coupling constant, are also studied for this system sizes N=24 and 42 spins. The zero-field-cooled and the field cooled magnetization behaviors are investigated for different values of external magnetic field and a fixed value of exchange interaction between the two blocs. The magnetizations as well as the magnetic susceptibilities versus the temperature are used in order to obtain blocking temperature. The saturation magnetization and coercive field are also obtained for the two sizes of the studied system. It is found that the blocking temperature decreases on increasing the crystal magnetic field and/or the external magnetic field, for a fixed system size. On the other hand, it is found that the blocking temperature increases on increasing the system size from N=24 to 42 spins, for fixed values of external and the crystal magnetic fields. - Highlights: Black-Right-Pointing-Pointer Magnetic properties of an Ising ferromagnetic-antiferromagnetic bilayer is studied. Black-Right-Pointing-Pointer Monte Carlo simulations are used. Black-Right-Pointing-Pointer Zero-field-cooled (ZFC) and field cooled (FC) magnetization behaviors for nano-graphene are obtained.

  20. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    International Nuclear Information System (INIS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  1. Synthesis and thermal characterization of CdS nano crystals in previously formed template of maleic anhydride-octene 1-vinyl butyl terpolymer

    International Nuclear Information System (INIS)

    Akbarov, O.H; Mammadova, R.E; Malikov, E.Y.

    2008-01-01

    Full text: Nano crystals have dimensions in the range 10100 nm. Crystals in this size range possess unique properties, which enable scientists to manufacture materials and devices capable of performing unimaginable tasks. For that reason synthesis of this semiconductor nano crystals is expedient. Many useful methods have been used for preparing sulphide semiconductor nano crystals, such as colloidal chemistry method, sol-gel method, inverse micelle method, in situ synthesis and assemble on polymer template. The most significant method is in situ synthesis and assemble of sulphide semiconductor nano crystals on polymer. Compared with other methods, the stability of nanoparticles is improved by the protection and confinement of the copolymer. Because of confinement and protection effects of template environmental risk is prevented in this method. On the base of this principles in situ synthesis of CdS nano crystals in maleic anhydride-octene 1-vinyl butyl terpolymer was realized in this scientific work. First of all in specific condition maleic anhydride, octene 1, and vinyl butyl ether were polymerized to form a terpolymer as the result of radical ter polymerization. In second step CdS nano crystals were synthesized in N,N-dimethylformamide solution of maleic anhydride-octene 1-vinyl butyl terpolymer through the reaction of thiourea with cadmium chloride. In this process CdCI 2 x 2.5H 2 O was dissolved in N,N-dimethylformamide solution of previously formed terpolymer and was heated in 90 0 C temperature for 4 hours with vigorous stirring. Then desired amount of thiourea in N,N-dimethylformamide was quickly injected into the reaction flask using a syringe. The reaction continued for another 1 hour, and a yellow clear solution was obtained, which indicated the formation of CdS nano crystals

  2. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  3. The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice : Insight from Numerical Models and Ice Core Microstructure Analysis

    NARCIS (Netherlands)

    Steinbach, F.; Kuiper, E.N.; Eichler, J.; Bons, P. D.; Drury, M. R.; Griera, A.; Pennock, G.M.; Weikusat, I.

    2017-01-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We

  4. Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels

    Science.gov (United States)

    Singh, Kritika; Kumar, Avanish; Singh, Aparna

    2018-04-01

    The strength in nanostructured bainitic steels primarily arises from the fine platelets of bainitic ferrite embedded in carbon-enriched austenite. However, the toughness is dictated by the shape and volume fraction of the retained austenite. Therefore, the exact determination of processing-morphology relationships is necessary to design stronger and tougher bainite. In the current study, the morphology of bainitic ferrite in Fe-0.89C-1.59Si-1.65Mn-0.37Mo-1Co-0.56Al-0.19Cr (wt pct) bainitic steel has been investigated as a function of the prior austenite grain size (AGS). Specimens were austenitized at different temperatures ranging from 900 °C to 1150 °C followed by isothermal transformation at 300 °C. Detailed microstructural characterization has been carried out using scanning electron microscopy and X-ray diffraction. The results showed that the bainitic laths transformed in coarse austenite grains are finer resulting in higher hardness, whereas smaller austenite grains lead to the formation of thicker bainitic laths with a large fraction of blocky type retained austenite resulting in lower hardness.

  5. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  6. Methods of assessing grain-size distribution during grain growth

    DEFF Research Database (Denmark)

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference...

  7. Influence of the Grain Size on the Properties of CH3NH3PbI3 Thin Films.

    Science.gov (United States)

    Shargaieva, Oleksandra; Lang, Felix; Rappich, Jörg; Dittrich, Thomas; Klaus, Manuela; Meixner, Matthias; Genzel, Christoph; Nickel, Norbert H

    2017-11-08

    Hybrid perovskites have already shown a huge success as an absorber in solar cells, resulting in the skyrocketing rise in the power conversion efficiency to more than η = 22%. Recently, it has been established that the crystal quality is one of the most important parameters to obtain devices with high efficiencies. However, the influence of the crystal quality on the material properties is not fully understood. Here, the influence of the morphology on electronic properties of CH 3 NH 3 PbI 3 thin films is investigated. Postannealing was used to vary the average grain size continuously from ≈150 to ≈1000 nm. Secondary grain growth is thermally activated with an activation energy of E a = 0.16 eV. The increase in the grain size leads to an enhancement of the photoluminescence, indicating an improvement in the material quality. According to surface photovoltage measurements, the charge-carrier transport length exhibits a linear increase with increasing grain size. The charge-carrier diffusion length is limited by grain boundaries. Moreover, an improved morphology leads to a drastic increase in power conversion efficiency of the devices.

  8. The Sustainable Improvement of Manufacturing for Nano-Titanium

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2016-04-01

    Full Text Available Scientists have found that nanomaterials possess many outstanding features in their tiny grain structure compared to other common materials. Titanium at the nano-grain scale shows many novel characteristics which demonstrate suitability for use in surgical implants. In general, equal channel angular pressing (ECAP is the most popular and simple process to produce nano-titanium. However, ECAP is time-consuming, power-wasting, and insufficiently produces the ultrafine grain structure. Therefore, the objective of this research is to propose a new method to improve the ECAP’s performances to reach the ultrafine grain structure, and also to save production costs, based on the innovation theory of Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ. Research results show that the process time is reduced by 80%, and 94% of the energy is saved. Moreover, the grain size of the diameter for nano-titanium can be reduced from 160 nanometers (nm to 80 nm. The results are a 50% reduction of diameter and a 75% improvement of volume. At the same time, the method creates a refined grain size and good mechanical properties in the nano-titanium. The proposed method can be applied to produce any nanomaterial as well as biomaterials.

  9. Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology

    International Nuclear Information System (INIS)

    Li, Xiangru; Hu, Hao; Huang, Sheng; Yu, Gaige; Gao, Lin; Liu, Haowen; Yu, Ying

    2013-01-01

    Graphical abstract: - Highlights: • Nano-sized Li 4 Ti 5 O 12 has been prepared through solid state reaction by using axiolitic TiO 2 as precursor. • The prepared nano-sized Li 4 Ti 5 O 12 anode material shows excellent electrochemical performance. • The utilization of precursor with special morphology and size is one of the useful ways to prepare more active electrode materials. - Abstract: Spinel nano-sized Li 4 Ti 5 O 12 anode material of secondary lithium-ion battery has been successfully prepared by solid state reaction using axiolitic TiO 2 assembled by 10–20 nm nanoparticles and Li 2 CO 3 as precursors. The synthesis condition, grain size effect and corresponding electrochemical performance of the special Li 4 Ti 5 O 12 have been studied in comparison with those of the normal Li 4 Ti 5 O 12 originated from commercial TiO 2 . We also propose the mechanism that using the nano-scaled TiO 2 with special structure and unexcess Li 2 CO 3 as precursors can synthesize pure phase nano-sized Li 4 Ti 5 O 12 at 800 °C through solid state reaction. The prepared nano-sized Li 4 Ti 5 O 12 anode material for Li-ion batteries shows excellent capacity performance with rate capacity of 174.2, 164.0, 157.4, 146.4 and 129.6 mA h g −1 at 0.5, 1, 2, 5 and 10 C, respectively, and capacity retention of 95.1% after 100 cycles at 1 C. In addition, the specific capacity fade for the cell with the different Li 4 Ti 5 O 12 active materials resulted from the increase of internal resistance after 100 cycles is compared

  10. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  11. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  12. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics

    Directory of Open Access Journals (Sweden)

    Han Li

    2017-12-01

    Full Text Available Thermoelectric semiconductors based on CoSb3 hold the best promise for recovering industrial or automotive waste heat because of their high efficiency and relatively abundant, lead-free constituent elements. However, higher efficiency is needed before thermoelectrics reach economic viability for widespread use. In this study, n-type InxCeyCo4Sb12+z skutterudites with high thermoelectric performance are produced by combining several phonon scattering mechanisms in a panoscopic synthesis. Using melt spinning followed by spark plasma sintering (MS-SPS, bulk InxCeyCo4Sb12+z alloys are formed with grain boundaries decorated with nano-phase of InSb. The skutterudite matrix has grains on a scale of 100–200 nm and the InSb nano-phase with a typical size of 5–15 nm is evenly dispersed at the grain boundaries of the skutterudite matrix. Coupled with the presence of defects on the Sb sublattice, this multi-scale nanometer structure is exceptionally effective in scattering phonons and, therefore, InxCeyCo4Sb12/InSb nano-composites have very low lattice thermal conductivity and high zT values reaching in excess of 1.5 at 800 K.

  13. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  14. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    Science.gov (United States)

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  15. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Okimoto, P.C.

    1988-01-01

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  16. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  17. Distribution of garnet grain sizes and morphologies across the Moine Supergroup, northern Scottish Caledonides

    Science.gov (United States)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2016-04-01

    Garnet is used in a wide range of geologic studies due to its important physical and chemical characteristics. While the mineral is useful for thermobarometry and geochronology constraints and can often be correlated to deformation and fabric development, difficulties remain in making meaningful interpretations of such data. In this study, we characterize garnet grain sizes and crystal morphologies from 141 garnet-bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup in the Scottish Caledonides. Larger, euhedral crystals are indicative of prograde metamorphic growth and are typically associated with the most recent phase of orogenesis (Scandian, ˜430 Ma). Small, rounded ("pin-head") garnets are interpreted as detrital in origin. A subhedral classification is more subjective and is used when garnets contains portions of straight boundaries but have rounded edges or rims that have been altered through retrograde metamorphic reactions. From our collection, 88 samples contain anhedral garnets (maximum measured grain size d = 0.46 ± 0.21 mm), 34 bear subhedral garnets (d = 2.0 ± 1.0 mm), and the remaining 19 samples contain garnets with euhedral grains (d = 4.4 ± 2.6 mm). Plotting the distribution of garnets relative to the mapped thrust contacts reveals an abrupt change in morphology and grain size when traced from the Moine thrust sheet across the Ben Hope and Sgurr Beag thrusts into the higher-grade, more hinterland-positioned thrust sheets. The dominance of anhedral garnets in the Moine thrust sheet suggests that these grains should not be used for peak P - T estimation associated with relatively low temperature (advance of interpreting large suits of garnet-derived thermodynamic and geochronologic data.

  18. Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Endo, Tatsuro; Ueda, China; Hisamoto, Hideaki; Kajita, Hiroshi; Okuda, Norimichi; Tanaka, Satoru

    2013-01-01

    We have fabricated polymer-based 2-dimensional photonic crystals that play a key role in enhancing the fluorescence of DNA intercalators. Highly ordered 2-dimensional photonic crystals possessing triangle-shaped and nm-sized hole arrays were fabricated on a 100 μm thick polymer film using nano-imprint lithography. Samples of double-stranded DNAs (sizes: 4361 and 48502 bp; concentration: 1 pM to 10 nM) were adsorbed on the surface of the 2-dimensional photonic crystal by electrostatic interactions and then treated with intercalators. It is found that the fluorescence intensity of the intercalator is enhanced by a factor of up to 10 compared to the enhancement in the absence of the 2-dimensional photonic crystal. Fluorescence intensity increases with increasing length and concentration of the DNAs. If the 2-dimensional photonic crystal is used as a Bragg reflection mirror, the enhancement of fluorescence intensity can be easily observed using a conventional spectrofluorometer. These results suggest that the printed photonic crystal offers a great potential for highly sensitive intercalator-based fluorescent detection of DNAs. (author)

  19. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  20. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  1. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    Science.gov (United States)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  2. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah, E-mail: a.f.shojaie@guilan.ac.ir; Zanjanchi, Mohammad Ali

    2011-03-31

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  3. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2011-01-01

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  4. Tsunami sediments and their grain size characteristics

    Science.gov (United States)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  5. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    Science.gov (United States)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  6. Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Cu-Rich Nano-phase Strengthened Ferritic Steel

    Science.gov (United States)

    Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo

    2018-03-01

    Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.

  7. Fabrication and thermomechanical properties of nano-SiC/carbon nano-tubes composites

    International Nuclear Information System (INIS)

    Lanfant, Briac

    2014-01-01

    Ceramic carbides materials such as SiC, due to their refractory nature and their low neutron absorption are believed to be promising candidates for high temperature nuclear or aerospace applications. However, SiC brittleness has limited its structural application. In this context this work examines in a first part the possibilities to perform dense nano-structured SiC matrix by SPS without the use of sintering additive. Indeed a reduction of grain size (below 100 nm) accompanied by a high final density seem to be the solutions to counteract the brittleness and thus to improve mechanical properties. Dense (95%) and nano-structured (grain size around 100 nm) SiC samples were obtained thanks to the realization of an effective dispersion technique and the study on the sintering parameters effect. High hardness (2200 Hv) and decent fracture toughness (3.0 MPa.m1/2) were achieved. This first work also showed the preponderant influence of recurrent pollutants (oxygen and carbon) found in SiC powders on the final microstructure and mechanical properties of sintered samples. The oxygen as silica or silicon oxycarbide seems to promote densification mechanisms while free carbon (3.5 %wt) causes lower grain size and densification state. Mechanical properties with carbon are also negatively impacted (950 Hv and 2.4 MPa.m1/2). Such degradation is due by the specific localization of carbon structure between the grains. In return of the expected mechanical properties improvement by reducing the grain size, the thermal conductivity is drastically decrease of due to the phonon scattering at the grain boundaries. With the aim of reducing this effect, a second study was initiated by introducing multi-walled carbon nano-tubes (MWCNTs) into the SiC matrix. The MWCNTs by exhibiting a high toughness could also help to enhance the mechanical properties. Green bodies with different amounts of well dispersed MWCNTs (0 %wt to 5 %wt) were realized. Like free carbon, MWCNTs are located between

  8. Crystallization behavior and mechanical properties of nano-CaCO3/β-nucleated ethylene-propylene random copolymer composites

    Directory of Open Access Journals (Sweden)

    W. H. Ruan

    2012-09-01

    Full Text Available To provide ethylene-propylene random copolymer (PPR with balanced mechanical properties, β-nucleating agent and CaCO3 nanoparticles are incorporated into PPR matrix by melt blending. It is found that crystallization rate and relative content of β-crystal increase with the addition of β-nucleating agent together with nanoparticles. Size of PPR spherulite is greatly reduced, and a specific morphology appears, in which α-crystal lamella is grown upon the β-nucleus. The results suggest that both β-nucleating agent and nano-CaCO3 have heterogeneous nucleation and synergistic effects on β-nucleation of PPR. Mechanical characterization shows that mechanical properties of PPR can be tuned by incorporation of β-nucleating agent and nano-CaCO3 particles. Under suitable compositions, low temperature impact strength and high temperature creep resistance of PPR, the bottlenecks of application of such material, can be simultaneously improved without sacrificing the Youngs’modulus and tensile strength.

  9. Surface Nano crystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Han, Z.; Zou, H.; Wang, Z.; Ji, I.; Cai, J.; Guan, Q.

    2013-01-01

    The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB) technique. The structures of the nano crystallized surface were characterized by X-ray diffraction and electron microscopy. Two nano structures consisting of fine austenite grains (50-150 nm) and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C) solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  10. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  11. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Science.gov (United States)

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  12. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  13. Correlated XANES, TEM, and NanoSIMS of presolar graphite grains

    Science.gov (United States)

    Groopman, Evan E.; Nittler, Larry R.

    2018-01-01

    We report correlated XANES, TEM, and NanoSIMS measurements of twelve presolar graphite grains extracted from primitive meteorites and for which isotopic data indicate predominantly Type-II supernovae origins. We find continued evidence for isotopic heterogeneities in presolar graphite grains, including the first observation of a radial gradient in the inferred initial 26Al/27Al within a presolar graphite grain. The XANES spectra of these samples show a variety of minor absorbances near the C K-edge, attributable to vinyl-keto, aliphatic, carboxyl, and carbonate molecules, as well as possible damage during sample preparation. Each sample exhibits homogeneous C K-edge XANES spectra within the graphite, however, showing no correlation with isotopic heterogeneities. Gradients in the isotope ratios of C, N, O, and Al could be due to both processes during condensation, e.g., mixing in stellar ejecta and granular transport, and post-condensation effects, such as isotope dilution and exchange with isotopically normal material in the early Solar System or laboratory, the latter of which is a significant issue for high-density presolar graphite grains. It remains unknown whether the mechanisms behind isotope exchange would also affect the local chemistry and therefore the XANES spectra. Ti L-edge XANES from most Ti-rich subgrains match standard spectra for TiC and potentially TiCN. A rare rutile (TiO2) subgrain has been identified, though it lacks the lowest energy L3 peak typically seen in standard spectra. Ca has also been identified by EDXS in TiC subgrains, likely due to the decay of live 44Ti at the time of formation. Future NanoSIMS measurements will determine the variability of initial 44Ti in TiC subgrains, an important constraint on mixing in the ejecta of the grains' parent supernovae.

  14. Using Radiochromic Films to Characterize the Dispersion of ZrO{sub 2} Nano-sized Grain Clusters in Protective Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C.C.P.; Nolasco, A.V. [Depto. de Engenharia Nuclear - DEN / UFMG - MG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil); Santos, A.P.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, C.P. 941, 30270-901, Belo Horizonte, MG (Brazil)

    2015-07-01

    . This result is discussed in terms of the high Z halides added to the sensitive layer of EB3 film, once the main components are C (42.3%), H (39.7%) and O (16.0%)1-2. Based on the above results, we have speculated about the abilities of XR-AQ films in the detection of the distribution of nano-sized particles that has high mass-energy attenuation coefficients for low energy x-rays, in polymer composites. In another investigation we tested the ability of XR-QA2 Gafchromic{sup R} films to evaluate the dispersion of ZrO{sub 2} nano-sized grain clusters in protective composites. The P(VDFTrFE)/ ZrO{sub 2} film was sandwiched between two XR-QA2 radiochromic films. In this setup, one radiochromic film is directly exposed to 100 mGy of the x-rays beam and another one measures the attenuated beam. After storage for 24 hours at room temperature under no light conditions, the irradiated radiochromic films were scanned under the same conditions in order to obtain a more reliable result. All films were scanned using the same size ROI in high resolution mode and saved as tagged image file format (TIFF). The untreated scanned image of the XR-AQ2 film directed exposed to the X-ray beam and the correspondent treated image with digital filters are shown. The untreated and treated image of the XR-AQ2 film that was exposed to the attenuated x-ray beam is shown. The image treated with digital filters seems to reproduce the dispersion of ZrO{sub 2} nano-sized grain clusters in the P(VDF-TrFE) copolymer matrix. This result is also discussed in terms of the high Z halides added to the sensitive layer of XR-AQ2 film and compared to the MEV images obtained from the P(VDF-TrFE)/ZrO{sub 2} composites. The results indicate a clear correlation between the 2D radiochromic image and the MEV photography.

  15. Mechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Fatemi

    2017-06-01

    Full Text Available The application of magnesium alloys is greatly limited because of their relatively low strength and ductility. An effective way to improve the mechanical properties of magnesium alloy is to refine the grains. As the race for better materials performance is never ending, attempts to develop viable techniques for microstructure refinement continue. Further refining of grain size requires, however, application of extreme value of plastic deformation on material. In this work, an AZ31 wrought magnesium alloy was processed by employing multipass accumulative back extrusion process. The obtained microstructure, texture, and room temperature compressive properties were characterized and discussed. The results indicated that grains of 80 nm to 1 μm size were formed during accumulative back extrusion, where the mean grain size of the experimental material was reduced by applying successive ABE passes. The fraction of DRX increased and the mean grain size of the ABEed alloy markedly lowered, as subsequent passes were applied. This helped to explain the higher yield stress govern the occurrence of twinning during compressive loading. Compressive yield and maximum compressive strengths were measured to increase by applying successive extrusion passes, while the strain-to-fracture dropped. The evolution of mechanical properties was explained relying on the grain refinement effect as well as texture change.

  16. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  17. Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; Trimby, P.W.; De Silva, K.S.B.; Bao, P.; Li, W.X.; Xu, X.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    We report the first application of the emerging transmission Kikuchi diffraction technique in the scanning electron microscope to investigate nano-grain structures in polycrystalline MgB 2 superconductors. Two sintering conditions were considered, and the resulting differences in superconducting properties are correlated to differences in grain structure. A brief comparison to X-ray diffraction results is presented and discussed. This work focusses more on the application of this technique to reveal grain structure, rather than on the detailed differences between the two sintering temperatures

  18. Grain size effect on the electrical response of SnO2 thin and thick film gas sensors

    Directory of Open Access Journals (Sweden)

    Raluca Savu

    2009-03-01

    Full Text Available Porous nano and micro crystalline tin oxide films were deposited by RF Magnetron Sputtering and doctor blade techniques, respectively. Electrical resistance and impedance spectroscopy measurements, as a function of temperature and atmosphere, were performed in order to determine the influence of the microstructure and working conditions over the electrical response of the sensors. The conductivity of all samples increases with the temperature and decreases in oxygen, as expected for an n-type semiconducting material. The impedance plots indicated the existence of two time constants related to the grains and the grain boundaries. The Nyquist diagrams at low frequencies revealed the changes that took place in the grain boundary region, with the contribution of the grains being indicated by the formation of a second semicircle at high frequencies. The better sensing performance of the doctor bladed samples can be explained by their lower initial resistance values, bigger grain sizes and higher porosity.

  19. Sonochemical synthesis and characterization of nano-sized zinc(II coordination complex as a precursor for the preparation of pure-phase zinc(II oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2017-01-01

    Full Text Available In current study, nanoparticles and single crystals of a Zn(II coordination complex, [Zn(dmphI2](1, {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine}, have been synthesized by the reaction of zinc(II acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy (SEM, X-ray powder diffraction (XRD, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of nano-sized 1 has been studied by thermogravimetric (TG and differential thermal analyses (DTA. Structural determination of compound 1 reveals the Zn(II ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-Phenanthroline ligand and two terminal I atoms. The effect of supercritical condition on stability, size and morphology of nano-structured compound 1 has also been studied. The XRD pattern of the residue obtained from thermal decomposition of nano-sized compound 1 at 600 °C under air atmosphere provided pure phase of ZnO with the average particles size of about 31 nm.

  20. The evolution of ferrite grain size in structural steels

    International Nuclear Information System (INIS)

    Hodgson, P.D.

    1999-01-01

    The refinement of the ferrite grain size is the main aim of modern thermomechanical processes for hot rolled steels. The ferrite grain size is determined by the composition, the state of the austenite at the point of transformation and the cooling rate through transformation. By adding microalloying additions of Ti for grain refinement and Nb to retard recrystallisation, it is possible to reduce the ferrite grain size to less than 5μm at moderate to high cooling rates. However, it is not possible under even the most extreme traditional controlled rolling and accelerated cooling conditions to produce an equiaxed ferrite grain size of less than 3μm. More recent work, though, involving rolling with high undercooling and friction conditions that lead to high shear, suggests that it is possible to produce microstructures in a single rolling pass with an average grain size less than 1μm. This appears to involve a dynamic (ie strain induced) transformation process. The current understanding of static and dynamic transformation and the resultant grain size is reviewed and areas requiring further research are highlighted

  1. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Effect of ZIF-8 Crystal Size on the O2 Electro-Reduction Performance of Pyrolyzed Fe–N–C Catalysts

    Directory of Open Access Journals (Sweden)

    Vanessa Armel

    2015-07-01

    Full Text Available The effect of ZIF-8 crystal size on the morphology and performance of Fe–N–C catalysts synthesized via the pyrolysis of a ferrous salt, phenanthroline and the metal-organic framework ZIF-8 is investigated in detail. Various ZIF-8 samples with average crystal size ranging from 100 to 1600 nm were prepared. The process parameters allowing a templating effect after argon pyrolysis were investigated. It is shown that the milling speed, used to prepare catalyst precursors, and the heating mode, used for pyrolysis, are critical factors for templating nano-ZIFs into nano-sized Fe–N–C particles with open porosity. Templating could be achieved when combining a reduced milling speed with a ramped heating mode. For templated Fe–N–C materials, the performance and activity improved with decreased ZIF-8 crystal size. With the Fe–N–C catalyst templated from the smallest ZIF-8 crystals, the current densities in H2/O2 polymer electrolyte fuel cell at 0.5 V reached ca. 900 mA cm−2, compared to only ca. 450 mA cm−2 with our previous approach. This templating process opens the path to a morphological control of Fe–N–C catalysts derived from metal-organic frameworks which, when combined with the versatility of the coordination chemistry of such materials, offers a platform for the rational design of optimized Metal–N–C catalysts.

  3. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  4. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  5. Grain size distributions and their effects on auto-acoustic compaction

    Science.gov (United States)

    Taylor, S.; Brodsky, E. E.

    2013-12-01

    A variety of geophysical and geomorphological processes depend on the response of granular mixtures to shear stress. For example, if shear sliding in a fault zone causes gouge to compact or dilate, this has implications on our understanding of earthquake nucleation and propagation. The behavior of granular flows has previously been found to be strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in what is recognized as the 'quasi-static' regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the 'grain-inertial' regime, which results in dilation of the flow. Recent experiments conducted using a commercial torsional rheometer found that at intermediate shear velocities, force chain collapse in angular sand samples produced sound waves capable of vibrating the shear zone enough to cause compaction. To expand on the characterization of this newly identified rheological regime, the 'auto-acoustic' regime, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with grain size mean and range. Stepped velocity ramp experiments were conducted first on five separate grain size bins, and then on various mixtures of these grain sizes. As expected, larger grain sizes entered the mass-dependent grain-inertial regime at lower shear velocities than smaller grain sizes. Interestingly, smaller grain sizes exhibited more pronounced compaction at slower velocities resulting from the auto-acoustic regime, and the largest grain sizes showed no compaction, implying a grain size threshold for auto-acoustic compaction. In mixtures of different grain size bins, the response of the flow to intermediate shear velocities was consistent with the response of the smallest grain size bin included in the mixture, while the response of the flow to high shear velocities was most

  6. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  7. New Paradigm for Plasma Crystal Formation with weak grain interaction

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Morfill, G.E.

    2005-01-01

    New results for non-linear grain screening, non-linear ion drag and non-linear collective attractions appropriate for existing experiments are used for the first time together to explain the observed phenomena of plasma condensation. Based on the physics of collective non-linear grain attraction a paradigm for plasma crystal formation is formulated according to which plasma the crystal formation is due to localization of grains in weak non-linear collective attraction wells. Nonlinearity in screening is an important feature of new paradigm and takes into account that the grain charges are large. The physical consequence of large non-linearity is the presence of relative large attraction potential well at distances several times larger then the non-linear screening radius. Calculated location of the potential well is of the order of the observed inter-grain distances in plasma crystals and the calculated deepness of the potential well determining the temperature of phase transition is close to that observed. The calculations of the deepness of the attraction collective well and the critical value of the coupling constant are performed using an assumption that the collective attraction length is larger than the non-linear screening length. The concept of collective grain interaction in complex plasmas is considered for the case where the non-linear screening is fully determining the collective attraction well

  8. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  9. Effects of grain size distribution on the interstellar dust mass growth

    OpenAIRE

    Hirashita, Hiroyuki; Kuo, Tzu-Ming

    2011-01-01

    Grain growth by the accretion of metals in interstellar clouds (called `grain growth') could be one of the dominant processes that determine the dust content in galaxies. The importance of grain size distribution for the grain growth is demonstrated in this paper. First, we derive an analytical formula that gives the grain size distribution after the grain growth in individual clouds for any initial grain size distribution. The time-scale of the grain growth is very sensitive to grain size di...

  10. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    Science.gov (United States)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  11. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  12. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    International Nuclear Information System (INIS)

    Kataoka, Akimasa; Dullemond, Cornelis P; Muto, Takayuki; Momose, Munetake; Tsukagoshi, Takashi

    2016-01-01

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints

  13. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Momose, Munetake; Tsukagoshi, Takashi, E-mail: kataoka@uni-heidelberg.de [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan)

    2016-03-20

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints.

  14. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  15. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    Science.gov (United States)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  16. Flow-induced crystallization of a nano composite of poly(butylene adipate-co-terephthalate)/montmorillonite

    International Nuclear Information System (INIS)

    Bonel, Alan B.; Rego, Bruna T.; Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S.

    2011-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) with 5wt% of an organically modified montmorillonite with polar surfactant was prepared by melt blending in a co-rotational twin-screw extruder at 160 degree C. 100rpm and 1 kg/h. Both pure polymer and nano composite were characterized by wide measurements. The study of the flow-induced crystallization was also done by rheological measurements, monitoring the viscosity as a function of time. The nano clay's lamellas were intercalated in the polymer m loss moduli of the nano composite, at low frequencies, showed that the particles of the nano clay were well dispersed and distributed thru the PBAT matrix. Finally, the presence of the nano clay's particles reduced the induction tim crystals growth, due to the strong interactions with the PBAT chains. (author)

  17. Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nano-powders

    International Nuclear Information System (INIS)

    Leconte, Y.; Maskrot, H.; Combemale, L.; Herlin-Boime, N.; Reynaud, C.

    2007-01-01

    Refractory carbide nano-structured ceramics appear to be promising materials for high temperature applications requiring hard materials such as nuclear energy industry. Such carbide materials are usually obtained with micrometric sizes from the high temperature carbo-reduction of an oxide phase in a raw mixture of C black and titania or zirconia. TiC and ZrC nano-powders were produced from an intimate mixture of oxide nano-grains with free C synthesized by laser pyrolysis from the decomposition of a liquid precursor. The temperature and the duration of the thermal treatment leading to the carburization were decreased, allowing the preservation of the nano-scaled size of the starting grains. A solution of titanium iso-prop-oxide was laser-pyrolyzed with ethylene as sensitizer in order to synthesize Ti/C/O powders. These powders were composed of crystalline TiO 2 nano-grains mixed with C. Annealing under argon enabled the formation of TiC through the carburization of TiO 2 by free C. The final TiC mean grain size was about 80 nm. Zr/O/C powders were prepared from a solution of zirconium butoxide and were composed of ZrO 2 crystalline nano-grains and free C. The same thermal treatment as for TiC, but at higher temperature, showed the formation of crystalline ZrC with a final mean grain size of about 40 nm. These two liquid routes of nano-particles synthesis are also compared to the very efficient gaseous route of SiC nano-powders synthesis from a mixture of silane and acetylene. (authors)

  18. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Wang, J.Y.; He, D.; Zhao, Y.H.; Mittemeijer, E.J.

    2006-01-01

    It has been shown experimentally that the grain boundaries in aluminium in contact with amorphous silicon are the necessary agents for initiation of the crystallization of silicon upon annealing temperatures as low as 438 K. Thermodynamic analysis has shown (i) that Si can 'wet' the Al grain boundaries due to the favorable Si/Al interface energy as compared to the Al grain-boundary energy and (ii) that Si at the Al grain boundaries can maintain its amorphous state up to a thickness of about 1.0 nm. Beyond that thickness crystalline Si develops at the Al grain boundaries

  19. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  20. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  1. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  2. Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells.

    Science.gov (United States)

    Li, Han; Liang, Chao; Liu, Yingliang; Zhang, Yiqiang; Tong, Jincheng; Zuo, Weiwei; Xu, Shengang; Shao, Guosheng; Cao, Shaokui

    2017-02-22

    Grain boundaries act as rapid pathways for nonradiative carrier recombination, anion migration, and water corrosion, leading to low efficiency and poor stability of organometal halide perovskite solar cells (PSCs). In this work, the strategy suppressing the crystal grain boundaries is applied to improve the photovoltaic performance, especially moisture-resistant stability, with polyvinylammonium carbochain backbone covalently connecting the perovskite crystal grains. This cationic polyelectrolyte additive serves as nucleation sites and template for crystal growth of MAPbI 3 and afterward the immobilized adjacent crystal grains grow into the continuous compact, pinhole-free perovskite layer. As a result, the unsealed PSC devices, which are fabricated under low-temperature fabrication protocol with a proper content of polymer additive PVAm·HI, currently exhibit the maximum efficiency of 16.3%. Remarkably, these unsealed devices follow an "outside-in" corrosion mechanism and respectively retain 92% and 80% of the initial PCE value after being exposed under ambient environment for 50 days and 100 days, indicating the superiority of carbochain polymer additives in solving the long-term stability problem of PSCs.

  3. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)

    2015-08-15

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  4. Grain-to-grain variations in NbC particle size distributions in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Barlow, C.Y.; Ralph, B.; Silverman, B.; Jones, A.R.

    1979-01-01

    Quantitative information has been obtained concerning the size distributions of NbC precipitate particles in different grains in a deformed and aged austenitic stainless steel specimen. The precipitate size distributions obtained differ from one grain to another. The average disparity measured between the mean precipitate sizes was a function of the distance between the grains compared. The results obtained are considered in terms of differences in precipitation behaviour due to variations in the levels of plastic strain in constituent grains of the deformed specimen. (author)

  5. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Zheng, J.; Li, S.L.

    2006-01-01

    Ti 4+ -doped SnO 2 nano-powders were prepared by the sol-gel process using tin tetrachloride and titanium tetrachloride as the starting materials. The crystallinity and purity of the powders were analyzed by X-ray diffraction (XRD) and the size and distribution of Ti 4+ -doped SnO 2 grains were studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that Ti 4+ has been successfully incorporated into the SnO 2 crystal lattice and the electrical conductivity of the doped materials improves significantly

  6. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    Science.gov (United States)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  7. THE EFFECT OF SEDIMENT GRAIN SIZE ON HEAVY METAL CONTENT

    Directory of Open Access Journals (Sweden)

    Svetlana Maslennikova

    2012-06-01

    Full Text Available In the natural surroundings tectonical, climatological, dynamic and physico-chemical conditions of sedimentation are the crucial factors in the process of sediment composition formation. Grain size is one of the most investigated reasons of space and temporary variability in heavy metal concentration. In general, the data on grain size measurement afford to appreciate sorption capacity of sediments and arrange them. The dependence heavy metal content on grain size of sediments has been examined in the enormous amount of research works. The main conclusion is that if grain size decreases, metal content increases.We have carried out sediment grain size measurement of two lakes (Chebachje Lake, Piketnoye Lake located in the South of Western Siberia, Russia. To define grain size of these sediments the sorting of samples collected layer-by-layer has been conducted by nest of sieves (from 43 to 1000 µm. Accomplished examinations allow to state that layer-by-layer grain size measurement of sediments has significant importance in reconstruction of paleoecologic peculiarities and also influences organic and inorganic matter concentrating in the sediments in dynamics

  8. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Conception, definition, measuring procedure of grain size

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1976-12-01

    The conception, definition, measuring procedure of ''Grain Size'' were surveyed. A concept ''grain diameter'' was introduced after deriving a calculation formula for the grain diameter for using the Comparison (simple) and Intercept(detailed) procedure. As an example and putting into practice, the grain diameter determination was carried out by means of the Comparison procedure for a UO 2 pellet used in a densification experiment. (auth.)

  10. Effects of nano TiN addition on the microstructure and mechanical properties of TiC based steel bonded carbides

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi'an; DAI Haiyang; ZOU Yu

    2008-01-01

    TiC based steel bonded carbides with the addition of nano TiN were prepared by vicuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM)and transmission electron microscopy (TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides.the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.

  11. Effect of freeze-thaw cycling on grain size of biochar.

    Science.gov (United States)

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  12. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    Science.gov (United States)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  13. A new database sub-system for grain-size analysis

    Science.gov (United States)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  14. Ultrafine grained steels processed by equal channel angular pressing

    International Nuclear Information System (INIS)

    Shin, Dong Hyuk; Park, Kyung-Tae

    2005-01-01

    Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability

  15. Recent progress in large grain/single crystal high RRR niobium

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel; Tadeu Carneiro; S.R. Agnew; F. Stevie

    2005-01-01

    High RRR bulk niobium Superconducting Radio Frequency (SRF) cavity technology is chosen for the International Linear Collider (ILC). The SRF community was convinced until now that fine grain polycrystalline RRR niobium sheets obtained via forging and cross rolling are essential for forming the SRF Cavities. However, it was recently discovered under a joint Reference Metals Company, Inc., - JLAB CRADA that large grain/single crystal RRR niobium sliced directly from ingots is highly ductile reaching 100 percent elongation. This discovery led to the successful fabrication of several SRF single and/or multi cell structures, formed with sliced RRR discs from the ingots, operating at 2.3, 1.5 and 1.3 GHz. This new exciting development is expected to offer high performance accelerator structures not only at reduced costs but also with simpler fabrication and processing conditions. As a result there is a renewed interest in the evaluation and understanding of the large grain and single crystal niobium with respect to their mechanical and physical properties as well as the oxidation behavior and the influence of impurities such as hydrogen and Ta. In this paper the results of many collaborative studies on large grain and single crystal high RRR niobium between JLAB, Universities and Industry are presented

  16. Effects of grain size evolution on mantle dynamics

    Science.gov (United States)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  17. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  18. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  19. Hall measurements and grain-size effects in polycrystalline silicon

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rose, A.; Maruska, H.P.; Eustace, D.J.; Feng, T.

    1980-01-01

    The effects of grain size on Hall measurements in polycrystalline silicon are analyzed and interpreted, with some modifications, using the model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge regions. For materials with large grain sizes, the carrier concentration is independent of the intergrain boundary barrier, whereas the mobility is dependent on it. However, for small grains, both the carrier density and mobility depend on the barrier. These predictions are consistent with experimental results of mm-size Wacker and μm-size neutron-transmutation-doped polycrystalline silicon

  20. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages.

    Science.gov (United States)

    Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive

    2008-01-01

    Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.

  1. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  2. Grain-size variations on a longitudinal dune and a barchan dune

    Science.gov (United States)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  3. Structural stability of nano-sized clusters

    NARCIS (Netherlands)

    De Hosson, JTM; Palasantzas, G; Vystavel, T; Koch, S; Ovidko,; Pande, CS; Krishnamoorti, R; Lavernia, E; Skandan, G

    2004-01-01

    This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during

  4. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  5. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures

    Directory of Open Access Journals (Sweden)

    Amir Musa Abazari

    2015-11-01

    Full Text Available Experiments on micro- and nano-mechanical systems (M/NEMS have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke’s law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT, Surface Stress Theory (SST, Residual Stress Theory (RST, Couple Stress Theory (CST and Surface Elasticity Theory (SET. By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters model that can be used to predict the mechanical properties at the nanoscale.

  6. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  7. Grain-size distributions and grain boundaries of chalcopyrite-type thin films

    International Nuclear Information System (INIS)

    Abou-Ras, D.; Schorr, S.; Schock, H.W.

    2007-01-01

    CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 and CuInS 2 thin-film solar absorbers in completed solar cells were studied in cross section by means of electronbackscatter diffraction. From the data acquired, grain-size distributions were extracted, and also the most frequent grain boundaries were determined. The grain-size distributions of all chalcopyrite-type thin films studied can be described well by lognormal distribution functions. The most frequent grainboundary types in these thin films are 60 - left angle 221 right angle tet and 71 - left angle 110 right angle tet (near) Σ3 twin boundaries. These results can be related directly to the importance of {112} tet planes during the topotactical growth of chalcopyrite-type thin films. Based on energetic considerations, it is assumed that the most frequent twin boundaries exhibit a 180 - left angle 221 right angle tet constellation. (orig.)

  8. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Zhuo, Longchao; Liu, Zhanli; Lu, Xiaogang; Shi, Zhenxue; Li, Jiarong; Zhu, Jing

    2015-01-01

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  9. Grain-to-Grain Variations in NbC Particle Size Distributions in an Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Barlow, Claire; Ralph, B.; Silverman, B.

    1979-01-01

    Quantitative information has been obtained concerning the size distributions of NbC precipitate particles in different grains in a deformed and aged austenitic stainless steel specimen. The precipitate size distributions obtained differ from one grain to another. The average disparity measured be...

  10. The grain-size lineup: A test of a novel eyewitness identification procedure.

    Science.gov (United States)

    Horry, Ruth; Brewer, Neil; Weber, Nathan

    2016-04-01

    When making a memorial judgment, respondents can regulate their accuracy by adjusting the precision, or grain size, of their responses. In many circumstances, coarse-grained responses are less informative, but more likely to be accurate, than fine-grained responses. This study describes a novel eyewitness identification procedure, the grain-size lineup, in which participants eliminated any number of individuals from the lineup, creating a choice set of variable size. A decision was considered to be fine-grained if no more than 1 individual was left in the choice set or coarse-grained if more than 1 individual was left in the choice set. Participants (N = 384) watched 2 high-quality or low-quality videotaped mock crimes and then completed 4 standard simultaneous lineups or 4 grain-size lineups (2 target-present and 2 target-absent). There was some evidence of strategic regulation of grain size, as the most difficult lineup was associated with a greater proportion of coarse-grained responses than the other lineups. However, the grain-size lineup did not outperform the standard simultaneous lineup. Fine-grained suspect identifications were no more diagnostic than suspect identifications from standard lineups, whereas coarse-grained suspect identifications carried little probative value. Participants were generally reluctant to provide coarse-grained responses, which may have hampered the utility of the procedure. For a grain-size approach to be useful, participants may need to be trained or instructed to use the coarse-grained option effectively. (c) 2016 APA, all rights reserved).

  11. Radiation-induced grain subdivision and bubble formation in U3Si2 at LWR temperature

    Science.gov (United States)

    Yao, Tiankai; Gong, Bowen; He, Lingfeng; Harp, Jason; Tonks, Michael; Lian, Jie

    2018-01-01

    U3Si2, an advanced fuel form proposed for light water reactors (LWRs), has excellent thermal conductivity and a high fissile element density. However, limited understanding of the radiation performance and fission gas behavior of U3Si2 is available at LWR conditions. This study explores the irradiation behavior of U3Si2 by 300 keV Xe+ ion beam bombardment combining with in-situ transmission electron microscopy (TEM) observation. The crystal structure of U3Si2 is stable against radiation-induced amorphization at 350 °C even up to a very high dose of 64 displacements per atom (dpa). Grain subdivision of U3Si2 occurs at a relatively low dose of 0.8 dpa and continues to above 48 dpa, leading to the formation of high-density nanoparticles. Nano-sized Xe gas bubbles prevail at a dose of 24 dpa, and Xe bubble coalescence was identified with the increase of irradiation dose. The volumetric swelling resulting from Xe gas bubble formation and coalescence was estimated with respect to radiation dose, and a 2.2% volumetric swelling was observed for U3Si2 irradiated at 64 dpa. Due to extremely high susceptibility to oxidation, the nano-sized U3Si2 grains upon radiation-induced grain subdivision were oxidized to nanocrystalline UO2 in a high vacuum chamber for TEM observation, eventually leading to the formation of UO2 nanocrystallites stable up to 80 dpa.

  12. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  13. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    International Nuclear Information System (INIS)

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-01-01

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  14. Standard test methods for characterizing duplex grain sizes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These test methods provide simple guidelines for deciding whether a duplex grain size exists. The test methods separate duplex grain sizes into one of two distinct classes, then into specific types within those classes, and provide systems for grain size characterization of each type. 1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this standard to consult appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use.

  15. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  16. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  17. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  18. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel

    Science.gov (United States)

    Hayakawa, Yasuyuki

    2017-12-01

    Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with , which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110} (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.

  19. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  20. Modelling the joint variability of grain size and chemical composition in sediments

    NARCIS (Netherlands)

    Bloemsma, M.R.; Zabel, M.; Stuut, J.B.W.; Tjallingii, R.; Collins, J.A.; Weltje, G.J.

    2012-01-01

    The geochemical composition of siliciclastic sediments correlates strongly with grain size. Hence, geochemical composition may serve as a grain-size proxy. In the absence of grain-size variations, geochemical data of siliciclastic sediments may be used to characterise size-independent processes,

  1. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  2. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  3. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  4. Some regularity of the grain size distribution in nuclear fuel with controllable structure

    International Nuclear Information System (INIS)

    Loktev, Igor

    2008-01-01

    It is known, the fission gas release from ceramic nuclear fuel depends from average size of grains. To increase grain size they use additives which activate sintering of pellets. However, grain size distribution influences on fission gas release also. Fuel with different structures, but with the same average size of grains has different fission gas release. Other structure elements, which influence operational behavior of fuel, are pores and inclusions. Earlier, in Kyoto, questions of distribution of grain size for fuel with 'natural' structure were discussed. Some regularity of grain size distribution of fuel with controllable structure and high average size of grains are considered in the report. Influence of inclusions and pores on an error of the automated definition of parameters of structure is shown. The criterion, which describe of behavior of fuel with specific grain size distribution, is offered

  5. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, O.; Moreno, F.; Guirado, D.; Escobar-Cerezo, J. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Vargas-Martín, F. [Department of Electromagnetism and Electronics, University of Murcia, E-30100 Murcia (Spain); Min, M. [SRON Netherlands Institute for Space Research, Sobornnelaan 2, 3584 CA Utrecht (Netherlands); Hovenier, J. W. [Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands)

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  6. Magnetotransport properties of ferromagnetic LaMnO3+δ nano-sized crystals

    International Nuclear Information System (INIS)

    Markovich, V.; Jung, G.; Fita, I.; Mogilyansky, D.; Wu, X.; Wisniewski, A.; Puzniak, R.; Titelman, L.; Vradman, L.; Herskowitz, M.; Gorodetsky, G.

    2010-01-01

    Transport and magnetic properties of LaMnO 3+δ nanoparticles with average size of 18 nm have been investigated. The ensemble of nanoparticles exhibits a paramagnetic to ferromagnetic (FM) transition at T C ∼246 K, while the spontaneous magnetization disappears at T∼270 K. It was found that the blocking temperature lies slightly below T C . The temperature dependence of the resistivity shows a metal-insulator transition at T∼192 K and low-temperature upturn at T<50 K. The transport at low temperatures is controlled by the charging energy and spin-dependent tunnelling through grain boundaries. The low temperature I-V characteristics are well described by indirect tunnelling model while at higher temperatures both direct and resonant tunnelling dominates.

  7. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    Science.gov (United States)

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Quantitative determination of grain sizes by means of scattered ultrasound

    International Nuclear Information System (INIS)

    Goebbels, K.; Hoeller, P.

    1976-01-01

    The scattering of ultrasounds makes possible the quantitative determination of grain sizes in metallic materials. Examples of measurements on steels with grain sizes between ASTM 1 and ASTM 12 are given

  9. Synthesis of SAPO-56 with controlled crystal size

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting; Feng, Xuhui [Colorado School of Mines, Chemical and Biological Engineering Department (United States); Carreon, Maria L. [University of Tulsa, Rusell School of Chemical Engineering (United States); Carreon, Moises A., E-mail: mcarreon@mines.edu [Colorado School of Mines, Chemical and Biological Engineering Department (United States)

    2017-03-15

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m{sup 2} g{sup −1} with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m{sup 2} g{sup −1} range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  10. Synthesis of SAPO-56 with controlled crystal size

    International Nuclear Information System (INIS)

    Wu, Ting; Feng, Xuhui; Carreon, Maria L.; Carreon, Moises A.

    2017-01-01

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m"2 g"−"1 with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m"2 g"−"1 range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  11. Removing grain boundaries from three-dimensional colloidal crystals using active dopants

    NARCIS (Netherlands)

    van der Meer, B.; Dijkstra, M.; Filion, L.C.

    2016-01-01

    Using computer simulations we explore how grain boundaries can be removed from three-dimensional colloidal crystals by doping with a small fraction of active colloids. We show that for sufficient selfpropulsion, the system is driven into a crystal-fluid coexistence. In this phase separated regime,

  12. The NGDC Seafloor Sediment Grain Size Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGDC (now NCEI) Seafloor Sediment Grain Size Database contains particle size data for over 17,000 seafloor samples worldwide. The file was begun by NGDC in 1976...

  13. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    Science.gov (United States)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  14. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  15. An investigation on microstructure and mechanical propertiesof a Nb-microalloyed nano/ultrafine grained 201 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Samaei Baghbadorani, H., E-mail: h.samaeibaghbadorani@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Fould Institute of Technology, Fouldshare 84916-63763 (Iran, Islamic Republic of); Behjati, P.; Rezaee, A.; Moallemi, M. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-06-11

    The present study was aimed to investigate the mechanical properties of a nano/ultrafine grained Nb-containing 201 austenitic stainless steel. For this purpose, 90% cold rolled sheets with fully martensitic microstructure were isothermally annealed at 900 °C for different times of 1 to 1800 s, leading to the reversion of strain- induced α′-martensite to austenite and significant grain refinement. Ferritescopy, X-ray diffractometery and optical/electron microscopy techniques along with hardness measurements and tensile tests were used to study the evolution in microstructure and mechanical properties in the course of annealing. It was found that heavy cold-rolling promoted formation of Nb-rich carbonitrides which effectively retarded the growth of fine reverted austenite grains. The obtained results showed that the complete transformation of martensite to austenite took about 60 s with the corresponding austenite grain size of about 90 nm. This sample had an ultrahigh yield strength of 1170 MPa, which was almost four times higher than that of the raw material and outstanding elongation of 37%. Further, the true stress–strain curves of the reversion annealed samples revealed two distinct uniform elongation stages (stage I and stage II), whereas, the onset of stage II was concurrent with pronounced strain hardening. This was related to the sharp increase in the formation of α′-martensite upon tensile straining.

  16. Estimating the average grain size of metals - approved standard 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    These methods cover procedures for estimating and rules for expressing the average grain size of all metals and consisting entirely, or principally, of a single phase. The methods may also be used for any structures having appearances similar to those of the metallic structures shown in the comparison charts. The three basic procedures for grain size estimation which are discussed are comparison procedure, intercept (or Heyn) procedure, and planimetric (or Jeffries) procedure. For specimens consisting of equiaxed grains, the method of comparing the specimen with a standard chart is most convenient and is sufficiently accurate for most commercial purposes. For high degrees of accuracy in estimating grain size, the intercept or planimetric procedures may be used

  17. Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper

    Science.gov (United States)

    He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng

    2018-01-01

    Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.

  18. Micro-structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited using LAAM

    Science.gov (United States)

    Bi, G.; Sun, C. N.; Nai, M. L.; Wei, J.

    In this paper, deposition of Ni-base Inconel 625 mixed with nano-TiC powders using laser aided additive manufacturing (LAAM) was studied. Micro-structure and mechanical properties were intensively investigated. The results showed that nano-size TiC distributed uniformly throughout the Ni- matrix. Inconel 625 can be reinforced by the strengthened grain boundaries with nano-size TiC. Improved micro-hardness and tensile properties were observed.

  19. Internal distribution of micro- / nano-sized inorganic particles and their cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Kida, Ikuhiro; Akasaka, Tsukasa; Uo, Motohiro; Yawaka, Yasutaka; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Mutoh, Mami [School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Morita, Manabu [Department of Oral Health, Okayama University Graduate School of Medicine, Dentisity and Pharmaceutical Science, Okayama 700-8525 (Japan); Haneda, Koichi [Department of Information Technology and Electronics, Senshu University of Ishinomaki, Ishinomaki 986-8580 (Japan); Yonezawa, Tetsu, E-mail: sabe@den.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-29

    Nano-sized materials have received much attention lately, both in terms of their multiple applications and their biocompatibility. From both viewpoints, understanding the biodistribution of administered nano-materials is very important. In this study, we succeeded in visualizing the biodistribution of administered nano-materials using a scanning X-ray analytical microscope and magnetic resonance imaging method. Quantitative observation was carried out by inductively coupled plasma - atomic emission spectroscopy. We observed that the administered nano-particles accumulated in the liver, lung and spleen of mice. To estimate their cytocompatibility, the nano-particles were exposed to human liver cells. The results suggested that the micro-/ nano- particles have good cytocompatibility, except for copper oxide nano-particles.

  20. Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys

    International Nuclear Information System (INIS)

    Sun, Y.F.; Fujii, H.; Tsuji, N.

    2013-01-01

    The ultrafine grained (UFGed) 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after 5 cycles, were spot friction stir welded to 2 mm thick 6061-T6 Al alloy plates at different rotation speeds. Although the UFGed 1050 Al plates were used as the lower plates in order to reduce the heat generation therein during the welding process, the initial nano-sized lamellar structure still transformed into an equiaxial grain structure with a grain size of about 5.9 µm in the stir zone of the joints. Simultaneously, coarsening of the precipitates and formation of large quantities of nano-sized subgrains were found in the stir zone of the 6061 Al alloy plates. Microstructural observation by high resolution transmission electron microscope showed that the two plates were bonded through a transitional layer with a thickness of about 15 nm, within which a lot of screw dislocations formed due to the frictional force between the two plates. A mechanical properties evaluation revealed that the maximum shear tensile load can reach about 4127 N and the joints fractured just outside the hook region in the lower 1050 Al plate

  1. Using the ''Epiquant'' automatic analyzer for quantitative estimation of grain size

    Energy Technology Data Exchange (ETDEWEB)

    Tsivirko, E I; Ulitenko, A N; Stetsenko, I A; Burova, N M [Zaporozhskij Mashinostroitel' nyj Inst. (Ukrainian SSR)

    1979-01-01

    Application possibility of the ''Epiquant'' automatic analyzer to estimate qualitatively austenite grain in the 18Kh2N4VA steel has been investigated. Austenite grain has been clarified using the methods of cementation, oxidation and etching of the grain boundaries. Average linear size of grain at the length of 15 mm has been determined according to the total length of grain intersection line and the number of intersections at the boundaries. It is shown that the ''Epiquant'' analyzer ensures quantitative estimation of austenite grain size with relative error of 2-4 %.

  2. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Modeling of phonon heat transfer in spherical segment of silica aerogel grains

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ya-Fen; Xia, Xin-Lin, E-mail: xiaxl@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn; Liu, Hai-Dong

    2013-07-01

    Phonon heat transfer in spherical segment of nano silica aerogel grains is investigated by the lattice Boltzmann method (LBM). For various sizes of grains, the temperature distribution and the thermal conductivity are obtained by the numerical simulation, in which the size effects of the gap surface are also considered. The results indicate that the temperature distribution in the silica aerogel grain depends strongly on the size. Both the decreases in the diameter of spherical segment and the ratio of the diameter of gap surface to the diameter of spherical segment reduce its effective thermal conductivity obviously. In addition, the phonon scattering at the boundary surfaces becomes more prominent when grain size decreases.

  4. Modeling of phonon heat transfer in spherical segment of silica aerogel grains

    International Nuclear Information System (INIS)

    Han, Ya-Fen; Xia, Xin-Lin; Tan, He-Ping; Liu, Hai-Dong

    2013-01-01

    Phonon heat transfer in spherical segment of nano silica aerogel grains is investigated by the lattice Boltzmann method (LBM). For various sizes of grains, the temperature distribution and the thermal conductivity are obtained by the numerical simulation, in which the size effects of the gap surface are also considered. The results indicate that the temperature distribution in the silica aerogel grain depends strongly on the size. Both the decreases in the diameter of spherical segment and the ratio of the diameter of gap surface to the diameter of spherical segment reduce its effective thermal conductivity obviously. In addition, the phonon scattering at the boundary surfaces becomes more prominent when grain size decreases

  5. Synthesis and mechanical properties of silicon-doped TiAl-alloys with grain sizes in the submicron range; Herstellung und mechanische Eigenschaften silizidhaltiger TiAl-Werkstoffe mit Korngroessen im Submikronbereich

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    The objective of this study is to provide a comprehensive insight into the mechanical properties of nano- and submicron-grained intermetallics, containing ceramic particles as a second phase. The investigations are focussed on {gamma}-TiAl-based alloys with a fine dispersion of titanium silicides. The samples are prepared by high energy milling and subsequent hot isostatic pressing. The mechanical properties are mainly dominated by the grain size as the most important structural feature. At room temperature, the grain size dependence of hardness and yield strength can be described by the well-known Hall-Petch relationship. Contrary to the behavior of conventional alloys, the ductility of submicron-grained alloys drops if the grain size is further reduced. This may be attributed to the insignificance of diffusional creep at room temperature and to arising difficulties evolving for dislocation-based deformation mechanisms. In the high temperature range, the flow stress is strongly reduced. Superplastic deformation becomes feasible already at 800 C. The silicide particles impede grain growth, but they also promote cavitation during tensile straining. The mechanisms of deformation are similar to those established for coarse-grained materials at higher temperatures ({>=}1000 C). (orig.)

  6. Nano grained AZ31 alloy achieved by equal channel angular rolling process

    International Nuclear Information System (INIS)

    Hassani, F.Z.; Ketabchi, M.

    2011-01-01

    Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.

  7. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    Science.gov (United States)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  8. Austenite Grain Size Estimtion from Chord Lengths of Logarithmic-Normal Distribution

    Directory of Open Access Journals (Sweden)

    Adrian H.

    2017-12-01

    Full Text Available Linear section of grains in polyhedral material microstructure is a system of chords. The mean length of chords is the linear grain size of the microstructure. For the prior austenite grains of low alloy structural steels, the chord length is a random variable of gamma- or logarithmic-normal distribution. The statistical grain size estimation belongs to the quantitative metallographic problems. The so-called point estimation is a well known procedure. The interval estimation (grain size confidence interval for the gamma distribution was given elsewhere, but for the logarithmic-normal distribution is the subject of the present contribution. The statistical analysis is analogous to the one for the gamma distribution.

  9. METHODS OF RECEIVING OF FINE-GRAINED STRUCTURE OF CASTINGS AT CRYSTALLIZATION

    Directory of Open Access Journals (Sweden)

    N. K. Tolochko

    2012-01-01

    Full Text Available The article deals with methods for fine-grained structure of ingots during crystallization depending on the used foundry technologies. It is shown that by using modern scientific and technological advances may improve the traditional and the development of new casting processes, providing production of cast parts with over fine-grained structure and enhanced properties.

  10. Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kim, Young Heon, E-mail: young.h.kim@kriss.re.kr [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ahn, Sang Jung [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ha, Tae Hwan [University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Hong Seung [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-Ro, Busan 606-791 (Korea, Republic of)

    2015-09-15

    Highlights: • Nanometer-sized small grains were observed in the ITO thin films. • The grain size increased as the post-thermal annealing temperature increased. • The mobility of ITO thin films increased with increasing grain size. • The ITO film annealed at 300 °C was an amorphous phase, while the others were polycrystalline structure. - Abstract: In this paper, we demonstrate the electrical properties, depending on grain size, of nanocrystalline indium tin oxide (ITO) thin films prepared with a solution process. The size distributions of nanometer-sized ITO film grains increased as the post-annealing temperature increased after deposition; the grain sizes were comparable with the calculated electron mean free path. The mobility of ITO thin films increased with increasing grain size; this phenomenon was explained by adopting the charge-trapping model for grain boundary scattering. These findings suggest that it is possible to improve mobility by reducing the number of trapping sites at the grain boundary.

  11. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    Science.gov (United States)

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  12. Effect of grain size on charge and spin correlations in Bi{sub 0.5}Ca{sub 0.5}MnO{sub 3} manganite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Ramesh; Singh, Rajender, E-mail: rssp@uohyd.ernet.in

    2016-11-15

    In this work we report the electron spin resonance (ESR) and magnetization (M) studies to understand the effect of grain size (GS) on the charge ordering and spin correlations in Bi{sub 0.5}Ca{sub 0.5}MnO{sub 3} manganite synthesized by sol–gel method. The suppression of charge ordering (CO), long-range antiferromagnetic (AFM) state, shifting of ferromagnetic (FM)-cluster glass (CG) transition towards higher temperatures and evolution of different magnetic correlations with decrease in GS are discussed in view of the changes in surface to volume ratio of nano-grains. - Highlights: • Effect of grain size on charge and spin correlations in Bi{sub 0.5}Ca{sub 0.5}MnO{sub 3} are studied. • The samples with GS 27, 450 and 1080 nm were synthesized by sol–gel method. • The temperature dependent electron spin resonance (ESR) and magnetization measurements were carried out. • The evolution of different magnetic correlations with decrease in GS are ascribed to increase in surface to volume ratio of grains.

  13. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.

    Science.gov (United States)

    Yu, Hailiang; Tieu, A Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-04-08

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

  14. NON-COHESIVE SOILS’ COMPRESSIBILITY AND UNEVEN GRAIN-SIZE DISTRIBUTION RELATION

    Directory of Open Access Journals (Sweden)

    Anatoliy Mirnyy

    2016-03-01

    Full Text Available This paper presents the results of laboratory investigation of soil compression phases with consideration of various granulometric composition. Materials and Methods Experimental soil box with microscale video recording for compression phases studies is described. Photo and video materials showing the differences of microscale particle movements were obtained for non-cohesive soils with different grain-size distribution. Results The analysis of the compression tests results and elastic and plastic deformations separation allows identifying each compression phase. It is shown, that soil density is correlating with deformability parameters only for the same grain-size distribution. Basing on the test results the authors suggest that compaction ratio is not sufficient for deformability estimating without grain-size distribution taken into account. Discussion and Conclusions Considering grain-size distribution allows refining technological requirements for artificial soil structures, backfills, and sand beds. Further studies could be used for developing standard documents, SP45.13330.2012 in particular.

  15. Importance and role of grain size in free surface cracking prediction of heavy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenhua [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004 (China); Sun, Shuhua; Wang, Bo [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shi, Zhongping [Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004 (China); Fu, Wantang, E-mail: wtfu@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-02-11

    The importance and role of grain size in predicting surface cracking of heavy forgings were investigated. 18Mn18Cr0.5N steel specimens with four different grain sizes were tensioned between 900 and 1100 °C at a strain rate of 0.1 s{sup −1}. The nucleation sites and crack morphology were analyzed through electron backscatter diffraction analysis, and the fracture morphology was examined using scanning electron microscopy. The nucleation sites were independent of the grain size, and cracks primarily formed at grain boundaries and triple junctions between grains with high Taylor factors. Grains with lower Taylor factors inhibited crack propagation. Strain was found to mainly concentrate near the grain boundaries; thus, a material with a larger grain size cracks more easily because there are fewer grain boundaries. Fine grains can be easily rotated to a lower Taylor factor to further inhibit cracking. The fracture morphology transformed from a brittle to ductile type with a lowering of grain size. At lower temperature, small dimples on the fracture surfaces of specimens with smaller grain sizes were left by single parent grains and the dimple edge was the grain edge. At higher temperature, dimples formed through void coalescence and the dimple edge was the tearing edge. Finally, the relationship between the reduction in area, grain size, and deformation temperature was obtained.

  16. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    Science.gov (United States)

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  17. Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS

    Science.gov (United States)

    Davidson, Jemma; Busemann, Henner; Nittler, Larry R.; Alexander, Conel M. O.'D.; Orthous-Daunay, François-Régis; Franchi, Ian A.; Hoppe, Peter

    2014-08-01

    It has been suggested that the matrices of all chondrites are dominated by a common material with Ivuna-like (CI) abundances of volatiles, presolar grains and insoluble organic matter (IOM) (e.g., Alexander, 2005). However, matrix-normalized abundances of presolar silicon carbide (SiC) grains estimated from their noble gas components show significant variations in even the most primitive chondrites (Huss and Lewis, 1995; Huss et al., 2003), in contradiction to there being a common chondrite matrix material. Here we report presolar SiC abundances determined by NanoSIMS raster ion imaging of IOM extracted from primitive members of different meteorite groups. We show that presolar SiC abundance determinations are comparable between NanoSIMS instruments located at three different institutes, between residues prepared by different demineralization techniques, and between microtomed and non-microtomed samples. Our derived SiC abundances in CR chondrites are comparable to those found in the CI chondrites (∼30 ppm) and are much higher than previously determined by noble gas analyses. The revised higher CR SiC abundances are consistent with the CRs being amongst the most primitive chondrites in terms of the isotopic compositions and disordered nature of their organic matter. Similar abundances between CR1, CR2, and CR3 chondrites indicate aqueous alteration on the CR chondrite parent body has not progressively destroyed SiC grains in them. A low SiC abundance for the reduced CV3 RBT 04133 can be explained by parent body thermal metamorphism at an estimated temperature of ∼440 °C. Minor differences between primitive members of other meteorite classes, which did not experience such high temperatures, may be explained by prolonged oxidation at lower temperatures under which SiC grains formed outer layers of SiO2 that were not thermodynamically stable, leading to progressive degassing/destruction of SiC.

  18. Grain-size dependent accommodation due to intragranular distributions of dislocation loops

    International Nuclear Information System (INIS)

    Richeton, T.; Berbenni, S.; Berveiller, M.

    2009-01-01

    A grain-size dependent accommodation law for polycrystals is deduced from an inclusion/matrix problem (i.e., each grain is seen as embedded in a homogeneous equivalent medium) where plastic strain inside the inclusion is given as a discrete distribution of circular coaxial glide dislocation loops. The loops are assumed constrained at spherical grain boundaries. From thermodynamic considerations specific to a process of identical plastification in all the loops (considered as 'super-dislocations'), an average back-stress over the grain is derived. In order to compute the very early stages of plastic deformation in a face-centred cubic polycrystal, this back-stress is incorporated into a diluted model in terms of concentration of plastic grains. Contrary to conventional mean-field approaches, a grain-size effect is obtained for the initial overall strain-hardening behaviour. This size effect results from an intrinsic contribution of intragranular slip heterogeneities on the kinematical hardening

  19. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  20. The effect of current density and saccharin addition on the grain size of nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating.

  1. The effect of current density and saccharin addition on the grain size of nickel coatings

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating

  2. Effect of the shape of a nano-object on quantum-size states

    International Nuclear Information System (INIS)

    Dzyuba, Vladimir; Kulchin, Yurii; Milichko, Valentin

    2012-01-01

    In this paper, we propose an original functional method that makes it easy to determine the effect of any deviation in the shape of a nano-object from the well-studied shape (e.g., spherical) on the quantum characteristics of charge localized inside the nano-object. The maximum dimension of the object is determined by the magnitude of influence of quantum-size effects on quantum states of charge, and is limited by 100 nm. This method is ideologically similar to the perturbation theory, but the perturbation of the surface shape, rather than the potential, is used. Unlike the well-known variational methods of theoretical physics, this method is based on the assumption that the physical quantity is a functional of surface shape. Using the method developed, we present the quantum-size state of charges for two different complex shapes of nano-objects. The results from analyzing the quantum-size states of charge in the nano-objects with a deformed spherical shape indicated that the shape perturbations have a larger effect on the probability density of locating a particle inside the nano-object than on the surface energy spectrum and quantum density of the states.

  3. Effect of nano-TiO{sub 2} particles size on the corrosion resistance of alkyd coating

    Energy Technology Data Exchange (ETDEWEB)

    Deyab, M.A., E-mail: hamadadeiab@yahoo.com; Keera, S.T.

    2014-08-01

    The coating system containing various sizes (∼10, 50, 100, 150 nm) of nano-TiO{sub 2} were prepared and investigated for corrosion protection of carbon steel in 1.0 M H{sub 2}SO{sub 4} using polarization, EIS and transmission electron microscopy (TEM) techniques. It was found that nano-TiO{sub 2} particles improved the corrosion resistance of alkyd coatings. The corrosion resistance occurs via physical adhesion on the metal surface. O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size. The inhibition efficiency was found to increase with decreasing the size of nano-TiO{sub 2} and with decreasing the temperature. - Highlights: • Nano-TiO{sub 2} coating were prepared and used for corrosion protection of C-steel. • Nano-TiO{sub 2} particles in coating are effective to improve the corrosion resistance. • Nano-TiO{sub 2} coating inhibit both anodic and cathodic reactions. • Corrosion inhibition efficiency increases with decrease in the size of nano-TiO{sub 2}. • O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size.

  4. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Nano-scale characterization of white layer in broached Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe, E-mail: zhe.chen@liu.se [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Colliander, Magnus Hörnqvist; Sundell, Gustav [Department of Physics, Chalmers University of Technology, 41296 Gothenburg (Sweden); Peng, Ru Lin [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Zhou, Jinming [Division of Production and Materials Engineering, Lund University, 22100 Lund (Sweden); Johansson, Sten; Moverare, Johan [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden)

    2017-01-27

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718. TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  6. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  7. Effects of micro-sized and nano-sized WO_3 on mass attenauation coefficients of concrete by using MCNPX code

    International Nuclear Information System (INIS)

    Tekin, H.O.; Singh, V.P.; Manici, T.

    2017-01-01

    In the present work the effect of tungsten oxide (WO_3) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO_3 and micro-WO_3 into concrete sample. The mass attenuation coefficients of pure concrete and WO_3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO_3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO_3 significanlty improve shielding properties than micro-WO_3. It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. - Highlights: • It was found that size of the WO_3 affected the mass attenuation coefficients of concrete in all photon energies.

  8. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    PremKumar, R.; Samajdar, I.; Viswanathan, N.N.; Singal, V.; Seshadri, V.

    2003-01-01

    Hot rolled low Si (silicon) non-grain oriented electrical steel was cold rolled to different reductions. Cold rolled material was subsequently recrystallized, 650 deg. C and 2 h, and then temper rolled (to 7% reduction) for the final grain growth annealing and decarburization treatment at 850 deg. C for 2-24 h. The development of texture, grain size and magnetic properties were characterized at different stages of processing. Effect of texture on magnetic properties (watt loss and permeability) was observed to be best represented by the ratio of volume fractions of (1 1 1) /(0 0 1) fibers, as estimated by convoluting X-ray ODFs (orientation distribution functions) with respective model functions. Such a ratio was termed as generalized texture factor (tf) for the non-grain oriented electrical steel. An effort was made to delink effects of grain size and texture, as represented by respective tf, on watt loss and permeability by careful analysis of experimental data. In general, low tf and/or high grain size were responsible for low watt loss and high permeability. However, individual effect of grain size or tf on magnetic properties was less significant at low tf or large grain size, respectively. An attempt was made to fit regression equations, namely--linear, exponential and power, relating magnetic properties with tf and grain size, limiting the fitting parameters to 3. Least standard deviations, between experimental and predicted values, were obtained by power regression equations for both magnetic properties

  9. Intelligent micro reactors. ''Nano firms''

    International Nuclear Information System (INIS)

    Pileni, M.P.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette

    1998-01-01

    A new synthesis method of CdS has been carried out. It is based on the use of inverse micellar systems. These micellae have an important property which is used here: when two droplets collide, they can join during a short moment and divide again, creating two new droplets identical to the first ones but which have indeed mixed their respective contents. The mixture of two inverse micellae (each containing a reagent) can lead to a chemical reaction, reduction or co-precipitation. Semi-conductor crystals of CdS have thus been synthesized. They are nano crystals. Their size is indeed limited because the droplets size limit the crystals growth which stabilize and stay inside the droplet. (O.M.)

  10. Aggregation performance of CdO grains grown on surface of N silicon crystal

    International Nuclear Information System (INIS)

    Zhang Jizhong; Zhao Huan

    2010-01-01

    Four kinds of aggregation patterns of CdO grains were formed on the surface of N silicon substrate heated at 580 deg. C for 1 h in an evaporation-deposition device. They were ellipse-shaped or quasi-circular-shaped aggregate, long ribbon-shaped aggregate, long chain-shaped or long double-chain-shaped aggregate, and long ellipse-chain-shaped aggregate. These aggregates consisted of numerous grains or tiny crystals, and deposited on top of the CdO bush-like long crystal clusters grown earlier. They exhibited clearly spontaneous self-organization aggregation performance. Surface defects of the virgin N silicon crystal were analyzed, and mechanism of the self-organization aggregation was discussed with a defect induced aggregation (DIA) model.

  11. Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium

    International Nuclear Information System (INIS)

    Le, G.M.; Godfrey, A.; Hansen, N.; Liu, W.; Winther, G.; Huang, X.

    2013-01-01

    The effect of grain size on deformation microstructure formation in the near-micrometre grain size regime has been studied using samples of aluminium prepared using a spark plasma sintering technique. Samples in a fully recrystallized grain condition with average grain sizes ranging from 5.2 to 0.8 μm have been prepared using this technique. Examination in the transmission electron microscope of these samples after compression at room temperature to approximately 20% reduction reveals that grains larger than 7 μm are subdivided by cell block boundaries similar to those observed in coarse-grained samples, with a similar dependency on the crystallographic orientation of the grains. With decreasing grain size down to approx. 1 μm there is a gradual transition from cell block structures to cell structures. At even smaller grain sizes of down to approx. 0.5 μm the dominant features are dislocation bundles and random dislocations, although at a larger compressive strain of 30% dislocation rotation boundaries may also be found in the interior of grains of this size. A standard 〈1 1 0〉 fibre texture is found for all grain sizes, with a decreasing sharpness with decreasing grain size. The structural transitions with decreasing grain size are discussed based on the general principles of grain subdivision by deformation-induced dislocation boundaries and of low-energy dislocation structures as applied to the not hitherto explored near-micrometre grain size regime

  12. The structure and properties of vacancies in Si nano-crystals calculated by real space pseudopotential methods

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chelikowsky, James R.

    2007-01-01

    The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm

  13. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  14. Strengthening analyses and mechanical assessment of Ti/Al{sub 2}O{sub 3} nano-composites produced by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Shafiei-Zarghani, Aziz, E-mail: ashafiei@ut.ac.ir [Center of Excellence for Surface Engineering and Corrosion Protection of Industries, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kashani-Bozorg, Seyed Farshid, E-mail: fkashani@ut.ac.ir [Center of Excellence for Surface Engineering and Corrosion Protection of Industries, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Gerlich, Adrian P., E-mail: adrian.gerlich@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-04-17

    The present work investigates strengthening mechanisms and mechanical assessment of Ti/Al{sub 2}O{sub 3} nano-composites produced by friction stir processing of commercially pure titanium using nano-sized Al{sub 2}O{sub 3} with different volume fractions and particle sizes. Microstructural analyses were conducted to characterize the grain size of matrix, size and dispersion of reinforcing particles. The mean grain size of the composites ranged from ~0.7 to 1.1 μm that is much lower than 28 μm of the as-received material. Reduction of grain size was found to be in agreement with Rios approach (based on energy dissipated during the motion of an interface through particle dispersion), and showed deviation from Zener pinning model. Scanning and transmission electron microscopies revealed a near uniform dispersion of Al{sub 2}O{sub 3} nano-particles, with only a small fraction of widely spaced clusters. The maximum compression yield strength of the fabricated nano-composite (Ti/3.9%vol of 20 nm-Al{sub 2}O{sub 3}) was found to be ~494 MPa that is ~1.5 times higher than that of the as-received material. Strengthening analyses based on grain refining (Hall–Petch approach), load transfer from matrix to reinforcements, Orowan looping, and enhanced dislocation density due to thermal mismatch effects were carried out considering Al{sub 2}O{sub 3} reinforcement with different volume fractions and sizes. However, Hall–Petch approach was found to be the dominant mechanism for the enhancement of yield strength.

  15. Observation of changing crystal orientations during grain coarsening

    International Nuclear Information System (INIS)

    Sharma, Hemant; Huizenga, Richard M.; Bytchkov, Aleksei; Sietsma, Jilt; Offerman, S. Erik

    2012-01-01

    Understanding the underlying mechanisms of grain coarsening is important in controlling the properties of metals, which strongly depend on the microstructure that forms during the production process or during use at high temperature. Grain coarsening of austenite at 1273 K in a binary Fe–2 wt.% Mn alloy was studied using synchrotron radiation. Evolution of the volume, average crystallographic orientation and mosaicity of more than 2000 individual austenite grains was tracked during annealing. It was found that an approximately linear relationship exists between grain size and mosaicity, which means that orientation gradients are present in the grains. The orientation gradients remain constant during coarsening and consequently the character of grain boundaries changes during coarsening, affecting the coarsening rate. Furthermore, changes in the average orientation of grains during coarsening were observed. The changes could be understood by taking the observed orientation gradients and anisotropic movement of grain boundaries into account. Five basic modes of grain coarsening were deduced from the measurements, which include: anisotropic (I) and isotropic (II) growth (or shrinkage); movement of grain boundaries resulting in no change in volume but a change in shape (III); movement of grain boundaries resulting in no change in volume and mosaicity, but a change in crystallographic orientation (IV); no movement of grain boundaries (V).

  16. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  17. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study

    International Nuclear Information System (INIS)

    Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang

    2016-01-01

    Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy

  18. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  19. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  20. Mapping soil degradation by topsoil grain size using MODIS data

    OpenAIRE

    XIAO, Jieying; SHEN, Yanjun; TATEISHI, Ryutaro

    2005-01-01

    [ABSTRACT] MODIS BRDF reflectance data at the end of April 2004 was selected to make a desertification map base on topsoil grain size by using Gain Size Index at arid and semiarid Asia. After data processing, GSI was applied into desertification mapping, and we find that high GSI area distributed at the desert and its’ marginal area, degraded grassland, desert steppe. The desertification map was output according to the correlation between GSI and grain size distribution, the classification of...

  1. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  2. High-temperature grain size stabilization of nanocrystalline Fe–Cr alloys with Hf additions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Saber, Mostafa; Xu, Weizong; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2014-09-08

    The influence of 1–4 at% Hf additions on the thermal stability of mechanically alloyed nanocrystalline Fe–14Cr alloys was studied in this work. XRD-calculated grain size and microhardness results were reported versus isochronal annealing treatments up to 1100 °C. Microstructural evolution was investigated using channeling contrast FIB imaging and TEM. Grain size of samples with 4 at% Hf was found to be maintained in the nanoscale range at temperatures up to 1000 °C. Zener pinning was considered as a major source of high temperature grain size stabilization. By comparing the Orowan strengthening contribution to the total hardness, the deviation of grain size predictions from the actual grain size in Fe–14Cr–4Hf suggests the presence of thermodynamic stabilization by the solute segregation to grain boundaries (GBs). A predictive thermodynamic model indicates that the thermodynamic stabilization can be expected.

  3. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  4. Influence of Fe(Cr) miscibility on thin film grain size and stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuyang; Kaub, Tyler; Martens, Richard L.; Thompson, Gregory B., E-mail: gthompson@eng.ua.edu

    2016-08-01

    During the post coalescence portion of thin film deposition, thin film stress is related to the grain size and adatom mobility of the depositing material. Using a Fe(Cr) alloy thin film, the manipulation of the tensile stress for thick films was studied as a function of Cr solute content up to 8 at.%. Solute concentrations up to 4 at.% resulted in an approximate 50% increase in grain size that resulted in a reduction of the tensile stress to be lower than either elemental film. Upon increasing the Cr content, the grain size refined and the tensile stress of the films increased. Atom probe characterization of the grain boundaries confirmed Cr chemical partitioning which refined the grain size and altered the film's texture, both of which contributed to the change in film stress. The use of intrinsic segregation, rather than deposition processing parameters, appears to be another viable option for regulating film stress. - Highlights: • Solute segregation to regulate grain size in controlling film stress • Quantification of Cr interfacial excess as a function of alloy content • Quantification of texture fiber alignment as a function of Cr content.

  5. THE EFFECTS OF GRAIN SIZE AND TEMPERATURE DISTRIBUTIONS ON THE FORMATION OF INTERSTELLAR ICE MANTLES

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States)

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.

  6. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  7. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  8. Growth of large size lithium niobate single crystals of high quality by tilting-mirror-type floating zone method

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Abdur Razzaque, E-mail: razzaque_ru2000@yahoo.com [Department of Physics, University of Rajshahi (Bangladesh)

    2016-05-15

    Large size high quality LiNbO{sub 3} single crystals were grown successfully by tilting-mirror-type floating zone (TMFZ) technique. The grown crystals were characterized by X-ray diffraction, etch pits density measurement, Impedance analysis, Vibrating sample magnetometry (VSM) and UV-Visible spectrometry. The effect of mirror tilting during growth on the structural, electrical, optical properties and defect density of the LiNbO{sub 3} crystals were investigated. It was found that the defect density in the crystals reduced for tilting the mirror in the TMFZ method. The chemical analysis revealed that the grown crystals were of high quality with uniform composition. The single crystals grown by TMFZ method contains no low-angle grain boundaries, indicating that they can be used for high efficiency optoelectronic devices. (author)

  9. Nanoscale Origins of the Size Effect in the Compression Response of Single Crystal Ni-Base Superalloy Micro-Pillars

    Directory of Open Access Journals (Sweden)

    Siqi Ying

    2018-04-01

    Full Text Available Nickel superalloys play a pivotal role in enabling power-generation devices on land, sea, and in the air. They derive their strength from coherent cuboidal precipitates of the ordered γ’ phase that is different from the γ matrix in composition, structure and properties. In order to reveal the correlation between elemental distribution, dislocation glide and the plastic deformation of micro- and nano-sized volumes of a nickel superalloy, a combined in situ nanoindentation compression study was carried out with a scanning electron microscope (SEM on micro- and nano-pillars fabricated by focused ion beam (FIB milling of Ni-base superalloy CMSX4. The observed mechanical response (hardening followed by softening was correlated with the progression of crystal slip that was revealed using FIB nano-tomography and energy-dispersive spectroscopy (EDS elemental mapping. A hypothesis was put forward that the dependence of material strength on the size of the sample (micropillar diameter is correlated with the characteristic dimension of the structural units (γ’ precipitates. By proposing two new dislocation-based models, the results were found to be described well by a new parameter-free Hall–Petch equation.

  10. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  11. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    International Nuclear Information System (INIS)

    Poorhaydari, Kioumars; Ivey, Douglas G.

    2007-01-01

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs

  12. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. [University of Tubingen, Tubingen (Germany). Inst. of Geoscience

    2008-11-15

    Two fly ash samples from a black coal-fired power plant (Bexbach, Germany) were investigated for their magnetic properties, particle structure, grain-size distribution and chemical composition. Grain-size distribution was determined on bulk samples and on magnetic extracts. Magnetic susceptibility of different grain-size fractions was analyzed with respect to the according amount of fractions, high- and low-temperature dependence of magnetic susceptibility and thermal demagnetization of IRM identified magnetite and hematite as magnetic phases. Magnetic spherules were quantitatively extracted from bulk fly ash samples and examined using SEM/EDX analysis. Particle morphology and grain-size analysis on the magnetically extracted material were studied. Individual spherule types were identified and internal structures of selected polished particles were investigated by SEM and EDX analyses. Main element contents of the internal structures which consist of 'magnetite' crystals and 'glassy' matrix were systematically determined and statistically assessed. The chemical data of the micro-scale structures in the magnetic spherules were compared with XRF data from bulk material, revealing the relative element distribution in composed magnetic spherules. Comparison of the bulk sample grain-size (0.5-300 {mu}m) and grain-size spectra from magnetic extracts (1-186.5 {mu}m) shows that strongly magnetic particles mainly occur in the fine fractions of < 63 {mu}m. This study comprises a comprehensive characterization of coal-fired power plant fly ash, using magnetic, chemical, and microscopic methods. The results can serve as reference data for a variety of environmental magnetic studies.

  13. Metal-assisted chemical etching of CIGS thin films for grain size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaowei [Research and Development Centre, Hanergy Thin Film Power Group Limited, Chengdu (China); Loi, Huu-Ha; Duong, Anh; Parker, Magdalena [Failure Analysis Department, MiaSole Hi-Tech Corp., Santa Clara, CA (United States)

    2016-09-15

    Grain size of the CIGS absorber is an important monitoring factor in the CIGS solar cell manufacturing. Electron backscatter diffraction (EBSD) analysis is commonly used to perform CIGS grain size analysis in the scanning electron microscope (SEM). Although direct quantification on SEM image using the average grain intercept (AGI) method is faster and simpler than EBSD, it is hardly applicable on CIGS thin films. The challenge is that, not like polycrystalline silicon, to define grain boundaries by selective chemical etching is not easily realizable for the multi-component CIGS alloy. In this Letter, we present direct quantification of CIGS thin film grain size using the AGI method by developing metal-assisted wet chemical etching process to define CIGS grain boundaries. The calculated value is similar to EBSD result. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Forecasting grain size distribution of coal cut by a shearer loader

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Chodura, J; Siwiec, J

    1983-02-01

    Analyzed are effects of shearer loader design on grain size distribution of coal, particularly on proportion of the finest size group and proportion of largest coal grains. The method developed by the IGD im. A.A. Skochinski Institute in Moscow is used. Effects of cutting tool design and mechanical coal properties are analyzed. Of the evaluated factors, two are of decisive importance: thickness of the coal chip cut by a cutting tool and coefficient of coal disintegration which characterizes coal behavior during cutting. Grain size distribution is also influenced by cutting tool geometry. Two elements of cutting tool design are of major importance: dimensions of the cutting edge and angle of attack. Effects of cutting tool design and coal mechanical properties on grain size distribution are shown in 12 diagrams. Using the forecasting method developed by the IGD im. A.A. Skochinski Institute in Moscow grain size distribution of coal cut by three shearer loaders is calculated: the KWB-3RDU with a drum 1600 mm in diameter, the KWB-6W with a drum 2500 mm in diameter, and a shearer loader being developed with a 1550 mm drum. The results of comparative evaluations are shown in two tables. 5 references.

  15. Colour characteristics of winter wheat grits of different grain size

    Directory of Open Access Journals (Sweden)

    Horváth Zs. H.

    2015-01-01

    Full Text Available Nowadays, wheat has spread all over the world due to its extensive usability. The colour of wheat grits is very important for the milling and baking industry because it determines the colour of the products made from it. The instrumental colour measuring is used, first of all, for durum wheat. We investigated the relationship between colour characteristics and grain size in the case of different hard aestivum wheats. We determined the colour using the CIE (Commission Internationale de l’Eclairage 1976 L*, a*, b* colour system measured by MINOLTA CR-300 tristimulus colorimeter. After screening the colour of the wheat fractions of different grain size, grits was measured wet and dry. We determined the L*, a*, b* colour co-ordinates and the whiteness index, too. To evaluate the values we had obtained, we used analysis of variance and regression analysis. We pointed out that the colour of wheat grits of different grain size is dependent on the hardness index of wheat. The lightness co-ordinate (L* of grits of the harder wheat is smaller, while a* and b* co-ordinates are higher. We also found that while grain size rises, the L* co-ordinate decreases and a*, b* values increase in the case of every type of wheat. The colour of grits is determined by the colour of fractions of 250-400 μm in size, independently from the average grain size. The whiteness index and the L* colour co-ordinate have a linear relation (R2 = 0.9151; so, the determination of whiteness index is not necessary. The L* value right characterizes the whiteness of grits.

  16. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  17. The effects of particle size distribution and induced unpinning during grain growth

    International Nuclear Information System (INIS)

    Thompson, G.S.; Rickman, J.M.; Harmer, M.P.; Holm, E.A.

    1996-01-01

    The effect of a second-phase particle size distribution on grain boundary pinning was studied using a Monte Carlo simulation technique. Simulations were run using a constant number density of both whisker and rhombohedral particles, and the effect of size distribution was studied by varying the standard deviation of the distribution around a constant mean particle size. The results of present simulations indicate that, in accordance with the stereological assumption of the topological pinning model, changes in distribution width had no effect on the pinned grain size. The effect of induced unpinning of particles on microstructure was also studied. In contrast to predictions of the topological pinning model, a power law dependence of pinned grain size on particle size was observed at T=0.0. Based on this, a systematic deviation to the stereological predictions of the topological pinning model is observed. The results of simulations at higher temperatures indicate an increasing power law dependence of pinned grain size on particle size, with the slopes of the power law dependencies fitting an Arrhenius relation. The effect of induced unpinning of particles was also studied in order to obtain a correlation between particle/boundary concentration and equilibrium grain size. The results of simulations containing a constant number density of monosized rhombohedral particles suggest a strong power law correlation between the two parameters. copyright 1996 Materials Research Society

  18. Species distribution model transferability and model grain size - finer may not always be better.

    Science.gov (United States)

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  19. Effect of coal stress on grain size of the gotten

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Tront, A

    1988-09-01

    Presents investigation results on the effect of seam stress and strain state on winning as measured by the grain size of the gotten. The investigations were carried out at the Institute of Mining Mechanization of the Silesian Politechnical where the relations between parameters of seams and cutters and their effect on coal grain size and energy consumption have been studied for several years. The effect was examined on coal samples taken from 4 mines in the Upper Silesian coal basin using a model of the system: seam - cutter. Cubic samples (400x400x400 mm) were tested on the CMG KOMAG test stand equipped with the POS-1 cutting apparatus. Two types of coal were distinguished: that particularly sensitive to increased pressure on seam and that only negligibly susceptible. Corresponding graphs of coal grain size versus vertical pressure are shown. A function has been developed that characterizes this sensitivity depending on a material parameter that can be determined by workability tests. The relationship between coal strength and grain size yield greater than 10 mm in the gotten depending on dynamic crushability of coal is shown in graphs. 6 refs.

  20. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  1. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  2. Impact of grain size and rock composition on simulated rock weathering

    Science.gov (United States)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  3. Extraction and Characterization of Nano cellulose from Coconut Fiber

    International Nuclear Information System (INIS)

    Nor Liyana Ahmad; Ishak Ahmad

    2013-01-01

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  4. Effect of particle size and morphology on the properties of luminescence in ZnWO4

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Valiev, D.T.; Tupitsyna, I.A.; Polisadova, E.F.; Oleshko, V.I.; Lisitsyna, L.A.; Andryuschenko, L.A.; Yakubovskaya, A.G.; Vovk, O.M.

    2014-01-01

    We investigated pulsed photoluminescence and pulsed cathodoluminescence in ZnWO 4 crystals and composite materials based on dispersed powders of zinc tungstate in the polymer matrix. It is shown that the size of crystal particles affects the luminescence decay time in excitation by electron and laser radiation. The decay time obtained for the composite material with nanoparticles 25 nm and 100 nm in size is equal to 5 µs and 7 µs, respectively. Relative values of the light yield of composite containing zinc tungstate crystals in the form of rods are found to be larger in comparison with crystallites in the form of grains. The mechanisms of luminescence recombination in laser and electron excitation are discussed. - Highlights: • Pulsed photoluminescence and pulsed cathodoluminescence spectra and decay kinetics of nano- and microcrystals of zinc tungstate in the organosilicic matrix compared to a single crystal were studied. • The luminescence decay kinetics and life-time of the excited state depend on the size of particles in the composite materials and on the type of excitation. • The probability of excitation of luminescence centers responsible for the band at 490 nm is higher which is apparently due to the larger capture cross-section and quantum yield

  5. The swelling behavior of montmorillonite as affected by the grain size by in situ X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Morodome, S.; Kawamura, K.; Owada, H.; Yahagi, R.; Kobayashi, I.

    2012-01-01

    Document available in extended abstract form only. In many existing researches, the swelling behavior and impermeability of smectitic engineered barrier materials in disposal facilities of radioactive waste was investigated. In the RWMC-project, the effect of smectite content on the mechanical and hydraulic behavior of smectitic materials is investigated and modeled to introduce into THMC analysis. However, since smectite is a natural resource, physical and chemical properties are different with places of production. In order to model the swelling behavior and impermeability of smectitic materials, not only the smectite content but also layer charge and crystal size will be the primary factors. In addition, smectite types and impurity minerals contents or soluble salts affect bentonite characteristic, as well. In this research, in order to focus on the effect of grain size of smectite, the swelling behavior of smectitic materials which are the same place of production but are different grain size were investigated. The smectitic material used in this study was Kunipia-F (Kunimine Industry Co. Ltd., Japan), which is from the Tukinuno Mine, Yamagata prefecture, Japan, and is purified montmorillonite produced by hydraulic elutriation. It is considered that the montmorillonite, Kunipia-F, has large crystal size, and for example Kunipia-F is able to make a sheet when drying weak solution. The grain size was conditioned by jet mill pulverizer. The pulverizing was conducted by making each other collide with high speed. The grain size of the intact and pulverized samples was measured by using of the laser scattering particle distribution analyzer and SEM. The swelling behavior was measured by in situ X-ray diffraction using of a sample chamber which can control the temperature and humidity precisely. The result of the laser scattering analysis denoted that the pulverized sample fined down expressly. The difference of the crystal aspect ratio of the pre- and post

  6. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2011-10-01

    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  7. Comparative study on nano-Zirconium Oxide Materials used in Nuclear Technology

    International Nuclear Information System (INIS)

    Khalil, T.; Dakroury, G.A.; Abou El-Nour, F.; Abdel-Khlik, M.

    2004-01-01

    Nano-ZrO 2 powders were prepared using two advanced methods, namely SoI-GeI and Gelation techniques. Y 2 O 3 , Ce0 2 and Mg0 were used as stabilizers during the preparation processes. The function of these materials is to stabilize the meta stable tetragonal Zr0 2 phase responsible for the nano character of produced materials. The applied experimental procedures proved to be suitable to produce nano powders composed of crystallites of few nano-meter size with an interfacial component formed by all atoms situated in the grain boundaries. These two structure components (nano-sized crystallites and boundaries) of comparable volume fractions are crucial for the nano-structure materials. Powder agglo-meration, contamination during processing and remaining of the residual pores in the bodies were overcome during the sintering process of the powder by special treatment. Different analytical procedures such as DTA-TG, specific surface area, pore size analysis, density, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out for Zr0 2 produced by both SoI-GeI and Gelation techniques

  8. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constitu...

  9. Grain-size effects on thermal properties of BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    decreasing grain size. Furthermore, the Curie temperature shifts to lower temperature with decreasing grain size. Keywords. Nanocrystalline ceramics; thermal properties; size effect. 1. Introduction. BaTiO3 has been widely used in the electronic industry for its high dielectric constant and low losses above room temperature ...

  10. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  11. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  12. The effect of grain and pore sizes on the mechanical behavior of thin Al films deposited under different conditions

    International Nuclear Information System (INIS)

    Ben-David, E.; Landa, M.; Janovská, M.; Seiner, H.; Gutman, O.; Tepper-Faran, T.; Shilo, D.

    2015-01-01

    This paper presents a comprehensive study of the relationships between deposition conditions, microstructure and mechanical behavior in thin aluminum films commonly used in micro and nano-devices. A particular focus is placed on the effect of porosity, which is present in all thin films deposited by evaporation or sputtering techniques. The influences of the deposition temperature on the grain size, pore size and crystallographic texture were characterized by X-ray diffraction and scanning electron microscopy. The mechanical behavior of the films was investigated using four different methods. Each method is suitable for characterizing different properties and for testing the material at different length scales. Nanoindentation was used to study hardness at the level of individual grains; resonant ultrasound spectroscopy was used to measure the elastic moduli and porosity; and bulge and tensile tests were used to study released films under biaxial and uniaxial tensions. Our results demonstrate that even low porosities may have tremendous effects on the mechanical properties and that different methods allow the capture of different aspects of these effects. Therefore, a combination of several methods is required to obtain a comprehensive understanding of the mechanical behavior of a film. It is also shown that porosity with different pore size leads to very different effects on the mechanical behavior

  13. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5-7 Coordination Defects

    Science.gov (United States)

    Lee, Ken C.; Yu, Qi; Erb, Uwe

    2016-06-01

    Corneal nano-nipple structures consisting of hexagonally arranged protrusions with diameters around 200 nm have long been known for their antireflection capability and have served as biological blueprint for solar cell, optical lens and other surface designs. However, little is known about the global arrangement of these nipples on the ommatidial surface and their growth during the eye development. This study provides new insights based on the analysis of nano-nipple arrangements on the mesoscale across entire ommatidia, which has never been done before. The most important feature in the nipple structures are topological 5- and 7-fold coordination defects, which align to form dislocations and interconnected networks of grain boundaries that divide the ommatidia into crystalline domains in different orientations. Furthermore, the domain size distribution might be log-normal, and the domains demonstrate no preference in crystal orientation. Both observations suggest that the nipple growth process may be similar to the nucleation and growth mechanisms during the formation of other crystal structures. Our results are also consistent with the most recently proposed Turing-type reaction-diffusion process. In fact, we were able to produce the key structural characteristics of the nipple arrangements using Turing analysis from the nucleation to the final structure development.

  14. On the room temperature microstrain of vanadium of different grain size

    International Nuclear Information System (INIS)

    Timm, J.; Guttmann, V.

    1977-01-01

    The present work deals with the plastic behaviour of polycrystalline vanadium from the onset of plastic deformation to the upper yield point. The stress-strain relation was found to be omega approximately epsilonsub(p)sup(1/2). The influence of the grain size on stress followed a omega approximately d -1 relationship. The initial yield stress was independent of grain size. By means of optical and electron microscopy it was found, that the first dislocation movement starts at grain boundaries. (orig.) [de

  15. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  16. Grain size dependent electrical studies on nanocrystalline SnO2

    International Nuclear Information System (INIS)

    Bose, A. Chandra; Thangadurai, P.; Ramasamy, S.

    2006-01-01

    Nanocrystalline tin oxide (n-SnO 2 ) with different grain sizes were synthesized by chemical precipitation method. Size variation was achieved by changing the hydrolysis processing time. Structural phases of the nanocrystalline SnO 2 were identified by X-ray diffraction (XRD). The grain sizes of the prepared n-SnO 2 were found to be in the range 5-20 nm which were estimated using the Scherrer formula and they were confirmed by transmission electron microscopy (TEM) measurements. The electrical properties of nanocrystalline SnO 2 were studied using impedance spectroscopy. The impedance spectroscopy results showed that, in the temperature range between 25 and 650 deg. C, the conductivity has contributions from two different mechanisms, which are attributed to different conduction mechanisms in the grain and the grain boundary regions. This is because of the different relaxation times available for the conduction species in those regions. However, for the temperatures above 300 deg. C, there is no much difference between these two different relaxation times. The Arrhenius plots gave the activation energies for the conduction process in all the samples

  17. Effect of grain size on the high temperature mechanical properties of type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Lee, Y. S.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Cho, H. D.; Han, C. H

    2001-02-01

    Nitrogen increases the high temeprature mechanical properties and decreases grain size. The effect of nitrogen on the high temperature mechanical properties was investigated in the viewpoint of grain size. Tensile strength increases with the decrease of grain size and agrees with the Hall-Petch relationship. Effect of grain size on the low cycle fatigue life properties were investigated as measuring the fatigue life from the results which had been obtained by the constant strain rate and various strain range. There was no effect on the low cycle fatigue properties by the grain size. The time to rupture decreased with the increase of grain size. The steady state creep rate decreased to a minimum and then increased as the grain size increased. This result agrees with the result predicted from Garofalo equation. The rupture elongation at the intermediate grain size showed a minimum due to the cavity formed easily by carbide precipitates in the grain boundaries.

  18. Rapid heating effects on grain-size, texture and magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    oriented electrical steels (Kumar et ... through changes in recovery and recrystallization beha- viour during the final annealing treatment (Duan et .... recovery, recrystallization and grain coarsening (Doherty et al 1988). The size of recrystallized grain is ...

  19. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    El Wahabi, M.; Gavard, L.; Montheillet, F.; Cabrera, J.M.; Prado, J.M.

    2005-01-01

    The influence of initial microstructure on discontinuous dynamic recrystallization (DDRX) has been investigated by using high purity and ultra high purity austenitic stainless steels with various initial grain sizes. After uniaxial compression tests at constant strain rates and various temperatures, the steady state microstructure or the state corresponding to the maximum strain (ε = 1) attained in the test was analyzed by scanning electron microscopy aided with automated electron back scattering diffraction. Recrystallized grain size d rec and twin boundary fraction f TB measurements were carried out. The mechanical behavior was also investigated by comparing experimental stress-strain curves with various initial grain sizes. DDRX kinetics was described by the classical Avrami equation. It was concluded that larger initial grain sizes promoted a delay in the DDRX onset in the two alloys. It was also observed that the softening process progressed faster for smaller initial grain sizes. The effect of initial grain size is larger in the HP material and becomes more pronounced at low temperature

  20. Systematic Modelling and Crystal Size Distribution Control for Batch Crystallization Processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    Crystallization processes form an important class of separation methods that are frequently used in the chemical, the pharmaceutical and the food industry. The specifications of the crystal product are usually given in terms of crystal size, shape and purity. In order to predict the desired cryst...

  1. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  2. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    Science.gov (United States)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  3. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Glasses; acoustical properties; nanostructured materials; glass ceramic. 1. Introduction. During the last two decades, studies of different physical properties of nano-crystal embedded glass matrix have attracted attention of technologists as well as scientists for fabrication of glass ceramic through controlled crysta-.

  4. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  5. The Deep Impact Coma of Comet 9P/Tempel 1 as a Time-of-Flight Experiment Motivates DDSCAT Models for Porous Aggregate Grains with Silicate Crystal Inclusions

    Science.gov (United States)

    Wooden, Diane H.; Lindsay, S. S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Richard, D. T.; Kolokolova, L.; Moreno, F.

    2010-10-01

    Spitzer IRS spectra of short-period Ecliptic Comets (ECs) have silicate features, and many have distinct crystalline silicate peaks. These Spitzer spectra, when fitted with thermal models after subtraction of the relatively strong contribution of the nuclear flux to the IR spectrum (e.g., Harker et al. 2007), demonstrate ECs have weaker silicate features than long-period Nearly-Isotropic Comets (NICs). There are exceptions, however, as some NICs also have weak features like most ECs. Grains with lower porosities (lower fraction of vacuum) can explain weaker silicate features (Kelley and Wooden 2009; Kolokolova et al. 2007). Alternatively, omitting the smallest (submicron) solid grains can reduce the contrast of the silicate feature (Lisse et al. 2006). However, so far, only models for solid submicron crystals fit the crystalline peaks in spectra of comets with weak silicate features. This presents a dilemma: how can the coma be devoid of small grains except for the crystals? The Spitzer spectra of the Deep Impact event with EC 9P/Tempel 1 provides a data set to model larger porous grains with crystal inclusions because the post-impact coma was a time-of-flight experiment: an impulsive release of grains were size-sorted in time by their respective gas velocities so that the smaller grains departed the inner coma quicker than larger grains. A velocity law derived from fitting small beam Gemini spectra (Harker et al. 2007) indicates that at 20 hour post-impact the (pre-impact subtracted) Spitzer IRS spectrum contained grains larger than 10-20 micron radii, moving at 20 m/s, that produced a weak silicate feature with an 11.2 micron crystalline olivine peak. Furthermore, this feature looks like the silicate feature from the nominal coma. We present some results of a computational effort to model discrete crystals and mixed-mineral porous aggregate grains with silicate crystal inclusions using DDSCAT on the NAS Pleiades supercomputer.

  6. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  7. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    Science.gov (United States)

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  8. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    Science.gov (United States)

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  9. Neutron depolarisation study of the austenite grain size in TRIP steels

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Zhao, L.; Rekveldt, M.Th.; Fredrikze, H.; Tegus, O.; Brueck, E.; Sietsma, J.; Zwaag, S. van der

    2004-01-01

    We have performed combined neutron depolarisation and magnetisation measurements in order to obtain an in situ determination of the average grain size and volume fraction of the retained austenite phase in TRIP steels. The average grain size of the retained austenite was found to decrease for an increase in austenite volume fraction at two different annealing temperatures

  10. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data.

  11. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    International Nuclear Information System (INIS)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data

  12. Grain refinement through severe plastic deformation (SPD) processing

    International Nuclear Information System (INIS)

    Izairi, N.; Vevecka - Priftaj, A.

    2012-01-01

    There is considerable current interest in processing metallic samples through procedures involving the imposition of severe plastic deformation (SPD). These procedures lead to very significant grain refinement to the submicrometer or even the nanometer level, resulting in advanced physical properties. Among various SPD processes, Equal Channel Angular Pressing, High pressure Torsion and Accumulated Roll Bonding have been widely used for many metals and alloys. In the present work, we present an overview of the most used methods of SPD for grain refinement and the production of bulk nano structured materials with enhancement in their mechanical and functional properties. In order to examine the potential for using ECAP to refine the grain size and improve the mechanical properties, two commercial 5754 Al alloy and AA 3004 , were selected for study. Processing by ECAP gives a reduction in the grain size and an increase in the microhardness. (Author)

  13. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  14. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  15. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  16. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tohidifar, M.R. [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Riello, P. [Department of Molecular Sciences and Nanosystems, University of Ca’Foscari, Venice (Italy)

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  17. Radon emanation rate as a function of monazite grain size

    International Nuclear Information System (INIS)

    Yogesan, S.; Stanley, J.D.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    In this study, a sample of monazite from local mining area was divided to 7 parts according to size (μm) and each sample was analysed using silicon surface barrier detector and multichannel analyser. From this study it has found that small grain monazite produced more radon that big grain monazite and radium is distributed on or near the surface of the monazite grain

  18. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica

    Directory of Open Access Journals (Sweden)

    T. Carlsen

    2017-11-01

    Full Text Available The optical-equivalent snow grain size affects the reflectivity of snow surfaces and, thus, the local surface energy budget in particular in polar regions. Therefore, the specific surface area (SSA, from which the optical snow grain size is derived, was observed for a 2-month period in central Antarctica (Kohnen research station during austral summer 2013/14. The data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART. The snow grain size and pollution amount (SGSP algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS, was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 27 and 89 m2 kg−1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data slightly underestimated the ground-based results.

  19. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica

    Science.gov (United States)

    Carlsen, Tim; Birnbaum, Gerit; Ehrlich, André; Freitag, Johannes; Heygster, Georg; Istomina, Larysa; Kipfstuhl, Sepp; Orsi, Anaïs; Schäfer, Michael; Wendisch, Manfred

    2017-11-01

    The optical-equivalent snow grain size affects the reflectivity of snow surfaces and, thus, the local surface energy budget in particular in polar regions. Therefore, the specific surface area (SSA), from which the optical snow grain size is derived, was observed for a 2-month period in central Antarctica (Kohnen research station) during austral summer 2013/14. The data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS) and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART). The snow grain size and pollution amount (SGSP) algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS), was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 27 and 89 m2 kg-1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data slightly underestimated the ground-based results.

  20. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    Science.gov (United States)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  1. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  2. Sediment grain size and hydrodynamics in Mediterranean coastal ...

    Indian Academy of Sciences (India)

    Integrated classification maps were produced by combining sediment grain-size and hydrological data .... Integrated classification of abiotic parameters in lagoons. 1099. Figure 1. ...... spline with tension: I. Theory and implementation; Math.

  3. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  4. Rapid Synthesis and Characterization of Nano sodalite Synthesized using Rice Husk Ash

    International Nuclear Information System (INIS)

    Siti Haslina Ahmad Rusmili; Zainab Ramli

    2012-01-01

    Rice husk ash (RHA) which contains more than 90 percent silica is proven to be an active silica source in zeolite synthesis. In this study, nano sodalite has been successfully synthesized hydrothermally at 60 degree Celsius using RHA as silica source in alkaline medium at various crystallization times. Commercial fumed silica was used as comparison for the silica source. Analysis by XRD has shown that pure nano sodalite was formed in 3 hours and stable up to more than 24 hours when using RHA as silica source. On the other hand, fumed silica produced pure nano sodalite only at 4 hours while a mixture of zeolites was observed outside this time range. FESEM shows a worm-like morphology of nano sodalite in the size range of 50-100 nm while FTIR shows the formation of aluminosilicates bonds. Analysis on the dissolved silica in the gel reaction mixture demonstrates the decreasing mass of silica after prolong time of crystallization which indicates the consumption of the dissolved silica in crystal growth of nano sodalite. This study shows that RHA is a better silica source in stabilizing the nano sodalite phase in oxide gel reaction mixture as compared to fumed silica. (author)

  5. The magnetized sheath of a dusty plasma with grains size distribution

    International Nuclear Information System (INIS)

    Ou, Jing; Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-01-01

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance

  6. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  7. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  8. Effect of Grain Size on Mechanical Properties of Irradiated Mono- and Polycrystalline MgAl2O4

    International Nuclear Information System (INIS)

    Jagielski, J.; Piatkowska, A.; Wajler, A.; Boniecki, M.; Romaniec, M.; Jozwik, I.; Aubert, P.; Labdi, S.; Maciejak, O.; Thome, L.; Debelle, A.

    2011-01-01

    The influence of the size of crystalline regions on mechanical properties of irradiated oxides has been studied using a magnesium aluminate spinel MgAl 2 O 4 . The samples characterized by different dimensions of crystalline domains, varying from sintered ceramics with grains of few micrometers in size up to single crystals, were used in the experiments. The samples were irradiated at room temperature with 320 keV Ar 2+ ions up to fluences reaching 5x10 16 cm -2 . Nanomechanical properties (nanohardness and Young's modulus) were measured by using a nanoindentation technique and the resistance to crack formation by measurement of the total crack lengths made by the Vickers indenter. The results revealed several effects: correlation of nanohardness evolution with the level of accumulated damage, radiation-induced hardness increase in grain-boundary region and significant improvement of material resistance to crack formation. This last effect is especially surprising as the typical depth of cracks formed by Vickers indenter in unirradiated material exceeds several tens of micrometers, i.e. is more than hundred times larger than the thickness of the modified layer. (author)

  9. Notes on representing grain size distributions obtained by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Toth, Laszlo S.; Biswas, Somjeet; Gu, Chengfan; Beausir, Benoit

    2013-01-01

    Grain size distributions measured by electron backscatter diffraction are commonly represented by histograms using either number or area fraction definitions. It is shown here that they should be presented in forms of density distribution functions for direct quantitative comparisons between different measurements. Here we make an interpretation of the frequently seen parabolic tales of the area distributions of bimodal grain structures and a transformation formula between the two distributions are given in this paper. - Highlights: • Grain size distributions are represented by density functions. • The parabolic tales corresponds to equal number of grains in a bin of the histogram. • A simple transformation formula is given to number and area weighed distributions. • The particularities of uniform and lognormal distributions are examined

  10. Synthesis and characterization of nano silver ferrite composite

    International Nuclear Information System (INIS)

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  11. Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Gottlieb, C.; Günther, T.; Wilsch, G.

    2018-04-01

    In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 μm) and cement particles (particle size ≈ 50μm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA).

  12. The Electronic Properties and L3 XANES of Au and Nano-Au

    International Nuclear Information System (INIS)

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-01-01

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  13. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  14. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  16. ON ESTIMATION AND HYPOTHESIS TESTING OF THE GRAIN SIZE DISTRIBUTION BY THE SALTYKOV METHOD

    Directory of Open Access Journals (Sweden)

    Yuri Gulbin

    2011-05-01

    Full Text Available The paper considers the problem of validity of unfolding the grain size distribution with the back-substitution method. Due to the ill-conditioned nature of unfolding matrices, it is necessary to evaluate the accuracy and precision of parameter estimation and to verify the possibility of expected grain size distribution testing on the basis of intersection size histogram data. In order to review these questions, the computer modeling was used to compare size distributions obtained stereologically with those possessed by three-dimensional model aggregates of grains with a specified shape and random size. Results of simulations are reported and ways of improving the conventional stereological techniques are suggested. It is shown that new improvements in estimating and testing procedures enable grain size distributions to be unfolded more efficiently.

  17. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V-1.6Y-8W-0.8TiC

    Energy Technology Data Exchange (ETDEWEB)

    Furuno, T. [Ehime Univerisity, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Kurishita, H., E-mail: kurishi@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nagasaka, T.; Nishimura, A.; Muroga, T. [Fusion Engineering Research Center, National Institute for Fusion Science (NIFS), Oroshi-cho 322-6, Tok, Gifu 292 (Japan); Sakamoto, T.; Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime Univerisity, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Matsuo, S.; Arakawa, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2011-10-01

    Creep resistance is the major concern of vanadium and its alloys for fusion reactor structural applications. In order to elucidate the effects of grain size on the creep behavior of solution and dispersion strengthened vanadium alloys, V-1.6Y-8W-0.8TiC specimens with fine grain sizes from 0.58 to 1.45 {mu}m were prepared by mechanical alloying and HIP without any plastic working and tested at 1073 K and 250 MPa in vacuum. It is shown that the creep resistance of V-1.6Y-8W-0.8TiC depends strongly on grain size and increases with increasing grain size: The creep life for the grain size of 1.45 {mu}m is almost one order longer than that of 0.58 {mu}m, and about two orders longer than that of V-4Cr-4Ti (NIFS-Heat 2) although the grain size of V-4Cr-4Ti is as large as 17.8 {mu}m. The observed creep behavior is discussed in terms of grain size effects on dislocation glide and grain boundary sliding.

  18. Numerical and Experimental Investigation of the Influence of Growth Restriction on Grain Size in Binary Cu Alloys

    Directory of Open Access Journals (Sweden)

    Andreas Cziegler

    2017-09-01

    Full Text Available Grain refinement by elemental addition has been extensively investigated within the last decades in Al or Mg alloys. In contrast, in the Cu system, the role of solute on grain size is less investigated. In this study, the grain refinement potency of several alloying elements of the Cu system was examined. To predict grain size depending on the growth restriction factor Q, grain size modelling was performed. The results obtained by the grain size model were compared to variations in the grain size of binary Cu alloys with increasing solute content under defined cooling conditions of the TP-1 grain refiner test of the Aluminium Association©. It was found that the experimental results differed significantly from the predicted grain size values for several alloying elements. A decreasing grain size with increasing alloy concentration was observed independently of the growth restriction potency of the alloying elements. Furthermore, excessive grain coarsening was found for several solutes beyond a transition point. It is assumed that contradictory variations in grain size result from a change in the nucleating particle density of the melt. Significant decreases in grain size are supposed to be due to the in-situ formation of potent nucleation sites. Excessive grain coarsening with increasing solute content may occur due to the removal of nucleating particles. The model shows that the difference in the actual number of particles before and beyond the transition point must be in the range of several orders of magnitude.

  19. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  20. Excitation of collective plasma modes during collisions between dust grains and the formation of dust plasma crystals

    International Nuclear Information System (INIS)

    Goree, J.A.; Morfill, G.; Tsytovich, V.N.

    1998-01-01

    Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization

  1. Charge and potential of a dust grain versus the intergrain distance and establishment of the latter in a low-pressure plasma

    International Nuclear Information System (INIS)

    Sysun, A. V.; Sysun, V. I.; Khakhaev, A. D.; Shelestov, A. S.

    2008-01-01

    Results from experimental studies of ordered dust structures in plasma are reviewed. The experimental conditions and the data on the grain size and intergrain distance in plasma dust crystals are analyzed. It is shown that intergrain distance is a function of the grain size. The range of the ratio of the dust grain size to the Debye radius within which plasma dust crystals can form is determined. A volume cell surrounding a dust grain in plasma is considered. It is found that the potential and charge of the grain depend substantially on the intergrain distance. The charge, potential, and potential energy of a dust grain in a plasma dust crystal, as well as the electrostatic force exerted by the plasma field on the grain, are calculated by the method of molecular dynamics as functions of the intergrain distance. The corresponding analytic approximations and the criterion for the establishment of a steady-state intergrain distance are proposed.

  2. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  3. Grain-size data from four cores from Walker Lake, Nevada

    International Nuclear Information System (INIS)

    Yount, J.C.; Quimby, M.F.

    1990-01-01

    A number of cores, taken from within and near Walker Lake, Nevada are being studied by various investigators in order to evaluate the late-Pleistocene paleoclimate of the west-central Great Basin. In particular, the cores provide records that can be interpreted in terms of past climate and compared to proposed numerical models of the region's climate. All of these studies are being carried out as part of an evaluation of the regional paleoclimatic setting of a proposed high-level nuclear waste storage facility at Yucca Mountain, Nevada. Changes in past climate often manifest themselves in changes in sedimentary processes or in changes in the volume of sediment transported by those processes. One fundamental sediment property that can be related to depositional processes is grain size. Grain size effects other physical properties of sediment such as porosity and permeability which, in turn, affect the movement and chemistry of fluids. The purposes of this report are: (1) to document procedures of sample preparation and analysis, and (2) to summarize grain-size statistics for 659 samples from Walker Lake cores 84-4, 84-5, 84-8 and 85-2. Plots of mean particle diameter, percent sand, and the ratio of silt to clay are illustrated for various depth intervals within each core. Summary plots of mean grain size, sorting, and skewness parameters allow comparison of textural data between each core. 15 refs., 8 figs., 3 tabs

  4. Synthesis of Si, N co-Doped Nano-Sized TiO2 with High Thermal Stability and Photocatalytic Activity by Mechanochemical Method

    Directory of Open Access Journals (Sweden)

    Peisan Wang

    2018-05-01

    Full Text Available Τhe photocatalytic activity in the range of visible light wavelengths and the thermal stability of the structure were significantly enhanced in Si, N co-doped nano-sized TiO2, and synthesized through high-energy mechanical milling of TiO2 and SiO2 powders, which was followed by calcination at 600 °C in an ammonia atmosphere. High-energy mechanical milling had a pronounced effect on the mixing and the reaction between the starting powders and greatly favored the transformation of the resultant powder mixture into an amorphous phase that contained a large number of evenly-dispersed nanocrystalline TiO2 particles as anatase seeds. The experimental results suggest that the elements were homogeneously dispersed at an atomic level in this amorphous phase. After calcination, most of the amorphous phase was crystallized, which resulted in a unique nano-sized crystalline-core/disordered-shell morphology. This novel experimental process is simple, template-free, and provides features of high reproducibility in large-scale industrial production.

  5. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr [School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan 680-749 (Korea, Republic of); Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2016-05-21

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an

  6. Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory

    Science.gov (United States)

    Wissman, Kathryn T.; Rawson, Katherine A.

    2015-01-01

    The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…

  7. A study of interaction effect theoretical with combination size grain on magnetics in of permanent magnet

    International Nuclear Information System (INIS)

    Tarihoran, Doansi; Manaf, Azwar

    2002-01-01

    Stoner-Wohlfarth theory, SW shows a deviation around 30-40% to the measurement result of a permanent magnetic material with nanometer-sized grains. This is caused by this theory neglecting the interacting grain factor. This research modifies SW theory by calculating the grain interacting effect. The modification is made by assuming the interacting energy of a mono-domain grain has ellipsoidal shaped focused at the edge of the grain. SW grain in this calculation model is a box-shaped in a grain with edges of the box placed in the skin's grain. The result shows that interacting effect make remanent polarization increasing drastically and coercive field value decreasing when grain's size reaches 20% of size of the first mono-domain grain. For material with ND 2 Fe 14 B phase, the optimum coercive field value and remanent polarization that producing maximum product energy, (BH) m ax obtained in a material with 5 nanometer-size grains. Qualitatively there is as appropriate result between the calculation and measurement

  8. grain size and heavy mineral analyses of two boreholes in recent

    African Journals Online (AJOL)

    user

    mineral composition and the grain sizes of the aquifer in the study areas. ... analysis of both wells show that mean, inclusive standard deviation, ..... colourless grains with rectangular outline. .... Nigeria; A Case Study of Onisha and Environ.

  9. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    Science.gov (United States)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  11. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Directory of Open Access Journals (Sweden)

    T. Petrut

    2018-01-01

    Full Text Available Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  12. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  13. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  14. grain size analysis of beach sediment along the barrier bar lagoon

    African Journals Online (AJOL)

    PROF EKWUEME

    sediment are medium grain and deposited in a moderate energy condition hence more stable to ... The grain size and amount of sand on a beach depends on wave energy and geological ..... Recent and Pleistocene history of Southeast.

  15. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  16. Cooling Crystallization of Indomethacin: Effect of Supersaturation, Temperature and Seeding on Polymorphism and Crystal Size Distribution

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    2018-01-01

    In this work, effect of crystallization parameters i.e., supersaturation, seeding, and temperature on polymorphism and crystal size of a non-steroidal anti-inflammatory drug, indomethacin (IMC), was investigated. Firstly, several crystallization solvents (ethanol, methanol, ethyl acetate, acetone...... of IMC from ethanol confirmed that the supersaturation, operating temperature and seeding does affect the polymorphism as well as crystal size distribution of IMC. Fine needle shaped crystals of metastable α-IMC were obtained at 5 °C with high supersaturation even in presence of γ-IMC seeds, while...... rhombic plates like crystals of thermodynamically stable γ-IMC were obtained in remaining experiments. The amount of seed loading only marginally influenced the crystal growth rate and median particle diameter (d50). Particle size analysis of crystals obtained showed bimodal distribution in all...

  17. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  18. Effects of flexible substrate thickness on Al-induced crystallization of amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Naoki [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Toko, Kaoru, E-mail: toko@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, Noriyuki; Yoshizawa, Noriko [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-05-29

    Amorphous germanium (a-Ge) thin films were directly crystallized on flexible plastic substrates at 325 °C using Al-induced crystallization. The thickness of the plastic substrate strongly influenced the crystal quality of the resulting polycrystalline Ge layers. Using a thicker substrate lowered the stress on the a-Ge layer during annealing, which increased the grain size and fraction of (111)-oriented grains within the Ge layer. Employing a 125-μm-thick substrate led to 95% (111)-oriented Ge with grains having an average size of 100 μm. Transmission electron microscopy demonstrated that the Ge grains had a low-defect density. Production of high-quality Ge films on plastic substrates allows for the possibility for developing Ge-based electronic and optical devices on inexpensive flexible substrates. - Highlights: • Polycrystalline Ge thin films are directly formed on flexible plastic substrates. • Al-induced crystallization allows the low-temperature growth (325 °C) of amorphous Ge. • The substrate bending during annealing strongly influences the crystal quality of poly-Ge. • A thick substrate (125 μm) leads to 95% (111)-oriented Ge with grains 100 μm in size.

  19. Grain Structure Control of Additively Manufactured Metallic Materials

    Directory of Open Access Journals (Sweden)

    Fuyao Yan

    2017-11-01

    Full Text Available Grain structure control is challenging for metal additive manufacturing (AM. Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  20. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 Operovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Grain size of fine-grained windblown sediment: a powerful proxy for process identification

    NARCIS (Netherlands)

    Vandenberghe, J.

    2013-01-01

    Dust transport by the wind is not a uniform process but may occur in different modes according to source area conditions and transport height and distance. Subsequently, these differences are expressed in terms of grain-size and fluxes of the aeolian deposits. Transport distances may vary from

  2. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.

    Science.gov (United States)

    Sun, Lianjun; Li, Xiaojiao; Fu, Yongcai; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Sun, Xianyou; Sun, Xuewen; Sun, Chuanqing

    2013-10-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today's cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the +348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9% of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a "ggc" repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield. © 2013 Institute of Botany, Chinese Academy of Sciences.

  3. Influence of temperature and grain size on the tensile ductility of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Mannan, S.L.; Samuel, K.G.; Rodriguez, P.

    1985-01-01

    The influence of tmeperature and grain size on the tensile ductility of AISI 316 stainless steel has been examined in the temperature range 300-1223 K for specimens with grain sizes varying from 0.025 to 0.650 mm at a nominal strain rate of 3 X 10 -4 s -1 . The percentage total elongation and reduction in area at fracture show minimum ductility at an intermediate temperature, and the temperature corresponding to this ductility minimum has been found to increase with increase in grain size. The total elongation is found to decrease with increase in grain size at high temperatures where failures are essentially intergranular in nature. At 300 K, both uniform and total elongation increase with increase in grain size and then show a small decrease for a very coarse grain size. The high ductility observed at low temperatures (300 K) is consistent with the observation of characteristic dimples associated with transgranular ductile fracture. The ductility minimum with respect to temperature is associated with the occurrence of intergranular fracture, as evidenced by optical and scanning electron microscopy. The present results support the suggestion that the ductility minimum coincides with the maximum amount of grain boundary sliding; at temperatures beyond the ductility minimum, grain boundary separation by cavitation is retarded by the occurrence of grain boundary migration, as evidenced by the grain boundary cusps. In tests conducted at various strain rates in the range 10 -3 -10 -6 s -1 at 873 K the ductility was found to decrease with decreasing strain rate, emphasizing the increased importance of grain boundary sliding at lower strain rates. (Auth.)

  4. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  5. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  6. Size distribution of dust grains: A problem of self-similarity

    International Nuclear Information System (INIS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all

  7. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    Science.gov (United States)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size

  8. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    Science.gov (United States)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  9. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    International Nuclear Information System (INIS)

    Killeen, J.C.

    1997-01-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12μm grain size fuel. Both large grain size variants had similar grain sizes around 35μm. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of 85 Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs

  10. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12{mu}m grain size fuel. Both large grain size variants had similar grain sizes around 35{mu}m. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of {sup 85}Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs.

  11. Effect of grain size on tensile stress and ductility in Al99.99

    International Nuclear Information System (INIS)

    Kovacs-Csetenyi, E.; Horvath, M.; Chinh, N.Q.; Kovacs, I.

    1998-01-01

    The effect of recrystallized grain size on the tensile stress and ductility of 99.99% purity aluminium was investigated at room temperature. It was proved that the grain size dependence of flow stress follows a modified Hall-Petch equation with coefficients depending linearly on ε 1/2 up to the stability limit. The uniform strain can also be described by a linear dependence on d -1/2 according to which the uniform elongation increases with increasing grain size. The post-uniform elongation changes inversely to that of the uniform one accompanied by the decrease of the strain rate sensitivity. (orig.)

  12. A pretreatment method for grain size analysis of red mudstones

    Science.gov (United States)

    Jiang, Zaixing; Liu, Li'an

    2011-11-01

    Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.

  13. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection.

    Science.gov (United States)

    Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena

    2018-04-01

    One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  15. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  16. Effect of grain size on the hardness and reactivity of plasma-sintered beryllium

    International Nuclear Information System (INIS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2014-01-01

    Beryllium and its intermetallic compounds have attracted great attention as promising neutron multipliers in fusion reactors. In this study, mechanical and chemical properties of fabricated plasma-sintered beryllium (PS-Be) with different grain-sizes are investigated. Density and hardness analysis results of the fabricated PS-Be samples infer that a smaller grain size in the sintered Be indicates higher porosity and hardness. Sintered Be with a large grain size exhibits better resistance toward oxidation at 1273 K in dry air and at 1073 K in Ar/1% H 2 O, since oxidation at the grain boundaries of the determines the rate. In contrast, at 1273 K in Ar/1% H 2 O, a catastrophic oxidation is indicated by the increase of weight of the samples and the generation of H 2 from the bulk Be

  17. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we report the simple solid-state formation of mesoporous Co3O4 nano-needles with a 3D single-crystalline framework. The synthesis is based on controlled thermal oxidative decomposition and re-crystallization of precursor β-Co(OH)2 nano-needles. Importantly, after thermal treatment, the needle-like morphology can be completely preserved, despite the fact that there is a large volume contraction accompanying the process: β-Co(OH)2 → Co3O 4. Because of the intrinsic crystal contraction, a highly mesoporous structure with high specific surface area has been simultaneously created. The textual properties can be easily tailored by varying the annealing temperature between 200-400 °C. Interestingly, thermal re-crystallization at higher temperatures leads to the formation of a perfect 3D single-crystalline framework. Thus derived mesoporous Co3O4 nano-needles serve as a good model system for the study of lithium storage properties. The optimized sample manifests very low initial irreversible loss (21%), ultrahigh capacity, and excellent cycling performance. For example, a reversible capacity of 1079 mA h g-1 can be maintained after 50 cycles. The superior electrochemical performance and ease of synthesis may suggest their practical use in lithium-ion batteries. © The Royal Society of Chemistry 2008.

  18. VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shu; Jiang, B. W. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2015-09-20

    The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ the ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.

  19. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    International Nuclear Information System (INIS)

    Xie Zhuoming; Liu Rui; Fang Qianfeng; Zhang Tao; Jiang Yan; Wang Xianping; Liu Changsong

    2015-01-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C–600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. (paper)

  20. Numerical modelling of intergranular fracture in polycrystalline materials and grain size effects

    Directory of Open Access Journals (Sweden)

    P. Wriggers

    2011-07-01

    Full Text Available In this paper, the phenomenon of intergranular fracture in polycrystalline materials is investigated using a nonlinear fracture mechanics approach. The nonlocal cohesive zone model (CZM for finite thickness interfaces recently proposed by the present authors is used to describe the phenomenon of grain boundary separation. From the modelling point of view, considering the dependency of the grain boundary thickness on the grain size observed in polycrystals, a distribution of interface thicknesses is obtained. Since the shape and the parameters of the nonlocal CZM depend on the interface thickness, a distribution of interface fracture energies is obtained as a consequence of the randomness of the material microstructure. Using these data, fracture mechanics simulations are performed and the homogenized stress-strain curves of 2D representative volume elements (RVEs are computed. Failure is the result of a diffuse microcrack pattern leading to a main macroscopic crack after coalescence, in good agreement with the experimental observation. Finally, testing microstructures characterized by different average grain sizes, the computed peak stresses are found to be dependent on the grain size, in agreement with the trend expected according to the Hall-Petch law.

  1. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  2. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  3. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-12-17

    Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.

  4. Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study

    Science.gov (United States)

    Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus

    2017-10-01

    The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes landing missions to small bodies such as asteroids or Martian moons.

  5. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  6. A universal approximation to grain size from images of non-cohesive sediment

    Science.gov (United States)

    Buscombe, D.; Rubin, D.M.; Warrick, J.A.

    2010-01-01

    The two-dimensional spectral decomposition of an image of sediment provides a direct statistical estimate, grid-by-number style, of the mean of all intermediate axes of all single particles within the image. We develop and test this new method which, unlike existing techniques, requires neither image processing algorithms for detection and measurement of individual grains, nor calibration. The only information required of the operator is the spatial resolution of the image. The method is tested with images of bed sediment from nine different sedimentary environments (five beaches, three rivers, and one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater. Each population was photographed using a different camera and lighting conditions. We term it a “universal approximation” because it has produced accurate estimates for all populations we have tested it with, without calibration. We use three approaches (theory, computational experiments, and physical experiments) to both understand and explore the sensitivities and limits of this new method. Based on 443 samples, the root-mean-squared (RMS) error between size estimates from the new method and known mean grain size (obtained from point counts on the image) was found to be ±≈16%, with a 95% probability of estimates within ±31% of the true mean grain size (measured in a linear scale). The RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true mean grain size if point counts from a few images are used to correct bias for a specific population of sediment images. It thus appears it is transferable between sedimentary populations with different grain size, but factors such as particle shape and packing may introduce bias which may need to be calibrated for. For the first time, an attempt has been made to mathematically relate the spatial distribution of pixel intensity within the image of sediment to the grain size.

  7. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  8. Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2016-09-01

    Full Text Available The unsubstituted copper phthalocyanine (CuPc single crystal nano columns were fabricated for the first time as chlorine (Cl2 gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane, M-plane, R-plane, Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26∼659% with the increase for Cl2 within concentration range (0.08∼4.0ppm. These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.

  9. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azman, N.Z. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Siddiqui, S.A. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); Low, I.M., E-mail: j.low@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia)

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2–10 vol% WO{sub 3} loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10–40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO{sub 3}-epoxy composites in the energy range of 10–25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30–40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO{sub 3}-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25–49 kV) were in the range of 15–25 keV. Similarly, for a radiology unit operating at 40–60 kV, the equivalent energy range was 25–40 keV, and for operating voltages greater than 60 kV (i.e., 70–100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO{sub 3} loading resulted in deterioration of flexural strength, modulus and hardness. - Highlights: • Nano-sized WO{sub 3}-epoxy composites have superior x-ray shielding capability. • No size effect in x-ray attenuation was observed at 30–40 keV. • An optimum filler loading for improving the mechanical properties of WO{sub 3}-epoxy composites.

  10. Dependency of annealing behaviour on grain size in Al–TiC ...

    Indian Academy of Sciences (India)

    This work investigates the effect of grain size on annealing behaviour in both coarse-grained and ultrafinegrained Al–TiC composite processed by accumulative roll bonding (ARB). Microstructural analysis indicates that annealingbehaviour of the specimens are essentially determined by the level of strain accumulation or ...

  11. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Science.gov (United States)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  12. Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy

    Science.gov (United States)

    Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas

    2012-01-01

    An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.

  13. Grain-size effects on PIXE and INAA analysis of IAEA-336 lichen reference material

    Science.gov (United States)

    Marques, A. P.; Freitas, M. C.; Wolterbeek, H. Th.; Verburg, T. G.; De Goeij, J. J. M.

    2007-02-01

    IAEA-336 lichen certified reference material was used to compare outcomes from INAA and PIXE elemental analyses, in relationship with grain size. The IAEA material (grain size lichen reference material's particle size distribution follows a bimodal distribution, which is turning more and more monomodal after further fine sieving. Replicates of each fraction were analysed by INAA and PIXE. Results for Cl, K, Mn, Fe and Zn by both techniques were compared by application of z-values tested against the criterion ∣ z∣ limited amount of lichen material as "seen" in the PIXE analysis and the grain size distribution in the lichen material were no causes of measurable differences between the results of both techniques. However, fractionation into smaller grain sizes showed to be associated with lower element content, for Na, Cl, K, Mn and Sr even up to a factor of 2. The observed increases of the proportion of algae in the smaller grain-size fractions and the possible accumulation capacity for certain elements in the fungal part of the lichen may explain the observed phenomenon. The sieving process and consequently the discarding of part of the material have lead to a change of the properties of the original sample, namely algae/fungus percentage and elemental contents.

  14. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  15. Optimizing the crystal size and habit of beta-sitosterol in suspension

    DEFF Research Database (Denmark)

    von Bonsdorff-Nikander, Anna; Rantanen, Jukka; Christiansen, Leena

    2003-01-01

    surfactant, polysorbate 80, has on crystal size distribution and the polymorphic form. This study describes the optimization of the crystallization process, with the object of preparing crystals as small as possible. Particle size distribution and habit were analyzed using optical microscopy, and the crystal...

  16. Influence of austenite grain size on recrystallisation-precipitation interaction in a V-microalloyed steel

    International Nuclear Information System (INIS)

    Quispe, A.; Medina, S.F.; Gomez, M.; Chaves, J.I.

    2007-01-01

    By means of torsion tests using small specimens, the influence of austenite grain size on strain induced precipitation kinetics has been determined in a vanadium microalloyed steel. Determination of recrystallisation-precipitation-time-temperature (RPTT) diagrams for two austenite grain sizes allows values of the aforementioned magnitudes to be determined. An ample discussion is made of the quantitative influence found and its relation with nucleation and growth mechanisms of precipitates. The results are compared with the quantitative influence exerted by the other variables, reaching the conclusion that the austenite grain size has a notable influence on strain induced precipitation kinetics which should not be underestimated. Finally, the influence of austenite grain size is included in a strain induced precipitation model constructed by the authors of this work and which also takes into account the other aforementioned variables

  17. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  18. Characteristic of Water Pervaporation Using Hydrophilic Composite Membrane Containing Functional Nano Sized NaA zeolites

    International Nuclear Information System (INIS)

    Oh, Duckkyu; Lee, Yongtaek

    2013-01-01

    The NaA zeolite particles were dispersed in a poly(vinyl alcohol) (PVA) matrix to prepare a composite membrane. The nano sized zeolite particles of NaA were synthesized in the laboratory and the mean size was approximately 60 nm. Pervaporation characteristics such as a permeation flux and a separation factor were investigated using the membrane as a function of the feed concentration from 0.01 to 0.05 mole fraction and the weight % of NaA particles between 0 wt% and 5 wt% in the membrane. Also, the micro sized particles of 5 mm were dispersed in the membrane for a comparison purpose. When the ethanol concentration in the feed solution was 0.01 mole fraction, the flux of water significantly increased from 600 g/m 2 /hr to 2000 g/m 2 /hr as the content of the nano NaA particles in the membrane increased from 0 wt% to 5 wt%, while the NaA particles improved the separation factor from 1.5 to 7.9. When the flux of water through the membrane containing nano sized particles was roughly 15% increased compared to the micro sized particles, whereas the separation factor of water was found to be approximately 5% increased. It can be said that the role of the nano sized NaA particles is quite important since both the flux and the separation factor are strongly affected

  19. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  20. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Tang, Haibin; Guo, Haiding

    2017-01-01

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  1. Preliminary study of determination of UO2 grain size using X-ray diffraction method

    International Nuclear Information System (INIS)

    Mulyana, T.; Sambodo, G. D.; Juanda, D.; Fatchatul, B.

    1998-01-01

    The determination of UO 2 grain size has accomplished using x-ray diffraction method. The UO 2 powder is obtained from sol-gel process. A copper target as radiation source in the x-ray diffractometer was used in this experiment with CμKα characteristic wavelength 1.54433 Angstrom. The result indicate that the UO 2 mean grain size on presintered (temperature 800 o C) has the value 456.8500 Angstrom and the UO 2 mean grain size on sintered (temperature 1700 o C) has value 651.4934 Angstrom

  2. Interactive contribution of grain size and grain orientation to coercivity of melt spun ribbons

    International Nuclear Information System (INIS)

    Wang, N.; Li, G.; Yao, W.J.; Wen, X.X.

    2010-01-01

    During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in this paper via Fe-2, 4, 6.5 wt% Si alloys. Heat treatment at 1173 K for 1 h was performed to show the annealing impact. The X-ray diffraction patterns show that the high surface velocity and heat treatment increase the intensity ratio of line (2 0 0) to (1 1 0) of A2 phase. The (2 0 0) line corresponds to (2 0 0) plane in direction, easy magnetization direction of α-Fe phase in Fe-Si alloy. The improvement of this grain orientation with the surface velocity decreases the coercivity, which should increase due to the grain refinement. It is revealed that the texture promoted by the anisotropic heat release during melt spinning process is one factor to improve the magnetic properties and should be considered when preparing soft magnetic materials.

  3. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  4. Correlation Between Grain Size Distribution and Silicon and Oxygen Contents at Wadi Arar Sediments, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M. A. M. Alghamdi

    2017-08-01

    Full Text Available Quartz is the major mineral of Wadi Arar sediments. The top two elements contents are oxygen with 63.96 wt%, followed by silicon with 16.35 wt%. There is a positive, weak to medium correlation between grain size and silicon and oxygen contents. The correlation between oxygen and grain size is four times higher than that of silicon. At grain size ranges between 0.8 and 1.0 mm, both oxygen and silicon show the maximum correlation, which decrease gradually with finer and coarser grain sizes. For each element, the correlation between the element content and grain size is a fourth degree polynomial in the grain size. Theoretically, the best two math models that represent the relation between the grain size distribution and each of individual oxygen and silicon content are y=8.84∙ln(x+39.5 and y=2.26∙ln(x+10.1 respectively, where y represents the element content percentage and x represents the corresponding grain size in mm.

  5. Organic Nano-Grains in Comet 103P/Hartley 2: The Organic Glue of Porous Aggregate Grains?

    Science.gov (United States)

    Wooden, D. H.; Russo, N.Dello; Li, A.; Woodward, C. E.; Kelley, M. S.; Harker, D. E.; Cook, J. C.; Vervack, R. J.; Geballe, T. R.

    2013-01-01

    organics studied as Insoluble Organic Matter in carbonaceous chondrites. Aliphatic coatings on submicron grains, however, will not be observable in absorption because they are fairly transparent, nor do the aliphatic carbonaceous coatings produce the 3.4 micron emission band because the particles they are attached to are too large (too many vibration modes). We must probe the nano-­-sized organic carriers that undergo substantive thermal fluctuations in cometary comae and emit at 3.3 3.4 micron. Observations of the 3.3 and 3.4 micron emission features contribute to characterizing the evolution of organics prior to their incorporation into cometary nuclei as well as their rapid evolution in cometary comae, which in turn contributes to deepening our understanding of the evolution of organics on the surfaces of asteroids and outer icy bodies in our solar system. Studying organics in comets contributes to understanding the formation and evolution pathways of ISM organics through to the formation of the robust insoluble organic matter in meteorites. A'Hearn, M.F., et al. 2011, Science, 332, 1396; Bockelee-­-Morvan, D. et al. 1995, Icarus, 116, 18; De Gregorio, B.T., et al. 2010, GCA, 74, 4454; Dello Russo, N., et al. 2011, ApJ, 734, L8; Dischler et al. 1983, Solid State Communications, 48, 105; Flynn, G., et al. 2010a, LPSC, 41, #1079; Flynn, G., et al. 2010b, COSPAR, 38, F31-­-0012-­-10; Flynn, G., Wirick, S. 2011, LPSC, 42, #1856; Fomenkova, et al. 1994, GCA 58, 4503; Matrajt, G., et al. 2013, ApJ, 765, 145; Schutte, et al. 1993, ApJ, 415, 397; Wooden, D.H. et al. 2011, EPSC-­-DPS, 1557; Wooden, D.H. et al. 2013, submitted.

  6. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-01-01

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  7. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  8. The effect of the Tom Thumb dwarfing gene on grain size and grain number of wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Gale, M.D.; Flintham, J.E.

    1984-01-01

    The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)

  9. Incision and Landsliding Lead to Coupled Increase in Sediment Flux and Grain Size Export

    Science.gov (United States)

    Roda-Boluda, D. C.; Brooke, S.; D'Arcy, M. K.; Whittaker, A. C.; Armitage, J. J.

    2017-12-01

    The rates and grain sizes of sediment fluxes modulate the dynamics and timing of landscape response to tectonics, and dictate the depositional patterns of sediment in basins. Over the last decades, we have gained a good quantitative understanding on how sediment flux and grain size may affect incision and basin stratigraphy. However, we comparably still have limited knowledge on how these variables change with varying tectonic rates. To address this question, we have studied 152 catchments along 8 normal fault-bounded ranges in southern Italy, which are affected by varying fault slip rates and experiencing a transient response to tectonics. Using a data set of 38 new and published 10Be erosion rates, we calibrate a sediment flux predictive equation (BQART), in order to estimate catchment sediment fluxes. We demonstrate that long-term sediment flux is governed by fault slip rates and the tectonically-controlled transient incision, and that sediment flux estimates from the BQART, steady-state assumptions, and incised volumes are highly correlated. This is supported by our 10Be erosion rates, which are controlled by fault slip and incision rates, and the associated landsliding. Based on a new landslide inventory, we show that erosion rate differences are likely due to differences in incision-related landslide activity across these catchments, and that landslides are a major component of sediment fluxes. From a data set of >13000 grain size counts on hillslope grain size supply and fluvial sediment at catchment outlets, we observe that landslides deliver material 20-200% coarser than other sediment sources, and that this coarse supply has an impact on the grain size distributions being exported from the catchments. Combining our sediment flux and grain size data sets, we are able to show that for our catchments, and potentially also for any areas that respond to changes in climate or tectonics via enhanced landsliding, sediment flux and grain size export increase

  10. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides); Synthese assistee par faisceau d'ions d'agregats dans les verres (argent et chalcogenures de plomb)

    Energy Technology Data Exchange (ETDEWEB)

    Espiau de Lamaestre, R

    2005-04-15

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  11. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  12. Crystallization induced of amorphous silicon by nickel

    International Nuclear Information System (INIS)

    Schmidt, J.A; Rinaldi, P; Budini, N; Arce, R; Buitrago, R.H

    2008-01-01

    Polycrystalline silicon (pc-Si) deposited on glass substrates is a very promising material for the production of different electronic devices, like thin film transistors, active matrices or solar cells. The crystallization of the amorphous silicon to obtain pc-Si can be achieved with different processes, among which nickel-induced crystallization is because it requires low concentrations of the metal and low annealing temperatures. Nucleation and growth of crystalline silicon are measured by the formation of silicide NiSi 2 , which has a lattice constant very similar to that of Si, and acts as a seed upon which crystalline grains can develop. The size of the pc-Si final grain depends on many factors, such as the initial concentration of Ni, the annealing time and temperature, and the presence of other atoms in the Si structure. This work presents a study on the influence of these parameters on the silicon crystallization process induced by Ni. We deposited a series of hydrogenated amorphous silicon samples (a-Si:H) on glass substrates, using the plasma-enhanced chemical vapor deposition method (PE-CVD) with silane gas (SiH 4 ). The deposition temperature was 200 o C, and we prepared intrinsic samples (i), lightly doped with boron (p), heavily doped with boron (p + ) and heavily doped with phosphorous (n + ). Each sample was divided into eight portions, depositing different concentrations of Ni into each one using the cathodic sputtering method. The concentration of Ni was determined by atomic adsorption spectroscopy, and included from 1.5 1 0 15 to 1.5 1 0 16 at/cm 2 . Later the samples were submitted to different thermal treatments in a circulating nitrogen atmosphere. In order to avoid violent dehydrogenation of the a-Si:H that damages the samples, the annealing was carried out gradually. In a first stage the samples were heated at a velocity of 0.5 o C /min up to 400 o C, holding them for 24 hrs at this temperature in order to reach hydrogen effusion. Heating

  13. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  14. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  15. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing

    DEFF Research Database (Denmark)

    Rosa, Massimo; Gooden, P. N.; Butterworth, S.

    2017-01-01

    Water dispersions of nanometric yttria stabilized zirconia (YSZ) particles synthesized by Continuous Hydrothermal Synthesis are transferred into nano-inks for thin film deposition. YSZ nanoparticles are synthesized in supercritical conditions resulting in highly dispersed crystals of 10 nm in size...

  16. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  17. Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping

    KAUST Repository

    Lin, Chih-Pin

    2015-08-27

    We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.

  18. Structure and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles derived from controlled crystallization of Nb-rich clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei [College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002 (China); Guo, Qianying [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Liu, Yongchang, E-mail: licmtju@163.com [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Yu, Liming; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China)

    2016-09-30

    This article describes the microstructural evolution and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles. According to the results obtained from X-ray diffraction and transmission electron microscope with Energy Dispersive Spectrometer, the bcc ultrafine grains and the disordered phase of Nb-rich nano-clusters were observed in the milled powders. The hot pressing (HP) resulted in a nearly equiaxed ferritic grains and dispersed nano-scale NbC (~8 nm) particles. The microstructure studies reveal that the formation of NbC nanoparticles is composed of nucleation and growth of the Nb-rich nano-clusters involving diffusion of their component. At room temperature the material exhibits an ultimate tensile strength of 700 MPa, yield strength of 650 MPa, and total elongation of 11.7 pct. The fracture surface studies reveal that a typical ductile fracture mode has occurred during tensile test.

  19. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  20. Annealing Effects on Microstructure and Mechanical Properties of Ultrafine-Grained Al Composites Reinforced with Nano-Al2O3 by Rotary Swaging

    Science.gov (United States)

    Chen, Cunguang; Wang, Wenwen; Guo, Zhimeng; Sun, Chunbao; Volinsky, Alex A.; Paley, Vladislav

    2018-03-01

    Microstructure evolution and variations in mechanical properties of Al-Al2O3 nanocomposite produced by powder metallurgy were investigated and compared with commercially pure aluminum (Al-1050) after furnace annealing. Fine gas-atomized Al powder compacts were first sintered in flowing nitrogen, subsequently consolidated into wires by rotary swaging and eventually annealed at 300 and 500 °C for 24 h each. Scanning and transmission electron microscopy with energy-dispersive spectroscopy was utilized to document the microstructure evolution. Rotary swaging was proven to lead to a marked decrease in grain size. After heavy swaging to true deformation degree of φ = 6 and annealing at 500 °C, obvious recrystallization was observed at Al-1050's existing grain boundaries and the crystals began to grow perpendicular to the flow direction. In the Al-Al2O3 nanocomposite, fabricated from d 50 = 6 μm Al powder, recrystallization partially occurred, while grains were still extremely fine. Due to the dual role of fine-grained Al2O3 dispersion strengthening, the nanocomposite showed improved mechanical performance in terms of tensile strength, approximately twice higher than Al-1050 after annealing at 500 °C.

  1. Elaboration and Characterization of Nano-Sized AlxMoyOz/Al Thermites

    National Research Council Canada - National Science Library

    Comet, M; Spitzer, D

    2006-01-01

    ...) has been developed at the Institut franco-allemand de recherches de Saint Louis (ISL). This process consists of a new sol-gel method nano-sized mixed AlxMoyOz phases whose structure is correlated to the chemical composition...

  2. The MAFLA (Mississippi, Alabama, Florida) Study, Grain Size Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The MAFLA (Mississippi, Alabama, Florida) Study was funded by NOAA as part of the Outer Continental Shelf Program. Dr. L.J. Doyle produced grain size analyses in the...

  3. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  4. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  5. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  6. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  7. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    International Nuclear Information System (INIS)

    Qiu Lingguang; Gu Lina; Hu Gang; Zhang Lide

    2009-01-01

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen) 2 (H 2 O) 2 ] 2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M 1 (H 2 O) 6 ].[M 2 (phen) 2 (H 2 O) 2 ] 2 .2(BTC).xH 2 O (M 1 , M 2 =Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit

  9. Effect of grain size on the melting point of confined thin aluminum films

    Energy Technology Data Exchange (ETDEWEB)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J. [Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  10. [Grain boundary and interface kinetics during ion irradiation

    International Nuclear Information System (INIS)

    Atwater, H.A.

    1991-01-01

    Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications

  11. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    Science.gov (United States)

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of nano-structured photonic crystals on light extraction enhancement of nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Wu, G.M.; Yen, C.C.; Chien, H.W.; Lu, H.C.; Chang, T.W.; Nee, T.E.

    2011-01-01

    The light extraction efficiency of an InGaN/GaN light-emitting diode (LED) can be enhanced by incorporating nano-structured photonic crystals inside the LED structure. We employed plane wave expansion (PWE) method and finite difference time domain (FDTD) method to reveal the optical confinement effects with the relevant parameters. The results showed that band-gap modulation could increase the efficiency for light extraction at the lattice constant of 200 nm and depth of 200 nm for the 468-nm LED. Focused ion beam (FIB) using Ga created the desired nano-structured patterns. The LED device micro-PL (photoluminescence) results have demonstrated that the triangular photonic crystal arrays could increase the peak illumination intensity by 58%. The peak wavelength remained unchanged. The integrated area under the illumination peak was increased by 75%. As the patterned area ratio was increased to 85%, the peak intensity enhancement was further improved to 91%, and the integrated area was achieved at 106%.

  13. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  14. Nano and micro U1-xThxO2 solid solutions: From powders to pellets

    Science.gov (United States)

    Balice, Luca; Bouëxière, Daniel; Cologna, Marco; Cambriani, Andrea; Vigier, Jean-François; De Bona, Emanuele; Sorarù, Gian Domenico; Kübel, Christian; Walter, Olaf; Popa, Karin

    2018-01-01

    Nuclear fuels production, structural materials, separation techniques, and waste management, all may benefit from an extensive knowledge in the nano-nuclear technology. In this line, we present here the production of U1-xThxO2 (x = 0 to 1) mixed oxides nanocrystals (NC's) through the hydrothermal decomposition of the oxalates in hot compressed water at 250 °C. Particles of spherical shape and size of about 5.5-6 nm are obtained during the hydrothermal decomposition process. The powdery nanocrystalline products were consolidated by spark plasma sintering into homogeneous mixed oxides pellets with grain sizes in the 0.4 to 5.5 μm range. Grain growth and mechanical properties were studied as a function of composition and size. No grain size effect was observed on the hardness or elastic modulus.

  15. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  16. Interplay between grain structure and protein adsorption on functional response of osteoblasts: ultrafine-grained versus coarse-grained substrates.

    Science.gov (United States)

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-01-01

    The rapid adsorption of proteins is the starting and primary biological response that occurs when a biomedical device is implanted in the physiological system. The biological response, however, depends on the surface characteristics of the device. Considering the significant interest in nano-/ultrafine surfaces and nanostructured coatings, we describe here, the interplay between grain structure and protein adsorption (bovine serum albumin: BSA) on osteoblasts functions by comparing nanograined/ultrafine-grained (NG/UFG) and coarse-grained (CG: grain size in the micrometer range) substrates by investigating cell-substrate interactions. The protein adsorption on NG/UFG surface was beneficial in favorably modulating biological functions including cell attachment, proliferation, and viability, whereas the effect was less pronounced on protein adsorbed CG surface. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on protein adsorbed NG/UFG surface. The functional response followed the sequence: NG/UFG(BSA) > NG/UFG > CG(BSA) > CG. The differences in the cellular response on bare and protein adsorbed NG/UFG and CG surfaces are attributed to cumulative contribution of grain structure and degree of hydrophilicity. The study underscores the potential advantages of protein adsorption on artificial biomedical devices to enhance the bioactivity and regulate biological functions. Copyright © 2012 Wiley Periodicals, Inc.

  17. Development of nano-sized α-Al2O3:C films for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.

    2011-01-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon (α-Al 2 O 3 :C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized α-Al 2 O 3 samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized α-Al 2 O 3 :C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized α-Al 2 O 3 :C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized α-Al 2 O 3 :C, in view of their improved resolution provided by nano-particulates. (author)

  18. Adsorption of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene in nano- and microsized crystals of MIL-101(Cr): static and dynamic gravimetric studies.

    Science.gov (United States)

    Bullot, Laetitia; Vieira-Sellaï, Ludivine; Chaplais, Gérald; Simon-Masseron, Angélique; Daou, Toufic Jean; Patarin, Joël; Fiani, Emmanuel

    2017-12-01

    This work aims to highlight the promising adsorption capacity and kinetic of (poly)chlorobenzene pollutants in the hybrid MIL-101(Cr) type material for technological uses in industrial waste exhaust decontamination. The influence of the MIL-101(Cr) crystal size (nano- and microcrystals) on the adsorption behavior was studied in static and dynamic modes. For this purpose, crystals of MIL-101(Cr) in nano- and micrometric sizes were synthesized and fully characterized. Their sorption properties regarding 1,2-dichlorobenzene were examined using gravimetric method in dynamic (p/p° = 0.5) and static (p/p° = 1) modes at room temperature. 1,2,4-trichlorobenzene adsorption was only performed under static mode because of its too low vapor pressure. 1,2-dichlorobenzene and 1,2,4-trichlorobenzene were used to mimic 2,3-dichlorodibenzo-p-dioxin and 1,2,3,4-tetrachlorodibenzo-p-dioxin, respectively, and more largely dioxin compounds. Adsorptions of these probes were successfully carried out in nano- and microcrystals of MIL-101(Cr). Indeed, in static mode (p/p° = 1) and at room temperature, nanocrystals adsorb 2266 molecules of 1,2-dichlorobenzene and 2093 molecules of 1,2,4-trichlorobenzene per unit cell, whereas microcrystals adsorb 1871 molecules of 1,2-dichlorobenzene and 1631 molecules of 1,2,4-trichlorobenzene per unit cell. In dynamic mode, the 1,2-dichlorobenzene adsorbed amounts are substantially similar to those obtained in static mode. However, the adsorption kinetics are different because of a different scheme of diffusivity of the adsorbate between the two modes. To the best of our knowledge, these adsorption capacities of MIL-101(Cr) as adsorbent for polychlorobenzenes trapping have never been referenced. MIL-101(Cr) appears as a promising material for technological uses in industrial waste exhaust decontamination.

  19. Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weizong; Li, Lulu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Valdez, James A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Saber, Mostafa [Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201 (United States); Zhu, Yuntian, E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-02-15

    Radiation resistance of Fe–14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700–1500 He bubbles at the depth of about 150–700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5–4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  20. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    Science.gov (United States)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  1. Study of variation grain size in desulfurization process of calcined petroleum coke

    Science.gov (United States)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  2. Rapid Grain Size Reduction in the Upper Mantle at a Plate Boundary

    Science.gov (United States)

    Kidder, S. B.; Scott, J.; Prior, D. J.; Lubicich, E. J.

    2017-12-01

    A few spinel peridotite xenoliths found near the Alpine Fault, New Zealand, exhibit a mylonitic texture and, locally, an extremely fine 30 micron grain size. The harzburgite xenoliths were emplaced in a 200 km-long elongate dike zone interpreted as a gigantic tension fracture or Reidel shear associated with Alpine Fault initiation 25 Ma. The presence of thin ( 1 mm) ultramylonite zones with px-ol phase mixing and fine grain sizes, minimal crustal-scale strain associated with the dike swarm, and the absence of mylonites at four of the five xenolith localities associated with the dike swarm indicate that upper mantle deformation was highly localized. Strings of small, recrystallized grains (planes in 3D) are found in the interiors of olivine porphyroclasts. In some cases, bands 1-2 grains thick are traced from the edges of olivine grains and terminate in their interiors. Thicker zones of recrystallized grains are also observed crossing olivine porphyroclasts without apparent offset of the unrecrystallized remnants of the porphyroclasts. We suggest a brittle-plastic origin for these features since the traditional recrystallization mechanisms associated with dislocation creep require much more strain than occurred within these porphyroclasts. Analogous microstructures in quartz and feldspar in mid-crust deformation zones are attributed to brittle-plastic processes. We hypothesize that such fine-grained zones were the precursors of the observed, higher-strain ultramylonite zones. Given the size of the new grains preserved in the porphyroclasts ( 100 micron) and a moho temperature > 650°C, grain growth calculations indicate that the observed brittle-plastic deformation occurred <10,000 yrs. prior to eruption. It is likely then that either brittle-plastic deformation was coeval with the ductile shearing occurring in the ultramylonite bands, or possibly, if deformation can be separated into brittle-plastic (early) and ductile (later) phases, that the entire localization

  3. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  4. Crystal size control of sulfathiazole using high pressure carbon dioxide

    Science.gov (United States)

    Kitamura, M.; Yamamoto, M.; Yoshinaga, Y.; Masuoka, H.

    1997-07-01

    The effect of the pressurization method of carbon dioxide on the crystallization behavior and crystal size of sulphathiazole (SUT) was investigated. In the "stepwise pressurization" method exceptionally large pillar-like crystals of 2-6 mm were obtained as mainly a scaling on the wall of the crystallizer. In the "rapid pressurization" method, crystals with a size one third to half of that obtained in the stepwise method precipitated, indicating the accelerated nucleation rate by the rapid increase of the supersaturation degree with a vigorous bubbling. With the new method of "two-step pressurization", in the first step the nucleation is accelerated with a much larger pressure instantly created, and in the second step the growth rate is retarded with the lower pressure. By this method much more fine crystals (from a few tens to several hundred micrometers) were produced and the scaling was suppressed. In this method a large supersaturation degree at an interface between the gas (bubble) and liquid phase under a vigorous bubbling may play an important role in accelerating the nucleation. The average size of the crystals tended to become smaller with increase of the first pressure and the expansion ratio at a decompression point, and it tended to get larger with increase of the second pressure. These results show that the GAS method is very useful for the control of crystal size over a wide range.

  5. The effect of loading and particle size on the oxygen reaction in CGO impregnated Pt electrodes

    DEFF Research Database (Denmark)

    Lund, Anders; Hansen, Karin Vels; Jacobsen, Torben

    2012-01-01

    Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar for electro......Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar...... for electrodes with various CGO loadings and electrodes annealed at various temperatures. The morphology was characterised by scanning electron microscopy and the CGO grain size was determined from X-ray diffraction peak broadening. The results showed that the polarisation resistance decreased with increasing...

  6. [Spatial change of the grain-size of aeolian sediments in Qira oasis-desert ecotone, Northwest China].

    Science.gov (United States)

    Lin, Yong Chong; Xu, Li Shuai

    2017-04-18

    In order to understand the environmental influence of oasis-desert ecotone to oasis ecological system, we comparatively analyzed the grain size characteristics of various aeolian sediments, including the sediments in oasis-desert ecotone, shelterbelt and the inside oasis and in Qira River valley. The results showed that the grain size characteristics (including grain-size distribution curve, grain size parameters, and content of different size classes) of sediments in the oasis-desert ecotone were consistent along the prevailing wind direction with a grain-size range of 0.3-200 μm and modal size of 67 μm. All of the sediments were good sorting and mainly composed of suspension components and saltation components, but not denatured saltation and creeping components (>200 μm). They were typically aeolian deposits being short-range transported. The grain sizes of sediments in oasis-desert ecotone were smaller than that in the material sources of Qira River valley and desert (0.3-800 μm), but very similar to those of the modern aeolian deposits in oasis-desert ecotone, shelterbelt and the inside oasis. The denatured saltation and creep components (>200 μm) were suppressed to transport into oasis-desert ecotone because of the high vegetation cover in oasis-desert ecotone. Therefore, like the shelterbelts, the oasis-desert ecotone could also block the invasion of desert. They safeguarded the oasis ecological environment together.

  7. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    Science.gov (United States)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  8. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2015-11-01

    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  9. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  10. The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature

    DEFF Research Database (Denmark)

    Hansen, Niels

    1977-01-01

    stress-grain size relationship was analyzed in terms of matrix strengthening and grain boundary strengthening according to the dislocation concept of Ashby. At intermediate strains this approach gives a good description of the effect of strain, grain size and purity on the flow stress.......Tensile-stress-strain data over a strain range from 0.2 to 30% were obtained at room temperature for 99.999 and 99.5% aluminium as a function of grain size. The yield stress-grain size relationship can be expressed by a Petch-Hall relation with approximately the same slope for the two materials....... The flow stress-grain size relationship can adequately be expressed by a modified Petch-Hall relation; for 99.999% aluminium material the slope increases with strain through a maximum around 15–20%, whereas for 99.5% aluminium the slope decreases with the strain to zero at strains about 10%. The flow...

  11. influence of delta ferrite on the flow stress grain size relationship

    African Journals Online (AJOL)

    user

    SIZE RELATIONSHIP OF AN AUSTENITIC STAINLESS STEEL by ... The effect of delta ferrite on the flow stress-grain size relation is investigated. ... some of these deviations, new models have .... J. N. Petch, J of Iron and Steel Inst., 174 25,.

  12. Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin

    Directory of Open Access Journals (Sweden)

    H. S. Negi

    2011-03-01

    Full Text Available In the present paper, spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% differences. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The retrieved snow grain sizes using different models based on the ART theory were compared for various snow types and it was observed that the grain size model using two channel method (one in visible and another in NIR region can work well for the Himalayan seasonal snow and it was found consistent with temporal changes in grain size. This method can work very well for clean, dry snow as in the upper Himalaya, but sometimes, due to the low reflectances (<20% using wavelength 1.24 μm, the ART theory cannot be applied, which is common in lower and middle Himalayan old snow. This study is important for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.

  13. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer Inst. for Ceramic Technologies and Sintered Materials, Dresden (Germany); Klaffke, D. [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    1996-05-01

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.

  14. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  15. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  16. Purification and crystallization of Bacillus subtilis NrnA, a novel enzyme involved in nanoRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nelersa, Claudiu M.; Schmier, Brad J.; Malhotra, Arun (Miami-MED)

    2012-05-08

    The final step in RNA degradation is the hydrolysis of RNA fragments five nucleotides or less in length (nanoRNA) to mononucleotides. In Escherichia coli this step is carried out by oligoribonuclease (Orn), a DEDD-family exoribonuclease that is conserved throughout eukaryotes. However, many bacteria lack Orn homologs, and an unrelated DHH-family phosphoesterase, NrnA, has recently been identified as one of the enzymes responsible for nanoRNA degradation in Bacillus subtilis. To understand its mechanism of action, B. subtilis NrnA was purified and crystallized at room temperature using the hanging-drop vapor-diffusion method with PEG 4000, PEG 3350 or PEG MME 2000 as precipitant. The crystals belonged to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 50.62, b = 121.3, c = 123.4 {angstrom}, {alpha} = 90, {beta} = 91.31, {gamma} = 90{sup o}.

  17. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  18. Synthesising and comparing electrical properties of NTC thermistors prepared from nano powder and solid state reaction

    International Nuclear Information System (INIS)

    Azad, N.; Ghanbari Shohany, B.; Hosseini, S. M.; Kompany, A.

    2011-01-01

    In this research, NTC thermistors with composition of NiMn 2-x Co x O 4 (x = 0.4, 0.8, 1.2, 1.6) prepared by two methods: solid state reaction and sol-gel (gel-combustion). The average particle size was monitored and structure of the calcinated powders have been investigated using x-ray diffraction and tunneling electron microscopy techniques. The average particle size was estimated to be about 65 nm with the cubic and cubic + tetragonal phases for low and high cobalt concentrations, respectively. The grain size of samples verifies with scanning electron microscopy images. Upon increasing the cobalt fraction, the grain size of samples increases from about 2μm to a few μm in size. The electrical properties of these thermistors depend on the grain size. The grain size of samples made from sol-gel is smaller than from solid state reaction under the same condition. For longer sintering time of the samples prepared by gel-combustion method, the grain size was increased then the electrical parameters of nano powder improved and we obtain better results than the samples prepared from solid state reaction.

  19. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  20. A simple route for renewable nano-sized arjunolic and asiatic acids and self-assembly of arjuna-bromolactone

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available While separating two natural nano-sized triterpenic acids via bromolactonization, we serendipitously discovered that arjuna-bromolactone is an excellent gelator of various organic solvents. A simple and efficient method for the separation of two triterpenic acids and the gelation ability and solid state 1D-helical self-assembly of nano-sized arjuna-bromolactone are reported.

  1. Grain Size and Phase Purity Characterization of U3Si2 Pellet Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hoggan, Rita E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, Kevin R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cappia, Fabiola [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wagner, Adrian R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-05-01

    Characterization of U3Si2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U3Si2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm. The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U3Si2 as the main phase composing about 80 vol. %, Si rich phases (USi and U5Si4) composing about 13 vol. %, and UO2 composing about 5 vol. %. Initial batches from the extended U3Si2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO2: achieving U3Si2 phase purity between 95 vol. % and 98 vol. % U3Si2. The amount of UO2 in sintered U3Si2 pellets is correlated to the length of time between U3Si2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.

  2. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.

    Science.gov (United States)

    Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris

    2011-06-08

    The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.

  3. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    Science.gov (United States)

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  4. Volatile and non-volatile elements in grain-size separated samples of Apollo 17 lunar soils

    International Nuclear Information System (INIS)

    Giovanoli, R.; Gunten, H.R. von; Kraehenbuehl, U.; Meyer, G.; Wegmueller, F.; Gruetter, A.; Wyttenbach, A.

    1977-01-01

    Three samples of Apollo 17 lunar soils (75081, 72501 and 72461) were separated into 9 grain-size fractions between 540 and 1 μm mean diameter. In order to detect mineral fractionations caused during the separation procedures major elements were determined by instrumental neutron activation analyses performed on small aliquots of the separated samples. Twenty elements were measured in each size fraction using instrumental and radiochemical neutron activation techniques. The concentration of the main elements in sample 75081 does not change with the grain-size. Exceptions are Fe and Ti which decrease slightly and Al which increases slightly with the decrease in the grain-size. These changes in the composition in main elements suggest a decrease in Ilmenite and an increase in Anorthite with decreasing grain-size. However, it can be concluded that the mineral composition of the fractions changes less than a factor of 2. Samples 72501 and 72461 are not yet analyzed for the main elements. (Auth.)

  5. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect

    International Nuclear Information System (INIS)

    Nagakubo, A.; Ogi, H.; Hirao, M.; Sumiya, H.

    2014-01-01

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.

  6. Study of carbon-doped micro and nano sized alumina for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Fontainha, C. C. P.; Alves, N.; Ferraz, W. B.; Faria, L. O.

    2017-10-01

    New materials have been widely investigated for ionizing radiation dosimetry for medical procedures. Carbon-doped doped alumina (Al 2 O 3 :C) have been proposed as thermoluminescent and photo luminescent dosimeters. In the present study nano and micro-sized alumina doped with different percentages of carbon, sintered under different atmosphere conditions, at temperatures ranging from 1300 to 1750 degrees Celsius, were sintered and their dosimetric characteristics for gamma fields were investigated. Among the investigated sample preparation methods, the micro-sized alumina doped with 0.01% of carbon and sintered at 1700 degrees Celsius under reducing atmosphere has presented the best Tl output, comparable to the best Tl sensitivities ever reported to alumina and better efficiency than the nano-sized alumina synthesized in this study. The influence of humidity in the Tl signal has been evaluated to be -4.0%. The micro-sized alumina obtained by the methodology used in this work is a suitable candidate for application in X and gamma radiation dosimetry. (Author)

  7. Grain size and burnup dependence of spent fuel oxidation: Geological repository impact

    International Nuclear Information System (INIS)

    Kansa, E.J.; Hanson, B.D.; Stout, R.B.

    1999-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 r↓U 3 O 8 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low

  8. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    Science.gov (United States)

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  9. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    promoting rhizobacteria application on yield, yield components and grain filling period of soybean. Materials and Methods In order to study the effects of Nano-Zinc oxide and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria on yield and some agronomic characteristics of soybean, a factorial experiment based on randomized complete block design with three replications was conducted in 2013 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were included foliar application of Nano-Zinc oxide at four levels (Zero as control, 0.3, 0.6 and 0.9 g l-1 and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria at five levels (without inoculation as control, seed inoculation with Brady rhizobium japanicum, seed inoculation with Brady rhizobium japanicum+Azosprillum lipoferum strain OF, seed inoculation with Brady rhizobium japanicum+Psedomonas putida, seed inoculation with Brady rhizobium japanicum+ Azosprillum lipoferum strain OF+ Psedomonas putida. Results and Discussion The results of growth indices showed that the maximum total dry matter (530 g m-2, crop growth rate (9.48 g.m-2.day-1 and relative growth rate (0.1 g.g-1.day-1 were obtained at foliar application of 0.9 g l-1 Nano-Zinc oxide×seed inoculation with rhizobium+Azosprillum+ Psedomonas and the least of these indices were obtained without of foliar application Nano-Zinc oxide × seed inoculation. The results showed that plant height, the number of nodules per plant, the number of pod per plant, grain yield and grain 100 weight were significantly affected by Nano-Zinc oxide, seed inoculation and interaction of Nano-Zinc oxide×seed inoculation. Maximum of plant height, grain 100 weight, the number of nodules per plant and grain yield were obtained at foliar application of 0.9 g l-1 of Nano-Zinc oxide×seed inoculation with rhizobium and PGPR. Dry weight of nodules per plant, the number of pod per plant and the number of grains per plant

  10. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    Science.gov (United States)

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  11. Size effect in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1999-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is an explanation relying on an increased probability of encountering a strength reducing flaw when the volume...... of the material under stress is increased. This paper presents a small experimental investigation on specimens with well defined structural orientation of the material. The experiments exhibit a larger size effect than expected and furthermore the data and the nature of the failures encountered suggest...... that the size effect can be explained on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling using the orthotropic stiffness characteristics in the transverse plane of wood....

  12. Plasma-arc reactor for production possibility of powdered nano-size materials

    International Nuclear Information System (INIS)

    Hadzhiyski, V; Mihovsky, M; Gavrilova, R

    2011-01-01

    Nano-size materials of various chemical compositions find increasing application in life nowadays due to some of their unique properties. Plasma technologies are widely used in the production of a range of powdered nano-size materials (metals, alloys, oxides, nitrides, carbides, borides, carbonitrides, etc.), that have relatively high melting temperatures. Until recently, the so-called RF-plasma generated in induction plasma torches was most frequently applied. The subject of this paper is the developments of a new type of plasma-arc reactor, operated with transferred arc system for production of disperse nano-size materials. The new characteristics of the PLASMALAB reactor are the method of feeding the charge, plasma arc control and anode design. The disperse charge is fed by a charge feeding system operating on gravity principle through a hollow cathode of an arc plasma torch situated along the axis of a water-cooled wall vertical tubular reactor. The powdered material is brought into the zone of a plasma space generated by the DC rotating transferred plasma arc. The arc is subjected to Auto-Electro-Magnetic Rotation (AEMR) by an inductor serially connected to the anode circuit. The anode is in the form of a water-cooled copper ring. It is mounted concentrically within the cylindrical reactor, with its lower part electrically insulated from it. The electric parameters of the arc in the reactor and the quantity of processed charge are maintained at a level permitting generation of a volumetric plasma discharge. This mode enables one to attain high mean mass temperature while the processed disperse material flows along the reactor axis through the plasma zone where the main physico-chemical processes take place. The product obtained leaves the reactor through the annular anode, from where it enters a cooling chamber for fixing the produced nano-structure. Experiments for AlN synthesis from aluminium power and nitrogen were carried out using the plasma reactor

  13. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  14. Influence of phosphorous and sulphur as well as grain size on creep in pure copper

    International Nuclear Information System (INIS)

    Andersson, Henrik; Seitisleam, Facredin; Sandstroem, Rolf

    1999-12-01

    Uniaxial creep tests have been performed at 175 deg C for extruded oxygen-free copper. The effect of different contents of phosphorous and sulphur as well as different grain sizes have been studied. The copper with < 1 ppm phosphorous and with a 6 ppm sulphur content showed significantly lower creep life and ductility than batches with higher P content. An increase of the P content to 29 ppm increased the creep life and ductility, but a further increase did not affect the properties further. A similar drop in the creep properties was found in the material with a grain size of about 2000 μm. A reduction of the mean grain size to 800 μm had a beneficial effect on the creep ductility. A further reduction of the grain size did not give any further improvements. All tests except those with a phosphorous content of less than 1 ppm P and those with a mean grain size of about 2000 μm failed at an elongation greater than 20%, most of them at 30-40%. The variation in sulphur content from 6 to 12 ppm did not affect the creep properties. The main creep rupture mechanisms were found to be cavitation and microcracking at the grain boundaries. Master curves for extrapolation are provided for creep rupture as well as for 5% and 10% creep strain

  15. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    Science.gov (United States)

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  16. Cooperative doping effects of Ti and nano-SiC on transport critical current density and grain connectivity of in situ MgB{sub 2} tapes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F., E-mail: PAN.Xifeng@nims.go.jp [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)] [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China); Matsumoto, A.; Kumakura, H. [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, C.H.; Zhao, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China)] [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2011-11-15

    We studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} tape. Ti doping significantly weakens the current dependence of T{sub c} of MgB{sub 2} tapes at self-field, and does not change T{sub c} or slightly increases T{sub c}. Further Ti adding can enhance in-field J{sub c} performance of SiC doped MgB{sub 2} tapes by a factor of 50-100% at 4.2 K and 10 T. Ti addition improves the J{sub c} performance of undoped and SiC doped MgB{sub 2} by modifying their grains connection. By now, nano-SiC powder (20-30 nm) is still the most effective additive for improving upper critical field and critical current density of MgB{sub 2}-based superconducting materials. However, some decomposed carbon aggregates at grain boundaries and results in serious weak-links of MgB{sub 2} grains, and these weak-links limit the further improvement of critical current density, J{sub c} of MgB{sub 2}, especially at lower fields. Ti doping is reported to increase the compactness of MgB{sub 2}, and modify its intergranular coupling by forming ultrathin TiB{sub 2} layer at grain boundaries. In this work, we studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} and the possibility to improve transport J{sub c} of SiC doped MgB{sub 2} by introducing Ti additive. The results suggest the Ti addition can obviously improve J{sub c} of MgB{sub 2} at lower fields and also enhance the J{sub c} of SiC doped MgB{sub 2} by improving their grain connectivity which shows serious intergranular weak-links.

  17. Size distribution of BaF2 nanocrystallites in transparent glass ceramics

    International Nuclear Information System (INIS)

    Bocker, Christian; Bhattacharyya, Somnath; Hoeche, Thomas; Ruessel, Christian

    2009-01-01

    In glasses with the composition 1.9 Na 2 O-15 K 2 O-7.5 Al 2 O 3 -69.6 SiO 2 -6 BaF 2 (in mol.%), BaF 2 nanocrystalline precipitates are formed upon heat treatment. Using dark-field and bright-field transmission electron micrographs, crystallite size distributions are obtained for samples crystallized at various temperatures. According to the 'tomato-salad problem', the size distributions are corrected and then compared to various theories of grain growth taking into account coarsening of the crystallites during heat treatment. The experimental crystallite size distributions show for smaller mean crystallite sizes a more symmetric shape in comparison to the theories of Lifshitz-Slyozov-Wagner (LSW) or Brailsford and Wynblatt (B and W). With increasing mean crystallite sizes to about 18 nm at higher heat-treatment temperatures, the full width at half maximum of the observed distributions decreases and becomes even narrower than the LSW function. These findings indicate that in the investigated nano glass ceramics no coarsening by Ostwald ripening or coalescence occurs. This is explained by the formation of a diffusion barrier around each nanocrystallite which limits the size of the crystallites and hence results in such a narrow and uniform crystallite size distribution.

  18. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  19. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  20. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    International Nuclear Information System (INIS)

    Adibi, Sara; Branicio, Paulo S.; Zhang, Yong-Wei; Joshi, Shailendra P.

    2014-01-01

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15 nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5 nm for Cu 36 Zr 64 and 3 nm for Cu 64 Zr 36 . The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu 36 Zr 64 yield/flow stress: 2.54 GPa/1.29 GPa and Cu 64 Zr 36 yield/flow stress: 3.57 GPa /1.58 GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.