WorldWideScience

Sample records for nano-scale water clusters

  1. A study on a nano-scale materials simulation using a PC cluster

    International Nuclear Information System (INIS)

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  2. Nano-scale clusters formed in the early stage of phase decomposition of Al-Mg-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hirosawa, S.; Sato, T. [Dept. of Metallurgy and Ceramics Science, Tokyo Inst. of Tech. (Japan)

    2005-07-01

    The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening {beta}'' phase significantly influences two-step aging behavior of Al-Mg-Si alloys. In this work, the existence of two kinds of nanoclusters has been verified in the early stage of phase decomposition by differential scanning calorimetry (DSC) and three-dimensional atom probe (3DAP). Pre-aging treatment at 373 K before natural aging was also found to form preferentially one of the two nanoclusters, resulting in the remarkable restoration of age-hardenability at paint-bake temperatures. Such microstructural control by means of optimized heat-treatments; i.e. nanocluster assist processing (NCAP), possesses great potential for enabling Al-Mg-Si alloys to be used more widely as a body-sheet material of automobiles. (orig.)

  3. The applications of small-angle X-ray scattering in studying nano-scaled polyoxometalate clusters in solutions

    Science.gov (United States)

    Li, Mu; Zhang, Mingxin; Wang, Weiyu; Cheng, Stephen Z. D.; Yin, Panchao

    2018-05-01

    Nano-scaled polyoxometalates (POMs) clusters with sizes ranging from 1 to 10 nm attract tremendous attention and have been extensively studied due to POMs' fascinating structural characteristics and prospects for wide-ranging applications. As a unique class of nanoparticles with well-defined structural topologies and monodispersed masses, the structures and properties of POMs in both bulk state and solutions have been explored with several well-developed protocols. Small-angle X-ray scattering (SAXS) technique, as a powerful tool for studying polymers and nanoparticles, has been recently extended to the investigating of solution behaviors of POMs. In this mini-review, the general principle and typical experimental procedures of SAXS are illustrated first. The applications of SAXS in characterizing POMs' morphology, counterion distribution around POMs, and short-range interactions among POMs in solutions are highlighted. [Figure not available: see fulltext.

  4. Structure and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles derived from controlled crystallization of Nb-rich clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lei [College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002 (China); Guo, Qianying [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Liu, Yongchang, E-mail: licmtju@163.com [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Yu, Liming; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China)

    2016-09-30

    This article describes the microstructural evolution and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles. According to the results obtained from X-ray diffraction and transmission electron microscope with Energy Dispersive Spectrometer, the bcc ultrafine grains and the disordered phase of Nb-rich nano-clusters were observed in the milled powders. The hot pressing (HP) resulted in a nearly equiaxed ferritic grains and dispersed nano-scale NbC (~8 nm) particles. The microstructure studies reveal that the formation of NbC nanoparticles is composed of nucleation and growth of the Nb-rich nano-clusters involving diffusion of their component. At room temperature the material exhibits an ultimate tensile strength of 700 MPa, yield strength of 650 MPa, and total elongation of 11.7 pct. The fracture surface studies reveal that a typical ductile fracture mode has occurred during tensile test.

  5. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  6. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions

    Science.gov (United States)

    Plaza Rodriguez, Nayomi Z.

    Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding on the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My PhD thesis focuses on the development and implementation of neutron scattering methods that can provide insight on both the structural and dynamical changes associated with these interactions so that products with improved moisture durability can be developed efficiently. Using small angle neutron scattering (SANS) and a custom-built in situ relative humidity chamber I studied the anisotropic moisture-induced swelling of wood nanostructure. First, I studied the effects of sample preparation by comparing SANS patterns of wiley milled wood and intact latewood cell walls, and found that scattering from intact wood provide more information about the spatial arrangement of the wood nanostructures inside the cell wall. Comparisons between SANS patterns from earlywood and latewood, also showed that the higher cell wall density of latewood cell walls results in patterns with more pronounced anisotropic features. Then, by measuring latewood loblolly pine sections obtained from the same growth ring and prepared in each of the primary wood planes, I tracked the cellulose elementary fibril spacing as a function of humidity in both intact and partially cut cell walls. These studies showed that even though swelling at the elementary fibril spacing is responsible for the majority of the transverse swelling observed at the S2 level, it is not primary plane dependent. Additionally, there were no differences in the elementary fibril spacing between partially-cut and intact cell walls, except at high humidity where the spacing in partially-cut cells was higher. SANS was also used to study the effects of two chemical

  7. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  8. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  9. Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS Reaction

    Directory of Open Access Journals (Sweden)

    Paula Sánchez

    2011-12-01

    Full Text Available Au-based catalysts supported on carbon materials with different structures such as graphite (G and fishbone type carbon nanofibers (CNF-F were prepared using two different methods (impregnation and gold-sol to be tested in the water gas shift (WGS reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM, temperature-programmed oxidation (TPO, X-ray diffraction (XRD, Raman spectroscopy, elemental analyses (CNH, N2 adsorption-desorption analysis, temperature-programmed reduction (TPR and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

  10. Mechanics over micro and nano scales

    CERN Document Server

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  11. Electron localization in water clusters

    International Nuclear Information System (INIS)

    Landman, U.; Barnett, R.N.; Cleveland, C.L.; Jortner, J.

    1987-01-01

    Electron attachment to water clusters was explored by the quantum path integral molecular dynamics method, demonstrating that the energetically favored localization mode involves a surface state of the excess electron, rather than the precursor of the hydrated electron. The cluster size dependence, the energetics and the charge distribution of these novel electron-cluster surface states are explored. 20 refs., 2 figs., 1 tab

  12. Production and characterization of protonated molecular clusters containing a given number of water molecules with the DIAM set-up

    International Nuclear Information System (INIS)

    Bruny, G.

    2010-01-01

    nano-scale characterization of irradiation in bio-molecular systems requires observation of novel features which are now achievable with the recent technical progress. This work is a central part in the development of DIAM which is a new experimental set-up devoted to irradiation of bio-molecular clusters at the Institut de Physique Nucleaire de Lyon. The development of the cluster source and of a double focusing mass spectrometer leads to the production of intense beams of mass selected protonated molecular clusters. Combined with this mass selected cluster beams an innovative detection technique is demonstrated in collision induced dissociation experiments. The results contribute to the knowledge of the stability and the structure of the small protonated water clusters and mixed clusters of water and pyridine. (author)

  13. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  14. Synthesis and Characterization of Nano Scale YBCO

    International Nuclear Information System (INIS)

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  15. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  16. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  17. Topology optimization for nano-scale heat transfer

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  18. Water Cluster Leaders Meeting Summary Report 2016

    Science.gov (United States)

    As part of its efforts to support environmental technology innovation clusters, U.S. EPA hosted a Water Technology Innovation Cluster Leaders Meeting on September 25, 2016, in New Orleans, Louisiana. The meeting was an opportunity for cluster leaders from across the globe to meet...

  19. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  20. Stabilities of protonated water-ammonia clusters

    Science.gov (United States)

    Sundén, A. E. K.; Støchkel, K.; Hvelplund, P.; Brøndsted Nielsen, S.; Dynefors, B.; Hansen, K.

    2018-05-01

    Branching ratios of water and ammonia evaporation have been measured for spontaneous evaporation from protonated mixed clusters H+(H2O)n(NH3)m in the size range 0 ≤ n ≤ 11 and 0 ≤ m ≤ 7. Mixed clusters evaporate water except for clusters containing six or more ammonia molecules, indicating the formation of a stable core of one ammonium ion surrounded by four ammonia molecules and a second shell consisting predominantly of water. We relate evaporative branching ratios to free energy differences between the products of competing channels and determine the free energy differences for clusters with up to seven ammonia molecules. Clusters containing up to five ammonia molecules show a very strong scaling of these free energy differences.

  1. Brillouin gain enhancement in nano-scale photonic waveguide

    Science.gov (United States)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  2. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  3. Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2013-01-01

    This review highlights the importance of developing multi-scale characterisation techniques for analysing operating catalysts in their working environment. We emphasise that a hierarchy of insitu techniques that provides macro-, meso- and nano-scale information is required to elucidate and optimise....../heat/mass transport gradients in shaped catalysts and catalyst grains and c)meso- and nano-scale information about particles and clusters, whose physical and electronic properties are linked directly to the micro-kinetic behaviour of the catalysts. Techniques such as X-ray diffraction (XRD), infrared (IR), Raman, X......-ray photoelectron spectroscopy (XPS), UV/Vis, and X-ray absorption spectroscopy (XAS), which have mainly provided global atomic scale information, are being developed to provide the same information on a more local scale, often with sub-second time resolution. X-ray microscopy, both in the soft and more recently...

  4. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  5. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  6. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    International Nuclear Information System (INIS)

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  7. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Science.gov (United States)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  8. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  9. Design Optimization of Radionuclide Nano-Scale Batteries

    International Nuclear Information System (INIS)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-01-01

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas

  10. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  11. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  12. Computational optimization of catalyst distributions at the nano-scale

    International Nuclear Information System (INIS)

    Ström, Henrik

    2017-01-01

    Highlights: • Macroscopic data sampled from a DSMC simulation contain statistical scatter. • Simulated annealing is evaluated as an optimization algorithm with DSMC. • Proposed method is more robust than a gradient search method. • Objective function uses the mass transfer rate instead of the reaction rate. • Combined algorithm is more efficient than a macroscopic overlay method. - Abstract: Catalysis is a key phenomenon in a great number of energy processes, including feedstock conversion, tar cracking, emission abatement and optimizations of energy use. Within heterogeneous, catalytic nano-scale systems, the chemical reactions typically proceed at very high rates at a gas–solid interface. However, the statistical uncertainties characteristic of molecular processes pose efficiency problems for computational optimizations of such nano-scale systems. The present work investigates the performance of a Direct Simulation Monte Carlo (DSMC) code with a stochastic optimization heuristic for evaluations of an optimal catalyst distribution. The DSMC code treats molecular motion with homogeneous and heterogeneous chemical reactions in wall-bounded systems and algorithms have been devised that allow optimization of the distribution of a catalytically active material within a three-dimensional duct (e.g. a pore). The objective function is the outlet concentration of computational molecules that have interacted with the catalytically active surface, and the optimization method used is simulated annealing. The application of a stochastic optimization heuristic is shown to be more efficient within the present DSMC framework than using a macroscopic overlay method. Furthermore, it is shown that the performance of the developed method is superior to that of a gradient search method for the current class of problems. Finally, the advantages and disadvantages of different types of objective functions are discussed.

  13. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  14. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  15. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  16. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  17. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  18. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  19. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  20. Zero point energy of polyhedral water clusters.

    Science.gov (United States)

    Anick, David J

    2005-06-30

    Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.

  1. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  2. Electron transport in nano-scaled piezoelectronic devices

    Science.gov (United States)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  3. Nano-scale characterization of white layer in broached Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe, E-mail: zhe.chen@liu.se [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Colliander, Magnus Hörnqvist; Sundell, Gustav [Department of Physics, Chalmers University of Technology, 41296 Gothenburg (Sweden); Peng, Ru Lin [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Zhou, Jinming [Division of Production and Materials Engineering, Lund University, 22100 Lund (Sweden); Johansson, Sten; Moverare, Johan [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden)

    2017-01-27

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718. TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  4. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  5. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  6. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  7. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    International Nuclear Information System (INIS)

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  8. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  9. Hierarchical clusters of phytoplankton variables in dammed water bodies

    Science.gov (United States)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this paper a dataset containing biological variables of the water column of several Portuguese reservoirs is analyzed. Hierarchical cluster analysis is used to obtain clusters of phytoplankton variables of the phylum Cyanophyta, with the objective of validating the classification of Portuguese reservoirs previewly presented in [1] which were divided into three clusters: (1) Interior Tagus and Aguieira; (2) Douro; and (3) Other rivers. Now three new clusters of Cyanophyta variables were found. Kruskal-Wallis and Mann-Whitney tests are used to compare the now obtained Cyanophyta clusters and the previous Reservoirs clusters, in order to validate the classification of the water quality of reservoirs. The amount of Cyanophyta algae present in the reservoirs from the three clusters is significantly different, which validates the previous classification.

  10. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)

    2014-05-28

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of

  11. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  12. Polaron Hopping in Nano-scale Poly(dA–Poly(dT DNA

    Directory of Open Access Journals (Sweden)

    Singh Mahi

    2010-01-01

    Full Text Available Abstract We investigate the current–voltage relationship and the temperature-dependent conductance of nano-scale samples of poly(dA–poly(dT DNA molecules. A polaron hopping model has been used to calculate the I–V characteristic of nano-scale samples of DNA. This model agrees with the data for current versus voltage at temperatures greater than 100 K. The quantities G 0 , i 0 , and T 1d are determined empirically, and the conductivity is estimated for samples of poly(dA–poly(dT.

  13. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  14. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  15. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  16. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  17. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    Science.gov (United States)

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  18. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  19. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  20. Hierarchy of the Collective Effects in Water Clusters.

    Science.gov (United States)

    Bakó, Imre; Mayer, István

    2016-02-04

    The results of dipole moment as well as of intra- and intermolecular bond order calculations indicate the big importance of collective electrostatic effects caused by the nonimmediate environment in liquid water models. It is also discussed how these collective effects are built up as consequences of the electrostatic and quantum chemical interactions in water clusters.

  1. Structure and stability of spiro-cyclic water clusters

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The structure and stability of spiro-cyclic water clusters containing up to 32 water molecules have been ... due to its importance in various real life systems. 1–8. High level ... It is well-known from the crystal structure data- base that the ...

  2. Explosions of water clusters in intense laser fields

    International Nuclear Information System (INIS)

    Kumarappan, V.; Krishnamurthy, M.; Mathur, D.

    2003-01-01

    Energetic, highly charged oxygen ions O q+ (q≤6), are copiously produced upon laser field-induced disassembly of highly charged water clusters, (H 2 O) n and (D 2 O) n , n∼60, that are formed by seeding high-pressure helium or argon with water vapor. Ar n clusters (n∼40 000) formed under similar experimental conditions are found to undergo disassembly in the Coulomb explosion regime, with the energies of Ar q+ ions showing a q 2 dependence. Water clusters, which are argued to be considerably smaller in size, should also disassemble in the same regime, but the energies of fragment O q+ ions are found to depend linearly on q which, according to prevailing wisdom, ought to be a signature of hydrodynamic expansion that is expected of much larger clusters. The implication of these observations on our understanding of the two cluster explosion regimes, Coulomb explosion and hydrodynamic expansion, is discussed. Our results indicate that charge state dependences of ion energy do not constitute an unambiguous experimental signature of cluster explosion regime

  3. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  4. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  5. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  6. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  7. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    International Nuclear Information System (INIS)

    Li, Weiwei; Liu, Weihao; Jia, Qika

    2016-01-01

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  8. Quasi-particle spectrum of nano-scale conventional and unconventional superconductors under magnetic field

    International Nuclear Information System (INIS)

    Kato, Masaru; Suematsu, Hisataka; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu

    2005-01-01

    We have developed a numerical method to solve the Bogoliubov-de Gennes equation for nano-scaled isotropic and d-wave superconductors. It is based on the finite element method, and therefore applicable to arbitrary geometries. We argue the difference of the local density of states between isotropic and a d-wave superconducting square plate. For d-wave case, it appears as intrinsic surface bound states

  9. Sodium-water clusters and their role in radiation chemistry

    International Nuclear Information System (INIS)

    Dhar, S.; Kestner, N.R.

    1988-01-01

    Studies of sodium-water clusters are presented which could serve as models for the recently suggested intermediate species in the radiation chemistry of water. The ionization potentials and the lower excited states of sodium with n-water molecules are calculated by ab initio quantum chemistry methods. The ionization potential calculated at the SCF level for the water monomer is 4.10 eV, which becomes 4.34 at the MP2 correlation level. The experimental value is 4.379 ± 0.002 eV. Structural data is presented for the lower members of the sodium with n-water clusters. In addition the Hartree-Fock calculations indicate that there should be some strong charge transfer to solvent transitions at higher energies. (author)

  10. Design exploration of emerging nano-scale non-volatile memory

    CERN Document Server

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  11. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  12. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  13. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  14. A multi-physics modelling framework to describe the behaviour of nano-scale multilayer systems undergoing irradiation damage

    International Nuclear Information System (INIS)

    Villani, Aurelien

    2015-01-01

    Radiation damage is known to lead to material failure and thus is of critical importance to lifetime and safety within nuclear reactors. While mechanical behaviour of materials under irradiation has been the subject of numerous studies, the current predictive capabilities of such phenomena appear limited. The clustering of point defects such as vacancies and self interstitial atoms gives rise to creep, void swelling and material embrittlement. Nano-scale metallic multilayer systems have be shown to have the ability to evacuate such point defects, hence delaying the occurrence of critical damage. In addition, they exhibit outstanding mechanical properties. The objective of this work is to develop a thermodynamically consistent continuum framework at the meso and nano-scales, which accounts for the major physical processes encountered in such metallic multilayer systems and is able to predict their microstructural evolution and behavior under irradiation. Mainly three physical phenomena are addressed in the present work: stress-diffusion coupling and diffusion induced creep, the void nucleation and growth in multilayer systems under irradiation, and the interaction of dislocations with the multilayer interfaces. In this framework, the microstructure is explicitly modeled, in order to account accurately for their effects on the system behavior. The diffusion creep strain rate is related to the gradient of the vacancy flux. A Cahn-Hilliard approach is used to model void nucleation and growth, and the diffusion equations for vacancies and self interstitial atoms are complemented to take into account the production of point defects due to irradiation cascades, the mutual recombination of defects and their evacuation through grain boundaries. In metallic multilayers, an interface affected zone is defined, with an additional slip plane to model the interface shearable character, and where dislocations cores are able to spread. The model is then implemented numerically

  15. Analyzing China Smart Water Meter Industry Cluster Competitiveness

    OpenAIRE

    Chan, Parker

    2013-01-01

    Sustainable development has always been a top issue nowadays. The smart water management is one of the methods to achieve the sustainable development. This paper aims to focus on analyzing the competitiveness of industrial clusters (Guangzhou, Ningbo and Shanghai) in China specifically to the smart water meter industry. It is part of the CEMIS sourcing work package under the KVTELIOS project with Mr. Al Natsheh Anas, and is supervised by Ms. Komulainen Ruey. Porter Diamond Theory is used ...

  16. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    Science.gov (United States)

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  17. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  18. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  19. Writing to and reading from a nano-scale crossbar memory based on memristors

    International Nuclear Information System (INIS)

    Vontobel, Pascal O; Robinett, Warren; Kuekes, Philip J; Stewart, Duncan R; Straznicky, Joseph; Stanley Williams, R

    2009-01-01

    We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded demultiplexers implemented using mixed-scale crossbars (in which CMOS-wires cross nano-wires and in which the crosspoint junctions have one-time configurable memristors). This memory system does not utilize the kind of devices (diodes or transistors) that are normally used to isolate the memory cell being written to and read from in conventional memories. Instead, special techniques are introduced to perform the writing and the reading operation reliably by taking advantage of the nonlinearity of the type of memristors used. After discussing both writing and reading strategies for our memory system in general, we focus on a 64 x 64 memory array and present simulation results that show the feasibility of these writing and reading procedures. Besides simulating the case where all device parameters assume exactly their nominal value, we also simulate the much more realistic case where the device parameters stray around their nominal value: we observe a degradation in margins, but writing and reading is still feasible. These simulation results are based on a device model for memristors derived from measurements of fabricated devices in nano-scale crossbars using Pt and Ti nano-wires and using oxygen-depleted TiO 2 as the switching material.

  20. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  1. Topological clustering as a tool for planning water quality monitoring in water distribution networks

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2015-01-01

    ) identify steady clusters for a part of the network where an actual contamination has occurred; (2) analyze this event by the use of mesh diagrams; and (3) analyze the use of mesh diagrams as a decision support tool for planning water quality monitoring. Initially, the network model was divided...... into strongly and weakly connected clusters for selected time periods and mesh diagrams were used for analysing cluster connections in the Nørrebro district. Here, areas of particular interest for water quality monitoring were identified by including user-information about consumption rates and consumers...... particular sensitive towards water quality deterioration. The analysis revealed sampling locations within steady clusters, which increased samples' comparability over time. Furthermore, the method provided a simplified overview of water movement in complex distribution networks, and could assist...

  2. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  3. Gallium Nitride: A Nano scale Study using Electron Microscopy and Associated Techniques

    International Nuclear Information System (INIS)

    Mohammed Benaissa; Vennegues, Philippe

    2008-01-01

    A complete nano scale study on GaN thin films doped with Mg. This study was carried out using TEM and associated techniques such as HREM, CBED, EDX and EELS. It was found that the presence of triangular defects (of few nanometers in size) within GaN:Mg films were at the origin of unexpected electrical and optical behaviors, such as a decrease in the free hole density at high Mg doping. It is shown that these defects are inversion domains limited with inversion-domains boundaries. (author)

  4. Thermoelectric effect in nano-scaled lanthanides doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E H; Canepa, H R; Walsoee de Reca, N E [Centro de Investigacion en Solidos, CITEFA, San Juan Bautista de La Salle 4397 (B1603ALO) Villa Martelli, Buenos Aires (Argentina); Schaeuble, N; Aguirre, M H, E-mail: canepa@citefa.gov.a, E-mail: myriam.aguirre@empa.c [Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2009-05-01

    Start Nano-scaled ZnO with 1% Er doping was prepared by soft chemistry methods. The synthesis was carried out in anhydrous polar solvent to achieve a crystal size of a few nanometers. Resulting particles were processed as precipitates or multi layer films. Structural characterization was evaluated by X-Ray diffraction and transmission and scanning electron microscopy. In the case of films, UV-Vis characterization was made. The thermoelectrical properties of ZnO:Er were evaluated and compared with a typical good thermoelectric material ZnO:Al. Both materials have also shown high Seebeck coefficients and they can be considered as potential compounds for thermoelectric conversion.

  5. GW and Bethe-Salpeter study of small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)

    2016-01-21

    We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.

  6. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazduni.ac.ir [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Nanotechnology Research Center, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Hashemi, S. Hossein; Benvidi, Ali [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2010-06-04

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 {mu}M and 268.3-417.3 {mu}M of hydrazine and for 4.0-33.8 {mu}M and 33.8-78.3 {mu}M of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 {mu}M and 0.45 {mu}M for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  7. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  8. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  9. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    International Nuclear Information System (INIS)

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-01-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations

  12. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  13. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    Science.gov (United States)

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  14. Effects of solvation shells and cluster size on the reaction of aluminum clusters with water

    Directory of Open Access Journals (Sweden)

    Weiwei Mou

    2011-12-01

    Full Text Available Reaction of aluminum clusters, Aln (n = 16, 17 and 18, with liquid water is investigated using quantum molecular dynamics simulations, which show rapid production of hydrogen molecules assisted by proton transfer along a chain of hydrogen bonds (H-bonds between water molecules, i.e. Grotthuss mechanism. The simulation results provide answers to two unsolved questions: (1 What is the role of a solvation shell formed by non-reacting H-bonds surrounding the H-bond chain; and (2 whether the high size-selectivity observed in gas-phase Aln-water reaction persists in liquid phase? First, the solvation shell is found to play a crucial role in facilitating proton transfer and hence H2 production. Namely, it greatly modifies the energy barrier, generally to much lower values (< 0.1 eV. Second, we find that H2 production by Aln in liquid water does not depend strongly on the cluster size, in contrast to the existence of magic numbers in gas-phase reaction. This paper elucidates atomistic mechanisms underlying these observations.

  15. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  16. Development of an interdisciplinary model cluster for tidal water environments

    Science.gov (United States)

    Dietrich, Stephan; Winterscheid, Axel; Jens, Wyrwa; Hartmut, Hein; Birte, Hein; Stefan, Vollmer; Andreas, Schöl

    2013-04-01

    Global climate change has a high potential to influence both the persistence and the transport pathways of water masses and its constituents in tidal waters and estuaries. These processes are linked through dispersion processes, thus directly influencing the sediment and solid suspend matter budgets, and thus the river morphology. Furthermore, the hydrologic regime has an impact on the transport of nutrients, phytoplankton, suspended matter, and temperature that determine the oxygen content within water masses, which is a major parameter describing the water quality. This project aims at the implementation of a so-called (numerical) model cluster in tidal waters, which includes the model compartments hydrodynamics, morphology and ecology. For the implementation of this cluster it is required to continue with the integration of different models that work in a wide range of spatial and temporal scales. The model cluster is thus suggested to lead to a more precise knowledge of the feedback processes between the single interdisciplinary model compartments. In addition to field measurements this model cluster will provide a complementary scientific basis required to address a spectrum of research questions concerning the integral management of estuaries within the Federal Institute of Hydrology (BfG, Germany). This will in particular include aspects like sediment and water quality management as well as adaptation strategies to climate change. The core of the model cluster will consist of the 3D-hydrodynamic model Delft3D (Roelvink and van Banning, 1994), long-term hydrodynamics in the estuaries are simulated with the Hamburg Shelf Ocean Model HAMSOM (Backhaus, 1983; Hein et al., 2012). The simulation results will be compared with the unstructured grid based SELFE model (Zhang and Bapista, 2008). The additional coupling of the BfG-developed 1D-water quality model QSim (Kirchesch and Schöl, 1999; Hein et al., 2011) with the morphological/hydrodynamic models is an

  17. [Investigation of the distribution of water clusters in vegetables, fruits, and natural waters by flicker noise spectroscopy].

    Science.gov (United States)

    Zubov, A V; Zubov, K V; Zubov, V A

    2007-01-01

    The distribution of water clusters in fresh rain water and in rain water that was aged for 30 days (North Germany, 53 degrees 33' N, 12 degrees 47' E, 293 K, rain on 25.06.06) as well as in fresh vegetables and fruits was studied by flicker noise spectroscopy. In addition, the development of water clusters in apples and potatoes during ripening in 2006 was investigated. A different distribution of water clusters in irrigation water (river and rain) and in the biomatrix of vegetables (potatoes, onions, tomatoes, red beets) and fruits (apples, bananas) was observed. It was concluded that the cluster structure of irrigation water differs from that of water of the biomatrix of vegetables and fruits and depends on drought and the biomatrix nature. Water clusters in plants are more stable and reproducible than water clusters in natural water. The main characteristics of cluster formation in materials studied were given. The oscillation frequencies of water clusters in plants (biofield) are given at which they interact with water clusters of the Earth hydrosphere. A model of series of clusters 16(H2O)100 4(H2O)402 2(H2O)903 (H2O)1889 in the biomatrix of vegetables and fruits was discussed.

  18. Volume changes at macro- and nano-scale in epoxy resins studied by PALS and PVT experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, A. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina) and CICPBA, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar; Salgueiro, W. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina); Goyanes, S. [LPMPyMC, Depto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Ramos, J. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain); Mondragon, I. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain)

    2007-02-15

    A systematic study on changes in the volumes at macro- and nano-scale in epoxy systems cured with selected aminic hardeners at different pre-cure temperatures is presented. Free- and macroscopic specific-volumes were measured by PALS and pressure-volume-temperature techniques, respectively. An analysis of the relation existing between macro- and nano-scales of the thermosetting networks developed by the different chemical structures is shown. The result obtained indicates that the structure of the hardeners governs the packing of the molecular chains of the epoxy network.

  19. Electric dipole moments of nanosolvated acid molecules in water clusters.

    Science.gov (United States)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  20. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    Science.gov (United States)

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  1. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

    for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...... The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...

  2. Modeling and Design of a Nano Scale CMOS Inverter for Symmetric Switching Characteristics

    Directory of Open Access Journals (Sweden)

    Joyjit Mukhopadhyay

    2012-01-01

    Full Text Available This paper presents a technique for the modeling and design of a nano scale CMOS inverter circuit using artificial neural network and particle swarm optimization algorithm such that the switching characteristics of the circuit is symmetric, that is, has nearly equal rise and fall time and equal output high-to-low and low-to-high propagation delay. The channel width of the transistors and the load capacitor value are taken as design parameters. The designed circuit has been implemented at the transistor-level and simulated using TSPICE for 45 nm process technology. The PSO-generated results have been compared with SPICE results. A very good accuracy has been achieved. In addition, the advantage of the present approach over an existing approach for the same purpose has been demonstrated through simulation results.

  3. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  5. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    Institute of Scientific and Technical Information of China (English)

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  6. Self-assembly of micro- and nano-scale particles using bio-inspired events

    International Nuclear Information System (INIS)

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  7. Nano-scale patterns of polymers and their structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yushu [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1998-03-01

    Nano-scale patterns formed by polymers and their related soft materials were investigated by measuring neutron scattering from them. Two apparatuses installed at cold neutron guides in JRR-3M, a small angle neutron scattering (SANS) apparatus and a neutron reflectometer, which give out elastic scattering intensities, were used. Chain dimensions of polystyrenes diluted with low molecular weight homologous polystyrenes, orientation behaviour of microphase-separated block copolymer in concentrated solutions under shear, shrinkage and recovery of polyvinylalcohol gel with temperature and structural phase transition of microemulsion under high-pressure and so on were measured by SANS, while microphase-separated polystyrene(S)/poly(2-vinylpyridine)(P) interfaces of a PSP triblock copolymer was observed by specular neutron reflectivity measurements. (author)

  8. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  9. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  10. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  11. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H.

    2002-01-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H 2 O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction

  12. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H. [The University of Illinois, Urbana (United States)

    2002-05-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H{sub 2}O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction.

  13. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    Science.gov (United States)

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  14. Experimental equivalent cluster-size distributions in nano-metric volumes of liquid water

    International Nuclear Information System (INIS)

    Grosswendt, B.; De Nardo, L.; Colautti, P.; Pszona, S.; Conte, V.; Tornielli, G.

    2004-01-01

    Ionisation cluster-size distributions in nano-metric volumes of liquid water were determined for alpha particles at 4.6 and 5.4 MeV by measuring cluster-size frequencies in small gaseous volumes of nitrogen or propane at low gas pressure as well as by applying a suitable scaling procedure. This scaling procedure was based on the mean free ionisation lengths of alpha particles in water and in the gases measured. For validation, the measurements of cluster sizes in gaseous volumes and the cluster-size formation in volumes of liquid water of equivalent size were simulated by Monte Carlo methods. The experimental water-equivalent cluster-size distributions in nitrogen and propane are compared with those in liquid water and show that cluster-size formation by alpha particles in nitrogen or propane can directly be related to those in liquid water. (authors)

  15. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    Science.gov (United States)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  16. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Science.gov (United States)

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling

    International Nuclear Information System (INIS)

    Lucas, G.

    2006-10-01

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  18. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    Science.gov (United States)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  19. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Science.gov (United States)

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  20. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  1. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  2. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  3. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  4. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  5. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  6. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  7. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  8. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    International Nuclear Information System (INIS)

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  9. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  10. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  11. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  12. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  13. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  14. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    OpenAIRE

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the pro...

  15. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  16. Cyprus solar water heating cluster: A missed opportunity?

    International Nuclear Information System (INIS)

    Maxoulis, Christos N.; Charalampous, Harris P.; Kalogirou, Soteris A.

    2007-01-01

    Cyprus is often called the 'sun island' because of the amount of sunshine received all year round. The abundance of solar radiation together with a good technological base has created favourable conditions for the exploitation of solar energy on the island. This led to the development of a pioneering solar collector industry in Cyprus, which in the mid-1980s was flourishing. The result was an outstanding figure of installed solar collector area per inhabitant. Nowadays, Cyprus is cited as the country with the highest solar collector area installed per inhabitant, worldwide. This means that the local market for solar thermal collectors (for domestic applications) is now rather saturated. It was only rational to assume that Cypriot firms equipped with their gained expertise and leading edge would have safeguarded a sustainable growth and have an international orientation, focusing on exports in an emerging European and eastern Mediterranean thermal solar market. Unfortunately, this is not the case today. This paper reviews the economic performance and the competitiveness of Cyprus and the evolution of the solar water heating (SWH) industry using the cluster theory of Michael Porter. Its aim is to give insight and explanations for the success of the sector domestically, its failure with regards to exporting activity, pinpoint the industry in the European map and finally give recommendations for the cross the boarders commercial success of the industry

  17. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  18. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    Science.gov (United States)

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  19. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  20. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination

    International Nuclear Information System (INIS)

    Chatraei, Fatemeh; Zare, Hamid R.

    2013-01-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON–GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, k s , for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s −1 respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON–GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k′, for the reduction of iodate and periodate at RuON–GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively. Highlights: ► Ruthenium oxide nanoparticles, RuON, were used for electrocatalytic reduction iodate and periodate. ► Formal potential, E 0 ′, of the surface redox couple of RuON is pH-dependent. ► The heterogeneous electron transfer rate constant values between both analytes and RuON were calculated.

  1. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  2. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  3. Complementary techniques for solid oxide cell characterisation on micro- and nano-scale

    International Nuclear Information System (INIS)

    Wiedenmann, D.; Hauch, A.; Grobety, B.; Mogensen, M.; Vogt, U.

    2009-01-01

    High temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a way with great potential to transform clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. Also, as SOEC can operate in the reverse mode as solid oxide fuel cells (SOFC), during high peak hours e.g. hydrogen can be used in a very efficient way to reconvert chemically stored energy into electrical energy. As solid oxide cells (SOC) are working at high temperatures (700-900 o C), material degradation and evaporation can occur e.g. from the cell sealing material, leading to poisoning effects and aging mechanisms which are decreasing the cell efficiency and long-term durability. In order to investigate such cell degradation processes, thorough examination on SOC often requires the chemical and structural characterisation on the microscopic and the nanoscopic level. The combination of different microscope techniques like conventional scanning electron microscopy (SEM), electron-probe microanalysis (EPMA) and the focused ion-beam (FIB) preparation technique for transmission electron microscopy (TEM) allows performing post mortem analysis on a multi scale level of cells after testing. These complementary techniques can be used to characterize structural and chemical changes over a large and representative sample area (micro-scale) on the one hand, and also on the nano-scale level for selected sample details on the other hand. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Riso DTU, Denmark. Also, results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation from sealing material are discussed. (author)

  4. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  5. A novel nonlinear nano-scale wear law for metallic brake pads.

    Science.gov (United States)

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  6. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Allan, E-mail: allan.harte@manchester.ac.uk [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Topping, M.; Frankel, P. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jädernäs, D. [Studsvik Nuclear AB, SE 611 82, Nyköping (Sweden); Romero, J. [Westinghouse Electric Company, Columbia, SC (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE 72163 Västerås (Sweden); Darby, E.C. [Rolls Royce Plc., Nuclear Materials, Derby (United Kingdom); Preuss, M. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2017-04-15

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr){sub 2} and Zr{sub 2}(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr){sub 2}, predominantly from the edge region, and homogeneously in the case of Zr{sub 2}(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr{sub 2}(Fe,Ni) SPP with respect to the Zr(Fe,Cr){sub 2}. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed. - Highlights: •Protons emulate the effects of neutron irradiation in the evolution of chemistry and morphology of second phase particles. •Detailed energy-dispersive X-ray spectroscopy reveals heterogeneity in Zr-Fe-Cr SPPs both before and after irradiation. •Zr-Fe-Ni SPPs are delayed in irradiation-induced dissolution due to their better self-solubility with respect to Zr-Fe-Cr.

  7. Investigation of the Structures and Energy Landscapes of Thiocyanate-Water Clusters

    Directory of Open Access Journals (Sweden)

    Lewis C. Smeeton

    2017-03-01

    Full Text Available The Basin Hopping search method is used to find the global minima (GM and map the energy landscapes of thiocyanate-water clusters, (SCN−(H2On with 3–50 water molecules, with empirical potentials describing the ion-water and water-water interactions. (It should be noted that beyond n = 23, the lowest energy structures were only found in 1 out of 8 searches so they are unlikely to be the true GM but are indicative low energy structures. As for pure water clusters, the low energy isomers of thiocyanate-water clusters show a preponderance of fused water cubes and pentagonal prisms, with the weakly solvated thiocyanate ion lying on the surface, replacing two water molecules along an edge of a water polyhedron and with the sulfur atom in lower coordinated sites than nitrogen. However, by comparison with Density Functional Theory (DFT calculations, the empirical potential is found to overestimate the strength of the thiocyanate-water interaction, especially O–H⋯S, with low energy DFT structures having lower coordinate N and (especially S atoms than for the empirical potential. In the case of these finite ion-water clusters, the chaotropic (“disorder-making” thiocyanate ion weakens the water cluster structure but the water molecule arrangement is not significantly changed.

  8. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    Science.gov (United States)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of

  9. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  10. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    Science.gov (United States)

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  11. Ionization and fragmentation of water clusters by fast highly charged ions

    International Nuclear Information System (INIS)

    Adoui, L; Cassimi, A; Gervais, B; Grandin, J-P; Guillaume, L; Maisonny, R; Legendre, S; Tarisien, M; Lopez-Tarifa, P; Alcami, M; Martin, F; Politis, M-F; Penhoat, M-A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni 25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H 9 O + 4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H 2 O) n H + , that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  12. Electron driven water formation from oxyhydrogen clusters in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Renzler, Michael; Kranabetter, Lorenz; Barwa, Erik; Scheier, Paul; Illenberger, Eugen

    2015-01-01

    Helium nanodroplets provide an enviroment that allow studies of chemical reactions at ultracold temperatures. We use these droplets as a matrix to study the formation of water upon electron bombardment of oxyhydrogen clusters (paper)

  13. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  14. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  15. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  16. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  17. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-01-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  18. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L. [Department of Phsysics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  19. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    Science.gov (United States)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  20. Analysis of the nano-scale structure of a natural clayey soil using the small angle neutron scattering method

    International Nuclear Information System (INIS)

    Itakura, T.; Bertram, W.K.; Hathaway, P.V.; Knott, R.B.

    2001-01-01

    The small angle neutron scattering method (SANS) was used to analyze the nano-structure of a natural clayey soil used for containment of industrial liquid wastes. A Tertiary clay deposit called the Londonderry clay was used to contain the wastes in a state-run landfill facility in NSW. A number of site assessments have been carried out at the site and continual efforts have been made to characterize interactions between soil materials and contaminants at the site. Hence, it is of research and practical interest to investigate the effects of deformation on the nano-scale structure of the soil. Experiments have been conducted to analyze the structure of reconstituted clayey soil samples that were subjected to uniaxial compression ranging from 200 kPa to 800 kPa. The small angle neutron scattering instrument was used to measure the scattering intensity of these samples at a scattering vector (q) range between 0.01 and 0.1 Angstroms -1 . The sector integration technique was used to analyse elliptical scattering patterns along the major and minor axes. A relation between stress, void ratio and nano-scale structure properties was then briefly discussed for use in assessing the performance of clayey soils as in situ barriers

  1. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  2. Controlled fabrication of nano-scale double barrier magnetic tunnel junctions using focused ion beam milling method

    International Nuclear Information System (INIS)

    Wei, H.X.; Wang, T.X.; Zeng, Z.M.; Zhang, X.Q.; Zhao, J.; Han, X.F.

    2006-01-01

    The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni 79 Fe 21 (5)/Ir 22 Mn 78 (12)/Co 6 Fe 2 B 2 (4)/Al(1) -oxide/Co 6 Fe 2 B 2 (6)/Al (1)-oxide/Co 6 Fe 2 B 2 (4)/Ir 22 Mn 78 (12)/Ni 79 Fe 21 (5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nmx400 nm, 200 nmx200 nm nano-scale were prepared and their R-H, I-V characteristics were measured.

  3. Formation of Nano scale Bio imprints of Muscle Cells Using UV-Cured Spin-Coated Polymers

    International Nuclear Information System (INIS)

    Samsuri, F.; Alkaisi, M.M.; Mitchell, J.S.; Evans, J.J.

    2009-01-01

    We report a nano scale replication method suitable for biological specimens that has potential in single cell studies and in formation of 3D biocompatible scaffolds. Earlier studies using a heat-curable polydimethylsiloxane (PDMS) or a UV-curable elastomer introduced Bio imprint replication to facilitate cell imaging. However, the replicating conditions for thermal polymerization are known to cause cell dehydration during curing. In this study, a UV-cured methacrylate copolymer was developed for use in creating replicas of living cells and was tested on rat muscle cells. Bio imprints of muscle cells were formed by spin coating under UV irradiation. The polymer replicas were then separated from the muscle cells and were analyzed under an Atomic Force Microscope (AFM), in tapping mode, because it has low tip-sample forces and thus will not destroy the fine structures of the imprint. The new polymer is biocompatible with higher replication resolution and has a faster curing process than other types of silicon-based organic polymers such as PDMS. High resolution images of the muscle cell imprints showed the micro-and nano structures of the muscle cells, including cellular fibers and structures within the cell membranes. The AFM is able to image features at nano scale resolution with the potential for recognizing abnormalities on cell membranes at early stages of disease progression.

  4. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  5. Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional

    OpenAIRE

    Su, Julius T.; Xu, Xin; Goddard, William A., III

    2004-01-01

    We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems. Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical values available (n = 2−6, 8), MP2 with basis set superposition error (BSSE)...

  6. Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium

    Directory of Open Access Journals (Sweden)

    Sindrila Dutta Banik

    2017-07-01

    Full Text Available The effect of initial water activity of MTBE (methyl tert-butyl ether medium on CALB (Candida antarctica lipase B catalyzed esterification reaction is investigated using experimental methods and classical molecular dynamics (MD simulations. The experimental kinetic studies show that the initial reaction rate of CALB-catalyzed esterification reaction between butyric acid and ethanol decreases with increasing initial water activity of the medium. The highest rate of esterification is observed at the lowest water activity studied. MD simulations were performed to gain a molecular insight on the effect of initial water activity on the rate of CALB-catalyzed reaction. Our results show that hydration has an insignificant effect on the structure and flexibility of CALB. Rather, it appears that water molecules bind to certain regions (“hot spots” on the CALB surface and form clusters. The size of the water clusters at these hot spot regions gradually increase and expand with increasing water activity. Consequently, the surface area of CALB covered by the water molecules also increases. Specifically, our results indicate that a particular water cluster located close to the active site partially cover the binding pocket of substrate at high water activity. As a consequence, the effective concentration of substrate at the catalytic site decreases. Therefore, the reaction rate slows down with increasing water activity, which correlates well with the observed decrease in the experimentally determined initial reaction rate.

  7. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Science.gov (United States)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  8. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  9. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  10. Hierarchical clustering of RGB surface water images based on MIA ...

    African Journals Online (AJOL)

    2009-11-25

    Nov 25, 2009 ... similar water-related images within a testing database of 126 RGB images. .... consequently treated by SVD-based PCA and the PCA outputs partitioned into .... green. Other colours, mostly brown and grey, dominate in.

  11. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  12. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics

    Science.gov (United States)

    Ünal, Aslı; Bozkaya, Uǧur

    2018-03-01

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  13. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi

    2011-01-01

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.

  14. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-11-01

    We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  15. Nano-scale patterning on sulfur terminated GaAs (0 0 1) surface by scanning tunneling microscope

    International Nuclear Information System (INIS)

    Yagishita, Yuki; Toda, Yusuke; Hirai, Masakazu; Fujishiro, Hiroki Inomata

    2004-01-01

    We perform nano-scale patterning on a sulfur (S) terminated GaAs (0 0 1) surface by a scanning tunneling microscope (STM) in ultra-high vacuum (UHV). A multi-layer of S deposited by using (NH 4 ) 2 S x solution is changed to a mono-layer after annealing at 560 deg. C for 15 h, which terminates the GaAs (0 0 1) surface. Groove structures with about 0.23 nm in depth and about 5 nm in width are patterned successfully on the S-terminated surface. We investigate dependences of both depth and width of the patterned groove on the tunneling current and the scanning speed of tip. It is observed that topmost S atoms are extracted together with first-layer Ga atoms, because of the larger binding energy of S-Ga bond

  16. Nano-scale pattern formation on the surface of HgCdTe produced by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.B.; Gudymenko, A.I.; Kladko, V.P.; Korchevyi, A.A.; Savkina, R.K.; Sizov, F.F.; Udovitska, R.S. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kiev (Ukraine)

    2015-08-15

    Presented in this work are the results concerning formation of nano-scale patterns on the surface of a ternary compound Hg{sub 1-x}Cd{sub x}Te (x ∝ 0.223). Modification of this ternary chalcogenide semiconductor compound was performed using the method of oblique-incidence ion bombardment with silver ions, which was followed by low-temperature treatment. The energy and dose of implanted ions were 140 keV and 4.8 x 10{sup 13} cm{sup -2}, respectively. Atomic force microscopy methods were used for the surface topography characterization. The structural properties of MCT-based structure was analyzed using double and triple crystal X-ray diffraction to monitor the disorder and strain of the implanted region as a function of processing conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Science.gov (United States)

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  18. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Directory of Open Access Journals (Sweden)

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  19. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    Huang Aimin; Liu Chunli; Ma Lin; Tong Zhangfa; Lin Ruisen

    2012-01-01

    Graphical abstract: Together with static light scattering measurement, volumetric properties of glycine, L-alanine and L-serine were determined and utilized to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrated that the interaction between amino acids and DMSO was greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. Hydrophobic aggregating of DMSO lead to a decrease in the hydrophobic effect of DMSO and the hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids, which was reflected by the solvation of proteins. Highlights: ► Determine volumetric properties of three amino acids in aqueous DMSO in details. ► Static light scattering measurement for clustering structure of aqueous DMSO. ► Volumetric behaviour of amino acids depends on clustering structure of aqueous DMSO. ► Clustering structure of aqueous DMSO influences solvation of protein and cellulose. - Abstract: For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, L-alanine and L-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2

  20. A comparative ab initio study of Br2*- and Br2 water clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2006-01-14

    The work presents ab initio results on structure and electronic properties of Br2*-.nH2O(n=1-10) and Br2.nH2O(n=1-8) hydrated clusters to study the effects of an excess electron on the microhydration of the halide dimer. A nonlocal density functional, namely, Becke's half-and-half hybrid exchange-correlation functional is found to perform well on the present systems with a split valence 6-31++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with several initial guess structures and without imposing any symmetry restriction. Br2*-.nH2O clusters prefer to have symmetrical double hydrogen-bonding structures. Results on Br2.nH2O(n>or=2) cluster show that the O atom of one H2O is oriented towards one Br atom and the H atom of another H2O is directed to other Br atom making Br2 to exist as Br+-Br- entity in the cluster. The binding and solvation energies are calculated for the Br2*-.nH2O and Br2.nH2O clusters. Calculations of the vibrational frequencies show that the formation of Br2*- and Br2 water clusters induces significant shifts from the normal modes of isolated water. Excited-state calculations are carried out on Br2*-.nH2O clusters following configuration interaction with single electron excitation procedure and UV-VIS absorption profiles are simulated. There is an excellent agreement between the present theoretical UV-VIS spectra of Br2*-.10H2O cluster and the reported transient optical spectra for Br2*- in aqueous solution.

  1. New Evidence of the Existence of Associative Elements of Water (Clusters)

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2016-01-01

    In this review it is reported about new data on the structure of water cyclic associates (clusters) with general formula (Н2О)n and their charged ionic clusters [(Н2О)n]+ and [(Н2О)n]- by means of computer modelling and spectroscopy methods as 1Н-NMR, IR-spectroscopy, DNES, EXAFS-spectroscopy, X-Ray and neurons diffraction. The computer calculation of polyhedral nanoclusters (Н2О)n, where n = 3–20 are carried out. Based on this data the main structural mathematical models describing water str...

  2. Nano-scale bubble thermonuclear fusion in acoustically cavitated deuterated liquid

    International Nuclear Information System (INIS)

    Robert I Nigmatulin; Richard T Lahey Jr; Rusi Taleyarkhan

    2005-01-01

    Full text of publication follows: It has been experimentally shown (Taleyarkhan, West, Cho, Lahey, Nigmatulin, Block, 2002, 2004) that neutron emission and tritium formation may occur in deuterated acetone (D-acetone C 3 DO 6 ) under acoustic cavitation conditions. Intensity of the fast neutron (2.45 MeV) emission and tritium nucleus production is ∼ 4 x 10 5 s -1 . This suggests ultrahigh compression of matter produced inside bubbles during their collapse. In the paper a systematic theoretical analysis of the vapor bubble growth and subsequent implosion in intense acoustic fields in D-acetone is presented. The goal is to describe and explain the experimental observations of thermonuclear fusion for collapsing cavitation bubble in D-acetone. The dynamics of bubbles formed during maximum rarefaction in the liquid is numerically studied on the basis of the developed models of a single bubble and bubble clusters. It is supposed that during their growth the bubbles coagulate and form a few bigger bubbles, which then collapse under the action of additional pressure pulses produced in the liquid through the intensification of acoustic waves within the cluster. A shock wave is shown to be formed inside the bubble during the latter's rapid contraction. Focusing of this shock wave in the bubble center initiates dissociation and ionization, violent increases in density (10 4 kg m 3 ), pressure (10 10 -10 11 bar) and temperature (2 x 10 8 K), high enough to produce nuclear fusion reactions. The bubble looks like micro-hydrogen bomb. The diameter of the neutron emission zone is about 100 nm. The highest neutron emission is recorded at about 10-20 nm from the bubble center. It is found out that the intensity of bubble implosion and the number of neutron emitted increase with variations in nucleation phase, positive half-wave amplitude, liquid temperature and also with the involvement of coagulation mechanisms within the cluster during the bubble simultaneous growth. The number

  3. Temporal changes in water quality at a childhood leukemia cluster

    Science.gov (United States)

    Seiler, R.L.

    2004-01-01

    Since 1997, 15 cases of acute lymphocytic leukemia and one case of acute myelocytic leukemia have been diagnosed in children and teenagers who live, or have lived, in an area centered on the town of Fallon, Nevada. The expected rate for the population is about one case every five years. In 2001, 99 domestic and municipal wells and one industrial well were sampled in the Fallon area. Twenty-nine of these wells had been sampled previously in 1989. Statistical comparison of concentrations of major ions and trace elements in those 29 wells between 1989 and 2001 using the nonparametric Wilcoxon signed-rank test indicate water quality did not substantially change over that period; however, short-term changes may have occurred that were not detected. Volatile organic compounds were seldom detected in ground water samples and those that are regulated were consistently found at concentrations less than the maximum contaminant level (MCL). The MCL for gross-alpha radioactivity and arsenic, radon, and uranium concentrations were commonly exceeded, and sometimes were greatly exceeded. Statistical comparisons using the nonparametric Wilcoxon rank-sum test indicate gross-alpha and -beta radioactivity, arsenic, uranium, and radon concentrations in wells used by families having a child with leukemia did not statistically differ from the remainder of the domestic wells sampled during this investigation. Isotopic measurements indicate the uranium was natural and not the result of a 1963 underground nuclear bomb test near Fallon. In arid and semiarid areas where trace-element concentrations can greatly exceed the MCL, household reverse-osmosis units may not reduce their concentrations to safe levels. In parts of the world where radon concentrations are high, water consumed first thing in the morning may be appreciably more radioactive than water consumed a few minutes later after the pressure tank has been emptied because secular equilibrium between radon and its immediate daughter

  4. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  5. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Science.gov (United States)

    Li, Zheng; Vendrell, Oriol

    2016-01-01

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842

  6. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

    DEFF Research Database (Denmark)

    Kim, Do-Gun; Hwang, Yuhoon; Shin, Hang-Sik

    2016-01-01

    Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammon...

  7. Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Bu, Fanqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yangzhou Hongfu Aluminium Co. Ltd, Yangzhou 100049 (China); Li, Yangde; Li, Weirong [E-ande Scientific & Technology Co. Ltd, Dongguan 523000 (China); Sun, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Liu, Xiaojuan, E-mail: lxjuan@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-04-25

    In this paper we report a quantitative study of the age-hardening in the high-pressure die-cast Mg–4Al−5.6Sm−0.3Mn alloy. The results indicate that a number of nano-scale spherical precipitates identified as Al{sub 3}Sm using high-angle annular dark-field scanning transmission electron microscopy, precipitated in Mg matrix after aging at 150–225 °C, with no obvious changes on grain sizes, intermetallic phases formed during solidification, and dislocation densities. From the existing strengthening theory equations in which some lacking parameters were taken from the first-principles density functional theory (DFT) calculations, a quantitative insight into the strengthening mechanisms of the nano-scale precipitate was formulated. The results are in reasonable agreement with the experimental values, and the operative mechanism of precipitation strengthening was revealed as Orowan dislocation bypassing. - Highlights: • The yield strength of Mg–Al–Sm alloy was improved by aging treatment. • A number of nano-scale precipitates formed in matrix after aging treatments. • The nanoscale precipitate was confirmed as Al{sub 3}Sm based on the data of HAADF-STEM study. • The strengthening mechanisms of the nano-scale precipitate were quantitatively formulated. • The operative mechanism of precipitate strengthening is Orowan dislocation bypassing.

  8. Electron-induced hydrogen loss in uracil in a water cluster environment

    International Nuclear Information System (INIS)

    Smyth, M.; Kohanoff, J.; Fabrikant, I. I.

    2014-01-01

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A ′ -resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons

  9. Electron-induced hydrogen loss in uracil in a water cluster environment

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; Kohanoff, J. [Atomistic Simulation Centre, Queen' s University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom); Fabrikant, I. I., E-mail: ifabrikant1@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA and Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A{sup ′}-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  10. DMSO-Water Clustering in Solution Observed in Soft X-ray Spectra.

    Science.gov (United States)

    Engel, Nicholas; Atak, Kaan; Lange, Kathrin M; Gotz, Malte; Soldatov, Mikhail; Golnak, Ronny; Suljoti, Edlira; Rubensson, Jan-Erik; Aziz, Emad F

    2012-12-20

    The significant deviation from the ideality of dimethyl sulfoxide (DMSO)/water mixtures can be addressed based on the change of the local molecular orbitals of each solvent upon mixing. Oxygen K-edge absorption and emission spectra of DMSO/water solutions were measured using the liquid microjet technique. The spectra demonstrate that the hydrogen bond network in liquid water is already influenced at small DMSO concentrations, and at the molar fraction xDMSO = 0.43 we find strong evidence of DMSO-water clustering reflected by the influence on the occupied molecular orbitals.

  11. Evidence for the existence of water:ethanol clusters from o-Ps yields

    International Nuclear Information System (INIS)

    Smith, F.A.; Beling, C.D.

    1982-01-01

    Lifetime measurements have been made in mixtures of water and ethanol at 293 K. Fluctuations are observed in both o-Ps yield and decay rate as a function of water concentration with local maxima occurring at molecular ratios (EtOH:H 2 O) of 4:1 and 1:1. The results are interpreted in terms of cluster formation at these concentrations. (Auth.)

  12. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    Science.gov (United States)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  13. Dynamic lifetimes of cagelike water clusters immersed in liquid water and their implications for hydrate nucleation studies

    Energy Technology Data Exchange (ETDEWEB)

    Guo, G.J.; Zhang, Y.G.; Li, M.; Wu, C.H. [Chinese Academy of Sciences, Inst. of Geology and Geophysics, Beijing (China). Key Laboratory of the Study of Earth' s Deep Interior

    2008-07-01

    In hydrate research fields, the hydrate nucleation mechanism still remains as an unsolved question. The static lifetimes of cagelike water clusters (CLWC) immersed in bulk liquid water have recently been measured by performing molecular dynamics simulations in the methane-water system, during which the member-water molecules of CLWCs are not allowed to exchange with their surrounding water molecules. This paper presented a study that measured the dynamic lifetimes of CLWCs permitting such water exchanges. The study involved re-analysis of previous simulation data that were used to study the effect of methane adsorption on the static lifetimes of a dodecahedral water cluster (DWC). The dynamic lifetimes of the DWC were calculated. The results of lifetime measurements of DWC in different systems were provided. The implications of this study for hydrate nucleation were also discussed. It was found that the dynamic lifetimes of CLWCs were not less than the static lifetimes previously obtained, and their ratio increased with the lifetime values. The results strengthened that CLWCs are metastable structures in liquid water and the occurrence probability of long-lived CLWCs will increase if one uses the dynamic lifetimes instead of the static lifetimes. 13 refs., 1 tab., 3 figs.

  14. Dual effects of water vapor on ceria-supported gold clusters.

    Science.gov (United States)

    Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao

    2018-04-05

    Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.

  15. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  16. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.

    Science.gov (United States)

    Meraj, Md; Pal, Snehanshu

    2017-10-11

    In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of , , and  distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

  17. Nano-scale observations of interface between lichen and basaltic rock: Pseudomorphic growth of amorphous silica on augite

    Science.gov (United States)

    Tamura, T.; Kyono, A.; Kebukawa, Y.; Takagi, S.

    2017-12-01

    Recently, lichens as the earliest colonizers of terrestrial habitats are recognized to accelerate the mineral degradation at the interface between lichens and surface rocks. Much interest has been therefore devoted in recent years to the weathering induced by the lichen colonization. Here, we report nano-scale observations of the interface between lichens and basaltic rock by TEM and STXM techniques. Some samples of basaltic rocks totally covered by lichens were collected from the 1986 lava flows on the northwest part of Izu-Oshima volcano, Japan. To prepare specimens for the nano-scale observation, we utilized the focused ion beam (FIB) system. The microstructure and local chemistry of the specimens were thoroughly investigated by TEM equipped with energy-dispersive X-ray spectroscopy (EDX). Chemical components and chemical heterogeneity at the interface were observed by scanning transmission X-ray microscopy (STXM) at Advanced Light Source branch line 5.3.2.2. The collected rocks were classified into the augite-pigeonite-bronzite basalt including 6 to 8% plagioclase phenocrysts. The lichens adhering to the rocks were mainly Stereocaulon vesuvianum, fruticose lichen, which are widespread over the study area. The metabolites of the Stereocaulon vesuvianum exhibited a mean pH of 4.5 and dominance by acids. The STEM-EDX observations revealed that the interface between augite and the lichen was completely covered with amorphous silica multilayer with a thickness of less than 1 µm. Ca L-edge XANES spectra of the augite showed that the energy profile of the absorption edge at 349 eV was varied with the depth from the surface, indicating that the M2 site coordination accommodating Ca2+ undergoes significant change in shape as a function of distance from the surface. This behavior results from the fact that the M2 site is more distorted and more flexible in the C2/c clinopyroxene phase. Taking into consideration that the S. vesuvianum can produce acidic organic compounds

  18. Structures, Energetics and Spectroscopic Fingerprints of Water Clusters n=2-24

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2017-06-08

    This chapter discusses the structures, energetics, and vibrational spectra of the first few (n$24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at nD17 and its spectroscopic signature is presented. The various families of minima for nD20 are discussed together with the low energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.

  19. Energetics and dynamics of the neutralization of clustered ions in ammonia and water vapour

    International Nuclear Information System (INIS)

    Sennhauser, E.S.; Armstrong, D.A.

    1978-01-01

    The energetics and dynamics of neutralization reactions of clustered ions in ammonia and water vapour have been analysed. Neutralization rate coefficients were calculated for the ions in ammonia and for H + .(H 2 O)sub(n) combining with various clustered anions in water vapour up to densities of 4 x 10 19 molecule cm -3 at 390 K. In the case of ammonia, calculations were also performed at 298 K. For all systems, fractional contributions of the neutralization coefficients for specific cluster sizes to the overall coefficient αsub(eff) were evaluated. The computed value of αsub(eff) for NH 3 was in reasonable agreement with experimental data in the [NH 3 ] range 0.3 to 4 x 10 19 molecule cm -3 , and general trends stemming from the effects of increasing ion mass were pointed out. Calculations of energies of individual cluster sizes indicate possible neutralization reaction mechanisms. With some exception, proton transfer is the only possible path and no H atoms should be formed. This is in general agreement with literature results for water vapour at approximately 390 K and with [H 2 O] >= 2 x 10 x 10 19 molecule cm -3 . (author)

  20. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  1. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides

    Directory of Open Access Journals (Sweden)

    George P. Gallios

    2017-09-01

    Full Text Available The presence of arsenic in water supplies is a major problem for public health and still concerns large parts of population in Southeast Asia, Latin America and Europe. Removal of arsenic is usually accomplished either by coagulation with iron salts or by adsorption with iron oxides or activated alumina. However, these materials, although very efficient for arsenic, normally do not remove other undesirable constituents from waters, such as chlorine and organo-chlorine compounds, which are the results of water chlorination. Activated carbon has this affinity for organic compounds, but does not remove arsenic efficiently. Therefore, in the present study, iron modified activated carbons are investigated as alternative sorbents for the removal of arsenic(V from aqueous solutions. In addition, modified activated carbons with magnetic properties can easily be separated from the solutions. In the present study, a simple and efficient method was used for the preparation of magnetic Fe3(Mn2+O4 (M:Fe and/or Mn activated carbons. Activated carbons were impregnated with magnetic precursor solutions and then calcinated at 400 °C. The obtained carbons were characterized by X-ray diffraction (XRD, nitrogen adsorption isotherms, scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, Fourier Transform Infrared Spectrometry (FTIR and X-ray photoelectron spectroscopy (XPS measurements. Their adsorption performance for As(V was evaluated. The iron impregnation presented an increase in As(V maximum adsorption capacity (Qmax from about 4 mg g−1 for the raw carbon to 11.05 mg g−1, while Mn incorporation further increased the adsorption capacity at 19.35 mg g−1.

  2. Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin.

    Science.gov (United States)

    Gnanasekaran, Ramachandran; Xu, Yao; Leitner, David M

    2010-12-23

    Water confined in proteins exhibits dynamics distinct from the dynamics of water in the bulk or near the surface of a biomolecule. We examine the water dynamics at the interface of the two globules of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) by molecular dynamics (MD) simulations, with focus on water-protein hydrogen bond lifetimes and rotational anisotropy of the interfacial waters. We find that relaxation of the waters at the interface of both deoxy- and oxy-HbI, which contain a cluster of 17 and 11 interfacial waters, respectively, is well described by stretched exponentials with exponents from 0.1 to 0.6 and relaxation times of tens to thousands of picoseconds. The interfacial water molecules of oxy-HbI exhibit slower rotational relaxation and hydrogen bond rearrangement than those of deoxy-HbI, consistent with an allosteric transition from unliganded to liganded conformers involving the expulsion of several water molecules from the interface. Though the interfacial waters are translationally and rotationally static on the picosecond time scale, they contribute to fast communication between the globules via vibrations. We find that the interfacial waters enhance vibrational energy transport across the interface by ≈10%.

  3. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  4. Nano-scale Radiotherapy-NBTXR3 Hafnium Oxide Nanoparticles as Promising Cancer Therapy

    International Nuclear Information System (INIS)

    Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Levy, L.; Deutsch, E.; Bourhis, J.; Borghi, E.

    2011-01-01

    Complete text of publication follows: Background: There is considerable interest in approaches that could improve the therapeutic window of radiotherapy, which represents a crucial modality of treatment in oncology. We present the rationale for designing NBTXR3 nanoparticles activated by radiotherapy and validate the concept. We performed the Monte Carlo calculations for the first time based on the 'local model' simulation that showed a dose enhancement of radiation to tumour cells of approximately nine-fold. NBTXR3 was shown to deposit high energy when the ionizing radiation source is 'on' and to have chemically inert behavior in cellular and subcellular systems demonstrated by very good systemic tolerance, thus decreasing potential health hazards. Material and Methods: We used conventional methods, implemented in different ways, to explore interactions of high Z matter and ionizing radiation with biological systems. In addition, microtomography was performed to explore the nanoparticle volume occupancy inside the tumour and its persistence overtime in mouse tumour models. The antitumour activity of NBTXR3 and tolerance were evaluated in Ewing tumour (A673) and fibrosarcoma (HT1080) using high energy source. Results and Conclusion: We created and developed NBTXR3 nanoparticles with a crystalline hafnium oxide core which provide high electron density structure and inert behavior in biological media. NBTXR3 nanoparticles' characteristics, size, charge and shape, allow for efficient interaction with biological entities, cell membrane binding and cellular uptake. The nanoparticles were shown to form clusters at the subcellular level in tumour models. Of most importance, we show NBTXR3 intra-tumour bioavailability with dispersion of nanoparticles in the three dimensions and persistence within the tumour structure, supporting the use of NBTXR3 as effective antitumour therapeutic agent. Antitumour activity of NBTXR3 showed marked advantage in terms of survival, tumour

  5. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia.

    Science.gov (United States)

    Hussain, Mahbub; Ahmed, Syed Munaf; Abderrahman, Walid

    2008-01-01

    A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.

  6. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  7. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  8. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-01-01

    Graphical abstract: - Highlights: • High integrity supercapacitors are achieved by improving adhesion of CNTs on PET. • Nanostructures on PET substrate significantly enhances the adhesion strength. • A simple RIE process generates the nanostructures on PET surface. • RIE induces hydrophilicity on the PET and further enhances the adhesive strength. • The supercapacitors show good cyclability with high specific capacitance retention. - Abstract: We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge–discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  9. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu Jin [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Chung, Haegeun [Department of Environmental Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Min-Seop [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Woong, E-mail: woongkim@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-11-15

    Graphical abstract: - Highlights: • High integrity supercapacitors are achieved by improving adhesion of CNTs on PET. • Nanostructures on PET substrate significantly enhances the adhesion strength. • A simple RIE process generates the nanostructures on PET surface. • RIE induces hydrophilicity on the PET and further enhances the adhesive strength. • The supercapacitors show good cyclability with high specific capacitance retention. - Abstract: We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge–discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  10. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  11. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    Science.gov (United States)

    Kubo, Takayuki

    2015-06-01

    The field limit of a superconducting radio-frequency cavity made of a type II superconductor with a large Ginzburg-Landau parameter is studied, taking the effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for an ideal flat surface and a suppression factor that contains the effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors is derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by electropolishing is evaluated by using results of surface topographic study. The estimated field limit is consistent with the present record field of nitrogen-doped Nb cavities. Suppression factors of surfaces of other bulk and multilayer superconductors, and those after various surface processing technologies, can also be evaluated by using the formula.

  12. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Herná ndez-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid M.; Monteiro, Paulo J M

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  13. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Ki; Lee, Young-Hie, E-mail: yhlee@kw.ac.kr [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); Lee, Seung-Hwan [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); In Kim, Soo; Woo Lee, Chang [Department of Nano and Electronic Physics, Kookmin University, Seoul (Korea, Republic of); Rag Yoon, Jung [R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); Lee, Sung-Gap [Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju (Korea, Republic of)

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  15. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  16. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  17. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  19. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

    Science.gov (United States)

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-25

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  20. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  1. Quantitative anomalous small-angle X-ray scattering - The determination of chemical concentrations in nano-scale phases

    International Nuclear Information System (INIS)

    Goerigk, G.; Huber, K.; Mattern, N.; Williamson, D.L.

    2012-01-01

    In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared to the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. Additionally to the structural information precise quantitative information about the different constituents of multi-component systems like the fraction of a chemical component implemented into the materials nano-structures are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three X-ray energies is demonstrated for three examples from chemistry and solid state physics. All examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution the chemical concentrations in nano-scaled phases are determined. In one example the correlated analysis of the Resonant Invariant and the Non-resonant Invariant (NI-analysis) is employed. (authors)

  2. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  3. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    International Nuclear Information System (INIS)

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Hernández-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid; Monteiro, Paulo J.M.

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C–S–H fibers are composed of particles that are 1.5–2 nm thick and several tens of nanometers long. 29 Si NMR shows 47.9% Q 1 and 52.1% Q 2 , with a mean SiO 4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C 3 S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L 3,2 -edge indicates that Ca 2+ in C–S–H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO 4 4− tetrahedron chain.

  4. Modeling and clustering water demand patterns from real-world smart meter data

    Directory of Open Access Journals (Sweden)

    N. Cheifetz

    2017-08-01

    Full Text Available Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR, a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.

  5. Modeling and clustering water demand patterns from real-world smart meter data

    Science.gov (United States)

    Cheifetz, Nicolas; Noumir, Zineb; Samé, Allou; Sandraz, Anne-Claire; Féliers, Cédric; Heim, Véronique

    2017-08-01

    Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix) model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN) in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.

  6. Infrared spectroscopy of water clusters isolated in methane matrices: Effects of isotope substitution and annealing

    International Nuclear Information System (INIS)

    Yamakawa, Koichiro; Ehara, Namika; Ozawa, Nozomi; Arakawa, Ichiro

    2016-01-01

    Using infrared-active solvents of CH_4 and CD_4 for matrix isolation, we measured infrared spectra of H_2O and D_2O clusters at 7 K. The solute-concentration dependence of the spectrum of H_2O clusters in a CH_4 matrix was investigated and was used for the peak assignment. Annealing procedures were found to promote the size growth of water clusters in methane matrices for all the combinations of (H_2O, CH_4), (H_2O, CD_4), (D_2O, CH_4), and (D_2O, CD_4). We also monitored the ν_3 absorption due to methane to find the annealing-induced structural change only of solid CH_4. The matrix effects on the vibrations of the clusters are discussed on the basis of “T_c plots”, where their frequencies are plotted as a function of the square root of the matrix critical temperature, T_c. The obtained plots assure the validity of the assignment of the cluster peaks.

  7. Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water

    Science.gov (United States)

    Lau, Marcus; Haxhiaj, Ina; Wagener, Philipp; Intartaglia, Romuald; Brandi, Fernando; Nakamura, Junji; Barcikowski, Stephan

    2014-08-01

    Over three decades after the first synthesis of stabilized Au55-clusters many scientific questions about gold cluster properties are still unsolved and ligand-free colloidal clusters are difficult to fabricate. Here we present a novel route to produce ultra-small gold particles by using a green technique, the laser ablation and fragmentation in water, without using reductive or stabilizing agents at any step of the synthesis. For fabrication only a pulsed laser, a gold-target, pure water, sodium hydroxide and hydrogen peroxide are deployed. The particles are exemplarily hybridized to graphene supports showing that these carbon-free colloidal clusters might serve as versatile building blocks.

  8. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies

    International Nuclear Information System (INIS)

    Sundaram, C. Sairam; Viswanathan, Natrayasamy; Meenakshi, S.

    2008-01-01

    This study describes the advantages of nano-hydroxyapatite (n-HAp), a cost effective sorbent for fluoride removal. n-HAp possesses a maximum defluoridation capacity [DC] of 1845 mg F - /kg which is comparable with that of activated alumina, a defluoridation agent commonly used in the indigenous defluoridation technology. A new mechanism of fluoride removal by n-HAp was proposed in which it is established that this material removes fluoride by both ion-exchange and adsorption process. The n-HAp and fluoride-sorbed n-HAp were characterized using XRD, FTIR and TEM studies. The fluoride sorption was reasonably explained with Langmuir, Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as ΔG o , ΔH o , ΔS o and E a were calculated in order to understand the nature of sorption process. The sorption process was found to be controlled by pseudo-second-order and pore diffusion models. Field studies were carried out with the fluoride containing water sample collected from a nearby fluoride endemic area in order to test the suitability of n-HAp material as a defluoridating agent at field condition

  9. Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John M.

    2017-01-01

    The effect of initial water activity of MTBE (methyl tert-butyl ether) medium on CALB (Candida antarctica lipase B) catalyzed esterification reaction is investigated using experimental methods and classical molecular dynamics (MD) simulations. The experimental kinetic studies show that the initial...... reaction rate of CALB-catalyzed esterification reaction between butyric acid and ethanol decreases with increasing initial water activity of the medium. The highest rate of esterification is observed at the lowest water activity studied. MD simulations were performed to gain a molecular insight...... on the effect of initial water activity on the rate of CALB-catalyzed reaction. Our results show that hydration has an insignificant effect on the structure and flexibility of CALB. Rather, it appears that water molecules bind to certain regions ("hot spots") on the CALB surface and form clusters. The size...

  10. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    Directory of Open Access Journals (Sweden)

    Mukherjee Joyeeta

    2012-11-01

    Full Text Available Abstract Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter led to the formation of enzyme coated clusters of nanoparticles (ECCNs. These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering. Transmission electron microscopy (TEM, showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3 showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD(with a spinning cell accessory showed that secondary structure content of the alpha

  11. Sol-gel synthesis and characterisation of nano-scale hydroxyapatite

    International Nuclear Information System (INIS)

    Bilton, M; Brown, A P; Milne, S J

    2010-01-01

    Hydroxyapatite (HAp) forms the main mineral component of bone and teeth. This naturally occurring HAp is in the form of nano-metre sized crystallites of Ca 10 (PO 4 ) 6 (OH) 2 that contain a number of cation and anion impurities, for example CO 3 2- , F - , Na + , Mg 2+ and Sr 2+ . Synthetic nano-sized HAp particles exhibit favourable biocompatibility and bioactivity and in order to better match the composition to natural HAp there is great interest in producing a range of chemically modified powders. In this study, two HAp powders have been synthesised via a water-based low-temperature sol-gel method and a third, commercial powder from Sigma-Aldrich have been analysed. Subsequent powder calcination has been carried out within the temperature range of 500-700 0 C and the products characterised by bulk chemical analysis, X-ray diffraction and electron microscopy. Energy dispersive X-ray spectroscopy (EDX) in the TEM has been used to assess the composition of individual HAp particles. In order to do this accurately it is first necessary to account for the sensitivity of the HAp structure and composition to irradiation by the high energy electron beam of the TEM. This was done by monitoring the estimated Ca/P ratio derived from TEM-EDX of stoichiometric HAp under increasing levels of electron fluence. A fluence threshold (at a given beam energy) was established below which the measured Ca/P ratio can be considered to be stable. Subsequent elemental analysis at or below this threshold has enabled the variation in composition between particles both within and between synthesis batches to be accurately assessed. Compositional variability between particles is also evident, even in the commercial powder, but is far greater in the powders prepared by the sol-gel method.

  12. First evidence of a water-soluble plutonium(IV) hexanuclear cluster

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, Christelle; Dumas, Thomas; Guillaumont, Dominique; Guilbaud, Philippe [CEA, Nuclear Energy Division, Marcoule, RadioChemistry and Processes Department, Bagnols sur Ceze (France); Hennig, Christoph [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden (Germany)

    2016-08-15

    The singular Pu{sup IV} hexanuclear cluster [Pu{sub 6}(OH){sub 4}O{sub 4}]{sup 12+} stabilized by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) ligands was structurally characterized for the first time both in the solid state and in water solution by using X-ray diffraction and X-ray absorption and UV/Vis spectroscopy. The stability of this cluster in water and its high solubility over a large pH range are of upmost importance for plutonium environmental speciation with potential applications in a related migration model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Simplification of Water Distribution Network Simulation by Topological Clustering – Investigation of its Potential Use in Copenhagen's Water Supply Monitoring and Contamination Contingency Plans

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2014-01-01

    Topological clustering was investigated to simplify a complex water distribution network of Copenhagen, Denmark, into recogniz- able water movement patterns. This made it possible to assess the general transport of the water and to suggest strategic sampling locations. Through a topological...... the samples’ comparability over time, and locations, where samples represent the distributed and consumed water in the Nørrebro district....

  14. Which Density Functional Should Be Used to Describe Protonated Water Clusters?

    Science.gov (United States)

    Shi, Ruili; Huang, Xiaoming; Su, Yan; Lu, Hai-Gang; Li, Si-Dian; Tang, Lingli; Zhao, Jijun

    2017-04-27

    Protonated water cluster is one of the most important hydrogen-bond network systems. Finding an appropriate DFT method to study the properties of protonated water clusters can substantially improve the economy in computational resources without sacrificing the accuracy compared to high-level methods. Using high-level MP2 and CCSD(T) methods as well as experimental results as benchmark, we systematically examined the effect of seven exchange-correlation GGA functionals (with BLYP, B3LYP, X3LYP, PBE0, PBE1W, M05-2X, and B97-D parametrizations) in describing the geometric parameters, interaction energies, dipole moments, and vibrational properties of protonated water clusters H + (H 2 O) 2-9,12 . The overall performance of all these functionals is acceptable, and each of them has its advantage in certain aspects. X3LYP is the best to describe the interaction energies, and PBE0 and M05-2X are also recommended to investigate interaction energies. PBE0 gives the best anharmonic frequencies, followed by PBE1W, B97-D and BLYP methods. PBE1W, B3LYP, B97-D, and X3LYP can yield better geometries. The capability of B97-D to distinguish the relative energies between isomers is the best among all the seven methods, followed by M05-2X and PBE0.

  15. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  16. Thermal, Microchannel, and Immersed Boundary Extension Validation for the Lattice-Boltzmann Method: Report 2 in Discrete Nano Scale Mechanics and Simulations Series

    Science.gov (United States)

    2017-07-01

    Lattice- Boltzmann Method Report 2 in “Discrete Nano-Scale Mechanics and Simulations” Series In fo rm at io n Te ch no lo gy L ab or at or y...William P. England and Jeffrey B. Allen July 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and...Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and

  17. On the mechanism of water cluster-ion formation in carbon dioxide

    International Nuclear Information System (INIS)

    Warneck, P.; Rakshit, A.B.

    1981-01-01

    A drift chamber mass spectrometer has been used to study the formation of water cluster-ions in carbon dioxide containing traces of water vapour. The dominant reaction sequences were identified up to the fourth generation of daughter ions starting with CO 2 + . The subsequent reaction mechanism remains uncertain and several possibilities are discussed. The final ions are H 3 O + H 2 O and H 3 O + (H 2 O) 2 . The significance of the reaction schemes to the radiation chemistry of carbon dioxide is pointed out. (orig.)

  18. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.; Hanna, Amir; Yapici, Tahir; Wehbe, N.; Diallo, Elhadj; Kutbee, Arwa T.; Bahabry, Rabab R.; Hussain, Muhammad Mustafa

    2017-01-01

    , in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured

  19. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  20. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., "nastrino") exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic faults.

  1. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Elijah J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pinto, Roger A. [Department of Chemical Engineering, University of Michigan, Ann Arbor (United States); Shi, Xiangyang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Qingguo, E-mail: qhuang@uga.edu [Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer nZVIs were synthesized using a layer-by-layer or poly(acrylic acid) stabilization approach. Black-Right-Pointing-Pointer These nZVIs were used to degrade TCE and PCB. Black-Right-Pointing-Pointer nZVI coatings impacted reactivity by altering pollutants/particle interactions. Black-Right-Pointing-Pointer Smaller nZVI particle size led to greater reactivity. - Abstract: Nano-scale zerovalent iron (nZVI) has been studied in recent years for environmental remediation applications such as the degradation of chlorinated organic contaminants. To overcome limitations related to the transport of nZVI, it is becoming common to add a polymer stabilizer to limit aggregation and enhance the particle reactivity. Another method investigated to enhance particle reactivity has been to limit particle size through novel synthesis techniques. However, the relative impacts of particle size and interactions of the chemicals with the coatings are not yet well understood. The purpose of this study was to investigate the mechanisms of particle size and polymer coating or polyelectrolyte multilayer (PEM) synthesis conditions on degradation of two common chlorinated contaminants: trichloroethylene (TCE) and polychlorinated biphenyls (PCBs). This was accomplished using two different synthesis techniques, a layer-by-layer approach at different pH values or iron reduction in the presence of varying concentrations of poly(acrylic acid). nZVI produced by both techniques yielded higher degradation rates than a traditional approach. The mechanistic investigation indicated that hydrophobicity and sorption to the multilayer impacts the availability of the hydrophobic compound to the nZVI and that particle size also had a large role with smaller particles having stronger dechlorination rates.

  2. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier

    Science.gov (United States)

    Lv, Hua; Leitao, Diana C.; Hou, Zhiwei; Freitas, Paulo P.; Cardoso, Susana; Kämpfe, Thomas; Müller, Johannes; Langer, Juergen; Wrona, Jerzy

    2018-05-01

    Recently, the perpendicular magnetic tunnel junctions (p-MTJs) arouse great interest because of its unique features in the application of spin-transfer-torque magnetoresistive random access memory (STT-MRAM), such as low switching current density, good thermal stability and high access speed. In this paper, we investigated current induced switching (CIS) in ultrathin MgO barrier p-MTJs with dimension down to 50 nm. We obtained a CIS perpendicular tunnel magnetoresistance (p-TMR) of 123.9% and 7.0 Ω.μm2 resistance area product (RA) with a critical switching density of 1.4×1010 A/m2 in a 300 nm diameter junction. We observe that the extrinsic breakdown mechanism dominates, since the resistance of our p-MTJs decreases gradually with the increasing current. From the statistical analysis of differently sized p-MTJs, we observe that the breakdown voltage (Vb) of 1.4 V is 2 times the switching voltage (Vs) of 0.7 V and the breakdown process exhibits two different breakdown states, unsteady and steady state. Using Simmons' model, we find that the steady state is related with the barrier height of the MgO layer. Furthermore, our study suggests a more efficient method to evaluate the MTJ stability under high bias rather than measuring Vb. In conclusion, we developed well performant p-MTJs for the use in STT-MRAM and demonstrate the mechanism and control of breakdown in nano-scale ultrathin MgO barrier p-MTJs.

  3. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Science.gov (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  4. Aggregation Number in Water/n-Hexanol Molecular Clusters Formed in Cyclohexane at Different Water/n-Hexanol/Cyclohexane Compositions Calculated by Titration 1H NMR.

    Science.gov (United States)

    Flores, Mario E; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2017-11-09

    Upon titration of n-hexanol/cyclohexane mixtures of different molar compositions with water, water/n-hexanol clusters are formed in cyclohexane. Here, we develop a new method to estimate the water and n-hexanol aggregation numbers in the clusters that combines integration analysis in one-dimensional 1 H NMR spectra, diffusion coefficients calculated by diffusion-ordered NMR spectroscopy, and further application of the Stokes-Einstein equation to calculate the hydrodynamic volume of the clusters. Aggregation numbers of 5-15 molecules of n-hexanol per cluster in the absence of water were observed in the whole range of n-hexanol/cyclohexane molar fractions studied. After saturation with water, aggregation numbers of 6-13 n-hexanol and 0.5-5 water molecules per cluster were found. O-H and O-O atom distances related to hydrogen bonds between donor/acceptor molecules were theoretically calculated using density functional theory. The results show that at low n-hexanol molar fractions, where a robust hydrogen-bond network is held between n-hexanol molecules, addition of water makes the intermolecular O-O atom distance shorter, reinforcing molecular association in the clusters, whereas at high n-hexanol molar fractions, where dipole-dipole interactions dominate, addition of water makes the intermolecular O-O atom distance longer, weakening the cluster structure. This correlates with experimental NMR results, which show an increase in the size and aggregation number in the clusters upon addition of water at low n-hexanol molar fractions, and a decrease of these magnitudes at high n-hexanol molar fractions. In addition, water produces an increase in the proton exchange rate between donor/acceptor molecules at all n-hexanol molar fractions.

  5. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms

    International Nuclear Information System (INIS)

    Çakır, D; Gülseren, O

    2012-01-01

    We have systematically investigated the growth behavior and stability of small stoichiometric (TiO 2 ) n (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO 2 ) n clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO 2 ) n cluster and a single water molecule have been studied. The binding energy (E b ) of the H 2 O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO 2 ) n clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been

  6. Promotion and provision of drinking water in schools for overweight prevention: randomized, controlled cluster trial.

    Science.gov (United States)

    Muckelbauer, Rebecca; Libuda, Lars; Clausen, Kerstin; Toschke, André Michael; Reinehr, Thomas; Kersting, Mathilde

    2009-04-01

    The study tested whether a combined environmental and educational intervention solely promoting water consumption was effective in preventing overweight among children in elementary school. The participants in this randomized, controlled cluster trial were second- and third-graders from 32 elementary schools in socially deprived areas of 2 German cities. Water fountains were installed and teachers presented 4 prepared classroom lessons in the intervention group schools (N = 17) to promote water consumption. Control group schools (N = 15) did not receive any intervention. The prevalence of overweight (defined according to the International Obesity Task Force criteria), BMI SD scores, and beverage consumption (in glasses per day; 1 glass was defined as 200 mL) self-reported in 24-hour recall questionnaires, were determined before (baseline) and after the intervention. In addition, the water flow of the fountains was measured during the intervention period of 1 school year (August 2006 to June 2007). Data on 2950 children (intervention group: N = 1641; control group: N = 1309; age, mean +/- SD: 8.3 +/- 0.7 years) were analyzed. After the intervention, the risk of overweight was reduced by 31% in the intervention group, compared with the control group, with adjustment for baseline prevalence of overweight and clustering according to school. Changes in BMI SD scores did not differ between the intervention group and the control group. Water consumption after the intervention was 1.1 glasses per day greater in the intervention group. No intervention effect on juice and soft drink consumption was found. Daily water flow of the fountains indicated lasting use during the entire intervention period, but to varying extent. Our environmental and educational, school-based intervention proved to be effective in the prevention of overweight among children in elementary school, even in a population from socially deprived areas.

  7. Hydrogen bonding in (substituted benzene)·(water)n clusters with n≤4

    International Nuclear Information System (INIS)

    Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B.

    1998-01-01

    Infrared ion-depletion spectroscopy, a double resonance method combining vibrational predissociation with resonant two-photon ionization (R2PI) spectroscopy, has been applied to study mixed clusters of the type (substituted benzene)·(H 2 O) n with n≤4. The UV chromophores were p-difluorobenzene, fluorobenzene, benzene, toluene, p-xylene and anisole. From the IR depletion spectra in the region of the OH stretching vibrations it could be shown that the water molecules are attached as subclusters to the chromophores. Size and configuration of the subclusters could be deduced from the IR depletion spectra. In the anisole·(H 2 O) 1 a nd 2 complexes the water clusters form an ordinary hydrogen bond to the oxygen atom of the methoxy group. In all other mixed complexes a π-hydrogen bond is formed between one of the free OH groups of a water subcluster and the π-system of the chromophore. According to the strength of this interaction the frequency of the respective absorption band exhibits a characteristic red-shift which could be related to the total atomic charges in the aromatic ring. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. A cluster of cases of nosocomial legionnaires disease linked to a contaminated hospital decorative water fountain.

    Science.gov (United States)

    Palmore, Tara N; Stock, Frida; White, Margaret; Bordner, MaryAnn; Michelin, Angela; Bennett, John E; Murray, Patrick R; Henderson, David K

    2009-08-01

    Nosocomial outbreaks of Legionnaires disease have been linked to contaminated water in hospitals. Immunocompromised patients are particularly vulnerable and, when infected, have a high mortality rate. We report the investigation of a cluster of cases of nosocomial pneumonia attributable to Legionella pneumophila serogroup 1 that occurred among patients on our stem cell transplantation unit. We conducted a record review to identify common points of potential exposure, followed by environmental and water sampling for Legionella species from those sources. We used an air sampler to in an attempt to detect aerosolized Legionella and pulsed-field gel electrophoresis to compare clinical and environmental isolates. The most likely sources identified were the water supply in the patients' rooms and a decorative fountain in the radiation oncology suite. Samples from the patients' rooms did not grow Legionella species. Cultures of the fountain, which had been restarted 4 months earlier after being shut off for 5 months, yielded L. pneumophila serogroup 1. The isolates from both patients and the fountain were identical by pulsed-field gel electrophoresis. Both patients developed pneumonia within 10 days of completing radiation therapy, and each reported having observed the fountain at close range. Both patients' infections were identified early and treated promptly, and both recovered. This cluster was caused by contamination of a decorative fountain despite its being equipped with a filter and ozone generator. Fountains are a potential source of nosocomial Legionnaires disease despite standard maintenance and sanitizing measures. In our opinion, fountains present unacceptable risk in hospitals serving immunocompromised patients.

  9. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    Science.gov (United States)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  10. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...... model is extracted from the obtained partitions. The identified model has been evaluated by comparing measurements with simulation results. The evaluation shows that the identified model is capable of describing the system dynamics over a reasonably wide frequency range....

  11. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  12. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    Science.gov (United States)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  13. WO3 nanoflakes decorated with CuO clusters for enhanced photoelectrochemical water splitting

    Directory of Open Access Journals (Sweden)

    Chongwu Wang

    2018-04-01

    Full Text Available The low quantum efficiency arising from poor charges transfer and insufficient light absorption is one of the critical challenges toward achieving highly efficient water splitting in photoelectrochemical cells. Three dimensions (3D structures and heterojunctions have received intensive research interests recent years due to their excellent ability to separate photo-generated charges as well as the enhanced light harvesting property. Herein, 3D CuO/WO3 structure was fabricated through a facile solvothermal method followed by chemical bath deposition. The loading of CuO clusters on WO3 nanoflake arrays results in a much improved photocurrent density compared with that of pristine WO3 nanoflake arrays, which reaches 1.8 mA/cm2 at 1.23 V vs. the reversible hydrogen electrode. The electrochemical impedance spectroscopy measurement demonstrates that the improved performance of CuO/WO3 electrode is attributed to the accelerated charge transfer kinetics as a result of the desirable band alignment in CuO/WO3 heterojunction. This work demonstrates a facile strategy to construct superior WO3 electrode, which will ultimately allow for efficient storage of solar energy into hydrogen. Keywords: Photoelectrochemistry, Water splitting, Tungsten trioxide photoanode, CuO clusters, Heterojunction

  14. "Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters

    Science.gov (United States)

    Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele

    2018-03-01

    We present an investigation of vibrational features in water clusters performed by means of our recently established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of high-dimensional systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body representation up to three-body terms, in which monomers and two-body interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential, while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally in agreement with previous variational estimates in the literature. This is particularly true for the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical and global picture provided by the semiclassical approach.

  15. Country clustering applied to the water and sanitation sector: a new tool with potential applications in research and policy.

    Science.gov (United States)

    Onda, Kyle; Crocker, Jonny; Kayser, Georgia Lyn; Bartram, Jamie

    2014-03-01

    The fields of global health and international development commonly cluster countries by geography and income to target resources and describe progress. For any given sector of interest, a range of relevant indicators can serve as a more appropriate basis for classification. We create a new typology of country clusters specific to the water and sanitation (WatSan) sector based on similarities across multiple WatSan-related indicators. After a literature review and consultation with experts in the WatSan sector, nine indicators were selected. Indicator selection was based on relevance to and suggested influence on national water and sanitation service delivery, and to maximize data availability across as many countries as possible. A hierarchical clustering method and a gap statistic analysis were used to group countries into a natural number of relevant clusters. Two stages of clustering resulted in five clusters, representing 156 countries or 6.75 billion people. The five clusters were not well explained by income or geography, and were distinct from existing country clusters used in international development. Analysis of these five clusters revealed that they were more compact and well separated than United Nations and World Bank country clusters. This analysis and resulting country typology suggest that previous geography- or income-based country groupings can be improved upon for applications in the WatSan sector by utilizing globally available WatSan-related indicators. Potential applications include guiding and discussing research, informing policy, improving resource targeting, describing sector progress, and identifying critical knowledge gaps in the WatSan sector. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. A Model of Clean Water Supply and Improvement of Enviromental Sanitary Conditions in Residential Clusters in The Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Chi Nguyen Thuy Lan

    2015-12-01

    Full Text Available In accordance with Decision 99/TTg dated 9/2/1996 and Decision 173/TTg dated 6/11/2001 of the Prime Minister regarding the construction program of residential clusters (residential flood free areas, these residential areas as constructed would be fully equipped with critical infrastructures and services such as water supply and drainage works, toilets with sanitary appropriateness, etc. to ensure environmental sanitary conditions in the residential clusters. However, the actual surveys done in residential clusters in the Mekong Delta show that many arising problems must be addressed to enable the local communities to have better living conditions and ensure the sanitary conditions and environmental safety.

  17. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  18. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  19. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Alfaraj, Nasir; Ghoneim, Mohamed T.; Kutbee, Arwa T.; Sridharan, Ashvitha; Hussain, Muhammad Mustafa

    2015-01-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  20. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  1. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    Science.gov (United States)

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  2. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium

    Science.gov (United States)

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik

    2018-03-01

    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  3. Calculation of the thermal and hydraulic states in rod cluster cores of light-water reactors

    International Nuclear Information System (INIS)

    Teichel, H.

    1977-01-01

    For calculating the three-dimensional steady distribution of the thermal and hydraulic states in rod cluster cores of light-water reactors, the subchannel analysis programs COLA 1 and COLA 2 have been developed. Both programs contain a multitude of competing empirical correlations which may be used by choice. The programs COLA 1 and COLA 2 differ in the calculation method and in the treatment of the boundary condition 'equal pressure at the end of all cooling channels' governing the problem. All parts of the programs are identical. By means of recomputed experiments statements on the accuracy of the results to be expected can be made. In addition, the different suitability of both programs for different experimental conditions are shown. (orig.) [de

  4. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-05-15

    This paper deals with a new concept for predicting burnout conditions for forced convection of boiling water in fuel elements of nuclear boiling reactors. The concept states the importance of considering the ratio of heated channel perimeter to total channel perimeter. The perimeter ratio concept was arrived at from an experimental study of burnout conditions in rod clusters consisting of three rods of 13 mm outside diameter and 970 mm heated length. Data were obtained for pressures between{sub 2}. 5 and 10 kg/cm, surface heat fluxes between 50 and 120 W/cm, mass flow rates between 0.03 and 0.33 kg/sec and steam qualities between 0.01 and 0.52. The rod distances for the experiment were 2 mm and 6 mm. The diameter of the channel was 41.3 mm. Additional runs were also performed after introducing unheated displacement rods in the channel. The rod distance in this case was 6 mm. In the ranges investigated the measured burnout steam qualities at the outlet of the channel decreases with increasing heat flux and decreasing pressure. Furthermore it has been found that the influence of rod distance is, in the range investigated, of small significance for engineering purposes. It has also been observed that the present burnout steam quality data for the rod clusters are much lower than those earlier obtained for round ducts. This may be explained physically by means of the perimeter ratio concept. It has also been found that the surface shear-stress distribution around the channel perimeter and especially the position of maximum shear-stress is of great importance for predicting burnout conditions for flow in channels. Finally the new method has helped us to understand and interpret experimental results which earlier may have seemed inconsistent.

  5. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-05-01

    This paper deals with a new concept for predicting burnout conditions for forced convection of boiling water in fuel elements of nuclear boiling reactors. The concept states the importance of considering the ratio of heated channel perimeter to total channel perimeter. The perimeter ratio concept was arrived at from an experimental study of burnout conditions in rod clusters consisting of three rods of 13 mm outside diameter and 970 mm heated length. Data were obtained for pressures between 2 . 5 and 10 kg/cm, surface heat fluxes between 50 and 120 W/cm, mass flow rates between 0.03 and 0.33 kg/sec and steam qualities between 0.01 and 0.52. The rod distances for the experiment were 2 mm and 6 mm. The diameter of the channel was 41.3 mm. Additional runs were also performed after introducing unheated displacement rods in the channel. The rod distance in this case was 6 mm. In the ranges investigated the measured burnout steam qualities at the outlet of the channel decreases with increasing heat flux and decreasing pressure. Furthermore it has been found that the influence of rod distance is, in the range investigated, of small significance for engineering purposes. It has also been observed that the present burnout steam quality data for the rod clusters are much lower than those earlier obtained for round ducts. This may be explained physically by means of the perimeter ratio concept. It has also been found that the surface shear-stress distribution around the channel perimeter and especially the position of maximum shear-stress is of great importance for predicting burnout conditions for flow in channels. Finally the new method has helped us to understand and interpret experimental results which earlier may have seemed inconsistent

  6. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  7. Capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator

    International Nuclear Information System (INIS)

    Kim, Tae-Hyun; Park, Jea-Gun

    2013-01-01

    We investigated the combined effect of the strained Si channel and hole confinement on the memory margin enhancement for a capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator (ε-Si SGOI). The memory margin for the ε-Si SGOI capacitor-less memory cell was higher than that of the memory cell fabricated on an unstrained Si-on-insulator (SOI) and increased with increasing Ge concentration of the relaxed SiGe layer; i.e. the memory margin for the ε-Si SGOI capacitor-less memory cell (138.6 µA) at a 32 at% Ge concentration was 3.3 times higher than the SOI capacitor-less memory cell (43 µA). (paper)

  8. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application

    Science.gov (United States)

    Li, Jing; Fan, Kun; Cai, Weiwei; Ma, Liying; Xu, Guoxiao; Xu, Sen; Ma, Liang; Cheng, Hansong

    2016-11-01

    A novel in-situ nano-scale swelling-filling (SF) strategy is proposed to modify commercial Nafion membranes for performance enhancement of direct methanol fuel cells (DMFCs). A Nafion membrane was filled in-situ with proton conductive macromolecules (PCMs) in the swelling process of a Nafion membrane in a PCM solution. As a result, both proton conductivity and methanol-permeation resistivity of the SF-treated Naifion membrane was substantially improved with the selectivity nearly doubled compared to the original Nafion membrane. The mechanical strength of the optimal SF treated Nafion membrane was also enforced due to the strong interaction between the PCM fillers and the Nafion molecular chains. As a result, a DMFC equipped with the SF-treated membrane yielded a 33% higher maximum power density than that offered by the DMFC with the original Nafion membrane.

  9. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco, E-mail: jhe08@syr.edu, E-mail: gvidali@syr.edu [Physics Department, Syracuse University, Syracuse, NY 13244 (United States)

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly on an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.

  10. Critical and Exponential Experiments on 19-Rod Clusters (R3 Fuel) in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Persson, R; Wikdahl, C E; Zadworski, Z

    1962-03-15

    Buckling measurements on clusters of 19 UO{sub 2} rods in heavy water have been performed in an exponential assembly and by means of substitution measurements in a critical facility. The material buckling was determined as a function of lattice pitch (range of V{sub mod} /V{sub fuel}: 7-22), internal spacing, void, and temperature (20 < T < 90 deg C). The change of diffusion coefficients (about 6-8 per cent) caused by voids was studied with single test fuel assemblies. The progressive substitution measurements have been analysed by means of a modified one-group perturbation theory in combination with an unconventional cell definition. The buckling differences between test and reference lattices are of the order of -1.0 to -3.5/m{sup 2}, The results of the exponential and the critical experiments are compared with similar measurements on the same kind of fuel at the Savannah River Laboratory. This comparison shows that the results of the various experiments agree quite well, whereas theoretical predictions fail in the extreme ranges.

  11. Electronic structures and water reactivity of mixed metal sulfide cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Arjun; Raghavachari, Krishnan [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-08-21

    The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS{sub 4}{sup −}) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H{sub 2} release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo{sub 2}S{sub 4}{sup −} and W{sub 2}S{sub 4}{sup −}) as well as mixed metal oxides (MoWO{sub 4}{sup −})

  12. Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yano, Junko; Yachandra, Vittal K.

    2007-10-24

    Light-driven oxidation of water to dioxygen in plants, algae and cyanobacteria iscatalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, the structure and the mechanism have remained elusive. X-ray absorption and emission spectroscopy and EXAFS studies have been particularly useful in probing the electronic and geometric structure, and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a setof three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 Angstrom-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-rayspectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under the conditions used for structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the Si-states (i=0-4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formaloxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms that includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structure of the Mn4Ca cluster in the S-states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of the O-O bond formation during the photosynthetic water

  13. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice.

    Science.gov (United States)

    Lenz, Annika; Ojamäe, Lars

    2009-10-07

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger

  14. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  15. Assessment of Heavy Metal Pollution in Macrophytes, Water and Sediment of a Tropical Wetland System Using Hierarchical Cluster Analysis Technique

    OpenAIRE

    , N. Kumar J.I.; , M. Das; , R. Mukherji; , R.N. Kumar

    2011-01-01

    Heavy metal pollution in aquatic ecosystems is becoming a global phenomenon because these metals are indestructible and most of them have toxic effects on living organisms. Most of the fresh water bodies all over the world are getting contaminated thus declining their suitability. Therefore, monitoring and assessment of such freshwater systems has become an environmental concern. This study aims to elucidate the useful role of the cluster analysis to assess the relationship and interdependenc...

  16. Two-surface Monte Carlo with basin hopping: quantum mechanical trajectory and multiple stationary points of water cluster.

    Science.gov (United States)

    Bandyopadhyay, Pradipta

    2008-04-07

    The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.

  17. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.

    1965-01-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters

  18. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred; Eriksson, O

    1965-07-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters.

  19. Non-basic solution eco-routes to nano-scale NiO with different shapes: Synthesis and application

    International Nuclear Information System (INIS)

    Wang Xiangyan; Wan Lijuan; Yu Tao; Zhou Yong; Guan Jie; Yu, Zhentao; Li, Zhaosheng; Zou Zhigang

    2011-01-01

    Research highlights: → NiO nanodiscs and nanoflowers have been controllably fabricated via the thermal decomposition of Ni(OH) 2 by using different Ni sources in non-basic solution for anion-assisted effect. → The route is environment-friendly. → The nanoflowers exhibit better performance than the nanodiscs when they are applied in electrochemical test and water treatment. - Abstract: The assembly of NiO nanodiscs (namely nanoflowers) as well as the dispersed NiO nanodiscs have been successfully synthesized via the thermal decomposition of Ni(OH) 2 obtained from different Ni sources in non-basic solution. The route is environment-friendly. The materials were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and N 2 adsorption-desorption. The porous structures with pore size around 6 nm can be observed on the single NiO disc. The nanoflowers exhibit better performance than nanodiscs in the electrochemical test and water treatment experiments, due to much more available surface areas and spaces formed in the NiO nanoflowers.

  20. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    Science.gov (United States)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  1. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. [Ecological Effects of Algae Blooms Cluster: The Impact on Chlorophyll and Photosynthesis of the Water Hyacinth].

    Science.gov (United States)

    Liu, Guo-feng; He, Jun; Yang, Yi-zhong; Han, Shi-qun

    2015-08-01

    The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious environment caused by the algae blooms together was the main reason of the death of aquatic plants during the summer. So in the practice of ecological restoration, it should avoid the

  3. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  4. Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-08-01

    Full Text Available The links between neuropathies of the peripheral nervous system (PNS, including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies.

  5. Micro- and nano-scale damage on the surface of W divertor component during exposure to high heat flux loads with He

    International Nuclear Information System (INIS)

    Li, C.; Greuner, H.; Zhao, S.X.; Böswirth, B.; Luo, G.N.; Zhou, X.; Jia, Y.Z.; Liu, X.; Liu, W.

    2015-01-01

    Micro- and nano-scale surface damage on a W divertor component sample exposed to high heat flux loads generated with He atoms has been investigated through SEM, EBSD, AFM and FIB-SEM. The component sample was supplied by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) and AT&M company, China, and the loading experiment was performed in the GLADIS facility at IPP Garching, Germany. Two typical damage structures were observed on the surface: the first one is characterized by obvious blisters and some grooves formed from ruptured blisters, and the other one is a kind of porous structure accompanying with at least ∼25 nm surface material loss. As the grain orientation is further away from , the damage morphology gradually changes from the former structure to the latter. The possible damage mechanism is discussed. - Highlights: • Two damage structures were observed on W component surface under He beam heating. • Blistering was more obvious in near grains. • Porous structure appeared in the grains away from . • A loose layer caused by He aggregation was formed in near-surface region.

  6. How fast are the ultra-fast nano-scale solid-liquid phase transitions induced by energetic particles in solids?

    International Nuclear Information System (INIS)

    Lopasso, E.M.; Caro, A.; Caro, M.

    2003-01-01

    We study the thermodynamic forces acting on the evolution of the nanoscale regions excited by collisions of energetic particles into solid targets. We analyze the role of diffusion, thermo-migration, and the liquidus-solidus two-phase field crossing, as the system cools down from the collision-induced melt under different conditions of energy deposition. To determine the relevance of these thermodynamic forces, solute redistribution is evaluated using molecular dynamics simulations of equilibrium Au-Ni solid solutions. At low collision energies, our results show that the quenching of spherical cascades is too fast to allow for solute redistribution according to equilibrium solidification as determined from the equilibrium phase diagram (zone refining effect), and only thermo-migration is observed. At higher energies instead, in the cylindrical symmetry of ion tracks, quenching rate is in a range that shows the combined effects of thermo-migration and solute redistribution that, depending on the material, can reinforce or cancel each other. These results are relevant for the interpretation of the early stage of radiation damage in alloys, and show that the combination of ultra-fast but nano-scale characteristics of these processes can still be described in terms of linear response of the perturbed system

  7. Using self-consistent Gibbs free energy surfaces to calculate size distributions of neutral and charged clusters for the sulfuric acid-water binary system

    Science.gov (United States)

    Smith, J. A.; Froyd, K. D.; Toon, O. B.

    2012-12-01

    We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.

  8. Probing the structure and dynamics of cage-like clusters: from water to Met-Cars

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1995-01-01

    Our recent work on metal compounds led to the discovery of a new class of metal-carbon clusters which are of finite size and have specific geometry, but exhibit varying electronic character because of the different metals of which they can be comprised. We term these metallo-carbohedrenes or Met-Cars for short. This paper reviews the progress made in elucidating the structures if these two classes of clusters which seem to be quite different, but have some interesting common features involving structural considerations. (orig.)

  9. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  10. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  11. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena

    2009-02-02

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L(1)) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L(2)) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L(1): PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L(1) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb(3+) ions with limits of detection of 3.4 x 10(-8)mol L(-1) for PME and 5.7 x 10(-9)mol L(-1) for CGE. The response time for PME and CGE was found to be 10s and 8s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb(3+) ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb(3+) ions in tap water and various binary mixtures with quantitative results.

  12. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)], E-mail: akscyfcy@iitr.ernet.in; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2009-02-02

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11, 15-tetramethyl-1,7,10,16-tetramethylacrylate -1,4,7,10,13, 16-hexaazacyclooctadeca-3,13-di ene (L{sub 1}) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L{sub 2}) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L{sub 1}: PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L{sub 1} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb{sup 3+} ions with limits of detection of 3.4 x 10{sup -8} mol L{sup -1} for PME and 5.7 x 10{sup -9} mol L{sup -1} for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb{sup 3+} ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb{sup 3+} ions in tap water and various binary mixtures with quantitative results.

  13. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena

    2009-01-01

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11, 15-tetramethyl-1,7,10,16-tetramethylacrylate -1,4,7,10,13, 16-hexaazacyclooctadeca-3,13-di ene (L 1 ) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L 2 ) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L 1 : PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L 1 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb 3+ ions with limits of detection of 3.4 x 10 -8 mol L -1 for PME and 5.7 x 10 -9 mol L -1 for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb 3+ ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb 3+ ions in tap water and various binary mixtures with quantitative results

  14. Analysis of mixed nitric oxide - Water clusters by complementary ionization methods

    Czech Academy of Sciences Publication Activity Database

    Šmídová, Daniela; Lengyel, Jozef; Kočišek, Jaroslav; Pysanenko, Andriy; Fárník, Michal

    2017-01-01

    Roč. 421, OCT 2017 (2017), s. 144-149 ISSN 1387-3806 R&D Projects: GA ČR(CZ) GA17-04068S Institutional support: RVO:61388955 Keywords : Cluster mass spectrometry * Atmospheric aerosols * Electron attachment Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.702, year: 2016

  15. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    Science.gov (United States)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  16. Resonant ion-dip infrared spectroscopy of benzene-(water)n-(methanol)m clusters with n+m=4, 5

    International Nuclear Information System (INIS)

    Hagemeister, F.C.; Gruenloh, C.J.; Zwier, T.S.

    1998-01-01

    Resonant two-photon ionization and resonant ion-dip infrared (RIDIR) spectra of benzene-(water) n -(methanol) m clusters (hereafter shortened to BW n M m ) have been recorded for a total of seven clusters with n+m=4 and 5. The infrared spectra in the OH and CH stretch regions show absorptions characteristic of H-bonded W n M m clusters which are bound to benzene by a π H-bond involving a dangling OH on the W n M m sub-unit. Density functional theory (DFT) calculations identify a number of conformational isomers in the n+m=4 series which meet the general criteria imposed by the experimental spectra. The structures, binding energies, harmonic vibrational frequencies, and infrared intensities for these isomers have been calculated for comparison with experiment. Based on the calculations, tentative assignments of several of the observed species are given. The calculations uncover the fact that complexation of benzene to the cyclic water tetramer imposes much the same perturbations on the cycle as substitution of methanol for water. In particular, the single-donor OH stretch spectra of W n M m and BW n+1 M m-1 are calculated to be virtually identical to one another. The comparison of experiment and theory for this series of cyclic structures is used to assess the strengths and limitations of the calculations at the DFT Becke3LYP/6-31+G * level of theory. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    Science.gov (United States)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  18. Pinning in high performance MgB{sub 2} thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Prikhna, Tatiana, E-mail: prikhna@mail.ru [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Shapovalov, Andrey [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Eisterer, Michael [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Shaternik, Vladimir [G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36 Academician Vernadsky blvd., Kiev, 03680 (Ukraine); Goldacker, Wilfried [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein (Germany); Weber, Harald W. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Boutko, Viktor [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Grechnev, Gennadiy [B. Verkin Institute for Low Temperature Physics of the National Academy of Sciences of Ukraine, 47, Prospekt Nauky, Kharkiv 61103 (Ukraine); Gusev, Alexandr [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Kovylaev, Valeriy; Shaternik, Anton [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine)

    2017-02-15

    Highlights: • Pinning in MgB{sub 2} depends on the Mg-B-O nano-scaled inhomogeneities. • Finer oxygen-enriched inhomogeneities is the reason of the higher J{sub c} in MgB{sub 2} thin films as compared to bulk. • The results of DOS calculations for MgB{sub 2-x}O{sub x} compounds demonstrate that they have metal-like behavior. • Ordered oxygen distribution in MgB{sub 2} (in pairs or zigzags) reduces binding energy. - Abstract: The comparison of nano-crystalline MgB{sub 2} oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, J{sub c}, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB{sub 2} bulks with high J{sub c} in low (∼10{sup 6} A/cm{sup 2} in 0-1 T at 10 K) and medium magnetic fields contain MgB{sub 0.6-0.8}O{sub 0.8-0.9} nano-inclusions, where δT{sub c} or a combined δT{sub c} (dominant) / δ{sub l} pinning mechanism prevails, while in bulk MgB{sub 2} with high J{sub c} in high magnetic fields (B{sub irr}(18.5 K) = 15 T, B{sub c2}(0 K) = 42.1 T) MgB{sub 1.2-2.7}O{sub 1.8-2.5} nano-layers are present and δ{sub l} pinning prevails. The structure of oxygen-containing films with high J{sub c} in low and high magnetic fields (J{sub c} (0 T) = 1.8 × 10{sup 7} A/cm{sup 2} and J{sub c} (5 T) = 2 × 10{sup 6} A/cm{sup 2} at 10 K) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δ{sub l} pinning is realized. The results of DOS calculations in MgB{sub 2-x}O{sub x} cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, E{sub b}, does not increase sufficiently as compared with that for MgB{sub 2}, while when oxygen atoms form zigzag chains the calculated E{sub b} is even lower (E{sub b} = −1.15712 Ry).

  19. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical 3-Rod and 7-Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, G; Flinta, J E

    1964-08-15

    The present report deals with measurements of burnout conditions for flow of boiling water in vertical 3-rod and 7-rod clusters. Data were obtained,in respect of heating the rods only, as well as for simultaneous uniform and non-uniform heating of the rods and the shroud. Totally, 520 runs were performed. In the case of equal heat fluxes on all surfaces of the channels, burnout always occurred on the rods, and the data were low by a factor of about 1.3 compared with round duct data. When only the rods were heated, the data showed very low burnout values in comparison with the results for total uniform heating and round ducts. This disagreement was explained by considering the climbing film flow model and the fact that only a fraction of the channel perimeter was heated. For simultaneous and non-uniform heating of the rods and the shroud it was found that the shroud could be overloaded up to 50 per cent without reducing the margin of safety in respect of burnout for the rod cluster. Finally, a correlation for predicting burnout conditions in round ducts, annuli and rod clusters has been presented. This correlation predicts the burnout heat fluxes for the present measurements and previously obtained annuli measurements within {+-} 5 per cent.

  20. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical 3-Rod and 7-Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.; Flinta, J.E.

    1964-08-01

    The present report deals with measurements of burnout conditions for flow of boiling water in vertical 3-rod and 7-rod clusters. Data were obtained,in respect of heating the rods only, as well as for simultaneous uniform and non-uniform heating of the rods and the shroud. Totally, 520 runs were performed. In the case of equal heat fluxes on all surfaces of the channels, burnout always occurred on the rods, and the data were low by a factor of about 1.3 compared with round duct data. When only the rods were heated, the data showed very low burnout values in comparison with the results for total uniform heating and round ducts. This disagreement was explained by considering the climbing film flow model and the fact that only a fraction of the channel perimeter was heated. For simultaneous and non-uniform heating of the rods and the shroud it was found that the shroud could be overloaded up to 50 per cent without reducing the margin of safety in respect of burnout for the rod cluster. Finally, a correlation for predicting burnout conditions in round ducts, annuli and rod clusters has been presented. This correlation predicts the burnout heat fluxes for the present measurements and previously obtained annuli measurements within ± 5 per cent

  1. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  2. A single-layer flat-coil-oscillator (SFCO)-based super-broadband position sensor for nano-scale-resolution seismometry

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, Samvel [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)], E-mail: gevs_sam@web.am; Gevorgyan, Vardan [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia); International Scientific-Educational Center, National Academy of Sciences, 24-D Marshal Baghramyan av., Yerevan 0019 (Armenia); Karapetyan, Gagik [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)

    2008-05-15

    A new class super-broadband, nano-scale-resolution position sensor is tested. It is used as an additional sensor in seismograph. It enables to extend the band and enhance the sensitivity of the available technique by at least an order of magnitude. It allows transferring of mechanical vibrations of constructions and buildings, with amplitudes over 1 nm, into detectable signal in a frequency range starting practically from quasi-static movements. It is based on detection of position changes of a vibrating normal-metallic plate placed near the flat coil-being used as a pick-up in a stable tunnel diode oscillator. Frequency of the oscillator is used as a detecting parameter, and the measuring effect is determined by a distortion of the MHz-range testing field configuration near a coil by a vibrating plate, leading to magnetic inductance changes of the coil, with a resolution {approx}10 pH. This results in changes of oscillator frequency. We discuss test data of such a position sensor, installed in a Russian SM-3 seismometer, as an additional pick-up component, showing its advantages compared to traditional techniques. We also discuss the future of such a novel sensor involving substitution of a metallic coil by a superconductive one and replacement of a tunnel diode by an S/I/S hetero-structure-as much less-powered active element in the oscillator, compared to tunnel diode. These may strongly improve the stability of oscillators, and therefore enhance the resolution of seismic techniques.

  3. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Akbari, Javad [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-01-09

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.

  4. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  5. Microscopic solvation of a lithium atom in water-ammonia mixed clusters: solvent coordination and electron localization in presence of a counterion.

    Science.gov (United States)

    Pratihar, Subha; Chandra, Amalendu

    2008-07-14

    The microsolvation structures and energetics of water-ammonia mixed clusters containing a lithium atom, i.e., Li(H(2)O)(n)(NH(3)), n = 1-5, are investigated by means of ab initio theoretical calculations. Several structural aspects such as the solvent coordination to the metal ion and binding motifs of the free valence electron of the metal are investigated. We also study the energetics aspects such as the dependence of vertical ionization energies on the cluster size, and all these structural and energetics aspects are compared to the corresponding results of previously studied anionic water-ammonia clusters without a metal ion. It is found that the Li-O and Li-N interactions play a very important role in stabilizing the lithium-water-ammonia clusters, and the presence of these metal ion-solvent interactions also affect the characteristics of electron solvation in these clusters. This is seen from the spatial distribution of the singly occupied molecular orbital (SOMO) which holds the ejected valence electron of the Li atom. For very small clusters, SOMO electron density is found to exist mainly at the vicinity of the Li atom, whereas for larger clusters, it is distributed outside the first solvation shell. The free dangling hydrogens of water and ammonia molecules are involved in capturing the SOMO electron density. In some of the conformers, OH{e}HO and OH{e}HN types of interactions are found to be present. The presence of the metal ion at the center of the cluster ensures that the ejected electron is solvated at a surface state only, whereas both surface and interiorlike states were found for the free electron in the corresponding anionic clusters without a metal ion. The vertical ionization energies of the present clusters are found to be higher than the vertical detachment energies of the corresponding anionic clusters which signify a relatively stronger binding of the free electron in the presence of the positive metal counterion. The shifts in different

  6. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II.

    Science.gov (United States)

    Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina

    2017-07-18

    In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.

  7. Extracting urban water usage habits from smart meter data: a functional clustering approach

    OpenAIRE

    CHEIFETZ, Nicolas; SAME, Allou; NOUMIR, Zineb; SANDRAZ, Anne Claire; FELIERS, Cédric; HEIM, Véronique

    2017-01-01

    Through automated meter reading systems, recent development of smart grids offers the opportunity for an efficient and responsible management of water resources. The present paper describes a novel methodology for identifying relevant usage profiles from hourly water consumption series collected by smart meters located on a water distribution network. The proposed approach operates in two stages. First, an additive time series decomposition model is used in order to extract seasonal patterns ...

  8. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  9. CAWR: Two institutions join forces in a cluster by addressing the grand challenges of water research

    Science.gov (United States)

    Jaeckel, Greta; Braeckevelt, Mareike

    2017-04-01

    The Center for Advanced Water Research (CAWR) brings together the water competences of two German research institutions: Helmholtz Centre for Environmental Research - UFZ and the Technische Universität Dresden (TUD). Highly qualified scientists are jointly tackling some of the key challenges in the water sector in an outstanding breadth of research topics and at the same time with a profound disciplinary expertise. Our mission is: "Save water for humans and environment", because water in a good quality and adequate quantity is a fundamental basis of life for humankind and the environment. In many global challenges, such as food or energy security, human health and ecosystems, flood defence and droughts or the provision of drinking water and sanitation systems, water is becoming a very critical element for a sustainable society in Germany, in Europe and worldwide. The CAWR focusses its work on the fields of research, education & training as well as transfer. The CAWR was established in 2013. Over 3 years the activities within the three pillars and the six thematic priority research fields ( 1) Understanding processes: water cycle and water quality, 2): Water quantity and scarcity in the regional context, 3): Urban Water Systems, 4): Methods of data collection and information processing, 5): Societal and climate change, 6): Water governance) were presented within: • the scientific community (newsletters, publication highlights, workshops with different new formats, conferences) • to national and international stakeholders from policy, industry and society (workshops, opinion papers) • public media (TV, radio stations, Newspapers, brochures, videoclips via youtube…) This PICO presentation by Greta Jäckel (scientific management of CAWR) should show which tools for the presentation of research results are useful and which influence they have on different target groups. A bunch of examples for effective and also less successful instruments to present important

  10. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  11. Parametric study of a reactivity accident in a pressurized water reactor: control rod cluster ejection

    International Nuclear Information System (INIS)

    Chesnel, A.

    1985-01-01

    This research thesis concerns a class 4 accident in a PWR: the ejection of a control rod cluster from the reactor core. It aims at defining, for such an accident, the envelope values which relate the reactivity to the hot spot factor within the frame of a mode A control. The report describes the physical phenomena and their modelling during the considered transient. It presents a simple mathematical solution of the accident which shows that the main neutron parameters are the released reactivity, the delayed neutron fraction, the Doppler coefficient, and the hot spot factor. It reports a temperature sensitivity study, and discusses three-dimensional calculations of irradiation distributions

  12. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

    Science.gov (United States)

    Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi

    2016-01-26

    Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition.

  13. Cluster models of aqueous Na{sup +} and Cl{sup -} in sea water/ice

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, R.; Walker, R. [Randolph-Macon College, Department of Chemistry (United States); Shillady, D., E-mail: quantummechanicsllc@msn.com [Virginia Commonwealth University, Department of Chemistry (United States)

    2012-10-15

    In this article, we present finite cluster models of aqueous solutes [NaCl(H{sub 2}O){sub 10}, NaCl(H{sub 2}O){sub 5}, and (H{sub 2}O){sub 6}] in terms of molecular geometry and vibrational spectra for interpretation of experimental infrared spectra of NaCl brine solutions. The quantum chemistry program GAMESS is used to optimize the model clusters to a local minimum energy gradient of less than 5.0d-6 hartrees/bohr with B3LYP in a gaussian basis of 6-31G(d,p). Harmonic frequencies are computed for comparison with the infrared spectra measured by attenuated total reflection of a temperature-controlled Ge plate under a layer of cold brine solution. The motivation for this research is to understand the mechanism by which freezing seawater excludes halide ions (mainly Cl{sup -}) and why the O-H stretching region of the spectra changes with temperature. Frost flowers, sea ice, and snow in marine environments contain concentrated halides in liquid brine at their surfaces which lead to catalytic destruction of low-altitude ozone in the polar regions of the Earth.

  14. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria

    Science.gov (United States)

    Tiri, Ammar; Lahbari, Noureddine; Boudoukha, Abderrahmane

    2017-12-01

    The assessment of surface water in Koudiat Medouar watershed is very important especially when it comes to pollution of the dam waters by discharges of wastewater from neighboring towns in Oued Timgad, who poured into the basin of the dam, and agricultural lands located along the Oued Reboa. To this end, the multivariable method was used to evaluate the spatial and temporal variation of the water surface quality of the Koudiat Medouar dam, eastern Algeria. The stiff diagram has identified two main hydrochemical facies. The first facies Mg-HCO3 is reflected in the first sampling station (Oued Reboa) and in the second one (Oued Timgad), while the second facies Mg-SO4 is reflected in the third station (Basin Dam). The results obtained by the analysis of variance show that in the three stations all parameters are significant, except for Na, K and HCO3 in the first station (Oued Reboa) and the EC in the second station (Oued Timgad) and at the end NO3 and pH in the third station (Basin Dam). Q-mode hierarchical cluster analysis showed that two main groups in each sampling station. The chemistry of major ions (Mg, Ca, HCO3 and SO4) within the three stations results from anthropogenic impacts and water-rock interaction sources.

  15. Investigating the significance of zero-point motion in small molecular clusters of sulphuric acid and water

    International Nuclear Information System (INIS)

    Stinson, Jake L.; Ford, Ian J.; Kathmann, Shawn M.

    2014-01-01

    The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei, and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems. The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics method at the density functional level of theory. The general effect of zero-point motion is to distort the mean structure slightly, and to promote the extent of proton transfer with respect to classical behaviour. In a particular configuration of one sulphuric acid molecule with three waters, the range of positions explored by a proton between a sulphuric acid and a water molecule at 300 K (a broad range in contrast to the confinement suggested by geometry optimisation at 0 K) is clearly affected by the inclusion of zero point motion, and similar effects are observed for other configurations

  16. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    Science.gov (United States)

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  17. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    Science.gov (United States)

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  18. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  19. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Antonio Candelieri

    2017-03-01

    Full Text Available This paper presents a completely data-driven and machine-learning-based approach, in two stages, to first characterize and then forecast hourly water demand in the short term with applications of two different data sources: urban water demand (SCADA data and individual customer water consumption (AMR data. In the first case, reliable forecasting can be used to optimize operations, particularly the pumping schedule, in order to reduce energy-related costs, while in the second case, the comparison between forecast and actual values may support the online detection of anomalies, such as smart meter faults, fraud or possible cyber-physical attacks. Results are presented for a real case: the water distribution network in Milan.

  20. Worlding via water:Desalination, cluster development and the ‘stickiness’ of commodities

    OpenAIRE

    Usher, Mark

    2018-01-01

    Whilst it may no longer be particularly controversial to highlight water as a matter of politics, to describe water’s matter as political still challenges mainstream understandings of natural resource management. Indeed, water provides a sticky medium for the formation and consolidation of broader social, economic and discursive relations, which are enabled or constrained by the production history or ‘cultural biography’ of the commodity. This has been widely demonstrated in relation to capit...

  1. Modeling and Clustering Water Demand Patterns from Real-World Smart Meter Data

    OpenAIRE

    CHEIFETZ , Nicolas; Noumir , Zineb; Same , Allou; SANDRAZ , Anne-Claire; FELIERS , Cédric; HEIM , Véronique

    2017-01-01

    Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identif...

  2. Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment.

    Science.gov (United States)

    Pezzotti, Giuseppe; Saito, Takuma; Padeletti, Giuseppina; Cossari, Pierluigi; Yamamoto, Kengo

    2010-06-01

    The aim of this study was to perform a surface morphology assessment with nanometer scale resolution on femoral heads made of an advanced zirconia toughened alumina (ZTA) composite. Femoral heads were characterized to a degree of statistical accuracy in the as-received state and after exposures up to 100 h in severe vapor-moist environment. Surface screening was made using an atomic force microscope (AFM). Scanning was systematically repeated on portions of surface as large as several tens of micrometers, randomly selected on the head surface, to achieve sufficient statistical reliability without lowering the nanometer-scale spatial resolution of the roughness measurement. No significant difference was found in the recorded values of surface roughness after environmental exposure (at 134 degrees C, under 2 bar), which was always comparable to that of the as-received head. Surface roughness safely lay <10 nm after environmental exposures up to 100 h, which corresponded to an exposure time in vivo of several human lifetimes (i.e., according to an experimentally derived thermal activation energy). In addition, the roughness results were significantly (about one order of magnitude) lower as compared to those recorded on femoral heads made of monolithic zirconia tested under the same conditions. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  4. Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator

    International Nuclear Information System (INIS)

    Horade, M; Kojima, M; Kamiyama, K; Kurata, T; Mae, Y; Arai, T

    2015-01-01

    In order to realize effective micro-manipulation using a micro-manipulator system, an optimum end-effector is proposed. Cell-manipulation experiments using mouse fibroblast cells are conducted, and the usability of the proposed end-effector is confirmed. A key advantage of the micro-manipulator is high-accuracy, high-speed 3D micro- and nano-scale positioning. Micro-manipulation has often been used in research involving biological cells. However, there are two important concerns with the micro-manipulator system: gripping efficiency and the release of gripped objects. When it is not possible to grip a micro-object, such as a cell, near its center, the object may be dropped during manipulation. Since the acquisition of exact position information for a micro-object in the vertical direction is difficult using a microscope, the gripping efficiency of the end-effector should be improved. Therefore, technical skill or operational support is required. Since, on the micro-scale, surface forces such as the adsorption force are greater than body forces, such as the gravitational force, the adhesion force between the end-effector and the object is strong. Therefore, manipulation techniques without adhesion are required for placed an object at an arbitrary position. In the present study, we consider direct physical contact between the end-effector and objects. First, the design and materials of the end-effector for micro-scale manipulation were optimized, and an end-effector with an optimum shape to increase the grip force was fabricated. Second, the surface of the end-effector tip was made uneven, and the adhesion force from increasing on the micro-scale was prevented. When an end-effector with an uneven surface was used, release without adhesion was successful 85.0% of the time. On the other hand, when an end-effector without an uneven surface was used, release without adhesion was successful 6.25% of the time. Therefore, the superiority of a structure with an uneven

  5. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Science.gov (United States)

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  6. Improving service delivery of water, sanitation, and hygiene in primary schools: a cluster-randomized trial in western Kenya.

    Science.gov (United States)

    Alexander, Kelly T; Dreibelbis, Robert; Freeman, Matthew C; Ojeny, Betty; Rheingans, Richard

    2013-09-01

    Water, sanitation, and hygiene (WASH) programs in schools have been shown to improve health and reduce absence. In resource-poor settings, barriers such as inadequate budgets, lack of oversight, and competing priorities limit effective and sustained WASH service delivery in schools. We employed a cluster-randomized trial to examine if schools could improve WASH conditions within existing administrative structures. Seventy schools were divided into a control group and three intervention groups. All intervention schools received a budget for purchasing WASH-related items. One group received no further intervention. A second group received additional funding for hiring a WASH attendant and making repairs to WASH infrastructure, and a third group was given guides for student and community monitoring of conditions. Intervention schools made significant improvements in provision of soap and handwashing water, treated drinking water, and clean latrines compared with controls. Teachers reported benefits of monitoring, repairs, and a WASH attendant, but quantitative data of WASH conditions did not determine whether expanded interventions out-performed our budget-only intervention. Providing schools with budgets for WASH operational costs improved access to necessary supplies, but did not ensure consistent service delivery to students. Further work is needed to clarify how schools can provide WASH services daily.

  7. Coupled cluster evaluation of the frequency dispersion of the first and second hyperpolarizabilities of water, methanol, and dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Beaujean, Pierre; Champagne, Benoît, E-mail: benoit.champagne@unamur.be [Laboratoire de Chimie Théorique, Unité de Chimie Physique Théorique et Structurale, University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2016-07-28

    The static and dynamic first (β{sub ‖}) and second (γ{sub ‖}) hyperpolarizabilities of water, methanol, and dimethyl ether have been evaluated within the response function approach using a hierarchy of coupled cluster levels of approximation and doubly augmented correlation consistent atomic basis sets. For the three compounds, the electronic β{sub ‖} and γ{sub ‖} values calculated at the CCSD and CC3 levels are in good agreement with gas phase electric field-induced second harmonic generation (EFISHG) measurements. In addition, for dimethyl ether, the frequency dispersion of both properties follows closely recent experimental values [V. W. Couling and D. P. Shelton, J. Chem. Phys. 143, 224307 (2015)] demonstrating the reliability of these methods and levels of approximation. This also suggests that the vibrational contributions to the EFISHG responses of these molecules are small.

  8. Dynamics of Neutral Cluster Growth and Cluster Ion Fragmentation for Toluene/Water, Aniline/Argon, and 4-Fluorostyrene/Argon Clusters: Covariance Mapping of the Mass Spectral Data

    National Research Council Canada - National Science Library

    Foltin, M

    1998-01-01

    .... To explore sensitivity of the parent ion/fragment ion correlation coefficient to cluster fragmentation, correlation coefficients are measured as a function of ionization photon energy as thresholds...

  9. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters

    OpenAIRE

    Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; van Duin, Adri C. T.; Goddard, William A., III

    2009-01-01

    In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H_2O)_n, n = 2−8, 20), H_3O+(H_2O_)n, n = 1−6, and OH−(H_2O)_n, n = 1−6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolate...

  10. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    Science.gov (United States)

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for nphotoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  11. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    Science.gov (United States)

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S., E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084 (United States)

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  13. The role of commitment strength in enhancing safe water consumption: mediation analysis of a cluster-randomized trial.

    Science.gov (United States)

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2014-11-01

    The objectives of this study were to investigate the importance of commitment strength in the theory of planned behaviour (TPB) and to test whether behaviour change techniques (BCTs) aimed at increasing commitment strength indeed promote switching to arsenic-safe wells by changing commitment strength. A cluster-randomized controlled trial with four arms was conducted to compare an information-only intervention to information plus one, two, or three commitment-enhancing BCTs. Randomly selected households (N = 340) of Monoharganj, Bangladesh, in seven geographically separate areas, whose members were drinking arsenic-contaminated water at baseline and had access to arsenic-safe wells, participated in this trial. The areas were randomly allocated to the four intervention arms. Water consumption behaviour, variables of the TPB, commitment strength, and socio-demographic characteristics were assessed at baseline and at 3-month follow-up by structured face-to-face interviews. Mediation analysis was used to investigate the mechanisms of behaviour change. Changes in commitment strength significantly increased the explanatory power of the TPB to predict well-switching. Commitment-enhancing BCTs - public self-commitment, implementation intentions, and reminders - increased the behaviour change effects of information by up to 50%. Mediation analyses confirmed that the BCTs indeed increased well-switching by increasing commitment strength. Unexpectedly, however, mediation via changes in behavioural intentions was the strongest mechanism of the intervention effects. Commitment is an important construct to consider in water- and health-related behaviour change and may be for other health behaviours as well. BCTs that alter behavioural intentions and commitment strength proved highly effective at enhancing the behaviour change effects of information alone. Statement of contribution What is already known on this subject? Millions of people drink contaminated water even if they

  14. Behavioral Reactivity Associated With Electronic Monitoring of Environmental Health Interventions--A Cluster Randomized Trial with Water Filters and Cookstoves.

    Science.gov (United States)

    Thomas, Evan A; Tellez-Sanchez, Sarita; Wick, Carson; Kirby, Miles; Zambrano, Laura; Abadie Rosa, Ghislaine; Clasen, Thomas F; Nagel, Corey

    2016-04-05

    Subject reactivity--when research participants change their behavior in response to being observed--has been documented showing the effect of human observers. Electronics sensors are increasingly used to monitor environmental health interventions, but the effect of sensors on behavior has not been assessed. We conducted a cluster randomized controlled trial in Rwanda among 170 households (70 blinded to the presence of the sensor, 100 open) testing whether awareness of an electronic monitor would result in a difference in weekly use of household water filters and improved cookstoves over a four-week surveillance period. A 63% increase in number of uses of the water filter per week between the groups was observed in week 1, an average of 4.4 times in the open group and 2.83 times in the blind group, declining in week 4 to an insignificant 55% difference of 2.82 uses in the open, and 1.93 in the blind. There were no significant differences in the number of stove uses per week between the two groups. For both filters and stoves, use decreased in both groups over four-week installation periods. This study suggests behavioral monitoring should attempt to account for reactivity to awareness of electronic monitors that persists for weeks or more.

  15. Photothermal microfluidic cantilever deflection spectroscopy reflecting clustering mechanism of ethanol water mixtures

    Science.gov (United States)

    Ghoraishi, Maryam; Hawk, John; Thundat, Thomas

    Aqueous mixture of alcohol is a typical prototype for biomolecules, micelle formation, and structural stability of proteins. Therefore, Short chain alcohols such as EtOH have been used as a simple model for understanding of more complex aqueous biomolecules. Here we study vibrational energy peaks of EtOH water binary mixtures using micromechanical calorimetric spectroscopy using bimaterial microfluidic cantilevers (BMC). The IR spectra of EtOH-water are experimentally collected employing a BMC as concentration of EtOH changes from 20-100 wt%. As concentration of EtOH varies in the mixture, considerable shifts in the wavenumber at IR absorption peak maxima are reported. The experimentally measured shifts in the wavenumber at IR absorption peak maxima are related to changes in dipole moment (μ) of EtOH at different concentration. The relationship between IR absorption wavenumber for both anti and gauche conformers of EtOH, and inverse dipole moment, 1/ μ, of EtOH at different concentrations follows a power law dependence. Our technique offers a platform to investigate dipole effect on molecular vibrations of mixtures in confined picoliter volumes, previously unexplored with other analytical techniques due to limitations of volume under study.

  16. Aggregation-induced chemical reactions: acid dissociation in growing water clusters.

    Science.gov (United States)

    Forbert, Harald; Masia, Marco; Kaczmarek-Kedziera, Anna; Nair, Nisanth N; Marx, Dominik

    2011-03-23

    Understanding chemical reactivity at ultracold conditions, thus enabling molecular syntheses via interstellar and atmospheric processes, is a key issue in cryochemistry. In particular, acid dissociation and proton transfer reactions are ubiquitous in aqueous microsolvation environments. Here, the full dissociation of a HCl molecule upon stepwise solvation by a small number of water molecules at low temperatures, as relevant to helium nanodroplet isolation (HENDI) spectroscopy, is analyzed in mechanistic detail. It is found that upon successive aggregation of HCl with H(2)O molecules, a series of cyclic heteromolecular structures, up to and including HCl(H(2)O)(3), are initially obtained before a precursor state for dissociation, HCl(H(2)O)(3)···H(2)O, is observed upon addition of a fourth water molecule. The latter partially aggregated structure can be viewed as an "activated species", which readily leads to dissociation of HCl and to the formation of a solvent-shared ion pair, H(3)O(+)(H(2)O)(3)Cl(-). Overall, the process is mostly downhill in potential energy, and, in addition, small remaining barriers are overcome by using kinetic energy released as a result of forming hydrogen bonds due to aggregation. The associated barrier is not ruled by thermal equilibrium but is generated by athermal non-equilibrium dynamics. These "aggregation-induced chemical reactions" are expected to be of broad relevance to chemistry at ultralow temperature much beyond HENDI spectroscopy.

  17. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Kim, Chan Moon; Parnichkun, Manukid

    2017-11-01

    Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.

  18. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-01-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4 sub 2 ; Mass velocity 144 2 /s; Heated length 1040 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the ranges investigated the observed steam quality at burnout, x BO generally decreases with increasing heat flux; increases with increasing pressure and decreases with increasing mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible

  19. Selective Propene Epoxidation on Immobilized Au6-10 Clusters: The Effect of Hydrogen and Water on Activity and Selectivity

    DEFF Research Database (Denmark)

    Lee, Sungsik; Molina, Luis M.; López, María J.

    2009-01-01

    Epoxidation made easy: Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations ...

  20. U.S. EPA Water Technology Innovation Cluster Leaders Meeting - "Successfully Supporting Early-Stage Companies: The Role of Technology Testing" Meeting Summary Report

    Science.gov (United States)

    The goals of this workshop were to: (1) increase the cluster leaders’ level of knowledge regarding past and current water technology testing programs, facilities and requirements; (2) learn from the experiences of technology vendors in getting innovative, commercial-ready product...

  1. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Baborowski, Martina [Department of River Ecology, UFZ-Helmholtz Centre for Environmental Research, Magdeburg (Germany); Simeonov, Vasil [Faculty of Chemistry, University of Sofia, Sofia (Bulgaria); Einax, Juergen W. [Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University of Jena, Jena (Germany)

    2012-04-15

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    International Nuclear Information System (INIS)

    Baborowski, Martina; Simeonov, Vasil; Einax, Juergen W.

    2012-01-01

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-07-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4

  4. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    Science.gov (United States)

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  5. Abdominal adipose tissue quantification on water-suppressed and non-water-suppressed MRI at 3T using semi-automated FCM clustering algorithm

    Science.gov (United States)

    Valaparla, Sunil K.; Peng, Qi; Gao, Feng; Clarke, Geoffrey D.

    2014-03-01

    Accurate measurements of human body fat distribution are desirable because excessive body fat is associated with impaired insulin sensitivity, type 2 diabetes mellitus (T2DM) and cardiovascular disease. In this study, we hypothesized that the performance of water suppressed (WS) MRI is superior to non-water suppressed (NWS) MRI for volumetric assessment of abdominal subcutaneous (SAT), intramuscular (IMAT), visceral (VAT), and total (TAT) adipose tissues. We acquired T1-weighted images on a 3T MRI system (TIM Trio, Siemens), which was analyzed using semi-automated segmentation software that employs a fuzzy c-means (FCM) clustering algorithm. Sixteen contiguous axial slices, centered at the L4-L5 level of the abdomen, were acquired in eight T2DM subjects with water suppression (WS) and without (NWS). Histograms from WS images show improved separation of non-fatty tissue pixels from fatty tissue pixels, compared to NWS images. Paired t-tests of WS versus NWS showed a statistically significant lower volume of lipid in the WS images for VAT (145.3 cc less, p=0.006) and IMAT (305 cc less, p1), but not SAT (14.1 cc more, NS). WS measurements of TAT also resulted in lower fat volumes (436.1 cc less, p=0.002). There is strong correlation between WS and NWS quantification methods for SAT measurements (r=0.999), but poorer correlation for VAT studies (r=0.845). These results suggest that NWS pulse sequences may overestimate adipose tissue volumes and that WS pulse sequences are more desirable due to the higher contrast generated between fatty and non-fatty tissues.

  6. Examining the structural evolution of bicarbonate–water clusters: insights from photoelectron spectroscopy, basin-hopping structural search, and comparison with available IR spectral studies

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Hui [Chinese Academy of Sciences (CAS), Hefei (China). Lab. of Atmospheric Physico-Chemistry, Anhui Inst. of Optics & Fine Mechanics; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Hou, Gao-Lei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Liu, Yi-Rong [Chinese Academy of Sciences (CAS), Hefei (China). Lab. of Atmospheric Physico-Chemistry, Anhui Inst. of Optics & Fine Mechanics; Wang, Xue-Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Division; Huang, Wei [Chinese Academy of Sciences (CAS), Hefei (China). Lab. of Atmospheric Physico-Chemistry, Anhui Inst. of Optics & Fine Mechanics; Univ. of Science and Technology of China, Hefei (China). School of Environmental Science & Optoelectronic Technology

    2016-05-31

    Bicarbonate serves a crucial biochemical role in the physiological pH buffering system and also has important atmospheric implications. In the current study, HCO3$-$(H2O)n (n = 0-13) clusters were successfully produced via electrospray ionization of corresponding bulk salt solution, and were characterized by combining negative ion photoelectron spectroscopy and theoretical calculations. The photoelectron spectra reveal that the electron binding energy monotonically increases with the cluster size up to n = 10 and remains largely the same after n > 10. The photo-detaching feature of the solute HCO3$-$itself, which dominates in the small clusters, diminishes with increase of water coverage. Based on the charge distribution and molecular orbital analyses, the universal high electron binding energy tail that dominates in the larger clusters can be attributed to ionization of water. Thus, the transition of ionization from solute to solvent at the size larger than n=10 has been observed. Extensive theoretical structural search based on the Basin-Hopping unbiased method was carried out, and a plethora of low energy isomers have been obtained for each medium and large size. By comparing the simulated photoelectron spectra and calculated electron binding energies with the experiments, as well as by comparing the simulated infrared spectra with previously reported IR spectra, the probable global minima and the structural evolutionary routes are presented. The nature of bicarbonate-water interactions are mainly electrostatic as implied by the electron localization function (ELF) analysis.

  7. Solar drinking water disinfection (SODIS to reduce childhood diarrhoea in rural Bolivia: a cluster-randomized, controlled trial.

    Directory of Open Access Journals (Sweden)

    Daniel Mäusezahl

    2009-08-01

    Full Text Available Solar drinking water disinfection (SODIS is a low-cost, point-of-use water purification method that has been disseminated globally. Laboratory studies suggest that SODIS is highly efficacious in inactivating waterborne pathogens. Previous field studies provided limited evidence for its effectiveness in reducing diarrhoea.We conducted a cluster-randomized controlled trial in 22 rural communities in Bolivia to evaluate the effect of SODIS in reducing diarrhoea among children under the age of 5 y. A local nongovernmental organisation conducted a standardised interactive SODIS-promotion campaign in 11 communities targeting households, communities, and primary schools. Mothers completed a daily child health diary for 1 y. Within the intervention arm 225 households (376 children were trained to expose water-filled polyethyleneteraphtalate bottles to sunlight. Eleven communities (200 households, 349 children served as a control. We recorded 166,971 person-days of observation during the trial representing 79.9% and 78.9% of the total possible person-days of child observation in intervention and control arms, respectively. Mean compliance with SODIS was 32.1%. The reported incidence rate of gastrointestinal illness in children in the intervention arm was 3.6 compared to 4.3 episodes/year at risk in the control arm. The relative rate of diarrhoea adjusted for intracluster correlation was 0.81 (95% confidence interval 0.59-1.12. The median length of diarrhoea was 3 d in both groups.Despite an extensive SODIS promotion campaign we found only moderate compliance with the intervention and no strong evidence for a substantive reduction in diarrhoea among children. These results suggest that there is a need for better evidence of how the well-established laboratory efficacy of this home-based water treatment method translates into field effectiveness under various cultural settings and intervention intensities. Further global promotion of SODIS for general use

  8. One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization.

    Science.gov (United States)

    Zhu, Hao; Hou, Chen; Li, Yijing; Zhao, Guanghui; Liu, Xiao; Hou, Ke; Li, Yanfeng

    2013-07-01

    A facile one-pot synthesis of highly water-dispersible size-tunable magnetite (Fe3O4) nanocrystal clusters (MNCs) end-functionalized with amino or carboxyl groups by a modified solvothermal reduction reaction has been developed. Dopamine and 3,4-dihydroxyhydroxycinnamic acid were used for the first time as both a surfactant and interparticle linker in a polylol process for economical and environment-friendly purposes. Morphology, chemical composition, and magnetic properties of the prepared particles were investigated by several methods, including FESEM, TEM, XRD, XPS, Raman, FTIR, TGA, zeta potential, and VSM. The sizes of the particles could be easily tuned over a wide range from 175 to 500 nm by varying the surfactant concentration. Moreover, ethylene glycol/diethylene glycol (EG/DEG) solvent mixtures with different ratios could be used as reductants to obtain the particles with smaller sizes. The XRD data demonstrated that the surfactants restrained the crystal growth of the grains. The nanoparticles showed superior magnetic properties and high colloidal stability in water. The cytotoxicity results indicated the feasibility of using the synthesized nanocrystals in biology-related fields. To estimate the applicability of the obtained MNCs in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. This novel strategy would simplify the reaction protocol and improve the efficiency of materials functionalization, thus offering new potential applications in biotechnology and organocatalysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    Science.gov (United States)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  10. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: a cluster randomised trial.

    Science.gov (United States)

    Quintero, Juliana; García-Betancourt, Tatiana; Cortés, Sebastian; García, Diana; Alcalá, Lucas; González-Uribe, Catalina; Brochero, Helena; Carrasquilla, Gabriel

    2015-02-01

    Long-lasting insecticide-treated net (LLIN) window and door curtains alone or in combination with LLIN water container covers were analysed regarding effectiveness in reducing dengue vector density, and feasibility of the intervention. A cluster randomised trial was conducted in an urban area of Colombia comparing 10 randomly selected control and 10 intervention clusters. In control clusters, routine vector control activities were performed. The intervention delivered first, LLIN curtains (from July to August 2013) and secondly, water container covers (from October to March 2014). Cross-sectional entomological surveys were carried out at baseline (February 2013 to June 2013), 9 weeks after the first intervention (August to October 2013), and 4-6 weeks after the second intervention (March to April 2014). Curtains were installed in 922 households and water container covers in 303 households. The Breteau index (BI) fell from 14 to 6 in the intervention group and from 8 to 5 in the control group. The additional intervention with LLIN covers for water containers showed a significant reduction in pupae per person index (PPI) (p=0.01). In the intervention group, the PPI index showed a clear decline of 71% compared with 25% in the control group. Costs were high but options for cost savings were identified. Short term impact evaluation indicates that the intervention package can reduce dengue vector density but sustained effect will depend on multiple factors. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  11. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    Science.gov (United States)

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Study of the stabilization energies of halide-water clusters: An application of first-principles interaction potentials based on a polarizable and flexible model

    International Nuclear Information System (INIS)

    Ayala, Regla; Martinez, Jose M.; Pappalardo, Rafael R.; Sanchez Marcos, Enrique

    2004-01-01

    The aim of this work is to compute the stabilization energy E stab (n) of [X(H 2 O) n ] - (X≡F, Br, and I for n=1-60) clusters from Monte Carlo simulations using first-principles ab initio potentials. Stabilization energy of [X(H 2 O) n ] - clusters is defined as the difference between the vertical photodeachment energy of the cluster and the electron affinity of the isolated halide. On one hand, a study about the relation between cluster structure and the E stab (n) value, as well as the dependence of the latter with temperature is performed, on the other hand, a test on the reliability of our recently developed first-principles halide ion-water interaction potentials is carried out. Two different approximations were applied: (1) the Koopmans' theorem and (2) calculation of the difference between the interaction energy of [X(H 2 O) n ] - and [X(H 2 O) n ] clusters using the same ab initio interaction potentials. The developed methodology allows for using the same interaction potentials in the case of the ionic and neutral clusters with the proviso that the charge of the halide anion was switched off in the latter. That is, no specific parametrization of the interaction potentials to fit the magnitude under study was done. The good agreement between our predicted E stab (n) and experimental data allows us to validate the first-principles interaction potentials developed elsewhere and used in this study, and supports the fact that this magnitude is mainly determined by electrostatic factors, which can be described by our interaction potentials. No relation between the value of E stab (n) and the structure of clusters has been found. The diversity of E stab (n) values found for different clusters with similar interaction energy indicates the need for statistical information to properly estimate the stabilization energy of the halide anions. The effect of temperature in the prediction of the E stab (n) is not significant as long as it was high enough to avoid

  13. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Stephen P Luby, ProfMD

    2018-03-01

    Full Text Available Summary: Background: Diarrhoea and growth faltering in early childhood are associated with subsequent adverse outcomes. We aimed to assess whether water quality, sanitation, and handwashing interventions alone or combined with nutrition interventions reduced diarrhoea or growth faltering. Methods: The WASH Benefits Bangladesh cluster-randomised trial enrolled pregnant women from villages in rural Bangladesh and evaluated outcomes at 1-year and 2-years' follow-up. Pregnant women in geographically adjacent clusters were block-randomised to one of seven clusters: chlorinated drinking water (water; upgraded sanitation (sanitation; promotion of handwashing with soap (handwashing; combined water, sanitation, and handwashing; counselling on appropriate child nutrition plus lipid-based nutrient supplements (nutrition; combined water, sanitation, handwashing, and nutrition; and control (data collection only. Primary outcomes were caregiver-reported diarrhoea in the past 7 days among children who were in utero or younger than 3 years at enrolment and length-for-age Z score among children born to enrolled pregnant women. Masking was not possible for data collection, but analyses were masked. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, number NCC01590095. Findings: Between May 31, 2012, and July 7, 2013, 5551 pregnant women in 720 clusters were randomly allocated to one of seven groups. 1382 women were assigned to the control group; 698 to water; 696 to sanitation; 688 to handwashing; 702 to water, sanitation, and handwashing; 699 to nutrition; and 686 to water, sanitation, handwashing, and nutrition. 331 (6% women were lost to follow-up. Data on diarrhoea at year 1 or year 2 (combined were available for 14 425 children (7331 in year 1, 7094 in year 2 and data on length-for-age Z score in year 2 were available for 4584 children (92% of living children were measured at year 2. All interventions had high adherence

  14. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters.

    Science.gov (United States)

    Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A

    2009-04-14

    In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).

  15. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  16. Dynamics of Surfactant Clustering at Interfaces and Its Influence on the Interfacial Tension: Atomistic Simulation of a Sodium Hexadecane-Benzene Sulfonate-Tetradecane-Water System.

    Science.gov (United States)

    Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier

    2018-03-06

    The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.

  17. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit

    Science.gov (United States)

    Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias

    2007-11-01

    The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Møller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.

  18. Objective Classification of Rainfall in Northern Europe for Online Operation of Urban Water Systems Based on Clustering Techniques

    DEFF Research Database (Denmark)

    Löwe, Roland; Madsen, Henrik; McSharry, Patrick

    2016-01-01

    operators to change modes of control of their facilities. A k-means clustering technique was applied to group events retrospectively and was able to distinguish events with clearly different temporal and spatial correlation properties. For online applications, techniques based on k-means clustering...... and quadratic discriminant analysis both provided a fast and reliable identification of rain events of "high" variability, while the k-means provided the smallest number of rain events falsely identified as being of "high" variability (false hits). A simple classification method based on a threshold...

  19. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Clair Null, PhD

    2018-03-01

    Full Text Available Summary: Background: Poor nutrition and exposure to faecal contamination are associated with diarrhoea and growth faltering, both of which have long-term consequences for child health. We aimed to assess whether water, sanitation, handwashing, and nutrition interventions reduced diarrhoea or growth faltering. Methods: The WASH Benefits cluster-randomised trial enrolled pregnant women from villages in rural Kenya and evaluated outcomes at 1 year and 2 years of follow-up. Geographically-adjacent clusters were block-randomised to active control (household visits to measure mid-upper-arm circumference, passive control (data collection only, or compound-level interventions including household visits to promote target behaviours: drinking chlorinated water (water; safe sanitation consisting of disposing faeces in an improved latrine (sanitation; handwashing with soap (handwashing; combined water, sanitation, and handwashing; counselling on appropriate maternal, infant, and young child feeding plus small-quantity lipid-based nutrient supplements from 6–24 months (nutrition; and combined water, sanitation, handwashing, and nutrition. Primary outcomes were caregiver-reported diarrhoea in the past 7 days and length-for-age Z score at year 2 in index children born to the enrolled pregnant women. Masking was not possible for data collection, but analyses were masked. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01704105. Findings: Between Nov 27, 2012, and May 21, 2014, 8246 women in 702 clusters were enrolled and randomly assigned an intervention or control group. 1919 women were assigned to the active control group; 938 to passive control; 904 to water; 892 to sanitation; 917 to handwashing; 912 to combined water, sanitation, and handwashing; 843 to nutrition; and 921 to combined water, sanitation, handwashing, and nutrition. Data on diarrhoea at year 1 or year 2 were available for 6494 children and

  20. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-21

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.

  1. Rural environment study for water from different sources in cluster of villages in Mehsana district of Gujarat.

    Science.gov (United States)

    Khatri, Nitasha; Tyagi, Sanjiv; Rawtani, Deepak

    2017-12-07

    Water pollution and water scarcity are major environmental issues in rural and urban areas. They lead to decline in the quality of water, especially drinking water. Proper qualitative assessment of water is thus necessary to ensure that the water consumed is potable. This study aims to analyze the physicochemical parameters in different sources of water in rural areas and assess the quality of water through a classification system based on BIS and CPCB standards. The classification method has defined water quality in six categories, viz., A, B, C, D, E, and F depending on the levels of physicochemical parameters in the water samples. The proposed classification system was applied to nine villages in Kadi Taluka, Mehsana district of Gujarat. The water samples were collected from borewells, lakes, Narmada Canal, and sewerage systems and were analyzed as per APHA and IS methods. It was observed that most of the physicochemical parameters of Narmada Canal and borewell water fell under class A, thus making them most suitable for drinking. Further, a health camp conducted at Karannagar village, Mehsana revealed no incidents of any waterborne diseases. However, there were certain incidents of kidney stones and joint pain in few villages due to high levels of TDS. Toxic metal analysis in all the water sources revealed low to undetectable concentration of toxic metals such as lead, arsenic, mercury, and cadmium in all the water sources. It is also recommended that the regular treatment of the Narmada Canal water be continued to maintain its excellent quality.

  2. Effect of surface Fe2O3 clusters on the photocatalytic activity of TiO2 for phenol degradation in water

    International Nuclear Information System (INIS)

    Sun, Qiong; Leng, Wenhua; Li, Zhen; Xu, Yiming

    2012-01-01

    Graphical abstract: Surface modified TiO 2 with iron oxide clusters through adsorption and decomposition of a large Fe(III) complex shows an enhanced activity for phenol degradation in water under UV light. But it was only observed with the clusters in a small size and at very low coverage on anatase. Highlights: ► Iron oxide clusters are made by decomposition of a large Fe(III) complex on TiO 2 . ► The modified anatase shows an enhanced activity for phenol photodegradation. ► The composite catalyst is very stable during four repeated experiments. - Abstract: Surface modification of TiO 2 with Fe 2 O 3 clusters was made through chemisorption of ferric phthalocyaninetetracarboxylate onto TiO 2 , followed by sintering in air to remove organic moiety. Solid characterization with electron paramagnetic resonance spectroscopy and other techniques showed that ferric oxides were highly dispersed on TiO 2 as a noncrystallized cluster, while TiO 2 phases remained unchanged. For phenol degradation in aerated aqueous suspension, only the sample containing less than 0.3 at.% Fe was more active than bare TiO 2 under UV light, whereas no activity was found under visible light. As anatase thermally transferred into rutile, the Fe-containing catalyst became less active than bare TiO 2 , mainly ascribed to the increased size of Fe 2 O 3 clusters. In the presence of H 2 O 2 , all Fe-containing catalysts were more active than bare TiO 2 . Moreover, similar trend in activity among different catalysts was also observed with the formation of hydroxyl radicals, and with the generation of photocurrent measured under N 2 with Fe/TiO 2 electrode. Present work clearly shows that only Fe 2 O 3 clusters in a small size and at low coverage on TiO 2 are beneficial to the photocatalytic reaction, while excess iron oxide is detrimental. Possible mechanism is discussed in the text.

  3. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    Science.gov (United States)

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  4. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  5. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China.

    Science.gov (United States)

    Li, Chunhui; Sun, Lian; Jia, Junxiang; Cai, Yanpeng; Wang, Xuan

    2016-07-01

    Source water areas are facing many potential water pollution risks. Risk assessment is an effective method to evaluate such risks. In this paper an integrated model based on k-means clustering analysis and set pair analysis was established aiming at evaluating the risks associated with water pollution in source water areas, in which the weights of indicators were determined through the entropy weight method. Then the proposed model was applied to assess water pollution risks in the region of Shiyan in which China's key source water area Danjiangkou Reservoir for the water source of the middle route of South-to-North Water Diversion Project is located. The results showed that eleven sources with relative high risk value were identified. At the regional scale, Shiyan City and Danjiangkou City would have a high risk value in term of the industrial discharge. Comparatively, Danjiangkou City and Yunxian County would have a high risk value in terms of agricultural pollution. Overall, the risk values of north regions close to the main stream and reservoir of the region of Shiyan were higher than that in the south. The results of risk level indicated that five sources were in lower risk level (i.e., level II), two in moderate risk level (i.e., level III), one in higher risk level (i.e., level IV) and three in highest risk level (i.e., level V). Also risks of industrial discharge are higher than that of the agricultural sector. It is thus essential to manage the pillar industry of the region of Shiyan and certain agricultural companies in the vicinity of the reservoir to reduce water pollution risks of source water areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  7. A Density Functional Theory Evaluation of Hydrophobic Solvation: Ne, Ar and Kr in a 50-Water Cluster. Implications for the Hydrophobic Effect.

    Science.gov (United States)

    Kobko, Nadya; Marianski, Mateusz; Asensio, Amparo; Wieczorek, Robert; Dannenberg, J J

    2012-06-15

    The physical explanation for the hydrophobic effect has been the subject of disagreement. Physical organic chemists tend to use a explanation related to pressure, while many biochemists prefer an explanation that involves decreased entropy of the aqueous solvent. We present DFT calculations at the B3LYP/6-31G(d,p) and X3LYP/6-31G(d,p) levels on the solvation of three noble gases (Ne, Ar, and Kr) in clusters of 50 waters. Vibrational analyses show no substantial decreases in the vibrational entropies of the waters in any of the three clusters. The observed positive free energies of transfer from the gas phase or from nonpolar solvents to water appear to be due to the work needed to make a suitable hole in the aqueous solvent. We distinguish between hydrophobic solvations (explicitly studied here) and the hydrophobic effect that occurs when a solute (or transition state) can decrease its volume through conformational change (which is not possible for the noble gases).

  8. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    -principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  9. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    Science.gov (United States)

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  10. ADAPTIVE OPTICS OBSERVATIONS OF 3 {mu}m WATER ICE IN SILHOUETTE DISKS IN THE ORION NEBULA CLUSTER AND M43

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Pyo, Tae-Soo; Minowa, Yosuke; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Takami, Hideki [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Saito, Yoshihiko [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ito, Meguru [Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Iye, Masanori, E-mail: terada@subaru.naoj.org [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-12-01

    We present the near-infrared images and spectra of four silhouette disks in the Orion Nebula Cluster (M42) and M43 using the Subaru Adaptive Optics system. While d053-717 and d141-1952 show no water ice feature at 3.1 {mu}m, a moderately deep ({tau}{sub ice} {approx} 0.7) water ice absorption is detected toward d132-1832 and d216-0939. Taking into account the water ice so far detected in the silhouette disks, the critical inclination angle to produce a water ice absorption feature is confirmed to be 65 Degree-Sign -75 Degree-Sign . As for d216-0939, the crystallized water ice profile is exactly the same as in the previous observations taken 3.63 years ago. If the water ice material is located at 30 AU, then the observations suggest it is uniform at a scale of about 3.5 AU.

  11. Effect of water quality, sanitation, hand washing, and nutritional interventions on child development in rural Bangladesh (WASH Benefits Bangladesh): a cluster-randomised controlled trial.

    Science.gov (United States)

    Tofail, Fahmida; Fernald, Lia Ch; Das, Kishor K; Rahman, Mahbubur; Ahmed, Tahmeed; Jannat, Kaniz K; Unicomb, Leanne; Arnold, Benjamin F; Ashraf, Sania; Winch, Peter J; Kariger, Patricia; Stewart, Christine P; Colford, John M; Luby, Stephen P

    2018-04-01

    Poor nutrition and hygiene make children vulnerable to delays in growth and development. We aimed to assess the effects of water quality, sanitation, handwashing, and nutritional interventions individually or in combination on the cognitive, motor, and language development of children in rural Bangladesh. In this cluster-randomised controlled trial, we enrolled pregnant women in their first or second trimester from rural villages of Gazipur, Kishoreganj, Mymensingh, and Tangail districts of central Bangladesh, with an average of eight women per cluster. Groups of eight geographically adjacent clusters were block-randomised, using a random number generator, into six intervention groups (all of which received weekly visits from a community health promoter for the first 6 months and every 2 weeks for the next 18 months) and a double-sized control group (no intervention or health promoter visit). The six intervention groups were: chlorinated drinking water; improved sanitation; handwashing with soap; combined water, sanitation, and handwashing; improved nutrition through counselling and provision of lipid-based nutrient supplements; and combined water, sanitation, handwashing, and nutrition. Here, we report on the prespecified secondary child development outcomes: gross motor milestone achievement assessed with the WHO module at age 1 year, and communication, gross motor, personal social, and combined scores measured by the Extended Ages and Stages Questionnaire (EASQ) at age 2 years. Masking of participants was not possible. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01590095. Between May 31, 2012, and July 7, 2013, 5551 pregnant women residing in 720 clusters were enrolled. Index children of 928 (17%) enrolled women were lost to follow-up in year 1 and an additional 201 (3%) in year 2. 4757 children were assessed at 1 year and 4403 at 2 years. At year 1, compared with the control group, the combined water

  12. Hand washing with soap and water together with behavioural recommendations prevents infections in common work environment: an open cluster-randomized trial.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Haapakoski, Jaason; Peltola, Piia A; Ziegler, Thedi; Korpela, Terttu; Anttila, Pirjo; Amiryousefi, Ali; Huovinen, Pentti; Huvinen, Markku; Noronen, Heikki; Riikkala, Pia; Roivainen, Merja; Ruutu, Petri; Teirilä, Juha; Vartiainen, Erkki; Hovi, Tapani

    2012-01-16

    Hand hygiene is considered as an important means of infection control. We explored whether guided hand hygiene together with transmission-limiting behaviour reduces infection episodes and lost days of work in a common work environment in an open cluster-randomized 3-arm intervention trial. A total of 21 clusters (683 persons) were randomized to implement hand hygiene with soap and water (257 persons), with alcohol-based hand rub (202 persons), or to serve as a control (224 persons). Participants in both intervention arms also received standardized instructions on how to limit the transmission of infections. The intervention period (16 months) included the emergence of the 2009 influenza pandemic and the subsequent national hand hygiene campaign influencing also the control arm. In the total follow-up period there was a 6.7% reduction of infection episodes in the soap-and water arm (p = 0.04). Before the onset of the anti-pandemic campaign, a statistically significant (p = 0.002) difference in the mean occurrence of infection episodes was observed between the control (6.0 per year) and the soap-and-water arm (5.0 per year) but not between the control and the alcohol-rub arm (5.6 per year). Neither intervention had a decreasing effect on absence from work. We conclude that intensified hand hygiene using water and soap together with behavioural recommendations can reduce the occurrence of self-reported acute illnesses in common work environment. Surprisingly, the occurrence of reported sick leaves also increased in the soap-and water-arm. ClinicalTrials.gov: NCT00981877 The Finnish Work Environment Fund and the National Institute for Health and Welfare.

  13. Hand washing with soap and water together with behavioural recommendations prevents infections in common work environment: an open cluster-randomized trial

    Directory of Open Access Journals (Sweden)

    Savolainen-Kopra Carita

    2012-01-01

    Full Text Available Abstract Background Hand hygiene is considered as an important means of infection control. We explored whether guided hand hygiene together with transmission-limiting behaviour reduces infection episodes and lost days of work in a common work environment in an open cluster-randomized 3-arm intervention trial. Methods A total of 21 clusters (683 persons were randomized to implement hand hygiene with soap and water (257 persons, with alcohol-based hand rub (202 persons, or to serve as a control (224 persons. Participants in both intervention arms also received standardized instructions on how to limit the transmission of infections. The intervention period (16 months included the emergence of the 2009 influenza pandemic and the subsequent national hand hygiene campaign influencing also the control arm. Results In the total follow-up period there was a 6.7% reduction of infection episodes in the soap-and water arm (p = 0.04. Before the onset of the anti-pandemic campaign, a statistically significant (p = 0.002 difference in the mean occurrence of infection episodes was observed between the control (6.0 per year and the soap-and-water arm (5.0 per year but not between the control and the alcohol-rub arm (5.6 per year. Neither intervention had a decreasing effect on absence from work. Conclusions We conclude that intensified hand hygiene using water and soap together with behavioural recommendations can reduce the occurrence of self-reported acute illnesses in common work environment. Surprisingly, the occurrence of reported sick leaves also increased in the soap-and water-arm. Trial Registration ClinicalTrials.gov: NCT00981877 Source of funding The Finnish Work Environment Fund and the National Institute for Health and Welfare.

  14. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  15. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  16. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    International Nuclear Information System (INIS)

    Wolny-Marszalek, M.

    2007-10-01

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  17. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Wolny-Marszalek, M [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego str., 31-342, Cracow (Poland)

    2007-10-15

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  18. Effects of water quality, sanitation, handwashing, and nutritional interventions on child development in rural Kenya (WASH Benefits Kenya): a cluster-randomised controlled trial.

    Science.gov (United States)

    Stewart, Christine P; Kariger, Patricia; Fernald, Lia; Pickering, Amy J; Arnold, Charles D; Arnold, Benjamin F; Hubbard, Alan E; Dentz, Holly N; Lin, Audrie; Meerkerk, Theodora J; Milner, Erin; Swarthout, Jenna; Colford, John M; Null, Clair

    2018-04-01

    Poor nutrition and infectious diseases can prevent children from reaching their developmental potential. We aimed to assess the effects of improvements in water, sanitation, handwashing, and nutrition on early child development in rural Kenya. In this cluster-randomised controlled trial, we enrolled pregnant women in their second or third trimester from three counties (Kakamega, Bungoma, and Vihiga) in Kenya's western region, with an average of 12 households per cluster. Groups of nine geographically adjacent clusters were block-randomised, using a random number generator, into the six intervention groups (including monthly visits to promote target behaviours), a passive control group (no visits), or a double-sized active control group (monthly household visits to measure child mid-upper arm circumference). The six intervention groups were: chlorinated drinking water; improved sanitation; handwashing with soap; combined water, sanitation, and handwashing; improved nutrition through counselling and provision of lipid-based nutrient supplements; and combined water, sanitation, handwashing, and nutrition. Here we report on the prespecified secondary child development outcomes: gross motor milestone achievement assessed with the WHO module at year 1, and communication, gross motor, personal social, and combined scores measured by the Extended Ages and Stages Questionnaire (EASQ) at year 2. Masking of participants was not possible, but data assessors were masked. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01704105. Between Nov 27, 2012, and May 21, 2014, 8246 women residing in 702 clusters were enrolled. No clusters were lost to follow-up, but 2212 households with 2279 children were lost to follow-up by year 2. 5791 (69%) children were measured at year 1 and 6107 (73%) at year 2. At year 1, compared with the active control group, the combined water, sanitation, handwashing, and nutrition group had greater rates of

  19. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling; Etude theorique a l'echelle nanometrique du carbure de silicium sous irradiation: modelisation classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, G

    2006-10-15

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  20. The role of the bimodal distribution of ultra-fine silicon phase and nano-scale V-phase (AlSi2Sc2) on spark plasma sintered hypereutectic Al–Si–Sc alloys

    International Nuclear Information System (INIS)

    Raghukiran, Nadimpalli; Kumar, Ravi

    2016-01-01

    Hypereutectic Al–Si and Al–Si–Sc alloys were spark plasma sintered from corresponding gas-atomized powders. The microstructures of the Al–Si and Al–Si–Sc alloys possessed remarkably refined silicon particles in the size range of 0.38–3.5 µm and 0.35–1.16 µm respectively in contrast to the silicon particles of size greater than 100 µm typically found in conventionally cast alloys. All the sintered alloys exhibited significant ductility of as high as 85% compressive strain without failure even with the presence of relatively higher weight fraction of the brittle silicon phase. Moreover, the Al–Si–Sc alloys have shown appreciable improvement in the compressive strength over their binary counterparts due to the presence of intermetallic compound AlSi 2 Sc 2 of size 10–20 nm distributed uniformly in the matrix of those alloys. The dry sliding pin-on-disc wear tests showed improvement in the wear performance of the sintered alloys with increase in silicon content in the alloys. Further, the Al–Si–Sc ternary alloys with relatively lesser silicon content exhibited appreciable improvement in the wear resistance over their binary counterparts. The Al–Si–Sc alloys with bimodal distribution of the strengthening phases consisting of ultra-fine (sub-micron size) silicon particles and the nano-scale AlSi 2 Sc 2 improved the strength and wear properties of the alloys while retaining significant amount of ductility.

  1. A cluster-randomized trial assessing the impact of school water, sanitation, and hygiene improvements on pupil enrollment and gender parity in enrollment.

    Science.gov (United States)

    Garn, Joshua V; Greene, Leslie E; Dreibelbis, Robert; Saboori, Shadi; Rheingans, Richard D; Freeman, Matthew C

    2013-10-01

    We employed a cluster randomized trial design to measure the impact of a school based water, sanitation, and hygiene (WASH) improvement on pupil enrollment and on gender parity in enrollment, in primary schools in Nyanza Province, Kenya (2007-2009). Among schools with poor water access during the dry season, those that received a water supply, hygiene promotion and water treatment (HP&WT) and sanitation improvement, demonstrated increased enrollment (β=0.091 [0.009, 0.173] p=0.03), which translates to 26 additional pupils per school on average. The proportion of girls enrolled in school also increased by 4% (prevalence ratio (PR)=1.04 [1.00, 1.07] p=0.02). Among schools with better baseline water access during the dry season (schools that didn't receive a water source), we found no evidence of increased enrollment in schools that received a HP&WT intervention (β=0.016 [-0.039, 0.072] p=0.56) or the HP&WT and sanitation intervention (β=0.027 [-0.028, 0.082]p=0.34), and there was no evidence of improved gender parity (PR=0.99 [0.96, 1.02] p=0.59, PR=1.00 [0.97, 1.02] p=0.75, respectively). Our findings suggest that increased school enrollment and improved gender parity may be influenced by a comprehensive WASH program that includes an improved water source; schools with poor water access during the dry season may benefit most from these interventions.

  2. Hydration of alcohol clusters in 1-propanol-water mixture studied by quasielastic neutron scattering and an interpretation of anomalous excess partial molar volume.

    Science.gov (United States)

    Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O

    2006-08-21

    Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.

  3. A stepped wedge, cluster-randomized trial of a household UV-disinfection and safe storage drinking water intervention in rural Baja California Sur, Mexico.

    Science.gov (United States)

    Gruber, Joshua S; Reygadas, Fermin; Arnold, Benjamin F; Ray, Isha; Nelson, Kara; Colford, John M

    2013-08-01

    In collaboration with a local non-profit organization, this study evaluated the expansion of a program that promoted and installed Mesita Azul, an ultraviolet-disinfection system designed to treat household drinking water in rural Mexico. We conducted a 15-month, cluster-randomized stepped wedge trial by randomizing the order in which 24 communities (444 households) received the intervention. We measured primary outcomes (water contamination and diarrhea) during seven household visits. The intervention increased the percentage of households with access to treated and safely stored drinking water (23-62%), and reduced the percentage of households with Escherichia coli contaminated drinking water (risk difference (RD): -19% [95% CI: -27%, -14%]). No significant reduction in diarrhea was observed (RD: -0.1% [95% CI: -1.1%, 0.9%]). We conclude that household water quality improvements measured in this study justify future promotion of the Mesita Azul, and that future studies to measure its health impact would be valuable if conducted in populations with higher diarrhea prevalence.

  4. Measuring User Compliance and Cost Effectiveness of Safe Drinking Water Programs: A Cluster-Randomized Study of Household Ultraviolet Disinfection in Rural Mexico.

    Science.gov (United States)

    Reygadas, Fermín; Gruber, Joshua S; Dreizler, Lindsay; Nelson, Kara L; Ray, Isha

    2018-03-01

    Low adoption and compliance levels for household water treatment and safe storage (HWTS) technologies have made it challenging for these systems to achieve measurable health benefits in the developing world. User compliance remains an inconsistently defined and poorly understood feature of HWTS programs. In this article, we develop a comprehensive approach to understanding HWTS compliance. First, our Safe Drinking Water Compliance Framework disaggregates and measures the components of compliance from initial adoption of the HWTS to exclusive consumption of treated water. We apply this framework to an ultraviolet (UV)-based safe water system in a cluster-randomized controlled trial in rural Mexico. Second, we evaluate a no-frills (or "Basic") variant of the program as well as an improved (or "Enhanced") variant, to test if subtle changes in the user interface of HWTS programs could improve compliance. Finally, we perform a full-cost analysis of both variants to assess their cost effectiveness (CE) in achieving compliance. We define "compliance" strictly as the habit of consuming safe water. We find that compliance was significantly higher in the groups where the UV program variants were rolled out than in the control groups. The Enhanced variant performed better immediately postintervention than the Basic, but compliance (and thus CE) degraded with time such that no effective difference remained between the two versions of the program.

  5. Cluster-randomised controlled trials of individual and combined water, sanitation, hygiene and nutritional interventions in rural Bangladesh and Kenya: the WASH Benefits study design and rationale

    Science.gov (United States)

    Arnold, Benjamin F; Null, Clair; Luby, Stephen P; Unicomb, Leanne; Stewart, Christine P; Dewey, Kathryn G; Ahmed, Tahmeed; Ashraf, Sania; Christensen, Garret; Clasen, Thomas; Dentz, Holly N; Fernald, Lia C H; Haque, Rashidul; Hubbard, Alan E; Kariger, Patricia; Leontsini, Elli; Lin, Audrie; Njenga, Sammy M; Pickering, Amy J; Ram, Pavani K; Tofail, Fahmida; Winch, Peter J; Colford, John M

    2013-01-01

    Introduction Enteric infections are common during the first years of life in low-income countries and contribute to growth faltering with long-term impairment of health and development. Water quality, sanitation, handwashing and nutritional interventions can independently reduce enteric infections and growth faltering. There is little evidence that directly compares the effects of these individual and combined interventions on diarrhoea and growth when delivered to infants and young children. The objective of the WASH Benefits study is to help fill this knowledge gap. Methods and analysis WASH Benefits includes two cluster-randomised trials to assess improvements in water quality, sanitation, handwashing and child nutrition—alone and in combination—to rural households with pregnant women in Kenya and Bangladesh. Geographically matched clusters (groups of household compounds in Bangladesh and villages in Kenya) will be randomised to one of six intervention arms or control. Intervention arms include water quality, sanitation, handwashing, nutrition, combined water+sanitation+handwashing (WSH) and WSH+nutrition. The studies will enrol newborn children (N=5760 in Bangladesh and N=8000 in Kenya) and measure outcomes at 12 and 24 months after intervention delivery. Primary outcomes include child length-for-age Z-scores and caregiver-reported diarrhoea. Secondary outcomes include stunting prevalence, markers of environmental enteropathy and child development scores (verbal, motor and personal/social). We will estimate unadjusted and adjusted intention-to-treat effects using semiparametric estimators and permutation tests. Ethics and dissemination Study protocols have been reviewed and approved by human subjects review boards at the University of California, Berkeley, Stanford University, the International Centre for Diarrheal Disease Research, Bangladesh, the Kenya Medical Research Institute, and Innovations for Poverty Action. Independent data safety monitoring

  6. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  7. Cluster Headache

    Science.gov (United States)

    ... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...

  8. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  10. Categorias Cluster

    OpenAIRE

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  11. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: findings from the Multiple Indicator Cluster Surveys, 2000–2011

    Science.gov (United States)

    Tuyet-Hanh, Tran Thi; Lee, Jong-Koo; Oh, Juhwan; Van Minh, Hoang; Ou Lee, Chul; Hoan, Le Thi; Nam, You-Seon; Long, Tran Khanh

    2016-01-01

    Background Despite progress made by the Millennium Development Goal (MDG) number 7.C, Vietnam still faces challenges with regard to the provision of access to safe drinking water and basic sanitation. Objective This paper describes household trends in access to improved water sources and sanitation facilities separately, and analyses factors associated with access to improved water sources and sanitation facilities in combination. Design Secondary data from the Vietnam Multiple Indicator Cluster Survey in 2000, 2006, and 2011 were analyzed. Descriptive statistics and tests of significance describe trends over time in access to water and sanitation by location, demographic and socio-economic factors. Binary logistic regressions (2000, 2006, and 2011) describe associations between access to water and sanitation, and geographic, demographic, and socio-economic factors. Results There have been some outstanding developments in access to improved water sources and sanitation facilities from 2000 to 2011. In 2011, the proportion of households with access to improved water sources and sanitation facilities reached 90% and 77%, respectively, meeting the 2015 MDG targets for safe drinking water and basic sanitation set at 88% and 75%, respectively. However, despite these achievements, in 2011, only 74% of households overall had access to combined improved drinking water and sanitation facilities. There were also stark differences between regions. In 2011, only 47% of households had access to both improved water and sanitation facilities in the Mekong River Delta compared with 94% in the Red River Delta. In 2011, households in urban compared to rural areas were more than twice as likely (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.9–2.5) to have access to improved water and sanitation facilities in combination, and households in the highest compared with the lowest wealth quintile were over 40 times more likely (OR: 42.3; 95% CI: 29.8–60.0). Conclusions More

  12. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: findings from the Multiple Indicator Cluster Surveys, 2000–2011

    Directory of Open Access Journals (Sweden)

    Tran Thi Tuyet-Hanh

    2016-02-01

    Full Text Available Background: Despite progress made by the Millennium Development Goal (MDG number 7.C, Vietnam still faces challenges with regard to the provision of access to safe drinking water and basic sanitation. Objective: This paper describes household trends in access to improved water sources and sanitation facilities separately, and analyses factors associated with access to improved water sources and sanitation facilities in combination. Design: Secondary data from the Vietnam Multiple Indicator Cluster Survey in 2000, 2006, and 2011 were analyzed. Descriptive statistics and tests of significance describe trends over time in access to water and sanitation by location, demographic and socio-economic factors. Binary logistic regressions (2000, 2006, and 2011 describe associations between access to water and sanitation, and geographic, demographic, and socio-economic factors. Results: There have been some outstanding developments in access to improved water sources and sanitation facilities from 2000 to 2011. In 2011, the proportion of households with access to improved water sources and sanitation facilities reached 90% and 77%, respectively, meeting the 2015 MDG targets for safe drinking water and basic sanitation set at 88% and 75%, respectively. However, despite these achievements, in 2011, only 74% of households overall had access to combined improved drinking water and sanitation facilities. There were also stark differences between regions. In 2011, only 47% of households had access to both improved water and sanitation facilities in the Mekong River Delta compared with 94% in the Red River Delta. In 2011, households in urban compared to rural areas were more than twice as likely (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.9–2.5 to have access to improved water and sanitation facilities in combination, and households in the highest compared with the lowest wealth quintile were over 40 times more likely (OR: 42.3; 95% CI: 29.8–60

  13. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: findings from the Multiple Indicator Cluster Surveys, 2000-2011.

    Science.gov (United States)

    Tuyet-Hanh, Tran Thi; Lee, Jong-Koo; Oh, Juhwan; Van Minh, Hoang; Ou Lee, Chul; Hoan, Le Thi; Nam, You-Seon; Long, Tran Khanh

    2016-01-01

    Despite progress made by the Millennium Development Goal (MDG) number 7.C, Vietnam still faces challenges with regard to the provision of access to safe drinking water and basic sanitation. This paper describes household trends in access to improved water sources and sanitation facilities separately, and analyses factors associated with access to improved water sources and sanitation facilities in combination. Secondary data from the Vietnam Multiple Indicator Cluster Survey in 2000, 2006, and 2011 were analyzed. Descriptive statistics and tests of significance describe trends over time in access to water and sanitation by location, demographic and socio-economic factors. Binary logistic regressions (2000, 2006, and 2011) describe associations between access to water and sanitation, and geographic, demographic, and socio-economic factors. There have been some outstanding developments in access to improved water sources and sanitation facilities from 2000 to 2011. In 2011, the proportion of households with access to improved water sources and sanitation facilities reached 90% and 77%, respectively, meeting the 2015 MDG targets for safe drinking water and basic sanitation set at 88% and 75%, respectively. However, despite these achievements, in 2011, only 74% of households overall had access to combined improved drinking water and sanitation facilities. There were also stark differences between regions. In 2011, only 47% of households had access to both improved water and sanitation facilities in the Mekong River Delta compared with 94% in the Red River Delta. In 2011, households in urban compared to rural areas were more than twice as likely (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.9-2.5) to have access to improved water and sanitation facilities in combination, and households in the highest compared with the lowest wealth quintile were over 40 times more likely (OR: 42.3; 95% CI: 29.8-60.0). More efforts are required to increase household access to

  14. Numerical experiment designs: study of the vibrational behaviour of the control rod cluster of a pressurized water reactor

    International Nuclear Information System (INIS)

    Soulier, B.; Bosselut, D.; Regnier, G.

    1997-01-01

    A finite element model has been performed at EDF to simulate the vibrations of control rod cluster assembly and to analyse the wear phenomenon of control rods. A parametrical study bas been performed for a given computer experiment domain with an experimental design method. The building of the computer experiment design is described. The influence of parameters on calculated mean wear power has been determined along rods and responses surfaces have been easily approximated. Systematism and closeness of experiment design technique is underlined. (authors)

  15. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  16. Horticultural cluster

    OpenAIRE

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  17. Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering

    Directory of Open Access Journals (Sweden)

    Jong Goo Kim

    2016-03-01

    Full Text Available Homodimeric hemoglobin (HbI consisting of two subunits is a good model system for investigating the allosteric structural transition as it exhibits cooperativity in ligand binding. In this work, as an effort to extend our previous study on wild-type and F97Y mutant HbI, we investigate structural dynamics of a mutant HbI in solution to examine the role of well-organized interfacial water cluster, which has been known to mediate intersubunit communication in HbI. In the T72V mutant of HbI, the interfacial water cluster in the T state is perturbed due to the lack of Thr72, resulting in two less interfacial water molecules than in wild-type HbI. By performing picosecond time-resolved X-ray solution scattering experiment and kinetic analysis on the T72V mutant, we identify three structurally distinct intermediates (I1, I2, and I3 and show that the kinetics of the T72V mutant are well described by the same kinetic model used for wild-type and F97Y HbI, which involves biphasic kinetics, geminate recombination, and bimolecular CO recombination. The optimized kinetic model shows that the R-T transition and bimolecular CO recombination are faster in the T72V mutant than in the wild type. From structural analysis using species-associated difference scattering curves for the intermediates, we find that the T-like deoxy I3 intermediate in solution has a different structure from deoxy HbI in crystal. In addition, we extract detailed structural parameters of the intermediates such as E-F distance, intersubunit rotation angle, and heme-heme distance. By comparing the structures of protein intermediates in wild-type HbI and the T72V mutant, we reveal how the perturbation in the interfacial water cluster affects the kinetics and structures of reaction intermediates of HbI.

  18. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  19. Dependence of the Internal Structure on Water/Particle Volume Ratio in an Amphiphilic Janus Particle-Water-Oil Ternary System: From Micelle-like Clusters to Emulsions of Spherical Droplets.

    Science.gov (United States)

    Noguchi, Tomohiro G; Iwashita, Yasutaka; Kimura, Yasuyuki

    2017-01-31

    Amphiphilic Janus particles (AJP), composed of hydrophilic and hydrophobic hemispheres, are one of the simplest anisotropic colloids, and they exhibit higher surface activities than particles with homogeneous surface properties. Consequently, a ternary system of AJP, water, and oil can form extremely stable Pickering emulsions, with internal structures that depend on the Janus structure of the particles and the system composition. However, the detail of these structures has not been fully explored, especially for the composition range where the amount of the minority liquid phase and AJP are comparable, where one would expect the Janus characteristics to be directly reflected. In this study, we varied the volume ratio of the particles and the minority liquid phase, water, by 2 orders of magnitude around the comparable composition range, and observed the resultant structures at the resolution of the individual particle dimensions by optical microscopy. When the volume ratio of water is smaller than that of the Janus particles, capillary interactions between the hydrophilic hemispheres of the particles induce micelle-like clusters in which the hydrophilic sides of the particles face inward. With increasing water content, these clusters grow into a rodlike morphology. When the water volume exceeds that of the particles, the structure transforms into an emulsion state composed of spherical droplets, colloidosomes, because of the surface activity of particles at the liquid-liquid interface. Thus, we found that a change in volume fraction alters the mechanism of structure formation in the ternary system, and large resulting morphological changes in the self-assembled structures reflect the anisotropy of the particles. The self-assembly shows essential commonalities with that in microemulsions of surfactant molecules, however the AJP system is stabilized only kinetically. Analysis of the dependence of the emulsion droplet size on composition shows that almost all the

  20. Nano-scale study of phase separation in ferrite of long term thermally aged Mo-bearing duplex stainless steels - Atom probe tomography and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pareige, C.; Emo, J.; Pareige, P.; Saillet, S.; Domain, C.

    2015-01-01

    Duplex stainless steels (DSS), used in primary circuit of Pressurised Water Reactor (PWR), are prone to thermal ageing at service temperature, typically between 286 and 323 C. degrees. This ageing is due to the ferrite decomposition via two kinds of phase transformations: spinodal decomposition into Fe rich α zones and Cr rich α' zones and precipitation of G-phase enriched in Ni, Si, Mn and Mo. It has been shown by atom probe tomography (APT) that the G-phase particles form at the interface between α and α' regions thereby demonstrating that α-α' decomposition and G-phase precipitation are highly dependent. The synergy between the two decomposition processes should be related to both the thermodynamics of the system and the diffusion mechanisms active during ageing. This can be studied by atomistic kinetic Monte Carlo (AKMC) with a model that can reproduce the phase transformations which take place in ferrite of duplex stainless steels. This paper presents the first simulations of the kinetics of spinodal decomposition and G-phase precipitation occurring in ferrite of duplex stainless steels. The kinetics was simulated using a simple but effective atomic kinetic Monte Carlo model in a ternary alloy. The simulations reproduced the α/α' spinodal structure with precipitates at the α/α' interface. The comparison of simulated results with experiments shows that the simulations quantitatively reproduce the kinetics of phase transformation and the synergy observed experimentally between the spinodal decomposition and G-phase precipitation: the time evolution of the wavelength of the spinodal decomposition and the radius of G-phase precipitates were quantitatively reproduced. The simulations endorse the assumption that G-phase precipitation mainly results from the rejection of G-formers from α and α' domains. By following the vacancy pathway during simulation, we show that coarsening of the G-phase precipitates must proceed via

  1. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes

    International Nuclear Information System (INIS)

    Kang, Hyeonggon; Attota, Ravikiran; Tondare, Vipin; Vladár, András E.; Kavuri, Premsagar

    2015-01-01

    We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements is also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter

  2. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    Science.gov (United States)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  3. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  4. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D

    CERN Document Server

    Tielker, Nicolas; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K. Friedemann; Kast, Stefan M.

    2016-01-01

    We predict cyclohexane–water distribution coefficients (log D7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pKa) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the “Minnesota Solvation Database” (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol−1 for water and 0.8–0.9 kcal mol−1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pKa model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE...

  5. Combining lead isotopes and cluster analysis to distinguish the Guarani and Serra Geral Aquifer Systems and contaminated waters in a highly industrialized area in Southern Brazil.

    Science.gov (United States)

    Kuhn, Isadora Aumond; Roisenberg, Ari

    2017-10-01

    The Rio dos Sinos Watershed area is located at the Middle-West region of the Rio Grande do Sul State, Southern Brazil, along thirty two municipalities and affecting 1.5 million inhabitants and many important industrial centers. Three main aquifers are recognized in the study area: the unconfined-fractured Serra Geral Aquifer System, the porous Guarani Aquifer System, and the Permian Aquitard. This study aims to understand groundwater, surface water and human activity interactions in the Rio dos Sinos Watershed, evaluating the application of stable lead isotopic ratios analyzed for this propose. Thirty six groundwater samples, 8 surface water samples and 5 liquid effluents of tanneries and landfills samples were measured using a Thermal Ionization Mass Spectrometer Thermo-Finnigan and a Neptune Multi-Collector Inductively Coupled Plasma Mass Spectrometer. Groundwater isotopic ratios have a wider range compared to the surface water, with less radiogenic averages 208 Pb/ 204 Pb = 38.1837 vs 38.4050 (standard deviation = 0.2921 vs 0.1343) and 206 Pb/ 204 Pb = 18.2947 vs 18.4766 (standard deviation = 0.2215 vs 0.1059), respectively. Industrial liquid effluents (tanneries and industrial landfill) have averages 208 Pb/ 204 Pb = 38.1956 and 206 Pb/ 204 Pb = 18.3169, distinct from effluent samples of domestic sanitary landfill (averages 208 Pb/ 204 Pb = 38.2353 and 206 Pb/ 204 Pb = 18.6607). Hierarchical cluster analysis led to distinguish six groups of groundwater, representing the three aquifers that occur in the area, two clusters suggesting groundwater mixtures and one demonstrating a highly contaminated groundwater. By analyzing the cluster results and wells' stratigraphic profiles it was possible to distinguish the different aquifers in the area. The Serra Geral Aquifer System has 206 Pb/ 204 Pb ratios between 18.4718 and 18.7089; 207 Pb/ 204 Pb between 15.6692 and 15.6777; 208 Pb/ 204 Pb between 38.6826 and 38.7616; 207 Pb/ 206 Pb between 0.8372 and 0

  6. The Effect of Improved Water Supply on Diarrhea Prevalence of Children under Five in the Volta Region of Ghana: A Cluster-Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Seungman Cha

    2015-09-01

    Full Text Available Although a number of studies have been conducted to explore the effect of water quality improvement, the majority of them have focused mainly on point-of-use water treatment, and the studies investigating the effect of improved water supply have been based on observational or inadequately randomized trials. We report the results of a matched cluster randomized trial investigating the effect of improved water supply on diarrheal prevalence of children under five living in rural areas of the Volta Region in Ghana. We compared the diarrheal prevalence of 305 children in 10 communities of intervention with 302 children in 10 matched communities with no intervention (October 2012 to February 2014. A modified Poisson regression was used to estimate the prevalence ratio. An intention-to-treat analysis was undertaken. The crude prevalence ratio of diarrhea in the intervention compared with the control communities was 0.85 (95% CI 0.74–0.97 for Krachi West, 0.96 (0.87–1.05 for Krachi East, and 0.91 (0.83–0.98 for both districts. Sanitation was adjusted for in the model to remove the bias due to residual imbalance since it was not balanced even after randomization. The adjusted prevalence ratio was 0.82 (95% CI 0.71–0.96 for Krachi West, 0.95 (0.86–1.04 for Krachi East, and 0.89 (0.82–0.97 for both districts. This study provides a basis for a better approach to water quality interventions.

  7. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  8. Nano-scaled chalcogenide-based memories

    International Nuclear Information System (INIS)

    Redaelli, Andrea; Pirovano, Agostino

    2011-01-01

    Today phase change memory (PCM) technology has reached product maturity at 90 and 65 nm nodes, while the 45 nm node is under development and is expected to enter in the market soon. The continuous decrease of the cell size with scaling leads to an effective active area as small as 150 nm 2 and an active volume involved in the phase transformation of about 10 4 nm 3 , thus entering definitively into the nanotechnology world. At this extremely reduced dimension, the reliability of the device must be carefully investigated. In this work we show that the cycling performance of the device is well maintained, not being a problem for either the bipolar transistor or the storage element. The phase transition from the amorphous to the crystalline state is, of course, one of the most interesting phenomena, impacting cell retention capability and device performance. The stochastic nature of nano-nuclei percolation in the amorphous matrix is shown as an important ingredient in the retention of PCM devices. The related dispersion in crystallization times is analyzed through a crystallization Monte Carlo model and a physical insight into nucleation and growth mechanisms is provided.

  9. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nano-scale effects in electrochemistry

    DEFF Research Database (Denmark)

    Meier, J.; Schiøtz, Jakob; Liu, Ping

    2004-01-01

    as the diameter of the palladium particles parallel to the support surface decreases from 200 to 6 nm. Density functional theory (DFT) calculations combined with molecular dynamics (MD) simulations have been used to investigate the origin of the effect. It is concluded that the size effect is given...

  11. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Qaisi, Ramy M.

    2012-01-01

    . One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new

  12. Reactor physics measurements with 19-element ThOsub(2)-sup(235)UOsub(2) cluster fuel in heavy water moderator

    International Nuclear Information System (INIS)

    French, P.M.

    1985-02-01

    Low power lattice physics measurements have been performed with a single rod of 19-element thorium oxide fuel enriched with 1.45 wt. percent sub(235)UOsub(2) (93 percent enriched) in a simulated heavy water moderated and cooled power reactor core. The experiments were designed to provide data relevant to a power reactor irradiation and to obtain some basic information on the physics of uranium-thorium fuel material. Some theoretical flux calculations are summarized and show reasonable agreement with experiment

  13. Clustering of water bodies in unpolluted and polluted environments based on Escherichia coli phylogroup abundance using a simple interaction database

    Directory of Open Access Journals (Sweden)

    Nancy de Castro Stoppe

    2014-12-01

    Full Text Available Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B2(3 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.

  14. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    Science.gov (United States)

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  15. From simple rings to one-dimensional channels with calix[8]arenes, water clusters, and alkali metal ions

    OpenAIRE

    Bergougnant, Rémi D.; Robin, Adeline Y.; Fromm, Katharina M.

    2007-01-01

    The macrocycle 4-tert-butylcalix[8]arene (L) was reacted with alkali metal carbonates (Li₂CO₃, Na₂CO₃, K₂CO₃, Rb₂CO₃, and Cs₂CO₃) at the interface of a biphasic THF/water system. Needle-like crystals with a general formula [Ax(4-tert-butylcalix[8]arene-xH)(THF)y(H₂O)z] (with A=Li, Na, K, Rb, Cs, x=1, 2, y=4, 5, 8, and z=6, 7) were thereby obtained. The solid state structures were investigated by X-ray diffraction of single crystals and by TGA measurements. They do not appear to be maintained ...

  16. The Impact of a School-Based Hygiene, Water Quality and Sanitation Intervention on Soil-Transmitted Helminth Reinfection: A Cluster-Randomized Trial

    Science.gov (United States)

    Freeman, Matthew C.; Clasen, Thomas; Brooker, Simon J.; Akoko, Daniel O.; Rheingans, Richard

    2013-01-01

    We conducted a cluster-randomized trial to assess the impact of a school-based water treatment, hygiene, and sanitation program on reducing infection with soil-transmitted helminths (STHs) after school-based deworming. We assessed infection with STHs at baseline and then at two follow-up rounds 8 and 10 months after deworming. Forty government primary schools in Nyanza Province, Kenya were randomly selected and assigned to intervention or control arms. The intervention reduced reinfection prevalence (odds ratio [OR] 0.56, 95% confidence interval [CI] 0.31–1.00) and egg count (rate ratio [RR] 0.34, CI 0.15–0.75) of Ascaris lumbricoides. We found no evidence of significant intervention effects on the overall prevalence and intensity of Trichuris trichiura, hookworm, or Schistosoma mansoni reinfection. Provision of school-based sanitation, water quality, and hygiene improvements may reduce reinfection of STHs after school-based deworming, but the magnitude of the effects may be sex- and helminth species-specific. PMID:24019429

  17. A Cluster Randomized Controlled Trial to Reduce Childhood Diarrhea Using Hollow Fiber Water Filter and/or Hygiene–Sanitation Educational Interventions

    Science.gov (United States)

    Lindquist, Erik D.; George, C. M.; Perin, Jamie; Neiswender de Calani, Karen J.; Norman, W. Ray; Davis, Thomas P.; Perry, Henry

    2014-01-01

    Safe domestic potable water supplies are urgently needed to reduce childhood diarrheal disease. In periurban neighborhoods in Cochabamba, Bolivia, we conducted a cluster randomized controlled trial to evaluate the efficacy of a household-level hollow fiber filter and/or behavior change communication (BCC) on water, sanitation, and hygiene (WASH) to reduce the diarrheal disease in children less than 5 years of age. In total, 952 households were followed for a period of 12 weeks post-distribution of the study interventions. Households using Sawyer PointONE filters had significantly less diarrheal disease compared with the control arm during the intervention period, which was shown by diarrheal prevalence ratios of 0.21 (95% confidence interval [95% CI] = 0.15–0.30) for the filter arm and 0.27 (95% CI = 0.22–0.34) for the filter and WASH BCC arm. A non-significant reduction in diarrhea prevalence was reported in the WASH BCC study arm households (0.71, 95% CI = 0.59–0.86). PMID:24865680

  18. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    Science.gov (United States)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which

  19. Study design of a cluster-randomized controlled trial to evaluate a large-scale distribution of cook stoves and water filters in Western Province, Rwanda.

    Science.gov (United States)

    Nagel, Corey L; Kirby, Miles A; Zambrano, Laura D; Rosa, Ghislane; Barstow, Christina K; Thomas, Evan A; Clasen, Thomas F

    2016-12-15

    In Rwanda, pneumonia and diarrhea are the first and second leading causes of death, respectively, among children under five. Household air pollution (HAP) resultant from cooking indoors with biomass fuels on traditional stoves is a significant risk factor for pneumonia, while consumption of contaminated drinking water is a primary cause of diarrheal disease. To date, there have been no large-scale effectiveness trials of programmatic efforts to provide either improved cookstoves or household water filters at scale in a low-income country. In this paper we describe the design of a cluster-randomized trial to evaluate the impact of a national-level program to distribute and promote the use of improved cookstoves and advanced water filters to the poorest quarter of households in Rwanda. We randomly allocated 72 sectors (administratively defined units) in Western Province to the intervention, with the remaining 24 sectors in the province serving as controls. In the intervention sectors, roughly 100,000 households received improved cookstoves and household water filters through a government-sponsored program targeting the poorest quarter of households nationally. The primary outcome measures are the incidence of acute respiratory infection (ARI) and diarrhea among children under five years of age. Over a one-year surveillance period, all cases of acute respiratory infection (ARI) and diarrhea identified by health workers in the study area will be extracted from records maintained at health facilities and by community health workers (CHW). In addition, we are conducting intensive, longitudinal data collection among a random sample of households in the study area for in-depth assessment of coverage, use, environmental exposures, and additional health measures. Although previous research has examined the impact of providing household water treatment and improved cookstoves on child health, there have been no studies of national-level programs to deliver these interventions

  20. About calculation results of heat transfer in the fuel assembly clusters cooled by water with supercritical parameters

    International Nuclear Information System (INIS)

    Grabezhnaya, V.A.

    2008-01-01

    Paper reviews the numerical investigation into the heat transfer in the supercritical water cooled fuel assemblies on the basis of the various commercial codes. The turbulence available models specified in the codes describe adequately the experimental data in tubes within the range of flow temperatures away from the pseudocritical point, as well as under high mass velocities. There are k-ε type turbulence models that show qualitatively the local acceleration (slowdown) of the heat transfer in tubes, but they fail to describe the mentioned phenomena quantitatively. To determine the effect of grid spacers on the suppression of the heat transfer local slowdown and on the heat transfer acceleration in fuel assemblies and to ensure more accurate calculation of the fuel element cladding maximum temperature one should perform a number of the experiments making use of the fuel assembly models [ru

  1. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  2. What is the best density functional to describe water clusters: evaluation of widely used density functionals with various basis sets for (H2O)n (n = 1-10)

    Czech Academy of Sciences Publication Activity Database

    Li, F.; Wang, L.; Zhao, J.; Xie, J. R. H.; Riley, Kevin Eugene; Chen, Z.

    2011-01-01

    Roč. 130, 2/3 (2011), s. 341-352 ISSN 1432-881X Institutional research plan: CEZ:AV0Z40550506 Keywords : water cluster * density functional theory * MP2 . CCSD(T) * basis set * relative energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011

  3. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  4. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  5. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  6. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    Science.gov (United States)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  7. Occupational Clusters.

    Science.gov (United States)

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  8. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  9. A kinetic model for impact/sliding wear of pressurized water reactor internal components: Application to rod cluster control assemblies

    International Nuclear Information System (INIS)

    Zbinden, M.

    1996-01-01

    Certain internal components of Pressurized Water Reactors are damaged by wear when subjected to vibration induced by flow. In order to enable predictive calculation of such wear, one must have a model which takes account reliably of real damages. The modelling of wear represents a final link in a succession of numerical calculations which begins by the determination of hydraulic excitations induced by the flow. One proceeds, then, in the dynamic response calculation of the structure to finish up with an estimation of volumetric wear and of the depth of wear scars. A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which correspond to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work

  10. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  11. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  12. Cluster headache

    OpenAIRE

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Abstract Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur ...

  13. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  14. A comparison between burn-out data for 19-rod cluster test-sections cooled by Freon-12 at 155 lb/in2 (abs), and by water at 1000 lb/in2 in vertical upflow

    International Nuclear Information System (INIS)

    Stevens, G.F.; Wood, R.W.

    1966-01-01

    Previous experiments on the Winfrith Freon Rig have produced scaling factors which relate these Freon experiments to the corresponding experiments in water with an accuracy of about 10%. It has also been found that the Freon rig is accurate, economical and easy to use. The scaling factors so obtained have now been tested against data for 19-rod clusters which had previously been tested at Columbia University. This report presents the results of the rod cluster tests in which comparison is made between Freon-12 and water for three test-sections which differ in the means of spacing the individual rods. All the test-sections were heated uniformly with respect to length, but had a radial flux depression of nominally 0.70/1.0. The results provide strong evidence that the scaling factor method using Freon-12 at 155 lb/in 2 (abs) is a useful technique for predicting the behaviour at burn-out of complicated test-sections cooled by boiling water at 1000 lb/in 2 with only one-eighteenth of the power required for the water experiment. In particular, the Freon tests reproduce closely the relative burn-out powers previously measured in water. It has also been found that repeated rebuilding of a nominally unchanged cluster from the same components can produce burn-out powers differing by ± 6%. This new result illustrates the power and value of the Freon technique. (author)

  15. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.; Hou, Siqing

    2017-01-01

    baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number

  16. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  17. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    Science.gov (United States)

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  18. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.

    Science.gov (United States)

    Ariga, Katsuhiko; Urakawa, Toshihiro; Michiue, Atsuo; Kikuchi, Jun-ichi

    2004-08-03

    As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.

  19. Water network-mediated, electron-induced proton transfer in [C{sub 5}H{sub 5}N ⋅ (H{sub 2}O){sub n}]{sup −} clusters

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Andrew F.; Wolke, Conrad T.; Johnson, Mark A., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu [Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520 (United States); Weddle, Gary H. [Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520 (United States); Department of Chemistry, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824 (United States); Archer, Kaye A.; Jordan, Kenneth D., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu [Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 (United States); Kelly, John T.; Tschumper, Gregory S.; Hammer, Nathan I., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu [Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677 (United States)

    2015-10-14

    The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H{sub 2}O){sub n=3−5}]{sup −} clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH{sup (0)}, occupying one of the primary solvation sites of the OH{sup −}. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the “solvent coordinate” at the heart of a prototypical proton-coupled electron transfer reaction.

  20. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...

  1. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  2. Cluster analysis

    OpenAIRE

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  3. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Toyoda, Noriaki; Matsuo, Jiro

    2008-01-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  4. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  5. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  6. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H., E-mail: xuehuma@dlut.edu.cn [Liaoning Provincial Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation

  7. Use of magnetic filtration in waste water treatment

    Directory of Open Access Journals (Sweden)

    Katarína Štefušová

    2012-12-01

    Full Text Available The materials based on iron oxides are widely used for toxic elements removal. Magnetite nanoparticles are good sorbentof arsenic from water, but their practical use is quite limited. The solid/liquid separation of material in the nano-scale range is difficult.In this study, the synthetic magnetite was studied as arsenic sorbent from aqueous solutions with maximum sorption capacityof 40.4 mg/g. Magnetic properties of magnetite allow a relatively simple magnetic separation after arsenic sorption.

  8. The Evolution of Total Phenolic Compounds and Antioxidant Activities during Ripening of Grapes (Vitis vinifera L., cv. Tempranillo Grown in Semiarid Region: Effects of Cluster Thinning and Water Deficit

    Directory of Open Access Journals (Sweden)

    Inmaculada Garrido

    2016-11-01

    Full Text Available A study was made of how water status (rainfed vs. irrigated and crop load (no cluster thinning vs. cluster thinning can together affect the grapes of Vitis vinifera cv. Tempranillo vines growing in a semiarid zone of Extremadura (Spain. The grapes were monitored at different stages of ripening, measuring the peroxidase (POX and superoxide dismutase (SOD antioxidant activities and the phenolic content (flavonoids and phenylpropanoids, together with other parameters. The irrigation regime was adjusted to provide 100% of crop evapotranspiration (ETc. The findings confirmed previous results that both thinning and water deficit advance ripening, while irrigation and high crop load (no thinning lengthen the growth cycle. The SOD activity remained practically constant throughout ripening in the thinned treatments and was always lower than in the unthinned treatments, an aspect which could have been the cause of the observed greater level of lipid peroxidation in the water deficit, thinned treatment. The nonspecific peroxidase activity was very low, especially in the thinned treatments. The effect of thinning was enhanced when combined with water deficit, inducing increases in phenylpropanoids and, above all, flavonoids at the harvest stage of ripening, while leaving the polyphenol oxidase activity (PPO unaffected.

  9. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  10. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  11. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  12. Water

    Science.gov (United States)

    ... drink and water in food (like fruits and vegetables). 6. Of all the earth’s water, how much is ocean or seas? 97 percent of the earth’s water is ocean or seas. 7. How much of the world’s water is frozen? Of all the water on earth, about 2 percent is frozen. 8. How much ...

  13. Cluster headache

    Directory of Open Access Journals (Sweden)

    Ducros Anne

    2008-07-01

    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  14. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  15. Surface Solvation of Halogen Anions in Water Clusters: An ab initio Molecular Dynamics Study of the Cl-(H.sub.2./sub.O).sub.6./sub. Complex

    Czech Academy of Sciences Publication Activity Database

    Tobias, D. J.; Jungwirth, Pavel; Parrinello, M.

    2001-01-01

    Roč. 114, č. 16 (2001), s. 7036-7044 ISSN 0021-9606 R&D Projects: GA MŠk LN00A032 Grant - others:NATO Science Program(XE) CLG-974459 Institutional research plan: CEZ:AV0Z4040901 Keywords : cluster * ab initio molecular dynamics * anionic solvation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.147, year: 2001

  16. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  17. Transportation: Grade 8. Cluster IV.

    Science.gov (United States)

    Calhoun, Olivia H.

    A curriculum guide for grade 8, the document is devoted to the occupational cluster "Transportation." It is divided into five units: surface transportation, interstate transportation, air transportation, water transportation, and subterranean transportation (the Metro). Each unit is introduced by a statement of the topic, the unit's…

  18. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  19. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Federico J. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina); Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Raston, Paul L. [Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807 (United States); Pino, Gustavo A. [INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina)

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.

  20. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  1. Use of fluorescence to probe the surface dynamics during disorder-to-order transition and cluster formation in dihalonaphthalene-water thin films on Al2O3(0001)

    International Nuclear Information System (INIS)

    Evans, M.A.; Hoss, D.R.; Howard, K.E.; Louie, A.D.; Bishop, A.J.; Martin, K.A.; Nishimura, A.M.

    2006-01-01

    Amorphous dihalonaphthalenes that are prepared by vacuum deposition onto a cold Al 2 O 3 surface form electronically excited dimers when optically pumped, and their emission is characteristically red-shifted, broad and featureless compared to the monomeric fluorescence. If the surface is heated, the adlayer undergoes a disorder-to-order transition at a temperature characteristic of the molecule. Since pure crystalline dihalonaphthalenes typically fluoresce and do not exhibit excimeric features, the transition was studied by taking advantage of the changes in the spectral characteristics of the adlayer. These included transmittance, and emission from fluorescence and excimer. The combination of these methods allowed a close look at the surface dynamics of molecules on the surface of Al 2 O 3 as the adlayer was heated from the deposition temperature to desorption. If a bilayer is formed by depositing water onto the surface with the organic adlayer on top, water, with its lower desorption energy, can be made to percolate into the organic layer. The optical probes indicate that the water clearly associates with the organic molecules while the excess water desorbs. By varying the coverage of either the water or the dihalonaphthalene, the stoichiometric composition of the cluster can be determined and are reported here

  2. Protocol for a cluster randomised stepped wedge trial assessing the impact of a community-level hygiene intervention and a water intervention using riverbank filtration technology on diarrhoeal prevalence in India.

    Science.gov (United States)

    McGuinness, Sarah L; O'Toole, Joanne E; Boving, Thomas B; Forbes, Andrew B; Sinclair, Martha; Gautam, Sumit K; Leder, Karin

    2017-03-17

    Diarrhoea is a leading cause of death globally, mostly occurring as a result of insufficient or unsafe water supplies, inadequate sanitation and poor hygiene. Our study aims to investigate the impact of a community-level hygiene education program and a water quality intervention using riverbank filtration (RBF) technology on diarrhoeal prevalence. We have designed a stepped wedge cluster randomised trial to estimate the health impacts of our intervention in 4 rural villages in Karnataka, India. At baseline, surveys will be conducted in all villages, and householders will receive hygiene education. New pipelines, water storage tanks and taps will then be installed at accessible locations in each village and untreated piped river water will be supplied. A subsequent survey will evaluate the impact of hygiene education combined with improved access to greater water volumes for hygiene and drinking purposes (improved water quantity). Villages will then be randomly ordered and RBF-treated water (improved water quality) will be sequentially introduced into the 4 villages in a stepwise manner, with administration of surveys at each time point. The primary outcome is a 7-day period prevalence of self-reported diarrhoea. Secondary outcomes include self-reported respiratory and skin infections, and reported changes in hygiene practices, household water usage and water supply preference. River, tank and tap water from each village, and stored water from a subset of households, will be sampled to assess microbial and chemical quality. Ethics approval was obtained from the Monash University Human Research Ethics Committee in Australia and The Energy and Resources Institute Institutional Ethics Committee in India. The results of the trial will be presented at conferences, published in peer-reviewed journals and disseminated to relevant stakeholders. This study is funded by an Australian National Health and Medical Research Council (NHMRC) project grant. ACTRN12616001286437; pre

  3. WSC-2: a subchannel dryout correlation for water-cooled clusters over the pressure range 3.4-15.9 MPA (500-2300 PSIA)

    International Nuclear Information System (INIS)

    Bowring, R.W.

    1979-05-01

    WSC-2 is a subchannel dryout correlation for use with subchannel analysis computer codes such as HAMBO. It was optimised from 1074 experimental data points from 54 clusters simulating Pressure Tube Reactor, BWR and PWR geometries and covering the pressure range 3.4-15.9 MPa. The correlation errors were(a) PWR - type data: RMS 8.8%, Mean 0.2%,(b) all classes of data: RMS 7.2%, Mean - 0.3%. This represents a significant improvement over the other correlations used for reactor assessment with which it has been compared. (author)

  4. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  5. Stepped-wedge cluster-randomised controlled trial to assess the cardiovascular health effects of a managed aquifer recharge initiative to reduce drinking water salinity in southwest coastal Bangladesh: study design and rationale.

    Science.gov (United States)

    Naser, Abu Mohd; Unicomb, Leanne; Doza, Solaiman; Ahmed, Kazi Matin; Rahman, Mahbubur; Uddin, Mohammad Nasir; Quraishi, Shamshad B; Selim, Shahjada; Shamsudduha, Mohammad; Burgess, William; Chang, Howard H; Gribble, Matthew O; Clasen, Thomas F; Luby, Stephen P

    2017-09-01

    Saltwater intrusion and salinisation have contributed to drinking water scarcity in many coastal regions globally, leading to dependence on alternative sources for water supply. In southwest coastal Bangladesh, communities have few options but to drink brackish groundwater which has been associated with high blood pressure among the adult population, and pre-eclampsia and gestational hypertension among pregnant women. Managed aquifer recharge (MAR), the purposeful recharge of surface water or rainwater to aquifers to bring hydrological equilibrium, is a potential solution for salinity problem in southwest coastal Bangladesh by creating a freshwater lens within the brackish aquifer. Our study aims to evaluate whether consumption of MAR water improves human health, particularly by reducing blood pressure among communities in coastal Bangladesh. The study employs a stepped-wedge cluster-randomised controlled community trial design in 16 communities over five monthly visits. During each visit, we will collect data on participants' source of drinking and cooking water and measure the salinity level and electrical conductivity of household stored water. At each visit, we will also measure the blood pressure of participants ≥20 years of age and pregnant women and collect urine samples for urinary sodium and protein measurements. We will use generalised linear mixed models to determine the association of access to MAR water on blood pressure of the participants. The study protocol has been reviewed and approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). Informed written consent will be taken from all the participants. This study is funded by Wellcome Trust, UK. The study findings will be disseminated to the government partners, at research conferences and in peer-reviewed journals. NCT02746003; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the

  6. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  7. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  8. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  9. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  10. Clustering of correlated networks

    OpenAIRE

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  11. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  12. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, G

    1964-11-15

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 < {delta}t{sub sub} < 174 deg C; Surface heat flux 89 < q/A < 305 W/cm{sup 2}; Mass velocity 94 < m'/F < 900 kg/m{sup 2}/s; Burnout steam quality 0.10 < x{sub BO} < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within {+-} 5 per cent by means of the correlation by Becker et al for flow in smooth channels.

  13. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1964-11-01

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 sub 2 ; Mass velocity 94 2 /s; Burnout steam quality 0.10 BO < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within ± 5 per cent by means of the correlation by Becker et al for flow in smooth channels

  14. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  15. PREFACE: Nuclear Cluster Conference; Cluster'07

    Science.gov (United States)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  16. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  17. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  18. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  19. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe...... or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness...... and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  20. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  1. Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Calero, S.; Krishna, R.

    2015-01-01

    Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner

  2. Pulsed EPR for studying silver clusters

    International Nuclear Information System (INIS)

    Michalik, J.; Wasowicz, T.; Sadlo, J.; Reijerse, E.J.; Kevan, L.

    1996-01-01

    The cationic silver clusters of different nuclearity have been produced by radiolysis of zeolite A and SAPO molecular sieves containing Ag + as exchangeable cations. The pulsed EPR spectroscopy has been applied for studying the local environment of silver cluster in order to understand the mechanism of cluster formation and stabilization. the electron spin echo modulation (ESEM) results on Ag 6 n+ cluster in dehydration zeolite A indicate that the hexameric silver is stabilized only in sodalite cages which are surrounded by α-cages containing no water molecules. Trimeric silver clusters formed in hydrated A zeolites strongly interact with water, thus the paramagnetic center can be considered as a cluster-water adduct. In SAPO-molecular sieves, silver clusters are formed only in the presence of adsorbed alcohol molecules. From ESEM it is determined that Ag 4 n+ in SAPO-42 is stabilized in α cages, where it is directly coordinated by two methanol molecules. Dimeric silver, Ag 2 + in SAPO-5 and SAPO-11 is located in 6-ring channels and interacts with three CH 3 OH molecules, each in different 10 ring or 12 ring channels. The differences of Ag 2 + stability in SAPO-5 and SAPO-11 are also discussed. (Author)

  3. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963......-2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing...... in new resources to the cluster but being quick to withdraw in times of crisis....

  4. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  5. LMC clusters: young

    International Nuclear Information System (INIS)

    Freeman, K.C.

    1980-01-01

    The young globular clusters of the LMC have ages of 10 7 -10 8 y. Their masses and structure are similar to those of the smaller galactic globular clusters. Their stellar mass functions (in the mass range 6 solar masses to 1.2 solar masses) vary greatly from cluster to cluster, although the clusters are similar in total mass, age, structure and chemical composition. It would be very interesting to know why these clusters are forming now in the LMC and not in the Galaxy. The author considers the 'young globular' or 'blue populous' clusters of the LMC. The ages of these objects are 10 7 to 10 8 y, and their masses are 10 4 to 10 5 solar masses, so they are populous enough to be really useful for studying the evolution of massive stars. The author concentrates on the structure and stellar content of these young clusters. (Auth.)

  6. Star clusters and associations

    International Nuclear Information System (INIS)

    Ruprecht, J.; Palous, J.

    1983-01-01

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  7. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  8. Clustering at high redshifts

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1986-01-01

    Evidence for clustering of and with high-redshift QSOs is discussed. QSOs of different redshifts show no clustering, but QSOs of similar redshifts appear to be clustered on a scale comparable to that of galaxies at the present epoch. In addition, spectroscopic studies of close pairs of QSOs indicate that QSOs are surrounded by a relatively high density of absorbing matter, possibly clusters of galaxies

  9. Study of retained austenite and nano-scale precipitation and their effects on properties of a low alloyed multi-phase steel by the two-step intercritical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J.; Han, G., E-mail: hangang@mater.ustb.edu.cn; Zhou, W.H.; Zeng, C.Y.; Shang, C.J., E-mail: cjshang@ustb.edu.cn

    2016-03-15

    Microstructure evolution and properties were studied in a low carbon low alloyed hot-rolled bainitic steel by annealing and annealing plus tempering. Microstructure of the hot-rolled steel consists of lath bainite and martensite. By annealing at 720 °C for 30 min and water quenching, multi-phase microstructure consisting of intercritical ferrite, tempered bainite/martensite, retained austenite and fresh martensite was obtained. With increasing annealing temperature to 760 °C, microstructure of the steel consisted of intercritical ferrite, fresh martensite without retained austenite. After the second step of tempering at 680 °C for samples annealed both at 720 °C and 760 °C, ~ 8–9% volume fraction of retained austenite was obtained in the multi-phase microstructure. Moreover, fine precipitates of VC with size smaller than 10 nm and copper precipitates with size of ~ 10–50 nm were obtained after tempering. Results from scanning transmission electron microscopy (STEM) give evidence to support that the partitioning of Mn, Ni and Cu is of significance for retained austenite stabilization. Due to the combined contribution of multiphase microstructure, the transformation-induced-plasticity effect of retained austenite and strengthening effect of nanometer-sized precipitates, yield strength greater than 800 MPa, yield to tensile ratio of 0.9, uniform elongation of ~ 9% and good low temperature impact toughness of 147 J at − 40 °C were achieved. - Highlights: • Stable retained austenite was produced in a low alloyed steel. • Partition of Mn, Ni and Cu was confirmed by STEM for austenite stabilization. • Nano-sized VC and Cu precipitates were achieved by second tempering. • High strength–high toughness with low Y/T ratio was obtained.

  10. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  11. Size selected metal clusters

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The Optical Absorption Spectra of Small Silver Clusters (5-11) ... Soft Landing and Fragmentation of Small Clusters Deposited in Noble-Gas Films. Harbich, W.; Fedrigo, S.; Buttet, J. Phys. Rev. B 1998, 58, 7428. CO combustion on supported gold clusters. Arenz M ...

  12. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities...

  13. Marketing research cluster analysis

    Directory of Open Access Journals (Sweden)

    Marić Nebojša

    2002-01-01

    Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  14. Marketing research cluster analysis

    OpenAIRE

    Marić Nebojša

    2002-01-01

    One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  15. Minimalist's linux cluster

    International Nuclear Information System (INIS)

    Choi, Chang-Yeong; Kim, Jeong-Hyun; Kim, Seyong

    2004-01-01

    Using barebone PC components and NIC's, we construct a linux cluster which has 2-dimensional mesh structure. This cluster has smaller footprint, is less expensive, and use less power compared to conventional linux cluster. Here, we report our experience in building such a machine and discuss our current lattice project on the machine

  16. Range-clustering queries

    NARCIS (Netherlands)

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  17. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Abstract. Surveys of clusters of galaxies provide us with a powerful probe of the den- sity and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter w. Upcoming Sunyaev–. Zel'dovich (SZ) surveys would provide us large yields of clusters to ...

  18. Design, Intervention Fidelity, and Behavioral Outcomes of a School-Based Water, Sanitation, and Hygiene Cluster-Randomized Trial in Laos

    Directory of Open Access Journals (Sweden)

    Anna N. Chard

    2018-03-01

    Full Text Available Evidence of the impact of water, sanitation, and hygiene (WASH in schools (WinS interventions on pupil absence and health is mixed. Few WinS evaluations rigorously report on output and outcome measures that allow for comparisons of effectiveness between interventions to be made, or for an understanding of why programs succeed. The Water, Sanitation, and Hygiene for Health and Education in Laotian Primary Schools (WASH HELPS study was a randomized controlled trial designed to measure the impact of the United Nations Children’s Fund (UNICEF Laos WinS project on child health and education. We also measured the sustainability of intervention outputs and outcomes, and analyzed the effectiveness of group hygiene activities on behavior change and habit formation. Here, we present the design and intermediate results from this study. We found the WinS project improved the WASH environment in intervention schools; 87.8% of schools received the intervention per design. School-level adherence to outputs was lower; on average, schools met 61.4% of adherence-related criteria. The WinS project produced positive changes in pupils’ school WASH behaviors, specifically increasing toilet use and daily group handwashing. Daily group hygiene activities are effective strategies to improve school WASH behaviors, but a complementary strategy needs to be concurrently promoted for effective and sustained individual handwashing practice at critical times.

  19. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.