WorldWideScience

Sample records for nano-scale electronic devices

  1. Electron transport in nano-scaled piezoelectronic devices

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  2. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  3. A study of inelastic electron-phonon interactions on tunneling magnetoresistance of a nano-scale device

    Modarresi, M.; Roknabadi, M.R.; Shahtahmasbi, N.; Vahedi Fakhrabad, D.; Arabshahi, H.

    2011-01-01

    In this research, we have studied the effect of inelastic electron-phonon interactions on current-voltage characteristic and tunneling magnetoresistance of a polythiophene molecule that is sandwiched between two cobalt electrodes using modified Green's function method as proposed by Walczak. The molecule is described with a modified Su-Schrieffer-Heeger Hamiltonian. The ground state of the molecule is obtained by Hellman-Feynman theorem. Electrodes are described in the wide-band approximation and spin-flip is neglected during conduction. Our calculation results show that with increase in voltage the currents increase and tunneling magnetoresistance decreases. Change in tunneling magnetoresistance due to inelastic interactions is limited in a small bias voltage interval and can be neglected in the other bias voltages. -- Research Highlights: →We investigate the effect of inelastic interaction on transport properties. →Due to inelastic interactions tunneling magnetoresistance decreases. →Decrease in TMR is restricted in a small voltage interval.

  4. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  5. Nano-Scale Devices for Frequency-Based Magnetic Biosensing

    2017-01-31

    show the basic measurement setup (the field is applied perpendicular to the disk plane). A radiofrequency signal is injected across the disk (disks...shown in Fig. 7(a). A spectrum analyser (S.A.) (or a high frequency oscilloscope) is used to measure the radiofrequency STO output signal with Fig...crystals and, via electrical measurements , in magnetic-vortex-containing, isolated micro- and nano-devices. Via micromagnetic simulations, we have largely

  6. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  7. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  8. Theoretical study on junctions in porphyrin oligomers for nano scale devices

    Mizuseki, Hiroshi; Belosludov, Rodion V.; Farajian, Amir A.; Igarashi, Nobuaki; Kawazoe, Yoshiyuki

    2005-01-01

    A unimolecular rectifier could be built by combining two molecular sub-units that contain acceptor or donor groups. Porphyrin possesses good electron-donating properties due to its large, easily ionized, π-conjugated system. In this study, we propose that a rectifier diode could be created by combining two metal porphyrin molecules containing different metal atoms. This function would realize an effect similar to a p-n junction in a solid-state device. A Zn porphyrin-Ni porphyrin junction in a non-conjugated porphyrin system displays a localization of frontier orbitals that is similar to a rectifier function

  9. Gallium Nitride: A Nano scale Study using Electron Microscopy and Associated Techniques

    Mohammed Benaissa; Vennegues, Philippe

    2008-01-01

    A complete nano scale study on GaN thin films doped with Mg. This study was carried out using TEM and associated techniques such as HREM, CBED, EDX and EELS. It was found that the presence of triangular defects (of few nanometers in size) within GaN:Mg films were at the origin of unexpected electrical and optical behaviors, such as a decrease in the free hole density at high Mg doping. It is shown that these defects are inversion domains limited with inversion-domains boundaries. (author)

  10. Laser direct writing of micro- and nano-scale medical devices

    Gittard, Shaun D; Narayan, Roger J

    2010-01-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  11. Electronic transport properties of nano-scale Si films: an ab initio study

    Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong

    2010-03-01

    Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.

  12. Micro- and nano-scale optical devices for high density photonic integrated circuits at near-infrared wavelengths

    Chatterjee, Rohit

    In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device

  13. Nano scale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    Miskovsky, N.M.; Cutler, P.H.; Miskovsky, N.M.; Cutler, P.H.; Lerne, P.B.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.

    2012-01-01

    We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal) or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp tip or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction) acts as the absorber of the incident radiation and the rectifier. Using current nano fabrication techniques and the selective atomic layer deposition (ALD) process, junctions of 1?nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nano antenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  14. Practical microwave electron devices

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  15. Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study

    Lanzillo, Nicholas A.; Restrepo, Oscar D.; Bhosale, Prasad S.; Cruz-Silva, Eduardo; Yang, Chih-Chao; Youp Kim, Byoung; Spooner, Terry; Standaert, Theodorus; Child, Craig; Bonilla, Griselda; Murali, Kota V. R. M.

    2018-04-01

    We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects.

  16. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  17. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  18. Implantable electronic medical devices

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  19. Computer simulations for the nano-scale

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  20. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  1. Electronic devices and circuits

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  2. Electronic devices and circuits

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  3. Electronic security device

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  4. Electronic security device

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-01-01

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs

  5. Brillouin gain enhancement in nano-scale photonic waveguide

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  6. Electron beam irradiating device

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  7. Device for electron beam machining

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  8. Mechanics over micro and nano scales

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  9. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  10. Metrology at the nano scale

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  11. Pressurized waterproof case electronic device

    Berumen, Michael L.

    2013-01-01

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed

  12. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  13. ELSA electron stretcher devices

    1979-10-01

    The use of an electron stretcher ring at the Bonn electron synchrotron is discussed. The construction of the proposed ring is described, and the costs are estimated. Possible experiments using this ring are discussed. (HSI)

  14. Pressurized waterproof case electronic device

    Berumen, Michael L.

    2013-01-31

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touchscreen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may include a small gas cartridge or may be provided from an external source.

  15. Remote detection of electronic devices

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  16. Electronic portal imaging devices

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  17. Micro and Nano-Scale Technologies for Cell Mechanics

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  18. Polymer electronic devices and materials.

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  19. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  20. Electronic control devices

    Hartill, D.L.

    1981-01-01

    The subject of these lectures is the translation of information from particle detectors to computers. Large solid angle general purpose detectors at the intersection regions of high energy e+e- storage rings and pp and pp storage rings are discussed. Three choices for data acquisition are reviewed: use CAMAC (Computer Aided Measurement and Control), start from scratch and design a system, or wait for the final version of the proposed FASTBUS to be developed. The do-it-yourself procedure includes designs of drift chamber discriminator, time to amplitude converter, and data card block diagram. Trigger systems, the fast decision making systems judging an event interesting enough for a read-out cycle to be initiated, are discussed. Finally, a FASTBUS system layout, with its goals of minimum bus speed, general system topologies, and support multiple smart devices is given

  1. Electron emitting filaments for electron discharge devices

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  2. Electronic device and method of manufacturing an electronic device

    2009-01-01

    An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units

  3. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  4. Synthesis and Characterization of Nano Scale YBCO

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  5. Toughening by nano-scaled twin boundaries in nanocrystals

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  6. Controlling high-throughput manufacturing at the nano-scale

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  7. Fullerene Derived Molecular Electronic Devices

    Menon, Madhu; Srivastava, Deepak; Saini, Subbash

    1998-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.

  8. Capacitor ageing in electronic devices

    Richard B. N. Vital

    2015-10-01

    Full Text Available The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and mechanism of degradation are presented. Additionally, some mathematical models are presented to assist maintenance activities or component replacement. The presented approach compares the operability of intact and aged components.

  9. Design exploration of emerging nano-scale non-volatile memory

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  10. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Alfaraj, Nasir; Ghoneim, Mohamed T.; Kutbee, Arwa T.; Sridharan, Ashvitha; Hussain, Muhammad Mustafa

    2015-01-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  11. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  12. Method of producing nano-scaled inorganic platelets

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  13. Conducting polymer based biomolecular electronic devices

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  14. Carbon footprint of electronic devices

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  15. Single Molecule Electronics and Devices

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  16. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  17. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  18. Contact engineering for nano-scale CMOS

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A device for measuring electron beam characteristics

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  20. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  1. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  2. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  3. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  4. Complications after cardiac implantable electronic device implantations

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  5. Functional nanomaterials and devices for electronics, sensors and energy harvesting

    Balestra, Francis; Kilchytska, Valeriya; Flandre, Denis

    2014-01-01

    This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between “More Moore” and “More than Moore” are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.

  6. Writing to and reading from a nano-scale crossbar memory based on memristors

    Vontobel, Pascal O; Robinett, Warren; Kuekes, Philip J; Stewart, Duncan R; Straznicky, Joseph; Stanley Williams, R

    2009-01-01

    We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded demultiplexers implemented using mixed-scale crossbars (in which CMOS-wires cross nano-wires and in which the crosspoint junctions have one-time configurable memristors). This memory system does not utilize the kind of devices (diodes or transistors) that are normally used to isolate the memory cell being written to and read from in conventional memories. Instead, special techniques are introduced to perform the writing and the reading operation reliably by taking advantage of the nonlinearity of the type of memristors used. After discussing both writing and reading strategies for our memory system in general, we focus on a 64 x 64 memory array and present simulation results that show the feasibility of these writing and reading procedures. Besides simulating the case where all device parameters assume exactly their nominal value, we also simulate the much more realistic case where the device parameters stray around their nominal value: we observe a degradation in margins, but writing and reading is still feasible. These simulation results are based on a device model for memristors derived from measurements of fabricated devices in nano-scale crossbars using Pt and Ti nano-wires and using oxygen-depleted TiO 2 as the switching material.

  7. Topology optimization for nano-scale heat transfer

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  8. Investigation of Electronic Corrosion at Device Level

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    This work presents device level testing of a lead free soldered electronic device tested with bias on under cyclic humidity conditions in a climatic chamber. Besides severe temperature and humidity during testing some devices were deliberately contaminated before testing. Contaminants investigated...

  9. Nano-scaled chalcogenide-based memories

    Redaelli, Andrea; Pirovano, Agostino

    2011-01-01

    Today phase change memory (PCM) technology has reached product maturity at 90 and 65 nm nodes, while the 45 nm node is under development and is expected to enter in the market soon. The continuous decrease of the cell size with scaling leads to an effective active area as small as 150 nm 2 and an active volume involved in the phase transformation of about 10 4 nm 3 , thus entering definitively into the nanotechnology world. At this extremely reduced dimension, the reliability of the device must be carefully investigated. In this work we show that the cycling performance of the device is well maintained, not being a problem for either the bipolar transistor or the storage element. The phase transition from the amorphous to the crystalline state is, of course, one of the most interesting phenomena, impacting cell retention capability and device performance. The stochastic nature of nano-nuclei percolation in the amorphous matrix is shown as an important ingredient in the retention of PCM devices. The related dispersion in crystallization times is analyzed through a crystallization Monte Carlo model and a physical insight into nucleation and growth mechanisms is provided.

  10. Synaptic electronics: materials, devices and applications.

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  11. Synaptic electronics: materials, devices and applications

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  12. Solid-state electronic devices an introduction

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  13. Electronic devices for analog signal processing

    Rybin, Yu K

    2012-01-01

    Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamon...

  14. Graphene nanoribbons for electronic devices

    Geng, Zhansong; Granzner, Ralf; Kittler, Mario; Schwierz, Frank [FG Festkoerperelektronik, Institut fuer Mikro- und Nanoelektronik und Institut fuer Mikro- und Nanotechnologien MacroNano registered, Technische Universitaet Ilmenau (Germany); Haehnlein, Bernd; Auge, Manuel; Pezoldt, Joerg [FG Nanotechnologie, Institut fuer Mikro- und Nanoelektronik und Institut fuer Mikro- und Nanotechnologien MacroNano registered, Technische Universitaet Ilmenau (Germany); Lebedev, Alexander A. [National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation); Division Solid State Electronics, Ioffe Institute, Sankt-Peterburg (Russian Federation); Davydov, Valery Y. [Division Solid State Electronics, Ioffe Institute, Sankt-Peterburg (Russian Federation)

    2017-11-15

    Graphene nanoribbons show unique properties and have attracted a lot of attention in the recent past. Intensive theoretical and experimental studies on such nanostructures at both the fundamental and application-oriented levels have been performed. The present paper discusses the suitability of graphene nanoribbons devices for nanoelectronics and focuses on three specific device types - graphene nanoribbon MOSFETs, side-gate transistors, and three terminal junctions. It is shown that, on the one hand, experimental devices of each type of the three nanoribbon-based structures have been reported, that promising performance of these devices has been demonstrated and/or predicted, and that in part they possess functionalities not attainable with conventional semiconductor devices. On the other hand, it is emphasized that - in spite of the remarkable progress achieved during the past 10 years - graphene nanoribbon devices still face a lot of problems and that their prospects for future applications remain unclear. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Fluctuations in quantum devices

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  16. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  17. High temperature electronic gain device

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  18. Pressurized waterproof case for electronic device

    Berumen, Michael L.

    2013-01-01

    having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touch-screen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein

  19. Thermoelectric effect in nano-scaled lanthanides doped ZnO

    Otal, E H; Canepa, H R; Walsoee de Reca, N E [Centro de Investigacion en Solidos, CITEFA, San Juan Bautista de La Salle 4397 (B1603ALO) Villa Martelli, Buenos Aires (Argentina); Schaeuble, N; Aguirre, M H, E-mail: canepa@citefa.gov.a, E-mail: myriam.aguirre@empa.c [Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2009-05-01

    Start Nano-scaled ZnO with 1% Er doping was prepared by soft chemistry methods. The synthesis was carried out in anhydrous polar solvent to achieve a crystal size of a few nanometers. Resulting particles were processed as precipitates or multi layer films. Structural characterization was evaluated by X-Ray diffraction and transmission and scanning electron microscopy. In the case of films, UV-Vis characterization was made. The thermoelectrical properties of ZnO:Er were evaluated and compared with a typical good thermoelectric material ZnO:Al. Both materials have also shown high Seebeck coefficients and they can be considered as potential compounds for thermoelectric conversion.

  20. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  1. Electronic cooling using thermoelectric devices

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  2. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    T. A. Ismailov; D. V. Evdulov; A. G. Mustafaev; D. K. Ramazanova

    2014-01-01

    In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  3. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  4. INTERFACE ELECTRONIC MEDICAL CARD ON MOBILE DEVICE

    Y. L. Nechyporenko

    2013-05-01

    Full Text Available The concept designed by electronic medical card for heterogeneous environment of medical information systems at various levels. Appropriate model and technical solution. Done evaluating operating systems for mobile devices. Designed and produced by the project mobile application on Android OS as an electronic medical record on a Tablet PC Acer.

  5. Nano-Scale Positioning Design with Piezoelectric Materials

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  6. 2008 Electron Donor Acceptor Interactions Gordon Research Conference-August 3-8, 2009

    Forbes, Malcolm [Univ. of North Carolina, Chapel Hill, NC (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2009-09-19

    The conference presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer and Transport in Molecular and Nano-scale Systems. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices.

  7. Semiconductor-based, large-area, flexible, electronic devices

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. Pressurized waterproof case for electronic device

    Berumen, Michael L.

    2013-01-31

    The pressurized waterproof case for an electronic device is particularly adapted for the waterproof containment and operation of a touch-screen computer or the like therein at some appreciable water depth. The case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touch-screen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may be a small gas cartridge (e.g., CO2), or may be provided from an external source, such as the diver\\'s breathing air. A pressure relief valve is also provided.

  9. New Vacuum Electronic Devices for Radar

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  10. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  11. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  12. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  13. Organic electronic devices using phthalimide compounds

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  14. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-01-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations

  15. Plasmonically enhanced hot electron based photovoltaic device.

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

  16. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Radiation synthesis of the nano-scale materials

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  18. Radiation synthesis of the nano-scale materials

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  19. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  20. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  1. A device for electron gun emittance measurement

    Aune, B.; Corveller, P.; Jablonka, M.; Joly, J.M.

    1985-05-01

    In order to improve the final emittance of the beam delivered by the ALS electron linac a new gun is going to be installed. To measure its emittance and evaluate the contribution of different factors to emittance growth we have developed an emittance measurement device. We describe the experimental and mathematical procedure we have followed, and give some results of measurements

  2. Shelf life of electronic/electrical devices

    Polanco, S.; Behera, A.K.

    1993-01-01

    This paper discusses inconsistencies which exist between various industry practices regarding the determination of shelf life for electrical and electronic components. New methodologies developed to evaluate the shelf life of electrical and electronic components are described and numerous tests performed at Commonwealth Edison Company's Central Receiving Inspection and Testing (CRIT) Facility are presented. Based upon testing and analysis using the Arrhenius methodology and typical materials used in the manufacturing of electrical and electronic components, shelf life of these devices was determined to be indefinite. Various recommendations to achieve an indefinite. Various recommendations to achieve an indefinite shelf life are presented to ultimately reduce inventory and operating costs at nuclear power plants

  3. High performance flexible electronics for biomedical devices.

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  4. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale

    Grunwaldt, Jan-Dierk; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2013-01-01

    This review highlights the importance of developing multi-scale characterisation techniques for analysing operating catalysts in their working environment. We emphasise that a hierarchy of insitu techniques that provides macro-, meso- and nano-scale information is required to elucidate and optimise....../heat/mass transport gradients in shaped catalysts and catalyst grains and c)meso- and nano-scale information about particles and clusters, whose physical and electronic properties are linked directly to the micro-kinetic behaviour of the catalysts. Techniques such as X-ray diffraction (XRD), infrared (IR), Raman, X......-ray photoelectron spectroscopy (XPS), UV/Vis, and X-ray absorption spectroscopy (XAS), which have mainly provided global atomic scale information, are being developed to provide the same information on a more local scale, often with sub-second time resolution. X-ray microscopy, both in the soft and more recently...

  7. Design Optimization of Radionuclide Nano-Scale Batteries

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-01-01

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas

  8. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  9. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  10. Electronic medical devices: a primer for pathologists.

    Weitzman, James B

    2003-07-01

    Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.

  11. Reading from electronic devices versus hardcopy text.

    Hue, Jennifer E; Rosenfield, Mark; Saá, Gianinna

    2014-01-01

    The use of electronic reading devices has increased dramatically. However, some individuals report increased visual symptoms when reading from electronic screens. This investigation compared reading from two electronic devices (Amazon Kindle or Apple Ipod) versus hardcopy text in two groups of 20 subjects. Subjects performed a 20 min reading task for each condition. Both the accommodative response and reading rate were monitored during the trial. Immediately post-task, subjects completed a questionnaire concerning the ocular symptoms experienced during the task. In comparing the Kindle with hardcopy, no significant difference in the total symptom score was observed, although the mean score for the symptoms of tired eyes and eye discomfort was significantly higher with the Kindle. No significant differences in reading rate were found. When comparing the Ipod with hardcopy, no significant differences in symptom scores were found. The mean reading rate with the Ipod was significantly slower than for hardcopy while the mean lag of accommodation was significantly larger for the Ipod. Given the significant increase in symptoms with the Kindle, and larger lag of accommodation and reduced reading rate with the Ipod, one may conclude that reading from electronic devices is not equivalent to hardcopy.

  12. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  13. Electronic voltage and current transformers testing device.

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  14. Ocular Tolerance of Contemporary Electronic Display Devices.

    Clark, Andrew J; Yang, Paul; Khaderi, Khizer R; Moshfeghi, Andrew A

    2018-05-01

    Electronic displays have become an integral part of life in the developed world since the revolution of mobile computing a decade ago. With the release of multiple consumer-grade virtual reality (VR) and augmented reality (AR) products in the past 2 years utilizing head-mounted displays (HMDs), as well as the development of low-cost, smartphone-based HMDs, the ability to intimately interact with electronic screens is greater than ever. VR/AR HMDs also place the display at much closer ocular proximity than traditional electronic devices while also isolating the user from the ambient environment to create a "closed" system between the user's eyes and the display. Whether the increased interaction with these devices places the user's retina at higher risk of damage is currently unclear. Herein, the authors review the discovery of photochemical damage of the retina from visible light as well as summarize relevant clinical and preclinical data regarding the influence of modern display devices on retinal health. Multiple preclinical studies have been performed with modern light-emitting diode technology demonstrating damage to the retina at modest exposure levels, particularly from blue-light wavelengths. Unfortunately, high-quality in-human studies are lacking, and the small clinical investigations performed to date have failed to keep pace with the rapid evolutions in display technology. Clinical investigations assessing the effect of HMDs on human retinal function are also yet to be performed. From the available data, modern consumer electronic displays do not appear to pose any acute risk to vision with average use; however, future studies with well-defined clinical outcomes and illuminance metrics are needed to better understand the long-term risks of cumulative exposure to electronic displays in general and with "closed" VR/AR HMDs in particular. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:346-354.]. Copyright 2018, SLACK Incorporated.

  15. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  16. Guide to state-of-the-art electron devices

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  17. Computational optimization of catalyst distributions at the nano-scale

    Ström, Henrik

    2017-01-01

    Highlights: • Macroscopic data sampled from a DSMC simulation contain statistical scatter. • Simulated annealing is evaluated as an optimization algorithm with DSMC. • Proposed method is more robust than a gradient search method. • Objective function uses the mass transfer rate instead of the reaction rate. • Combined algorithm is more efficient than a macroscopic overlay method. - Abstract: Catalysis is a key phenomenon in a great number of energy processes, including feedstock conversion, tar cracking, emission abatement and optimizations of energy use. Within heterogeneous, catalytic nano-scale systems, the chemical reactions typically proceed at very high rates at a gas–solid interface. However, the statistical uncertainties characteristic of molecular processes pose efficiency problems for computational optimizations of such nano-scale systems. The present work investigates the performance of a Direct Simulation Monte Carlo (DSMC) code with a stochastic optimization heuristic for evaluations of an optimal catalyst distribution. The DSMC code treats molecular motion with homogeneous and heterogeneous chemical reactions in wall-bounded systems and algorithms have been devised that allow optimization of the distribution of a catalytically active material within a three-dimensional duct (e.g. a pore). The objective function is the outlet concentration of computational molecules that have interacted with the catalytically active surface, and the optimization method used is simulated annealing. The application of a stochastic optimization heuristic is shown to be more efficient within the present DSMC framework than using a macroscopic overlay method. Furthermore, it is shown that the performance of the developed method is superior to that of a gradient search method for the current class of problems. Finally, the advantages and disadvantages of different types of objective functions are discussed.

  18. Protein-material interactions: From micro-to-nano scale

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  19. Self-assembly of micro- and nano-scale particles using bio-inspired events

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  20. Electronic equipment and software for device 'FAZA'

    Avdeev, S.P.; Karnaukhov, V.A.; Kuznetsov, V.D.; Petrov, L.A.; Oeschler, H.; Lips, F.; Bart, R.

    1992-01-01

    Electronic equipment and software for the device FAZA are described. The device, designed for studying the nuclear multifragmentation process, consists of 5 time-of-flight telescopes, a position-sensitive avalanche chamber and 58 PM tubes. The time resolution of the time-of-flight telescopes is 0.5 ns, which allows a velocity resolution of 1.5%. The spatial resolution of the large avalanche counter is 4 mm, which allows angular resolution of 1 deg. Analogue signals from each PM tube come to two ADCs, to which strobes are supplied with a 400 ns shift. It allows codes corresponding to Cherenkov radiation and deexcitation of CsJ(Tl) to be distinguished in a two-dimensional plot. 8 refs.; 2 figs

  1. Advanced Materials and Devices for Bioresorbable Electronics.

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of

  2. Multiparametric electronic devices based on nuclear tracks

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  3. Multiparametric electronic devices based on nuclear tracks

    Fink, D.; Saad, A.; Dhamodaran, S.; Chandra, A.; Fahrner, W.R.; Hoppe, K.; Chadderton, L.T.

    2008-01-01

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r ROI around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1μm leading to nanometric TEMPOS structures

  4. 14 CFR 91.21 - Portable electronic devices.

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  5. 46 CFR 28.260 - Electronic position fixing devices.

    2010-10-01

    ... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28...

  6. Non-fullerene electron acceptors for organic photovoltaic devices

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  7. Oxide bipolar electronics: materials, devices and circuits

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  8. Nano-scale processes behind ion-beam cancer therapy

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  9. Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy

    Yang, Qiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Bu, Fanqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yangzhou Hongfu Aluminium Co. Ltd, Yangzhou 100049 (China); Li, Yangde; Li, Weirong [E-ande Scientific & Technology Co. Ltd, Dongguan 523000 (China); Sun, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Liu, Xiaojuan, E-mail: lxjuan@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-04-25

    In this paper we report a quantitative study of the age-hardening in the high-pressure die-cast Mg–4Al−5.6Sm−0.3Mn alloy. The results indicate that a number of nano-scale spherical precipitates identified as Al{sub 3}Sm using high-angle annular dark-field scanning transmission electron microscopy, precipitated in Mg matrix after aging at 150–225 °C, with no obvious changes on grain sizes, intermetallic phases formed during solidification, and dislocation densities. From the existing strengthening theory equations in which some lacking parameters were taken from the first-principles density functional theory (DFT) calculations, a quantitative insight into the strengthening mechanisms of the nano-scale precipitate was formulated. The results are in reasonable agreement with the experimental values, and the operative mechanism of precipitation strengthening was revealed as Orowan dislocation bypassing. - Highlights: • The yield strength of Mg–Al–Sm alloy was improved by aging treatment. • A number of nano-scale precipitates formed in matrix after aging treatments. • The nanoscale precipitate was confirmed as Al{sub 3}Sm based on the data of HAADF-STEM study. • The strengthening mechanisms of the nano-scale precipitate were quantitatively formulated. • The operative mechanism of precipitate strengthening is Orowan dislocation bypassing.

  10. Robust Optimal Design of Quantum Electronic Devices

    Ociel Morales

    2018-01-01

    Full Text Available We consider the optimal design of a sequence of quantum barriers, in order to manufacture an electronic device at the nanoscale such that the dependence of its transmission coefficient on the bias voltage is linear. The technique presented here is easily adaptable to other response characteristics. There are two distinguishing features of our approach. First, the transmission coefficient is determined using a semiclassical approximation, so we can explicitly compute the gradient of the objective function. Second, in contrast with earlier treatments, manufacturing uncertainties are incorporated in the model through random variables; the optimal design problem is formulated in a probabilistic setting and then solved using a stochastic collocation method. As a measure of robustness, a weighted sum of the expectation and the variance of a least-squares performance metric is considered. Several simulations illustrate the proposed technique, which shows an improvement in accuracy over 69% with respect to brute-force, Monte-Carlo-based methods.

  11. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  12. Device for the radiation centering at electron emitters

    Panzer, S.; Ardenne, T. von; Jessat, K.; Bahr, G.

    1985-01-01

    The invention has been directed at a device for a simplified and reliable centering of electron beams at electron emitters in particular for welding and thermal surface modifications. The electron beam has been focussed relatively to an electron-optical lens. A movable masked electron detector has been arranged at the electron beam deflection plane. The electron detector is connected with an electronic data evaluation equipment

  13. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  14. Economic analysis of evolution/devolution of electronic devices functionality

    Esipov A. S.

    2017-12-01

    Full Text Available the researcher of this article has presented the analysis of evolution/devolution of electronic devices functionality as well as the analysis of the current situation at the computers and mobile devices market, and some thoughts about new products. Is a newer device better? Are corporations producing really new devices or they are only the improvement of old ones.

  15. Electronic Payments using Mobile Communication Devices

    Waaij, B.D. van der; Siljee, B.I.J.; Broekhuijsen, B.J.; Ponsioen, C.; Maas, A.; Aten, R.M.; Hoepman, J.H.; Loon, J.H. van; Smit, M.

    2009-01-01

    A method of making a payment uses a first mobile communication device (1) and a second mobile communication device (2), each mobile communication device being provided with a respective near field communication unit (11, 21) and at least one of the mobile communication devices being provided with an

  16. [Electronic Device for Retinal and Iris Imaging].

    Drahanský, M; Kolář, R; Mňuk, T

    This paper describes design and construction of a new device for automatic capturing of eye retina and iris. This device has two possible ways of utilization - either for biometric purposes (persons recognition on the base of their eye characteristics) or for medical purposes as supporting diagnostic device. eye retina, eye iris, device, acquisition, image.

  17. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-12-20

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  18. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-01-01

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology. (paper)

  19. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device

    Lambropoulos, Nicholas A.; Reimers, Jeffrey R.; Crossley, Maxwell J.; Hush, Noel S.; Silverbrook, Kia

    2013-12-01

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  20. Application of high power microwave vacuum electron devices

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  1. MEMS/Electronic Device Design and Characterization Facility

    Federal Laboratory Consortium — This facility allows DoD to design and characterize state-of-the-art microelectromechanical systems (MEMS) and electronic devices. Device designers develop their own...

  2. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  3. Quality assurance for electronic portal imaging devices

    Shalev, S.; Rajapakshe, R.; Gluhchev, G.; Luchka, K.

    1997-01-01

    Electronic portal imaging devices (EPIDS) are assuming an ever-increasing role in the verification of radiation treatment accuracy. They are used both in a passive capacity, for the determination of field displacement distributions (''setup errors''), and also in an active role whereby the patient setup is corrected on the basis of electronic portal images. In spite of their potential impact on the precision of patient treatment, there are few quality assurance procedures available, and most of the EPIDS in clinical use are subject, at best, to only perfunctory quality assurance. The goals of this work are (a) to develop an objective and reproducible test for EPID image quality on the factory floor and during installation of the EPID on site; (b) to provide the user with a simple and accurate tool for acceptance, commissioning, and routine quality control; and (c) to initiate regional, national and international collaboration in the implementation of standardized, objective, and automated quality assurance procedures. To this end we have developed an automated test in which a simple test object is imaged daily, and the spatial and contrast resolution of the EPID are automatically evaluated in terms of ''acceptable'', ''warning'' and ''stop'' criteria. Our experience over two years shows the test to be highly sensitive, reproducible, and inexpensive in time and effort. Inter-institutional trials are under way in Canada, US and Europe which indicate large variations in EPID image quality from one EPID to another, and from one center to another. We expect the new standardized quality assurance procedure to lead to improved, and consistent image quality, increased operator acceptance of the technology, and agreement on uniform standards by equipment suppliers and health care agencies. (author)

  4. Recent progress in power electronic devices

    Ikeda, Yasuhiko; Yatsuo, Tsutomu

    1987-02-01

    Recent progress and future trends of power semiconductor devices (especially with respect to motor speed control) were described. Conventional discrete devices such as thyristors, bipolar transistors, unipolar transistors and Bi-MOS devices were referenced to. Reference was also made to High Voltage ICs. There has been steady progress with each of these power devices in current carrying capability, voltage blocking capability and switching speed. The Bipolar-MOS integreated device and the High Voltage IC are particularly interesting because their abilities and performances are much enhanced by skillful combination with conventional discrete devices. However, no one device meets all the needs, and it will always be necessary to select the right device for a specific task. (11 figs, 35 refs)

  5. 3D Printed structural electronics: embedding and connecting electronic components into freeform electronic devices

    Maalderink, H.H.H.; Bruning, F.B.J.; Schipper, M.M.R. de; Werff, J.J.J. van der; Germs, W.W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  6. 3D Printed structural electronics : embedding and connecting electronic components into freeform electronic devices

    Maalderink, H.H.; Bruning, F.B.J.; de Schipper, M.R.; van der Werff, J.J.; Germs, W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  7. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  8. Electron beam directed energy device and methods of using same

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  9. Ion age transport: developing devices beyond electronics

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  10. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  11. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination

    Chatraei, Fatemeh; Zare, Hamid R.

    2013-01-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON–GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, k s , for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s −1 respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON–GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k′, for the reduction of iodate and periodate at RuON–GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively. Highlights: ► Ruthenium oxide nanoparticles, RuON, were used for electrocatalytic reduction iodate and periodate. ► Formal potential, E 0 ′, of the surface redox couple of RuON is pH-dependent. ► The heterogeneous electron transfer rate constant values between both analytes and RuON were calculated.

  12. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  13. Molecular electronics with single molecules in solid-state devices

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  14. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  16. Vacuum nanoelectronic devices novel electron sources and applications

    Evtukh, Anatoliy; Yilmazoglu, Oktay; Mimura, Hidenori; Pavlidis, Dimitris

    2015-01-01

    Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.  This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. Unique coverage of quantum physical results for electron-field emission and novel electron sourc...

  17. Bio/Nano Electronic Devices and Sensors

    Jones, W. K

    2008-01-01

    ...) Cold cathode microwave generator and ceramic electron multiplier-ceramic multiplier using a novel secondary electron yield materials of MgO and CNT was demonstrated as well as cooling structures...

  18. Structure and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles derived from controlled crystallization of Nb-rich clusters

    Dai, Lei [College of Materials and Chemical Engineering, Three Gorges University, Yichang 443002 (China); Guo, Qianying [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Liu, Yongchang, E-mail: licmtju@163.com [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China); Yu, Liming; Li, Huijun [State Key Lab of Hydraulic Engineering Simulation and Safety, School of Material Science and Engineering, Tianjin University, Tianjin 300354 (China)

    2016-09-30

    This article describes the microstructural evolution and tensile properties of Fe-Cr model alloy strengthened by nano-scale NbC particles. According to the results obtained from X-ray diffraction and transmission electron microscope with Energy Dispersive Spectrometer, the bcc ultrafine grains and the disordered phase of Nb-rich nano-clusters were observed in the milled powders. The hot pressing (HP) resulted in a nearly equiaxed ferritic grains and dispersed nano-scale NbC (~8 nm) particles. The microstructure studies reveal that the formation of NbC nanoparticles is composed of nucleation and growth of the Nb-rich nano-clusters involving diffusion of their component. At room temperature the material exhibits an ultimate tensile strength of 700 MPa, yield strength of 650 MPa, and total elongation of 11.7 pct. The fracture surface studies reveal that a typical ductile fracture mode has occurred during tensile test.

  19. Automatic shadowing device for electron microscopy

    Bishop, F W; Bogitch, S

    1960-01-01

    For the past ten years in the laboratory of the Department of Nuclear Medicine and Radiation Biology at the University of California, and before that at Rochester, New York, every evaporation was done with the aid of an automatic shadowing device. For several months the automatic shadowing device has been available at the Atomic Bomb Casualty Commission (ABCC) Hiroshima, Japan with the modifications described. 1 reference.

  20. Complementary techniques for solid oxide cell characterisation on micro- and nano-scale

    Wiedenmann, D.; Hauch, A.; Grobety, B.; Mogensen, M.; Vogt, U.

    2009-01-01

    High temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a way with great potential to transform clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. Also, as SOEC can operate in the reverse mode as solid oxide fuel cells (SOFC), during high peak hours e.g. hydrogen can be used in a very efficient way to reconvert chemically stored energy into electrical energy. As solid oxide cells (SOC) are working at high temperatures (700-900 o C), material degradation and evaporation can occur e.g. from the cell sealing material, leading to poisoning effects and aging mechanisms which are decreasing the cell efficiency and long-term durability. In order to investigate such cell degradation processes, thorough examination on SOC often requires the chemical and structural characterisation on the microscopic and the nanoscopic level. The combination of different microscope techniques like conventional scanning electron microscopy (SEM), electron-probe microanalysis (EPMA) and the focused ion-beam (FIB) preparation technique for transmission electron microscopy (TEM) allows performing post mortem analysis on a multi scale level of cells after testing. These complementary techniques can be used to characterize structural and chemical changes over a large and representative sample area (micro-scale) on the one hand, and also on the nano-scale level for selected sample details on the other hand. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Riso DTU, Denmark. Also, results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation from sealing material are discussed. (author)

  1. Transparent oxide electronics from materials to devices

    Martins, Rodrigo; Barquinha, Pedro; Pereira, Luis

    2012-01-01

    Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at lo

  2. Scaling of ion implanted Si:P single electron devices

    Escott, C C; Hudson, F E; Chan, V C; Petersson, K D; Clark, R G; Dzurak, A S

    2007-01-01

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n + ) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number

  3. Study of total ionization dose effects in electronic devices

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  4. Scaling of ion implanted Si:P single electron devices

    Escott, C C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Hudson, F E [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Chan, V C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Petersson, K D [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Clark, R G [Centre for Quantum Computer Technology, School of Physics, UNSW, Sydney, 2052 (Australia); Dzurak, A S [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2007-06-13

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n{sup +}) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number.

  5. Thermal modeling and design of electronic systems and devices

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  6. A study on a nano-scale materials simulation using a PC cluster

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  7. Driver electronic device use in 2013.

    2015-04-01

    The percentage of drivers text-messaging or visibly manipulating : hand-held devices increased from 1.5 percent in : 2012 to 1.7 percent in 2013; however, this was not a statistically : significant increase. Driver hand-held cell phone : use decrease...

  8. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    D. Dey

    2011-01-01

    Full Text Available The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  9. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  10. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  11. Polaron Hopping in Nano-scale Poly(dA–Poly(dT DNA

    Singh Mahi

    2010-01-01

    Full Text Available Abstract We investigate the current–voltage relationship and the temperature-dependent conductance of nano-scale samples of poly(dA–poly(dT DNA molecules. A polaron hopping model has been used to calculate the I–V characteristic of nano-scale samples of DNA. This model agrees with the data for current versus voltage at temperatures greater than 100 K. The quantities G 0 , i 0 , and T 1d are determined empirically, and the conductivity is estimated for samples of poly(dA–poly(dT.

  12. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  13. Molecular electronics with single molecules in solid-state devices.

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  14. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  15. Holmium hafnate: An emerging electronic device material

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S.; Scott, James F.

    2015-01-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho 2 Hf 2 O 7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E g of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices

  16. Holmium hafnate: An emerging electronic device material

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  17. Holmium hafnate: An emerging electronic device material

    Pavunny, Shojan P., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Scott, James F. [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE (United Kingdom)

    2015-03-16

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho{sub 2}Hf{sub 2}O{sub 7} (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E{sub g} of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  18. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  19. Electronic system of TBR tokamak device

    Silva, R.P. da.

    1980-01-01

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt

  20. An examination of safety reports involving electronic flight bags and portable electronic devices

    2014-06-01

    The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...

  1. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi

    2011-01-01

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.

  2. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-11-01

    We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  3. Devices, materials, and processes for nano-electronics: characterization with advanced X-ray techniques using lab-based and synchrotron radiation sources

    Zschech, E.; Wyon, C.; Murray, C.E.; Schneider, G.

    2011-01-01

    Future nano-electronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nano-structures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nano-electronics industry is reviewed. The focus of this paper is on the study of nano-scale device and on-chip interconnect materials, and materials for 3D IC integration as well. (authors)

  4. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  5. Molecular and nanoscale materials and devices in electronics.

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  6. Few-electron Qubits in Silicon Quantum Electronic Devices

    2014-09-01

    Calculation of the charge relaxation time T1 . . . . . . . . . . . . . . 63 5.1 The absence of spin blockade in dual-gated DQD devices . . . . . . . 70...2013. 98 115 [102] M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo , K. Yoshida, T. Taniyama, and S. Tarucha. Nat. Phys., 4:776–779

  7. Nano-scale characterization of white layer in broached Inconel 718

    Chen, Zhe, E-mail: zhe.chen@liu.se [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Colliander, Magnus Hörnqvist; Sundell, Gustav [Department of Physics, Chalmers University of Technology, 41296 Gothenburg (Sweden); Peng, Ru Lin [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Zhou, Jinming [Division of Production and Materials Engineering, Lund University, 22100 Lund (Sweden); Johansson, Sten; Moverare, Johan [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden)

    2017-01-27

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718. TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  8. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Harte, Allan, E-mail: allan.harte@manchester.ac.uk [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Topping, M.; Frankel, P. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jädernäs, D. [Studsvik Nuclear AB, SE 611 82, Nyköping (Sweden); Romero, J. [Westinghouse Electric Company, Columbia, SC (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE 72163 Västerås (Sweden); Darby, E.C. [Rolls Royce Plc., Nuclear Materials, Derby (United Kingdom); Preuss, M. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2017-04-15

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr){sub 2} and Zr{sub 2}(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr){sub 2}, predominantly from the edge region, and homogeneously in the case of Zr{sub 2}(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr{sub 2}(Fe,Ni) SPP with respect to the Zr(Fe,Cr){sub 2}. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed. - Highlights: •Protons emulate the effects of neutron irradiation in the evolution of chemistry and morphology of second phase particles. •Detailed energy-dispersive X-ray spectroscopy reveals heterogeneity in Zr-Fe-Cr SPPs both before and after irradiation. •Zr-Fe-Ni SPPs are delayed in irradiation-induced dissolution due to their better self-solubility with respect to Zr-Fe-Cr.

  9. Charge-coupled device area detector for low energy electrons

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  10. Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal

    Poggiali, Jennifer

    2016-01-01

    This essay proposes that librarians practice ethical consumption when purchasing electronic devices. Though librarians have long been engaged with environmentalism and social justice, few have suggested that such issues as e-waste and sweatshop labor should impact our decisions to acquire e-readers, tablets, and other electronics. This article…

  11. Macroscopic charge quantization in single-electron devices

    Burmistrov, I.S.; Pruisken, A.M.M.

    2010-01-01

    In a recent paper by the authors [I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008)] it was shown that single-electron devices (single-electron transistor or SET) display "macroscopic charge quantization" which is completely analogous to the quantum Hall effect observed on

  12. The mechanical properties modeling of nano-scale materials by molecular dynamics

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  13. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  14. Electronic cigarette devices and oro-facial trauma (Literature review)

    Ghazali, A. F.; Ismail, A. F.; Daud, A.

    2017-08-01

    Detrimental effects of cigarette smoking have been well described and recognized globally. With recent advancement of technology, electronic cigarette has been introduced and gained its popularity and became a global trend, especially among young adults. However, the safety of the electronic devices remains debatable. This paper aimed to compile and review the reported cases of oro-facial trauma related to the usage of electronic cigarette devices. A literature search was conducted using PubMed/Medline in December 2016. The search terms used were a combination of “oral trauma”, “dental trauma”, “oral injury” and “electronic cigarette”. The search included all abstract published from the inception of the database until December 2016. Abstract that was written in English, case report, letter to editors, clinical and human studies were included for analysis. All selected abstract were searched for full articles. A total of 8 articles were included for review. All of the articles were published in 2016 with mostly case reports. The sample size of the studies ranged from 1 to 15 patients. Seven of the included articles are from United States of America and one from Mexico. Our review concluded that the use of electronic cigarette devices posed not only a safety concern but also that the devices were mostly unregulated. There should be a recognized authority body to regulate the safety and standard of the electronic devices.

  15. Progress in Group III nitride semiconductor electronic devices

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  16. Consumers' Use of Personal Electronic Devices in the Kitchen.

    Lando, Amy M; Bazaco, Michael C; Chen, Yi

    2018-02-23

    Smartphones, tablets, and other personal electronic devices have become ubiquitous in Americans' daily lives. These devices are used by people throughout the day, including while preparing food. For example, a device may be used to look at recipes and therefore be touched multiple times during food preparation. Previous research has indicated that cell phones can harbor bacteria, including opportunistic human pathogens such as Staphylococcus and Klebsiella spp. This investigation was conducted with data from the 2016 Food Safety Survey (FSS) and from subsequent focus groups to determine the frequency with which consumers use personal electronic devices in the kitchen while preparing food, the types of devices used, and hand washing behaviors after handling these devices. The 2016 FSS is the seventh wave of a repeated cross-sectional survey conducted by the U.S. Food and Drug Administration in collaboration with the U.S. Department of Agriculture. The goal of the FSS is to evaluate U.S. adult consumer attitudes, behaviors, and knowledge about food safety. The FSS included 4,169 adults that were contacted using a dual-frame (land line and cell phone interviews) random-digit-dial sampling process. The personal electronics module was the first of three food safety topics discussed by each of eight consumer focus groups, which were convened in four U.S. cities in fall 2016. Results from the 2016 FSS revealed that of those individuals who use personal electronic devices while cooking, only about one third reported washing hands after touching the device and before continuing cooking. This proportion is significantly lower than that for self-reported hand washing behaviors after touching risky food products such as raw eggs, meat, chicken, or fish. Results from the focus groups highlight the varied usage of these devices during food preparation and the related strategies consumers are using to incorporate personal electric devices into their cooking routines.

  17. dc-plasma-sprayed electronic-tube device

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  18. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  19. Terrestrial radiation effects in ULSI devices and electronic systems

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  20. Buffer layers and articles for electronic devices

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  1. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  2. Buckling of Thin Films in Nano-Scale

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  3. Nano-scaling law: geometric foundation of thiolated gold nanomolecules.

    Dass, Amala

    2012-04-07

    Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements. This journal is © The Royal Society of Chemistry 2012

  4. Nano-scale orientation mapping of graphite in cast irons

    Theuwissen, Koenraad; Lacaze, Jacques; Véron, Muriel; Laffont, Lydia

    2014-01-01

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  5. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  6. Electronic device for endosurgical skills training (EDEST): study of reliability.

    Pagador, J B; Uson, J; Sánchez, M A; Moyano, J L; Moreno, J; Bustos, P; Mateos, J; Sánchez-Margallo, F M

    2011-05-01

    Minimally Invasive Surgery procedures are commonly used in many surgical practices, but surgeons need specific training models and devices due to its difficulty and complexity. In this paper, an innovative electronic device for endosurgical skills training (EDEST) is presented. A study on reliability for this device was performed. Different electronic components were used to compose this new training device. The EDEST was focused on two basic laparoscopic tasks: triangulation and coordination manoeuvres. A configuration and statistical software was developed to complement the functionality of the device. A calibration method was used to assure the proper work of the device. A total of 35 subjects (8 experts and 27 novices) were used to check the reliability of the system using the MTBF analysis. Configuration values for triangulation and coordination exercises were calculated as 0.5 s limit threshold and 800-11,000 lux range of light intensity, respectively. Zero errors in 1,050 executions (0%) for triangulation and 21 errors in 5,670 executions (0.37%) for coordination were obtained. A MTBF of 2.97 h was obtained. The results show that the reliability of the EDEST device is acceptable when used under previously defined light conditions. These results along with previous work could demonstrate that the EDEST device can help surgeons during first training stages.

  7. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  9. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  10. Introduction to organic electronic and optoelectronic materials and devices

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  11. Development of beam diagnostic devices for characterizing electron guns

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  12. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2

  13. Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons

    Su, Guozhen; Zhang, Yanchao; Cai, Ling; Su, Shanhe; Chen, Jincan

    2015-01-01

    Most electronic cooling devices are powered by an external bias applied between the cold and the hot reservoirs. Here we propose a new concept of electronic cooling, in which cooling is achieved by using a reservoir of hot electrons as the power source. The cooling device incorporates two energy filters with the Lorentzian transmission function to respectively select low- and high-energy electrons for transport. Based on the proposed model, we analyze the performances of the device varying with the resonant levels and half widths of two energy filters and establish the optimal configuration of the cooling device. It is believed that such a novel device may be practically used in some nano-energy fields. - Highlights: • A new electronic cooling device powered by hot electrons is proposed. • Two energy filters are employed to select the electrons for transport. • The effects of the resonant levels and half widths of two filters are discussed. • The maximum cooling power and coefficient of performance are calculated. • The optimal configuration of the cooling device is determined.

  14. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  15. Plykin type attractor in electronic device simulated in MULTISIM

    Kuznetsov, Sergey P.

    2011-12-01

    An electronic device is suggested representing a non-autonomous dynamical system with hyperbolic chaotic attractor of Plykin type in the stroboscopic map, and the results of its simulation with software package NI MULTISIM are considered in comparison with numerical integration of the underlying differential equations. A main practical advantage of electronic devices of this kind is their structural stability that means insensitivity of the chaotic dynamics in respect to variations of functions and parameters of elements constituting the system as well as to interferences and noises.

  16. Electronic firing systems and methods for firing a device

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  17. Optoelectronic Devices Advanced Simulation and Analysis

    Piprek, Joachim

    2005-01-01

    Optoelectronic devices transform electrical signals into optical signals and vice versa by utilizing the sophisticated interaction of electrons and light within micro- and nano-scale semiconductor structures. Advanced software tools for design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics, who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help to better understand internal device physics. The software packages used in the book are available to the public, on a commercial or noncommercial basis, so that the interested r...

  18. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  19. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  20. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  1. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    Li, Weiwei; Liu, Weihao; Jia, Qika

    2016-01-01

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  2. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    2012-06-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2012...

  3. A Web Service and Interface for Remote Electronic Device Characterization

    Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.

    2011-01-01

    A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…

  4. Front and backside processed thin film electronic devices

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  5. Electron density measurement in an evolving plasma. Experimental devices

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  6. In plane optical sensor based on organic electronic devices

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils

  7. Expert system for fault diagnostic in electronic devices

    Benedetti, G

    1984-03-01

    Troubleshooting of electronic devices and highly complex PCBS (printed circuit boards) is an area where expert systems can be used. In addition to the difficulties intrinsic to this area it is also impossible to integrate the amount of knowledge based on experience in a traditional model. 8 references.

  8. Opto-electronic devices with nanoparticles and their assemblies

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  9. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  10. Quasi-particle spectrum of nano-scale conventional and unconventional superconductors under magnetic field

    Kato, Masaru; Suematsu, Hisataka; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu

    2005-01-01

    We have developed a numerical method to solve the Bogoliubov-de Gennes equation for nano-scaled isotropic and d-wave superconductors. It is based on the finite element method, and therefore applicable to arbitrary geometries. We argue the difference of the local density of states between isotropic and a d-wave superconducting square plate. For d-wave case, it appears as intrinsic surface bound states

  11. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  12. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  13. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  15. Development of an irradiation device for electron beam wastewater treatment

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  16. Low power signal processing electronics for wearable medical devices.

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  17. On the OSL curve shape and preheat treatment of electronic components from portable electronic devices

    Woda, Clemens; Greilich, Steffen; Beerten, Koen

    2010-01-01

    The shape of the OSL decay curve and the effect of longer time delays between accidental exposure and readout of alumina-rich electronic components from portable electronic devices are investigated. The OSL decay curve follows a hyperbolic decay function, which is interpreted as an approximation ...

  18. Investigation of ceramic devices by analytical electron microscopy techniques

    Shiojiri, M.; Saijo, H.; Isshiki, T.; Kawasaki, M.; Yoshioka, T.; Sato, S.; Nomura, T.

    1999-01-01

    Ceramics are widely used as capacitors and varistors. Their electrical properties depend on the structure, which is deeply influenced not only by the composition of raw materials and additives but also by heating treatments in the production process. This paper reviews our investigations of SrTiO 3 ceramic devices, which have been performed using various microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), cathodoluminescence scanning electron microscopy (CLSEM), field emission SEM (FE-SEM), energy dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and high angle annular dark field (HAADF) imaging method in a FE-(scanning) transmission electron microscope(FE-(S)TEM). (author)

  19. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  20. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  1. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  2. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  3. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  4. Organic structures design applications in optical and electronic devices

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  5. Device for monitoring electron-ion ring parameters

    Tyutyunnikov, S.I.; Shalyapin, V.N.

    1982-01-01

    The invention is classified as the method of collective ion acceleration. The device for electron-ion ring parameters monitoring is described. The invention is aimed at increasing functional possibilities of the device at the expense of the enchance in the number of the ring controlled parameters. The device comprises three similar plane mirrors installed over accelerating tube circumference and a mirror manufactured in the form of prism and located in the tube centre, as well as the system of synchrotron radiation recording and processing. Two plane mirrors are installed at an angle of 45 deg to the vertical axis. The angle of the third plane mirror 3 α and that of prismatic mirror 2 α to the vertical axis depend on geometric parameters of the ring and accelerating tube and they are determined by the expression α=arc sin R K /2(R T -L), where R K - ring radius, R T - accelerating tube radius, L - the height of segment, formed by the mirror and inner surface of the accelerating tube. The device suggested permits to determine longitudinal dimensions of the ring, its velocity and the number of electrons and ions in the ring

  6. Flexible Organic Electronics in Biology: Materials and Devices.

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charge-coupled device area detector for low energy electrons

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  8. Nanoscale Engineering of Multiferroic Hybrid Composites for Micro- and Nano-scale Devices

    2012-09-14

    presented in Fig.1. In the case of laminate structures we proposed to use AIN as a piezoelectric phase [publication 4]. Although commonly used Pb...16-19, 2009, Zhengzhou, China. 30)L. Malkinski, "Magnetic heterostructures with convoluted architectures" (invited) 7th Workshop on Multifunction

  9. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  10. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  11. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  12. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-01-01

    Graphical abstract: - Highlights: • High integrity supercapacitors are achieved by improving adhesion of CNTs on PET. • Nanostructures on PET substrate significantly enhances the adhesion strength. • A simple RIE process generates the nanostructures on PET surface. • RIE induces hydrophilicity on the PET and further enhances the adhesive strength. • The supercapacitors show good cyclability with high specific capacitance retention. - Abstract: We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge–discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  13. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    Kang, Yu Jin [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Chung, Haegeun [Department of Environmental Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Min-Seop [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Woong, E-mail: woongkim@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-11-15

    Graphical abstract: - Highlights: • High integrity supercapacitors are achieved by improving adhesion of CNTs on PET. • Nanostructures on PET substrate significantly enhances the adhesion strength. • A simple RIE process generates the nanostructures on PET surface. • RIE induces hydrophilicity on the PET and further enhances the adhesive strength. • The supercapacitors show good cyclability with high specific capacitance retention. - Abstract: We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge–discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  14. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  15. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    Kim, Hong-Ki; Lee, Young-Hie, E-mail: yhlee@kw.ac.kr [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); Lee, Seung-Hwan [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); In Kim, Soo; Woo Lee, Chang [Department of Nano and Electronic Physics, Kookmin University, Seoul (Korea, Republic of); Rag Yoon, Jung [R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); Lee, Sung-Gap [Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju (Korea, Republic of)

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  16. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  17. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  18. 3D Design Tools for Vacuum Electron Devices

    Levush, Baruch

    2003-01-01

    A reduction of development costs will have a significant impact on the total cost of the vacuum electron devices. Experimental testing cycles can be reduced or eliminated through the use of simulation-based design methodology, thereby reducing the time and cost of development. Moreover, by use of modern optimization tools for automating the process of seeking specific solution parameters and for studying dependencies of performance on parameters, new performance capabilities can be achieved, without resorting to expensive cycles of hardware fabrication and testing. Simulation-based-design will also provide the basis for sensitivity studies for determining the manufacturing tolerances associated with a particular design. Since material properties can have a critical effect on the performance of the vacuum electron devices, the design tools require precise knowledge of material characteristics, such as dielectric properties of the support rods, loss profile etc. Sensitivity studies must therefore include the effects of materials properties variation on device performance. This will provide insight for choosing the proper technological processes in order to achieve these tolerances, which is of great importance for achieving cost reduction. A successful design methodology depends on the development of accurate and efficient design tools with predictive capabilities. These design tools must be based on realistic models capable of high fidelity representation of geometry and materials, they must have optimization capabilities, and they must be easy to use

  19. Optical sensor array platform based on polymer electronic devices

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  20. Critical appraisal of cardiac implantable electronic devices: complications and management

    Padeletti L

    2011-09-01

    Full Text Available Luigi Padeletti1, Giosuè Mascioli2, Alessandro Paoletti Perini1, Gino Grifoni1, Laura Perrotta1, Procolo Marchese3, Luca Bontempi3, Antonio Curnis31Istituto di Clinica Medica e Cardiologia, Università degli Studi di Firenze, Italia; 2Elettrofisiologia, Istituto Humanitas Gavazzeni, Bergamo, Italia; 3Elettrofisiologia, Spedali Civili, Brescia, ItaliaAbstract: Population aging and broader indications for the implant of cardiac implantable electronic devices (CIEDs are the main reasons for the continuous increase in the use of pacemakers (PMs, implantable cardioverter-defibrillators (ICDs and devices for cardiac resynchronization therapy (CRT-P, CRT-D. The growing burden of comorbidities in CIED patients, the greater complexity of the devices, and the increased duration of procedures have led to an augmented risk of infections, which is out of proportion to the increase in implantation rate. CIED infections are an ominous condition, which often implies the necessity of hospitalization and carries an augmented risk of in-hospital death. Their clinical presentation may be either at pocket or at endocardial level, but they can also manifest themselves with lone bacteremia. The management of these infections requires the complete removal of the device and subsequent, specific, antibiotic therapy. CIED failures are monitored by competent public authorities, that require physicians to alert them to any failures, and that suggest the opportune strategies for their management. Although the replacement of all potentially affected devices is often suggested, common practice indicates the replacement of only a minority of devices, as close follow-up of the patients involved may be a safer strategy. Implantation of a PM or an ICD may cause problems in the patients' psychosocial adaptation and quality of life, and may contribute to the development of affective disorders. Clinicians are usually unaware of the psychosocial impact of implanted PMs and ICDs. The

  1. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Oyewole, D. O.; Anye, V. C.; Zebaze Kana, M. G.

    2015-01-01

    This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices

  2. 77 FR 15390 - Certain Mobile Electronic Devices Incorporating Haptics; Receipt of Amended Complaint...

    2012-03-15

    ... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...

  3. 78 FR 52211 - Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing...

    2013-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...

  4. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  5. Electronic SSKIN pathway: reducing device-related pressure ulcers.

    Campbell, Natalie

    2016-08-11

    This article describes how an interprofessional project in a London NHS Foundation Trust was undertaken to develop an intranet-based medical device-related pressure ulcer prevention and management pathway for clinical staff working across an adult critical care directorate, where life-threatening events require interventions using medical devices. The aim of this project was to improve working policies and processes to define key prevention strategies and provide clinicians with a clear, standardised approach to risk and skin assessment, equipment use, documentation and reporting clinical data using the Trust's CareVue (electronic medical records), Datix (incident reporting and risk-management tool) and eTRACE (online clinical protocol ordering) systems. The process included the development, trial and local implementation of the pathway using collaborative teamwork and the SSKIN care bundle tool. The experience of identifying issues, overcoming challenges, defining best practice and cascading SSKIN awareness training is shared.

  6. Indium antimonide quantum well structures for electronic device applications

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  7. Flexible organic electronic devices: Materials, process and applications

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  8. Analysis of patient setup accuracy using electronic portal imaging device

    Onogi, Yuzo; Aoki, Yukimasa; Nakagawa, Keiichi

    1996-01-01

    Radiation therapy is performed in many fractions, and accurate patient setup is very important. This is more significant nowadays because treatment planning and radiation therapy are more precisely performed. Electronic portal imaging devices and automatic image comparison algorithms let us analyze setup deviations quantitatively. With such in mind we developed a simple image comparison algorithm. Using 2459 electronic verification images (335 ports, 123 treatment sites) generated during the past three years at our institute, we evaluated the results of the algorithm, and analyzed setup deviations according to the area irradiated, use of a fixing device (shell), and arm position. Calculated setup deviation was verified visually and their fitness was classified into good, fair, bad, and incomplete. The result was 40%, 14%, 22%, 24% respectively. Using calculated deviations classified as good (994 images), we analyzed setup deviations. Overall setup deviations described in 1 SD along axes x, y, z, was 1.9 mm, 2.5 mm, 1.7 mm respectively. We classified these deviations into systematic and random components, and found that random error was predominant in our institute. The setup deviations along axis y (cranio-caudal direction) showed larger distribution when treatment was performed with the shell. Deviations along y (cranio-caudal) and z (anterior-posterior) had larger distribution when treatment occurred with the patient's arm elevated. There was a significant time-trend error, whose deviations become greater with time. Within all evaluated ports, 30% showed a time-trend error. Using an electronic portal imaging device and automatic image comparison algorithm, we are able to analyze setup deviations more precisely and improve setup method based on objective criteria. (author)

  9. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  10. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  11. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  12. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H

    2014-01-01

    -implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. CONCLUSION: The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient......BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  13. EMC, RF, and Antenna Systems in Miniature Electronic Devices

    Ruaro, Andrea

    Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems....... The structure allows for effective suppression of radiation from the MED, while taking into consideration the integration and miniaturization aspects. To increase the sensitivity of the system, a compact LNA suitable for on-body applications has been developed. The LNA allows for an increase in the overall...

  14. Electronic transport properties in [n]cycloparaphenylenes molecular devices

    Hu, Lizhi; Guo, Yandong; Yan, Xiaohong; Zeng, Hongli; Zhou, Jie

    2017-07-01

    The electronic transport of [n]cycloparaphenylenes ([n]CPPs) is investigated based on nonequilibrium Green's function formalism in combination with the density-functional theory. Negative differential resistance (NDR) phenomenon is observed. Further analysis shows that the reduction of the transmission peak induced by the bias changing near Fermi energy results in the NDR effect. Replacing the electrode (from carbon chain to Au electrode), doping with N atom and changing the size of the nanohoop (n = 5, 6, 8, 10) have also been studied and the NDR still exists, suggesting the NDR behavior is the intrinsic feature of such [n]CPPs systems, which would be quite useful in future nanoelectronic devices.

  15. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  16. 77 FR 24764 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices

    2012-04-25

    ...-0053] Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices AGENCY... proposed voluntary NHTSA Driver Distraction Guidelines for in-vehicle electronic devices. The agency... Driver Distraction Guidelines for in-vehicle electronic devices (77 FR 11200). The proposed NHTSA...

  17. Characterization of electronics devices for computed tomography dosimetry

    Paschoal, Cinthia Marques Magalhaes

    2012-01-01

    Computed tomography (CT) is an examination of high diagnostic capability that delivers high doses of radiation compared with other diagnostic radiological examinations. The current CT dosimetry is mainly made by using a 100 mm long ionization chamber. However, it was verified that this extension, which is intended to collect ali scattered radiation of the single slice dose profile in CT, is not enough. An alternative dosimetry has been suggested by translating smaller detectors. In this work, commercial electronics devices of small dimensions were characterized for CT dosimetry. The project can be divided in five parts: a) pre-selection of devices; b) electrical characterization of selected devices; e) dosimetric characterization in Iaboratory, using radiation qualities specific to CT, and in a tomograph; d) evaluation of the dose profile in CT scanner (free in air and in head and body dosimetric phantom); e) evaluation of the new MSAD detector in a tomograph. The selected devices were OP520 and OP521 phototransistors and BPW34FS photodiode. Before the dosimetric characterization, three configurations of detectors, with 4, 2 and 1 OP520 phototransistor working as a single detector, were evaluated and the configuration with only one device was the most adequate. Hence, the following tests, for all devices, were made using the configuration with only one device. The tests of dosimetric characterization in laboratory and in a tomograph were: energy dependence, response as a function of air kerma (laboratory) and CTDI 100 (scanner), sensitivity variation and angular dependence. In both characterizations, the devices showed some energy dependence, indicating the need of correction factors depending on the beam energy; their response was linear with the air kerma and the CTDI 100 ; the OP520 phototransistor showed the largest variation in sensitivity with the irradiation and the photodiode was the most stable; the angular dependence was significant in the laboratory and

  18. Passive direct methanol fuel cells for portable electronic devices

    Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H.

    2011-01-01

    Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm 2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm -2 . The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W -1 , and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.

  19. Observation of molecular level behavior in molecular electronic junction device

    Maitani, Masato

    In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs

  20. Volume changes at macro- and nano-scale in epoxy resins studied by PALS and PVT experimental techniques

    Somoza, A. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina) and CICPBA, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar; Salgueiro, W. [IFIMAT-UNCentro, Pinto 399, B7000GHG Tandil (Argentina); Goyanes, S. [LPMPyMC, Depto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Ramos, J. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain); Mondragon, I. [Materials and Technology Group, Departamento de Ingenieria Quimica y M. Ambiente, Escuela University Politecnica, Universidad Pais Vasco/Euskal Herriko Unibertsitatea, Pz. Europa 1, 20018 Donostia/San Sebastian (Spain)

    2007-02-15

    A systematic study on changes in the volumes at macro- and nano-scale in epoxy systems cured with selected aminic hardeners at different pre-cure temperatures is presented. Free- and macroscopic specific-volumes were measured by PALS and pressure-volume-temperature techniques, respectively. An analysis of the relation existing between macro- and nano-scales of the thermosetting networks developed by the different chemical structures is shown. The result obtained indicates that the structure of the hardeners governs the packing of the molecular chains of the epoxy network.

  1. Theoretical modeling of electronic transport in molecular devices

    Piccinin, Simone

    In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a

  2. Recent progress in printed 2/3D electronic devices

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  3. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  4. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  5. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

    for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...... The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...

  6. Modeling and Design of a Nano Scale CMOS Inverter for Symmetric Switching Characteristics

    Joyjit Mukhopadhyay

    2012-01-01

    Full Text Available This paper presents a technique for the modeling and design of a nano scale CMOS inverter circuit using artificial neural network and particle swarm optimization algorithm such that the switching characteristics of the circuit is symmetric, that is, has nearly equal rise and fall time and equal output high-to-low and low-to-high propagation delay. The channel width of the transistors and the load capacitor value are taken as design parameters. The designed circuit has been implemented at the transistor-level and simulated using TSPICE for 45 nm process technology. The PSO-generated results have been compared with SPICE results. A very good accuracy has been achieved. In addition, the advantage of the present approach over an existing approach for the same purpose has been demonstrated through simulation results.

  7. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  9. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  10. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  11. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  12. Nano-scale patterns of polymers and their structural phase transitions

    Matsushita, Yushu [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1998-03-01

    Nano-scale patterns formed by polymers and their related soft materials were investigated by measuring neutron scattering from them. Two apparatuses installed at cold neutron guides in JRR-3M, a small angle neutron scattering (SANS) apparatus and a neutron reflectometer, which give out elastic scattering intensities, were used. Chain dimensions of polystyrenes diluted with low molecular weight homologous polystyrenes, orientation behaviour of microphase-separated block copolymer in concentrated solutions under shear, shrinkage and recovery of polyvinylalcohol gel with temperature and structural phase transition of microemulsion under high-pressure and so on were measured by SANS, while microphase-separated polystyrene(S)/poly(2-vinylpyridine)(P) interfaces of a PSP triblock copolymer was observed by specular neutron reflectivity measurements. (author)

  13. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  14. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  15. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  16. Electron cyclotron beam measurement system in the Large Helical Device

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  17. Software to manage transformers using intelligent electronic device

    Marcio Zamboti Fortes

    2016-01-01

    Full Text Available Power companies usually answer the increase in power demand by building new generation facilities. Nevertheless, an efficient use of energy could reduce and delay the costs of investment in new power plants. This paper shows a software system to manage transformers and evaluate losses when they work with zero loads. This system contributes to reduce the waste of energy with some simple actions such as shutting off an unused transformer or reconnecting disabled equipment based on the customer’s demand. It uses real time measurements collected from Intelligent Electronic Devices as a base for software decisions. It also measures and reports the total power saving.

  18. Ultralarge area MOS tunnel devices for electron emission

    Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Vendelbo, Søren Bastholm

    2007-01-01

    density. Oxide thicknesses have been extracted by fitting a model based on Fermi-Dirac statistics to the C-V characteristics. By plotting I-V characteristics in a Fowler plot, a measure of the thickness of the oxide can be extracted from the tunnel current. These apparent thicknesses show a high degree......A comparative analysis of metal-oxide-semiconductor (MOS) capacitors by capacitance-voltage (C-V) and current-voltage (I-V) characteristics has been employed to characterize the thickness variations of the oxide on different length scales. Ultralarge area (1 cm(2)) ultrathin (similar to 5 nm oxide......) MOS capacitors have been fabricated to investigate their functionality and the variations in oxide thickness, with the use as future electron emission devices as the goal. I-V characteristics show very low leakage current and excellent agreement to the Fowler-Nordheim expression for the current...

  19. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  20. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    Chen, L.L.; Li, W.L.; Li, M.T.; Chu, B.

    2007-01-01

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m 2 at 8 V. At a luminance of 100 cd/m 2 , the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V oc ) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm 2 . And the short-circuit current (I sc ) of 92.5x10 -6 A/cm 2 , fill factor (FF) of 0.30 and power conversion efficiency (η e ) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices

  1. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    Chen, L.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (China); Li, W.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)]. E-mail: wllioel@yahoo.com.cn; Li, M.T. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Chu, B. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2007-01-15

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m{sup 2} at 8 V. At a luminance of 100 cd/m{sup 2}, the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V {sub oc}) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm{sup 2}. And the short-circuit current (I {sub sc}) of 92.5x10{sup -6} A/cm{sup 2}, fill factor (FF) of 0.30 and power conversion efficiency ({eta} {sub e}) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices.

  2. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  3. Electronics Related to Nuclear Medicine Imaging Devices. Chapter 7

    Ott, R. J. [Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom); Stephenson, R. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2014-12-15

    Nuclear medicine imaging is generally based on the detection of X rays and γ rays emitted by radionuclides injected into a patient. In the previous chapter, the methods used to detect these photons were described, based most commonly on a scintillation counter although there are imaging devices that use either gas filled ionization detectors or semiconductors. Whatever device is used, nuclear medicine images are produced from a very limited number of photons, due mainly to the level of radioactivity that can be safely injected into a patient. Hence, nuclear medicine images are usually made from many orders of magnitude fewer photons than X ray computed tomography (CT) images, for example. However, as the information produced is essentially functional in nature compared to the anatomical detail of CT, the apparently poorer image quality is overcome by the nature of the information produced. The low levels of photons detected in nuclear medicine means that photon counting can be performed. Here each photon is detected and analysed individually, which is especially valuable, for example, in enabling scattered photons to be rejected. This is in contrast to X ray imaging where images are produced by integrating the flux entering the detectors. Photon counting, however, places a heavy burden on the electronics used for nuclear medicine imaging in terms of electronic noise and stability. This chapter will discuss how the signals produced in the primary photon detection process can be converted into pulses providing spatial, energy and timing information, and how this information is used to produce both qualitative and quantitative images.

  4. How people with cognitive disabilities experience electronic planning devices.

    Adolfsson, Päivi; Lindstedt, Helena; Janeslätt, Gunnel

    2015-01-01

    People with cognitive disabilities have difficulties in accomplishing everyday tasks. Electronic planning devices (EPDs) may compensate for the gap between a person's capacity and everyday challenges. However, the devices are not always used as intended. Despite that, cognitive assistive technology has been investigated in several studies, knowledge regarding when and what makes adults decide to use EPDs is incomplete. The aim was to explore the subjective experiences of people with cognitive disabilities in relation to the use of EPDs. A qualitative approach was applied with a qualitative content analysis. Twelve respondents were interviewed with support from a study specific guide. A model representing the respondents' experiences in the use of EPDs, comprising one theme, Possibility to master my daily life, four categories, Degree of fit to my needs, I am aware of my cognitive disability, I get help to structure my everyday life and The EPD improves my volition and ten subcategories, was developed. EPDs allow people with cognitive disabilities the possibility to deal with daily challenges; those who find EPDs beneficial tend to use them. EPDs can help people with cognitive disabilities in organisation, managing time and improve volition.

  5. Determining Hermeticity of Electron Devices by Dye Penetration

    American Society for Testing and Materials. Philadelphia

    1972-01-01

    1.1 These practices cover procedures that will normally detect and locate the sites of gross leaks in electron devices. 1.2 These procedures are suitable for use on selected parts during receiving inspection or to verify and locate leakage sites for production control. They are not quantitative; no indication of leak size can be inferred from the test. 1.3 These procedures are most suitable for use on transparent glass-encased devices; all methods are applicable to transparent parts with an internal cavity. Method A, Penetrant-Capillary, is also applicable to parts, such as terminals, end seals or base assemblies, without an internal cavity, and Method C, Penetrant-Pressure Followed by Vacuum, can be used on opaque parts with an internal cavity. Method B, Penetrant-Pressure, can also be used on opaque parts with an internal cavity if the part is opened after dye penetration and before inspection. Parts that have an internal cavity may either contain gas (such as air, nitrogen, nitrogen-helium mixture, etc.) o...

  6. Electronic and optoelectronic materials and devices inspired by nature

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  7. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  8. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  9. Prospective clinical evaluation of an electronic portal imaging device

    Michalski, Jeff M.; Graham, Mary V.; Bosch, Walter R.; Wong, John; Gerber, Russell L.; Cheng, Abel; Tinger, Alfred; Valicenti, Richard K.

    1996-01-01

    Purpose: To determine whether the clinical implementation of an electronic portal imaging device can improve the precision of daily external beam radiotherapy. Methods and Materials: In 1991, an electronic portal imaging device was installed on a dual energy linear accelerator in our clinic. After training the radiotherapy technologists in the acquisition and evaluation of portal images, we performed a randomized study to determine whether online observation, interruption, and intervention would result in more precise daily setup. The patients were randomized to one of two groups: those whose treatments were actively monitored by the radiotherapy technologists and those that were imaged but not monitored. The treating technologists were instructed to correct the following treatment errors: (a) field placement error (FPE) > 1 cm; (b) incorrect block; (c) incorrect collimator setting; (d) absent customized block. Time of treatment delivery was recorded by our patient tracking and billing computers and compared to a matched set of patients not participating in the study. After the patients radiation therapy course was completed, an offline analysis of the patient setup error was planned. Results: Thirty-two patients were treated to 34 anatomical sites in this study. In 893 treatment sessions, 1,873 fields were treated (1,089 fields monitored and 794 fields unmonitored). Ninety percent of the treated fields had at least one image stored for offline analysis. Eighty-seven percent of these images were analyzed offline. Of the 1,011 fields imaged in the monitored arm, only 14 (1.4%) had an intervention recorded by the technologist. Despite infrequent online intervention, offline analysis demonstrated that the incidence of FPE > 10 mm in the monitored and unmonitored groups was 56 out of 881 (6.1%) and 95 out of 595 (11.2%), respectively; p 10 mm was confined to the pelvic fields. The time to treat patients in this study was 10.78 min (monitored) and 10.10 min (unmonitored

  10. Effect of interior geometry on local climate inside an electronic device enclosure

    Joshy, Salil; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    Electronic enclosure design and the internal arrangement of PCBs and components influence microclimate inside the enclosure. This work features a general electronic unit with parallel PCBs. One of the PCB is considered to have heat generating components on it. The humidity and temperature profiles...... geometry of the device and related enclosure design parameters on the humidity and temperature profiles inside the electronic device enclosure....

  11. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...

  12. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    2012-03-09

    ... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...

  13. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    Eita, Mohamed S.; El, Labban Abdulrahman; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2016-01-01

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc

  14. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  15. Lanthanum Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices

    Shojan P. Pavunny

    2014-03-01

    Full Text Available A comprehensive study on the ternary dielectric, LaGdO3, synthesized and qualified in our laboratory as a novel high-k dielectric material for logic and memory device applications in terms of its excellent features that include a high linear dielectric constant (k of ~22 and a large energy bandgap of ~5.6 eV, resulting in sufficient electron and hole band offsets of ~2.57 eV and ~1.91 eV, respectively, on silicon, good thermal stability with Si and lower gate leakage current densities within the International Technology Roadmap for Semiconductors (ITRS specified limits at the sub-nanometer electrical functional thickness level, which are desirable for advanced complementary metal-oxide-semiconductor (CMOS, bipolar (Bi and BiCMOS chips applications, is presented in this review article.

  16. Electronic and optoelectronic materials and devices inspired by nature

    Meredith, P; Schwenn, P E; Bettinger, C J; Irimia-Vladu, M; Mostert, A B

    2013-01-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist. (review article)

  17. Thermoelectric air-cooling module for electronic devices

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  18. Characterization of high Tc materials and devices by electron microscopy

    Browning, Nigel D; Pennycook, Stephen J

    2000-01-01

    ..., and microanalysis by scanning transmission electron microscopy. Ensuing chapters examine identi®cation of new superconducting compounds, imaging of superconducting properties by lowtemperature scanning electron microscopy, imaging of vortices by electron holography and electronic structure determination by electron energy loss spectro...

  19. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  20. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  1. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling

    Lucas, G.

    2006-10-01

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  2. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  3. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  4. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  5. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  6. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  7. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  8. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    Executive Summary Objective The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions. Clinical Need: Condition and Target Population Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD. Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities. Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs. Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however

  9. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  10. The Effect of Electronic Devices Self-Efficacy, Electronic Devices Usage and Information Security Awareness on Identity-Theft Anxiety Level

    Sanga, Sushma

    2016-01-01

    Identity-theft means stealing someone's personal information and using it without his or her permission. Each year, millions of Americans are becoming the victims of identity-theft, and this is one of the seriously growing and widespread issues in the U.S. This study examines the effect of electronic devices self-efficacy, electronic devices…

  11. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  12. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...

  13. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...

  14. 78 FR 73563 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    2013-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has issued (1) a limited exclusion order against infringing electronic devices...

  15. 77 FR 31876 - Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not...

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-836] Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To Review Initial Determination To Amend... electronics and display devices and products containing the same by reason of infringement of U.S. Patent Nos...

  16. 77 FR 49458 - Certain Mobile Electronic Devices Incorporating Haptics; Amendment of the Complaint and Notice of...

    2012-08-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...

  17. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...

  18. Electronic device, system on chip ad method of monitoring data traffic

    2011-01-01

    Therefore, an electronic device is provided which comprises a plurality of processing units (IP1-IP6), and a network-based interconnect (N) coupling the processing units (IP1-IP6) for enabling at least one first communication path (C) between the processing units (IP1-IP6). The electronic device

  19. Hardening device, by inserts, of electronic component against radiation

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  20. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  1. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  2. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  3. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the pro...

  4. iPosture: The Size of Electronic Consumer Devices Affects our Behavior

    Bos, Maarten W.; Cuddy, Amy J. C.

    2013-01-01

    We examined whether incidental body posture, prompted by working on electronic devices of different sizes, affects power-related behaviors. Grounded in research showing that adopting expansive body postures increases psychological power, we hypothesized that working on larger devices, which forces people to physically expand, causes users to behave more assertively. Participants were randomly assigned to interact with one of four electronic devices that varied in size: an iPod Touch, an iPad,...

  5. Recent progress on thin-film encapsulation technologies for organic electronic devices

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  6. Trend of Energy Saving in Electronic Devices for Research and Development

    Rahmayanti R.

    2016-01-01

    Full Text Available In electronic industry, energy saving is one of the performance indicators of competitiveness beside price, speed, bandwidth and reliability. This affects research and development (R&D activity in mechatronic systems which uses electronic components and electronic systems. A review of trend of electronic devices technology development has been conducted with focus on energy saving. This review includes electronic devices, semiconductor, and nanotechnology. It can be concluded that the trend in electronic devices is mainly dictated by semiconductor technology development. The trend can be concluded as smaller size, lower voltage leading to energy saving, less heat, higher speed, more reliable, and cheaper. In accordance to such technology development, R&D activities in mechatronics especially in Indonesia is being pushed to make proper alignment.Some of such alignment actions are surface mount technology (SMT for installing surface mount devices components (SMD, design layout and SMD troubleshooting tools as well as human resources training and development.

  7. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  8. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  9. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  10. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  11. A novel nonlinear nano-scale wear law for metallic brake pads.

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  12. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  13. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  14. Opto-electronic devices from block copolymers and their oligomers.

    Hadziioannou, G

    1997-01-01

    This paper presents research activities towards the development of polymer materials and devices for optoelectronics, An approach to controlling the conjugation length and transferring the luminescence properties of organic molecules to polymers through black copolymers containing well-defined

  15. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  16. Printed Organic and Inorganic Electronics: Devices To Systems

    Sevilla, Galo T.

    2016-11-11

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electronics. Still some fundamental challenges remain: thermal instability, modest charge transport characteristics, and limited lithographic resolution. In the last decade, one-dimensional nanotubes and nanowires, like carbon nanotubes and silicon nanowires, followed by two-dimensional materials, like graphene and transitional dichalcogenide materials, have shown interesting promise as next-generation printed electronic materials. Challenges, such as non-uniformity in growth, limited scalability, and integration issues, need to be resolved for the viable application of these materials to technology. Recently, the concept of printed high-performance complementary metal\\\\text-oxide semiconductor electronics has also emerged and been proven successful for application to electronics. Here, we review progress in CMOS technology and applications, including challenges faced and opportunities revealed.

  17. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    2012-11-16

    ... electronic digital media devices and components thereof imported by respondents Samsung Electronics Co, Ltd. of Korea; Samsung Electronics America, Inc. of Ridgefield Park, New Jersey; and Samsung Telecommunications America, LLC of Richardson, Texas (collectively ``Samsung''), and cease and desist orders against...

  18. 77 FR 21584 - Certain Consumer Electronics and Display Devices and Products Containing Same; Institution of...

    2012-04-10

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-836] Certain Consumer Electronics and Display... electronics and display devices and products containing same by reason of infringement of certain claims of U... importation, or the sale within the United States after importation of certain consumer electronics and...

  19. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  20. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  1. Nanoscale strain engineering of graphene and graphene-based devices

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  2. Computer simulation of heterogeneous polymer photovoltaic devices

    Kodali, Hari K; Ganapathysubramanian, Baskar

    2012-01-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13–26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures. (paper)

  3. Computer simulation of heterogeneous polymer photovoltaic devices

    Kodali, Hari K.; Ganapathysubramanian, Baskar

    2012-04-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.

  4. Current voltage perspective of an organic electronic device

    Mukherjee, Ayash K.; Kumari, Nikita

    2018-05-01

    Nonlinearity in current (I) - voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I-V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I-V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.

  5. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  6. An electron cooling device in the one MeV energy region

    Busso, L.; Tecchio, L.; Tosello, F.

    1987-01-01

    The project of an electron cooling device at 700 KeV electron energy is reported. The single parts of the device is described in detail. Electron beam diagnostics and technical problems is discussed. The electron gun, the accelerating/decelerating column and the collector have been studied by menas of the Herrmannsfeldt's program and at present are under construction. The high voltage system and the electron cooling magnet are also under construction. Vacuum tests with both hot and cold cathodes have demonstrated that the vacuum requirements can be attained by the use of non-evaporable getter (NEG) pumps between gun, collector and the cooling region. Both kinds of diagnostic for longitudinal and transversal electron temperature measurements are in progress. A first prototype of the synchronous picj-up was successfully tested at CERN SPS. At present the diagnostic with laser beam is in preparation. During the next year the device will be assembled and the laboratory test will be started

  7. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  8. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  9. Electronic properties of organic monolayers and molecular devices

    These devices exhibit a marked current–voltage rectification behavior due to resonant transport between the Si conduction band and the molecule highest occupied molecular orbital of the molecule. We discuss the role of metal Fermi level pinning in the current–voltage behavior of these molecular junctions. We also ...

  10. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  11. Recent developments of truly stretchable thin film electronic and optoelectronic devices.

    Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2018-03-29

    Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.

  12. Printed Organic and Inorganic Electronics: Devices To Systems

    Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2016-01-01

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed

  13. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  14. Humidity effects on the electronic transport properties in carbon based nanoscale device

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  15. GaN nano-membrane for optoelectronic and electronic device applications

    Ooi, Boon S.

    2014-01-01

    The ~25nm thick threading dislocation free GaN nanomembrane was prepared using ultraviolet electroless chemical etching method offering the possibility of flexible integration of (Al,In,Ga)N optoelectronic and electronic devices.

  16. Recent progress in organic electronics and photonics: A perspective on the future of organic devices

    Bredas, Jean-Luc

    2016-01-01

    The fields of organic electronics and photonics have witnessed remarkable advances over the past few years. This progress bodes well for the increased utilization of organic materials as the active layers in devices for applications as diverse

  17. Effect of electronic device use on pedestrian safety : a literature review.

    2016-04-01

    This literature review on the effect of electronic device use on pedestrian safety is part of a research project sponsored by the Office of Behavioral Safety Research in the National Highway Traffic Safety Administration (NHTSA). An extensive literat...

  18. Infective endocarditis and risk of death after cardiac implantable electronic device implantation

    Özcan, Cengiz; Raunsø, Jakob; Lamberts, Morten

    2017-01-01

    AIMS: To determine the incidence, risk factors, and mortality of infective endocarditis (IE) following implantation of a first-time, permanent, cardiac implantable electronic device (CIED). METHODS AND RESULTS: From Danish nationwide administrative registers (beginning in 1996), we identified all...

  19. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  20. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  1. Optical shaping of a nano-scale tip by femtosecond laser assisted field evaporation

    Di Russo, E.; Houard, J.; Langolff, V.; Moldovan, S.; Rigutti, L.; Deconihout, B.; Blavette, D.; Bogdanowicz, J.; Vella, A.

    2018-04-01

    We have investigated the morphology of a nanotip under femtosecond laser pulse illumination and a high electric field. We show that both the symmetry and the local radius of the tip change with the direction of laser polarization as against the tip axis. The experiments were performed on the very same GaN nanotip by laser-assisted atom probe tomography and electron tomography. This allowed an accurate assessment of the tip features by following the order of evaporation of single atoms from the surface. A change of atom emission sites was observed when a change of the angle between the tip axis and the linearly polarized electric field of the laser was imposed. This enables an optical control of field-evaporation sites. A close optical control of the tip morphology on a scale below 10 nm is thus achievable. Calculations of the field at nanotip apex and absorption maps support the experimental observations. Based on the present study, methods can be developed for reshaping nanotips at the nanometer level. This finding opens perspectives for numerous applications, making use of nanotips as probes or field emitters, and for plasmonic devices.

  2. Electronic health records and cardiac implantable electronic devices: new paradigms and efficiencies.

    Slotwiner, David J

    2016-10-01

    The anticipated advantages of electronic health records (EHRs)-improved efficiency and the ability to share information across the healthcare enterprise-have so far failed to materialize. There is growing recognition that interoperability holds the key to unlocking the greatest value of EHRs. Health information technology (HIT) systems including EHRs must be able to share data and be able to interpret the shared data. This requires a controlled vocabulary with explicit definitions (data elements) as well as protocols to communicate the context in which each data element is being used (syntactic structure). Cardiac implantable electronic devices (CIEDs) provide a clear example of the challenges faced by clinicians when data is not interoperable. The proprietary data formats created by each CIED manufacturer, as well as the multiple sources of data generated by CIEDs (hospital, office, remote monitoring, acute care setting), make it challenging to aggregate even a single patient's data into an EHR. The Heart Rhythm Society and CIED manufacturers have collaborated to develop and implement international standard-based specifications for interoperability that provide an end-to-end solution, enabling structured data to be communicated from CIED to a report generation system, EHR, research database, referring physician, registry, patient portal, and beyond. EHR and other health information technology vendors have been slow to implement these tools, in large part, because there have been no financial incentives for them to do so. It is incumbent upon us, as clinicians, to insist that the tools of interoperability be a prerequisite for the purchase of any and all health information technology systems.

  3. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Human Powered PiezoelectricBatteries to Supply Power to Wearable Electronic Devices.

    Gonzalez, Jose' Luis; Rubio, Antonio; Moll, Francesc

    2002-01-01

    Consumer electronic equipments are becoming small, portable devices that provide users with a wide range of functionality, from communication to music playing. The battery technology and the power consumption of the device limit the size, weight and autonomous lifetime. One promising alternative to batteries (and fuel cells, that must be refueled as well) is to use the parasitic energy dissipated in the movement of the wearer of the device to power it. We analyze in this work the current stat...

  5. A device for determination of the electrical potential of a rocket carrying an electron gun

    Gringauz, K.I.; Musatov, L.S.; Shutte, N.M.; Beliashin, A.P.; Denstchikova, L.I.; Kopilov, V.F.

    1978-01-01

    Data on the principle of operation, sensors and electronics of a device for determination of the electrical potential relative to the surrounding medium of a rocket carrying an electric gun are presented. The device operated successfully on board an Eridan rocket during the ARAKS experiment. (Auth.)

  6. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  7. Silicon based nanogap device for investigating electronic transport through 12 nm long oligomers

    Strobel, S.; Albert, E.; Csaba, G.

    2009-01-01

    We have fabricated vertical nanogap electrode devices based on Silicon-on-Insulator (SOI) substrates for investigating the electronic transport properties of long, conjugated molecular wires. Our nanogap electrode devices comprise smooth metallic contact pairs situated at the sidewall of an SOI s...

  8. 76 FR 79708 - Certain Portable Electronic Devices And Related Software; Submission for OMB Review; Comment...

    2011-12-22

    ... present in the pdQ device. 6. Do the Accused iPhones meet the ``switching the mobile phone system from... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-721] Certain Portable Electronic Devices... into the United States, the sale for importation, and sale within the United States after importation...

  9. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  10. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  11. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  12. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  13. Electronic transport in disordered graphene antidot lattice devices

    Power, Stephen; Jauho, Antti-Pekka

    2014-01-01

    Nanostructuring of graphene is in part motivated by the requirement to open a gap in the electronic band structure. In particular, a periodically perforated graphene sheet in the form of an antidot lattice may have such a gap. Such systems have been investigated with a view towards application...

  14. Reactor oscillator - I - III, Part III - Electronic device

    Lolic, B.; Jovanovic, S.

    1961-12-01

    This report describes functioning of the reactor oscillator electronic system. Two methods of oscillator operation were discussed. The first method is so called method of amplitude modulation of the reactor power, and the second newer method is phase method. Both methods are planned for the present reactor oscillator

  15. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  16. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  17. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  18. Electronic device for automatic control of exposure in radiography

    Pendharkar, A.S.; Jayakumar, T.K.

    1977-01-01

    An electronic instrument for calculating and controlling exposure in radiography practice using radioisotopes is described. When using this equipment, only factor to be known is the dose required by the film for a given density and the thickness of material inspected. It eliminates all the problems arising out of various parameters such as source decay etc in the conventional procedure for calculating exposure time. Principle of operation, the electronic circuitry adopted and the functional aspects of the system are described in detail. Exposure doses for different industrial films have been related to the instrumental readouts. The system reproducibility and reliability have been evaluated. The advantages and limitations of the present system and the future development to overcome the problems are indicated. (author)

  19. Activating students' interest in lectures and practical courses using their electronic devices

    Wijtmans, M.; van Rens, L.; van Muijlwijk- Koezen, J.E.

    2014-01-01

    Interactive teaching with larger groups of students can be a challenge, but the use of mobile electronic devices by students (smartphones, tablets, laptops) can be used to improve classroom interaction. We have examined several types of tasks that can be electronically enacted in classes and

  20. 78 FR 16707 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    2013-03-18

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2943] Certain Electronic Devices Having Placeshifting... International Trade Commission (USITC): http://edis.usitc.gov . \\3\\ Electronic Document Information System (EDIS...; Solicitation of Comments Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION...

  1. 78 FR 2437 - Corrected: Certain Cases For Portable Electronic Devices; Notice of Receipt of Complaint...

    2013-01-11

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2927] Corrected: Certain Cases For Portable Electronic...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Cases For Portable Electronic Devices...

  2. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    2012-01-26

    ... INTERNATIONAL TRADE COMMISSION [DN 2869] Certain Electronic Devices for Capturing and Transmitting... Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled In Re Certain Electronic...

  3. Thermal protection of electronic devices with the Nylon6/66-PEG nanofiber membranes

    Li Ya; Li Xue-Weis; He Ji-Huan; Wang Ping

    2014-01-01

    Phase change materials for thermal energy storage have been widely applied to clothing insulation, electronic products of heat energy storage. The thermal storage potential of the nanofiber membranes was analyzed using the differential scanning calorimetry. Effect of microstructure of the membrane on energy storage was analyzed, and its applications to electronic devices were elucidated.

  4. 78 FR 56737 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    2013-09-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons are...

  5. 78 FR 49764 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    2013-08-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review n... for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc...

  6. 78 FR 72712 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    2013-12-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov...

  7. Exploring coherent transport through π-stacked systems for molecular electronic devices

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  8. Double deflection system for an electron beam device

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  9. Electronics: Mott Transistor: Fundamental Studies and Device Operation Mechanisms

    2016-03-21

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Harvard University Office for Sponsored Programs...including journal references , in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) 03/21/2016 03/21/2016 03...limited kinetics of electron doping in correlated oxides, Applied Physics Letters (07 2015) TOTAL: 1 Books Number of Manuscripts: Patents Submitted

  10. Latest progress in gallium-oxide electronic devices

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  11. An analysis of radiation effects on electronics and soi-mos devices as an alternative

    Ikraiam, F. A.

    2013-01-01

    The effects of radiation on semiconductors and electronic components are analyzed. The performance of such circuitry depends upon the reliability of electronic devices where electronic components will be unavoidably exposed to radiation. This exposure can be detrimental or even fatal to the expected function of the devices. Single event effects (SEE), in particular, which lead to sudden device or system failure and total dose effects can reduce the lifetime of electronic devices in such systems are discussed. Silicon-on-insulator (SOI) technology is introduced as an alternative for radiation-hardened devices. I-V Characteristics Curves for SOI-MOS devices subjected to a different total radiation doses are illustrated. In addition, properties of some semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, and AlGaN/GaN are compared with those of SOI devices. The recognition of the potential usefulness of SOI-MOS semiconductor materials for harsh environments is discussed. A summary of radiation effects, impacts and mitigation techniques is also presented. (authors)

  12. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices

    Beljonne, David

    2011-02-08

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.

  13. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  14. Electronic spectrum of a deterministic single-donor device in silicon

    Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2013-01-01

    We report the fabrication of a single-electron transistor (SET) based on an individual phosphorus dopant that is deterministically positioned between the dopant-based electrodes of a transport device in silicon. Electronic characterization at mK-temperatures reveals a charging energy that is very similar to the value expected for isolated P donors in a bulk Si environment. Furthermore, we find indications for bulk-like one-electron excited states in the co-tunneling spectrum of the device, in sharp contrast to previous reports on transport through single dopants

  15. The use of electronic devices for communication with colleagues and other healthcare professionals - nursing professionals' perspectives.

    Koivunen, Marita; Niemi, Anne; Hupli, Maija

    2015-03-01

    The aim of the study is to describe nursing professionals' experiences of the use of electronic devices for communication with colleagues and other healthcare professionals. Information and communication technology applications in health care are rapidly expanding, thanks to the fast-growing penetration of the Internet and mobile technology. Communication between professionals in health care is essential for patient safety and quality of care. Implementing new methods for communication among healthcare professionals is important. A cross-sectional survey was used in the study. The data were collected in spring 2012 using an electronic questionnaire with structured and open-ended questions. The target group comprised the nursing professionals (N = 567, n = 123) in one healthcare district who worked in outpatient clinics in publically funded health care in Finland. Nursing professionals use different electronic devices for communication with each other. The most often used method was email, while the least used methods were question-answer programmes and synchronous communication channels on the Internet. Communication using electronic devices was used for practical nursing, improving personnel competences, organizing daily operations and administrative tasks. Electronic devices may speed up the management of patient data, improve staff cooperation and competence and make more effective use of working time. The obstacles were concern about information security, lack of technical skills, unworkable technology and decreasing social interaction. According to our findings, despite the obstacles related to use of information technology, the use of electronic devices to support communication among healthcare professionals appears to be useful. © 2014 John Wiley & Sons Ltd.

  16. Design and Testing of Electronic Devices for Harsh Environments

    Nico, Costantino

    This thesis reports an overview and the main results of the research activity carried out within the PhD programme in Information Engineering of the University of Pisa (2010-2012). The research activity has been focused on different fields, including Automotive and High Energy Physics experiments, according to a common denominator: the development of electroni c devices and systems operating in harsh environments. There are many applications that forc e the adoption of design methodologies and strategies focused on this type of envir onments: military, biom edical, automotive, industrial and space. The development of solutions fulfilling specific operational requirements, therefore represents an interesting field of research. The first research activity has been framed within the ATHENIS project, funded by the CORDIS Commission of the European Community, and aiming at the development of a System-on-Chip, a r egulator for alternators employed on vehicles, presenting both configurability an d t...

  17. Nanoporous metal film: An energy-dependent transmission device for electron waves

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  18. Analysis of the nano-scale structure of a natural clayey soil using the small angle neutron scattering method

    Itakura, T.; Bertram, W.K.; Hathaway, P.V.; Knott, R.B.

    2001-01-01

    The small angle neutron scattering method (SANS) was used to analyze the nano-structure of a natural clayey soil used for containment of industrial liquid wastes. A Tertiary clay deposit called the Londonderry clay was used to contain the wastes in a state-run landfill facility in NSW. A number of site assessments have been carried out at the site and continual efforts have been made to characterize interactions between soil materials and contaminants at the site. Hence, it is of research and practical interest to investigate the effects of deformation on the nano-scale structure of the soil. Experiments have been conducted to analyze the structure of reconstituted clayey soil samples that were subjected to uniaxial compression ranging from 200 kPa to 800 kPa. The small angle neutron scattering instrument was used to measure the scattering intensity of these samples at a scattering vector (q) range between 0.01 and 0.1 Angstroms -1 . The sector integration technique was used to analyse elliptical scattering patterns along the major and minor axes. A relation between stress, void ratio and nano-scale structure properties was then briefly discussed for use in assessing the performance of clayey soils as in situ barriers

  19. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  20. Controlled fabrication of nano-scale double barrier magnetic tunnel junctions using focused ion beam milling method

    Wei, H.X.; Wang, T.X.; Zeng, Z.M.; Zhang, X.Q.; Zhao, J.; Han, X.F.

    2006-01-01

    The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni 79 Fe 21 (5)/Ir 22 Mn 78 (12)/Co 6 Fe 2 B 2 (4)/Al(1) -oxide/Co 6 Fe 2 B 2 (6)/Al (1)-oxide/Co 6 Fe 2 B 2 (4)/Ir 22 Mn 78 (12)/Ni 79 Fe 21 (5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nmx400 nm, 200 nmx200 nm nano-scale were prepared and their R-H, I-V characteristics were measured.

  1. Formation of Nano scale Bio imprints of Muscle Cells Using UV-Cured Spin-Coated Polymers

    Samsuri, F.; Alkaisi, M.M.; Mitchell, J.S.; Evans, J.J.

    2009-01-01

    We report a nano scale replication method suitable for biological specimens that has potential in single cell studies and in formation of 3D biocompatible scaffolds. Earlier studies using a heat-curable polydimethylsiloxane (PDMS) or a UV-curable elastomer introduced Bio imprint replication to facilitate cell imaging. However, the replicating conditions for thermal polymerization are known to cause cell dehydration during curing. In this study, a UV-cured methacrylate copolymer was developed for use in creating replicas of living cells and was tested on rat muscle cells. Bio imprints of muscle cells were formed by spin coating under UV irradiation. The polymer replicas were then separated from the muscle cells and were analyzed under an Atomic Force Microscope (AFM), in tapping mode, because it has low tip-sample forces and thus will not destroy the fine structures of the imprint. The new polymer is biocompatible with higher replication resolution and has a faster curing process than other types of silicon-based organic polymers such as PDMS. High resolution images of the muscle cell imprints showed the micro-and nano structures of the muscle cells, including cellular fibers and structures within the cell membranes. The AFM is able to image features at nano scale resolution with the potential for recognizing abnormalities on cell membranes at early stages of disease progression.

  2. Symmetric low-voltage powering system for relativistic electronic devices

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  3. Integrated electronic device for processing impulses from neutron detectors

    Stoica, Mihai; Pirvu, Ion

    2009-01-01

    The developing of nuclear power is a key factor in decreasing energy Romania's dependence on imports of fossil fuels (oil, natural gas). An important point in achieving this goal is to use the experience acquired in the design and use of the equipment produced with the participation of INR specialists for Cernavoda NPP, Units 1 and 2. The design based on Surface Mount Technology (SMT) and the implementation of electronic interface modules of computer processing and detectors of radiation or nuclear particles contribute both to modernize and increase the performance of equipment. (authors)

  4. Interfacial and Thin Film Chemistry in Electron Device Fabrication

    1992-01-01

    Chemistry During Electronic Processing" by Professor Richard Osgood, Jr.; "In Situ Optical Diagnostics of Semiconductors Prepared by Laser Chemical Processing...N(Igde Area Code) 22c OFF ft SYMBO. Professors Georee Flynn and Richard Os~ood I MSL DD Form 1473, JUN 86 Previous edotions are obsolete SECURITY...and D. L. Smith, Phys.I Rev. Lett. 62, 649 (1989). 19. E. A. Caridi, T. Y. Chang, K. W. Goossen and L. F. Eastman, AOLi Phvs. Tett. 56, 659 (1990). 1

  5. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ballistic electron emission spectroscopy on Ag/Si devices

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  7. PROTEOTRONICS: The emerging science of protein-based electronic devices

    Alfinito, Eleonora; Pousset, Jeremy; Reggiani, Lino

    2015-01-01

    Protein-mediated charge transport is of relevant importance in the design of protein based electronics and in attaining an adequate level of understanding of protein functioning. This is particularly true for the case of transmembrane proteins, like those pertaining to the G protein coupled receptors (GPCRs). These proteins are involved in a broad range of biological processes like catalysis, substance transport, etc., thus being the target of a large number of clinically used drugs. This paper briefly reviews a variety of experiments devoted to investigate charge transport in proteins and present a unified theoretical model able to relate macroscopic experimental results with the conformations of the amino acids backbone of the single protein. (paper)

  8. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of stand-by energy losses in electronic devices on smart network performance

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  10. Rational design of metal-organic electronic devices: A computational perspective

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  11. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  12. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p 90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  13. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  14. Ignitor electrode system design for the pulses electron irradiators device

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  15. An electroluminescence device for printable electronics using coprecipitated ZnS:Mn nanocrystal ink

    Toyama, T; Hama, T; Adachi, D; Nakashizu, Y; Okamoto, H

    2009-01-01

    Electroluminescence (EL) devices for printable electronics using coprecipitated ZnS:Mn nanocrystal (NC) ink are demonstrated. The EL properties of these devices were investigated along with the structural and optical properties of ZnS:Mn NCs with an emphasis on their dependence on crystal size. Transmission electron microscopy and x-ray diffraction studies revealed that the NCs, with a crystal size of 3-4 nm, are nearly monodisperse; the crystal size can be controlled by the Zn 2+ concentration in the starting solution for coprecipitation. The results of optical studies indicate the presence of quantum confinement effects; in addition, the NC surfaces are well passivated, regardless of the crystal size. Finally, an increase in the luminance of EL devices with a decrease in crystal size is observed, which suggests the excitation mechanism of ZnS:Mn NC EL devices.

  16. Personalized Remote Monitoring of the Atrial Fibrillation Patients with Electronic Implant Devices

    Gokce B. Laleci

    2011-01-01

    Full Text Available Cardiovascular Implantable Electronic Devices (CIED are gaining popularity in treating patients with heart disease. Remote monitoring through care management systems enables continuous surveillance of such patients by checking device functions and clinical events. These care management systems include decision support capabilities based on clinical guidelines. Data input to such systems are from different information sources including medical devices and Electronic Health Records (EHRs. Although evidence-based clinical guidelines provides numerous benefits such as standardized care, reduced costs, efficient and effective care management, they are currently underutilized in clinical practice due to interoperability problems among different healthcare data sources. In this paper, we introduce the iCARDEA care management system for atrial fibrillation patients with implant devices and describe how the iCARDEA care plan engine executes the clinical guidelines by seamlessly accessing the EHR systems and the CIED data through standard interfaces.

  17. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  18. Medical device integration: CIOs must bridge the digital divide between devices and electronic medical records.

    Raths, David

    2009-02-01

    To get funding approved for medical device integration, ClOs suggest focusing on specific patient safety or staff efficiency pain points. Organizations that make clinical engineering part of their IT team report fewer chain-of-command issues. It also helps IT people understand the clinical goals because the engineering people have been working closely with clinicians for years. A new organization has formed to work on collaboration between clinical engineers and IT professionals. For more information, go to www.ceitcollaboration.org. ECRI Institute has written a guide to handling the convergence of medical technology and hospital networks. Its "Medical Technology for the IT Professional: An Essential Guide for Working in Today's Healthcare Setting" also details how IT professionals can assist hospital technology planning and acquisition, and provide ongoing support for IT-based medical technologies. For more information, visit www.ecri.org/ITresource.

  19. Nanoelectronic device applications handbook

    Morris, James E

    2013-01-01

    Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal-oxide-semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world.These include: Nanoscale advance

  20. The impact of an electronic monitoring and reminder device on patient compliance with antihypertensive therapy

    Christensen, Arne; Christrup, Lona Louring; Fabricius, Paul Erik

    2010-01-01

    . In the first half of the study, patients using the device reported 91% compliance versus 85% in the control group. This difference diminished after crossover (88 versus 86%). BP was not affected. Electronic monitoring data on compliance revealed taking, dosing and timing compliance between 45 and 52% in study...... to be effective in improving patient compliance to some extent, but the combined effect has not been documented. OBJECTIVE: To assess the impact of an electronic reminder and monitoring device on patient compliance and BP control. METHODS: All patients received medical treatment with telmisartan once daily...... and were randomized to either electronic compliance monitoring with a reminder and monitoring device or standard therapy for 6 months. Both groups were crossed over after 6 months. Intervention effectiveness was assessed using self-reported compliance and BP. RESULTS: Data from 398 patients were analysed...

  1. Proceedings of the national conference on vacuum electronic devices and applications: souvenir and extended abstracts

    2012-01-01

    Vacuum electronic devices have carved out a strategic niche for themselves in the areas of satellite based communications and broadcasting, industrial and medical accelerators, and, high power RF systems required in high energy particle accelerators, accelerator driven sub-critical systems, plasma heating systems in nuclear fusion reactors for power generation etc. Besides, these devices continue to have their major applications in various defence related communication, RADAR and ECM systems. Papers relevant to INIS are indexed separately

  2. Theory of semiconductor junction devices a textbook for electrical and electronic engineers

    Leck, J H

    1967-01-01

    Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe

  3. Electronic Equipment of Self-Actuated Mobile Device for Load Carrying

    T. Janecka

    1994-12-01

    Full Text Available The device dealt in this work is determined namely for carrying invalid persons on various types of stairs or other not flat surfaces. But it can serve also to other purposes.To enable fulfilling all given demands, the design was consulted with other research workers solving the tasks of similar features.Resulting mechanical device, enabling aspects of movement required, is controlled by electronic and microprocessor circuits that obtain the input information from sensitive units investigating the terrain.

  4. Ion implantation in compound semiconductors for high-performance electronic devices

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  5. A video-amplifier device for the transmission-type electron microscope ELMISCOP I of Siemens

    Groboth, G.; Hoerl, E.M.

    1975-01-01

    In order to get a visual image of the sample at the final screen of a transmission-type electron microscope and to keep at the same time the sample at low temperature a video-amplifier device has been developed by the authors. Details about its design and the necessary reconstruction of the electron microscope equipment are given. The beam current density at the transparent screen is reduced to 10 -12 -10 -13 A.cm -2 . Moreover the costs of this video-amplifier device are lower than those available. (CR)

  6. Electronic Devices for Controlling the Very High Voltage in the ALICE TPC Detector

    Boccioli, Marco

    2007-01-01

    The Time Projection Chamber (TPC) is the core of the ALICE experiment at CERN. The TPC Very High Voltage project covers the development of the control system for the power supply that generates the 100kV necessary for the drift field in the TPC. This paper reports on the project progress, introducing the control system architecture from the electronics up to the control level. All the electronic devices will be described, highlighting their communication issues, and the challenges in integrating these devices in a PLC-based control system.

  7. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  8. Radiation effects and soft errors in integrated circuits and electronic devices

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  9. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (5th)

    1994-10-07

    Associazione Elettrotecnica e Elettronica Italia Circuiti Componente Tecnologia Elettroniche CECC CENELEC Electronic Components Committee EC The Commission...compared to the results of 2D transient device simulations in cylinder coordinates as well as to 3D transient device simulations (Table 1, 2). M3 In...non- Sabs. abs. drift charge 3.3 3.7 6.3 6.1 M Qdrft / feCM 3D diffusion 6.3 13.6 3.0 12.8 device charge simu- Qdiffl fC V M (E Wl ation "R’ L L

  10. Emerging technologies to power next generation mobile electronic devices using solar energy

    Dewei JIA; Yubo DUAN; Jing LIU

    2009-01-01

    Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples' lives.However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation.In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.

  11. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  12. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    Eita, Mohamed S.

    2016-08-04

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc oxide. The plurality of layers can be prepared by layer-by-layer processing in which alternating layers are built up step-by-step due to electrostatic attraction. The efficiency of the device can be increased by this processing method compared to a comparable method like sputtering. The number of layers can be controlled to improve device efficiency. Aqueous solutions can be used which is environmentally friendly. Annealing can be avoided. A quantum dot layer can be used next to the metal oxide layer to form a quantum dot heterojunction solar device.

  13. Compact toroidal energy storage device with relativistically densified electrons through the use of travelling magnetic waves

    Peter, W.; Faehl, R.J.

    1983-01-01

    A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed

  14. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

    Li, Simon

    2012-01-01

    Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD.  This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D.  It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations.  Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc. Provides a vivid, internal view of semiconductor devices, through 3D TCAD simulation; Includes comprehensive coverage of  TCAD simulations for both optic and electronic devices, from nano-scale to high-voltage high-power devices; Presents material in a hands-on, tutorial fashion so that industry practitioners will find maximum utility; Includes a comprehensive library of devices, re...

  15. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    Horacek, Miroslav

    2005-01-01

    The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 μm, is 0.75≅-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope

  16. Designing electronic anisotropy of three-dimensional carbon allotropes for the all-carbon device

    Xu, Li-Chun, E-mail: xulichun@tyut.edu.cn; Song, Xian-Jiang; Yang, Zhi; Li, Xiu-Yan [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Ru-Zhi; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2015-07-13

    Extending two-dimensional (2D) graphene nanosheets to a three-dimensional (3D) network can enhance the design of all-carbon electronic devices. Based on the great diversity of carbon atomic bonding, we have constructed four superlattice-type carbon allotrope candidates, containing sp{sup 2}-bonding transport channels and sp{sup 3}-bonding insulating layers, using density functional theory. It was demonstrated through systematic simulations that the ultra-thin insulating layer with only three-atom thickness can switch off the tunneling transport and isolate the electronic connection between the adjacent graphene strips, and these alternating perpendicular strips also extend the electron road from 2D to 3D. Designing electronic anisotropy originates from the mutually perpendicular π bonds and the rare partial charge density of the corresponding carriers in insulating layers. Our results indicate the possibility of producing custom-designed 3D all-carbon devices with building blocks of graphene and diamond.

  17. Nano-scale patterning on sulfur terminated GaAs (0 0 1) surface by scanning tunneling microscope

    Yagishita, Yuki; Toda, Yusuke; Hirai, Masakazu; Fujishiro, Hiroki Inomata

    2004-01-01

    We perform nano-scale patterning on a sulfur (S) terminated GaAs (0 0 1) surface by a scanning tunneling microscope (STM) in ultra-high vacuum (UHV). A multi-layer of S deposited by using (NH 4 ) 2 S x solution is changed to a mono-layer after annealing at 560 deg. C for 15 h, which terminates the GaAs (0 0 1) surface. Groove structures with about 0.23 nm in depth and about 5 nm in width are patterned successfully on the S-terminated surface. We investigate dependences of both depth and width of the patterned groove on the tunneling current and the scanning speed of tip. It is observed that topmost S atoms are extracted together with first-layer Ga atoms, because of the larger binding energy of S-Ga bond

  18. Nano-scale pattern formation on the surface of HgCdTe produced by ion bombardment

    Smirnov, A.B.; Gudymenko, A.I.; Kladko, V.P.; Korchevyi, A.A.; Savkina, R.K.; Sizov, F.F.; Udovitska, R.S. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kiev (Ukraine)

    2015-08-15

    Presented in this work are the results concerning formation of nano-scale patterns on the surface of a ternary compound Hg{sub 1-x}Cd{sub x}Te (x ∝ 0.223). Modification of this ternary chalcogenide semiconductor compound was performed using the method of oblique-incidence ion bombardment with silver ions, which was followed by low-temperature treatment. The energy and dose of implanted ions were 140 keV and 4.8 x 10{sup 13} cm{sup -2}, respectively. Atomic force microscopy methods were used for the surface topography characterization. The structural properties of MCT-based structure was analyzed using double and triple crystal X-ray diffraction to monitor the disorder and strain of the implanted region as a function of processing conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Nano-scale clusters formed in the early stage of phase decomposition of Al-Mg-Si alloys

    Hirosawa, S.; Sato, T. [Dept. of Metallurgy and Ceramics Science, Tokyo Inst. of Tech. (Japan)

    2005-07-01

    The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening {beta}'' phase significantly influences two-step aging behavior of Al-Mg-Si alloys. In this work, the existence of two kinds of nanoclusters has been verified in the early stage of phase decomposition by differential scanning calorimetry (DSC) and three-dimensional atom probe (3DAP). Pre-aging treatment at 373 K before natural aging was also found to form preferentially one of the two nanoclusters, resulting in the remarkable restoration of age-hardenability at paint-bake temperatures. Such microstructural control by means of optimized heat-treatments; i.e. nanocluster assist processing (NCAP), possesses great potential for enabling Al-Mg-Si alloys to be used more widely as a body-sheet material of automobiles. (orig.)

  20. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  1. The applications of small-angle X-ray scattering in studying nano-scaled polyoxometalate clusters in solutions

    Li, Mu; Zhang, Mingxin; Wang, Weiyu; Cheng, Stephen Z. D.; Yin, Panchao

    2018-05-01

    Nano-scaled polyoxometalates (POMs) clusters with sizes ranging from 1 to 10 nm attract tremendous attention and have been extensively studied due to POMs' fascinating structural characteristics and prospects for wide-ranging applications. As a unique class of nanoparticles with well-defined structural topologies and monodispersed masses, the structures and properties of POMs in both bulk state and solutions have been explored with several well-developed protocols. Small-angle X-ray scattering (SAXS) technique, as a powerful tool for studying polymers and nanoparticles, has been recently extended to the investigating of solution behaviors of POMs. In this mini-review, the general principle and typical experimental procedures of SAXS are illustrated first. The applications of SAXS in characterizing POMs' morphology, counterion distribution around POMs, and short-range interactions among POMs in solutions are highlighted. [Figure not available: see fulltext.

  2. A Novel Electronic Device for Measuring Urine Flow Rate: A Clinical Investigation

    Aliza Goldman; Hagar Azran; Tal Stern; Mor Grinstein; Dafna Wilner

    2017-01-01

    Objective: Currently, most vital signs in the intensive care unit (ICU) are electronically monitored. However, clinical practice for urine output (UO) measurement, an important vital sign, usually requires manual recording of data that is subject to human errors. In this study, we assessed the ability of a novel electronic UO monitoring device to measure real-time hourly UO versus current clinical practice. Design: Patients were connected to the RenalSense Clarity RMS Sensor Kit with a sensor...

  3. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  4. Vertical GaN Devices for Power Electronics in Extreme Environments

    2016-03-31

    Vertical GaN Devices for Power Electronics in Extreme Environments Isik C. Kizilyalli (1), Robert J. Kaplar (2), O. Aktas (1), A. M. Armstrong (2...electronics applications. In this paper vertical p-n diodes and transistors fabricated on pseudo bulk low defect density (104 to 106 cm-2) GaN substrates are...discussed. Homoepitaxial MOCVD growth of GaN on its native substrate and being able to control doping has allowed the realization of vertical

  5. Spectromicroscopic Insights into the Morphology and Interfaces of Operational Organic Electronic Devices

    Du, Xiaoyan

    2017-01-01

    Organic electronics, e.g., organic field-effect transistors (OFETs), organic solar cells (OSCs) and organic light-emitting diodes (OLEDs), have attracted strong interest in both academia and industry during the last decades due to their unique capabilities offered by organic semiconductors. The micro-/nano-structures in active layers and the interface engineering in organic electronics are extremely important for desired device functionalities. In this thesis, the structure-function relations...

  6. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  7. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  8. Spatial distribution of electrons on a superfluid helium charge-coupled device

    Takita, Maika; Bradbury, F R; Lyon, S A; Gurrieri, T M; Wilkel, K J; Eng, Kevin; Carroll, M S

    2012-01-01

    Electrons floating on the surface of superfluid helium have been suggested as promising mobile spin qubits. Three micron wide channels fabricated with standard silicon processing are filled with superfluid helium by capillary action. Photoemitted electrons are held by voltages applied to underlying gates. The gates are connected as a 3-phase charge-coupled device (CCD). Starting with approximately one electron per channel, no detectable transfer errors occur while clocking 10 9 pixels. One channel with its associated gates is perpendicular to the other 120, providing a CCD which can transfer electrons between the others. This perpendicular channel has not only shown efficient electron transport but also serves as a way to measure the uniformity of the electron occupancy in the 120 parallel channels.

  9. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  10. The use and risk of portable electronic devices while cycling among different age groups.

    Goldenbeld, C. Houtenbos, M. Ehlers, E. & Waard, D. de

    2012-01-01

    In The Netherlands, a survey was set up to monitor the extent of the use of portable, electronic devices while cycling amongst different age groups of cyclists and to estimate the possible consequences for safety. The main research questions concerned age differences in the self-reported use of

  11. The use and risk of portable electronic devices while cycling among different age groups

    Goldenbeld, C.; Houtenbos, M.; Ehlers, E.; De Waard, D.

    Introduction: In the Netherlands, a survey was set up to monitor the extent of the use of portable, electronic devices while cycling amongst different age groups of cyclists and to estimate the possible consequences for safety. Method: The main research questions concerned age differences in the

  12. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  13. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    2012-06-08

    ... Phones and Tablet Computers, and Components Thereof Institution of Investigation AGENCY: U.S... the United States after importation of certain electronic devices, including mobile phones and tablet... mobile phones and tablet computers, and components thereof that infringe one or more of claims 1-3 and 5...

  14. Near field resonant inductive coupling to power electronic devices dispersed in water

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  15. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  16. 76 FR 50253 - Certain Portable Electronic Devices and Related Software; Notice of Institution of Investigation...

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-797] Certain Portable Electronic Devices and....C. 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on July 8, 2011, under section...

  17. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    2013-05-31

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices... Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled...

  18. 78 FR 22899 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    2013-04-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on March 12, 2013...

  19. 78 FR 116 - Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of...

    2013-01-02

    ... INTERNATIONAL TRADE COMMISSION [DN 2927] Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest AGENCY: International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has...

  20. 78 FR 6834 - Certain Cases for Portable Electronic Devices; Institution of Investigation

    2013-01-31

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-867] Certain Cases for Portable Electronic Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on...

  1. 76 FR 60870 - In the Matter of Certain Electronic Devices With Communication Capabilities, Components Thereof...

    2011-09-30

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-808] In the Matter of Certain Electronic Devices... Investigation; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on August 16, 2011, under section 337 of the Tariff Act of 1930, as amended, 19 U...

  2. 77 FR 68828 - Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the...

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-861] Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the Tariff Act of 1930, as Amended AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with...

  3. 76 FR 70490 - Certain Electronic Devices With Graphics Data Processing Systems, Components Thereof, and...

    2011-11-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-813] Certain Electronic Devices With... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on September 22, 2011, under section 337 of...

  4. 76 FR 47610 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Institution of...

    2011-08-05

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-796] Certain Electronic Digital Media Devices and.... 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on July 5, 2011, under section...

  5. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    2010-07-01

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-724] In the Matter of Certain Electronic Devices... AGENCY: U.S. International Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade...

  6. 77 FR 11588 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof

    2012-02-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof AGENCY: U.S. International Trade Commission... Trade Commission on January 10, 2012, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C...

  7. 75 FR 39971 - In the Matter of Certain Electronic Imaging Devices; Notice of Investigation

    2010-07-13

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-726] In the Matter of Certain Electronic Imaging Devices; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution of....S. International Trade Commission on May 13, 2010, under section 337 of the Tariff Act of 1930, as...

  8. 77 FR 20847 - Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to...

    2012-04-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on February 7, 2012, and an amended complaint was filed with the U.S...

  9. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  10. Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review

    Ronald Sabo; Aleksey Yermakov; Chiu Tai Law; Rani Elhajjar

    2016-01-01

    Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate...

  11. A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices

    Polino, G.; Abbel, R.; Shanmugam, S.; Bex, G.J.P.; Hendriks, R.; Brunetti, F.; Di Carlo, A.; Andriessen, R.; Galagan, Y.

    2016-01-01

    A set of three commercial copper nanoparticle based inkjet inks has been benchmarked with respect to their potential to form conducting printed structures for future applications in organic electronic devices. Significant differences were observed in terms of jetting properties, spreading behaviour

  12. 75 FR 3154 - Children's Products Containing Lead; Exemptions for Certain Electronic Devices

    2010-01-20

    ... that use solar power or other power sources), such as music players, headphones, some toys and games... basis that replacing or installing parts of a children's electronic device is not a children's activity... are not installed. We decline to revise the rule as suggested by some commenters. We have determined...

  13. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  14. Effect of interface of electronics devices constructed with different materials to X-ray

    Mu Weibing; Chen Panxun

    2003-01-01

    The behavior of X-ray nearby interface which is constructed with different materials is introduced in this paper. And the affect to electronics devices of this behavior is analyzed, the affect factors of four interfaces are calculated by Monte-Carlo method

  15. Five Ways to Hack and Cheat with Bring-Your-Own-Device Electronic Examinations

    Dawson, Phillip

    2016-01-01

    Bring-your-own-device electronic examinations (BYOD e-exams) are a relatively new type of assessment where students sit an in-person exam under invigilated conditions with their own laptop. Special software restricts student access to prohibited computer functions and files, and provides access to any resources or software the examiner approves.…

  16. Cardiac implantable electronic device and associated risk of infective endocarditis in patients undergoing aortic valve replacement

    Østergaard, Lauge; Valeur, Nana; Bundgaard, Henning

    2017-01-01

    Aims: Patients undergoing aortic valve replacement (AVR) are at increased risk of infective endocarditis (IE) as are patients with a cardiac implantable electronic device (CIED). However, few data exist on the IE risk after AVR surgery in patients with a CIED. Methods and results: Using the Danish...

  17. 77 FR 11157 - Certain Portable Electronic Devices and Related Software; Final Determination Finding No...

    2012-02-24

    ... investigation). The complaint named Apple Inc. as the Respondent. On October 17, 2011, the ALJ issued his final... Commission has subject matter jurisdiction and that Apple did not contest that the Commission has in rem and... electronic devices and related software. Regarding infringement, the ALJ found that Apple does not infringe...

  18. Complex composition film condensation in the sluice device of an electron microscope

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  19. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  20. Electronic device, system on chip and method for monitoring a data flow

    2012-01-01

    An electronic device is provided which comprises a plurality of processing units (IP1-IP6), a network-based inter-connect (N) coupled to the processing units (IP1-IP6) and at least one monitoring unit (P1, P2) for monitoring a data flow of at least one first communication path between the processing