WorldWideScience

Sample records for nano-al2o3 solid phase

  1. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  2. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    International Nuclear Information System (INIS)

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  3. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  4. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  5. Microstructure and Mechanical Properties of Multiphase Strengthened Al/Si/Al_2O_3/SiO_2/MWCNTs Nano composites Sintered by In Situ Vacuum Hot Pressing

    International Nuclear Information System (INIS)

    Li, J.; Jiang, X.; Zhu, D.; Zhu, M.; Shao, Z.; Johnson, S.; Luo, Z.

    2015-01-01

    Eutectic Al/Si binary alloy is technically one of the most important Al casting alloys due to its high corrosion resistance, evident shrinkage reduction, low thermal expansion coefficient, high fluidity, and good weldability. In this work, multi phased Al/Si matrix nano composites reinforced with Al_2O_3 and multi walled carbon nano tubes (MWCNTs) have been sintered by an in situ vacuum hot-pressing method. The alumina Al_2O_3 nanoparticles were introduced by an in situ reaction of Al with SiO_2. Microstructure and mechanical properties of the sintered Al/Si/Al_2O_3/SiO_2/MWCNTs nano composites with different alumina contents were investigated. The mechanical properties were determined by micro-Vickers hardness and compressive and shear strength tests. The results demonstrated that in situ alumina and MWCNTs had impacts on microstructure and mechanical properties of the nano composites. Based on the mechanical properties and microstructure of the nano composites, strengthening and fracture mechanisms by multiple reinforcements were analyzed

  6. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2nano iron oxides nano-Al 2 O 3nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  7. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Wang Demin; Hu Ji; Forthaus, Brett E.; Wang Jianmin

    2011-01-01

    Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al 2 O 3 , inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al 2 O 3 particles exhibited partial mortality at concentrations of greater than 200 mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al 2 O 3 surface, and the calculated LC 50 of As(V) in the presence of nano-Al 2 O 3 was lower than that it was without the nano-Al 2 O 3 . The adsorption of As(V) on the nano-Al 2 O 3 surface and the uptake of nano-Al 2 O 3 by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al 2 O 3 was a major reason for the enhanced toxic effect. - Highlights: → Nano-Al 2 O 3 particles alone do not have significant toxic effect on C. dubia. → However, nano-Al 2 O 3 particles significantly enhance the toxicity of As(V). → The uptake of As-loaded nano-Al 2 O 3 by C. dubia plays the major role on the toxicity. - Nano-Al 2 O 3 could accumulate background As(V) and enhance As(V) toxicity on C. dubia through the uptake of As(V)-loaded nano-Al 2 O 3 particles.

  8. Production of Al2O3–SiC nano-composites by spark plasma sintering

    International Nuclear Information System (INIS)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-01-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [es

  9. Production of Al2O3–SiC nano-composites by spark plasma sintering; Producción de nano-composites – SiC–Al2O3 por spark plasma sinterizado

    Energy Technology Data Exchange (ETDEWEB)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-11-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [Spanish] En este trabajo se muestran compuestos de Al2O3-SiC producidos por SPS, en vacío, a 1.600 °C durante 10 min. Para la preparación de muestras, se molieron polvos de Al2O3 durante 5 h con la segunda fase de micro-y-nano polvo de SiC. Posteriormente, estos polvos molidos se sinterizaron mediante SPS. Después del proceso de sinterización, se realizaron estudios de fase, densificación y propiedades mecánicas de los compuestos de Al2O3-SiC obtenidos. Los resultados mostraron que micro-SiC en las muestras tiene un efecto importante en su densidad aparente, dureza y resistencia. La mayor densidad relativa, dureza y resistencia fueron respectivamente del 99,7%, 324,6 HV y 2.329 MPa para Al2O3 con un 20% en peso micro-SiC. Debido al corto tiempo de sinterización, el crecimiento los granos fue limitado y se mantuvieron en escala nanométrica.

  10. Production of Al2O3–SiC nano-composites by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2017-07-01

    Full Text Available In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600 °C for 10 min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5 h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329 MPa, respectively, in Al2O3–20 wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale.

  11. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    Science.gov (United States)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  12. The influence of thermal treatment on the phase development in HfO2-Al2O3 and ZrO2-Al2O3 systems

    International Nuclear Information System (INIS)

    Stefanic, G.; Music, S.; Trojko, R.

    2005-01-01

    Amorphous precursors of HfO 2 -AlO 1.5 and ZrO 2 -AlO 1.5 systems covering the whole concentration range were co-precipitated from aqueous solutions of the corresponding salts. The thermal behaviour of the amorphous precursors was examined by differential thermal analysis, X-ray powder diffraction (XRD), laser Raman spectroscopy and scanning electron microscopy. The crystallization temperature of both systems increased with increase in the AlO 1.5 content, from 530 to 940 deg. C in the HfO 2 -AlO 1.5 system, and from 405 to 915 deg. C in the ZrO 2 -AlO 1.5 system. The results of phase analysis indicate an extended capability for the incorporation of Al 3+ ions in the metastable HfO 2 - and ZrO 2 -type solid solutions obtained after crystallization of amorphous co-gels. Precise determination of lattice parameters, performed using whole-powder-pattern decomposition method, showed that the axial ratio c f /a f in the ZrO 2 - and HfO 2 -type solid solutions with 10 mol% or more of Al 3+ approach 1. The tetragonal symmetry of these samples, as determined by laser Raman spectroscopy, was attributed to the displacement of the oxygen sublattice from the ideal fluorite positions. It was found that the lattice parameters of the ZrO 2 -type solid solutions decreased with increasing Al 3+ content up to ∼10 mol%, whereas above 10 mol%, further increase of the Al 3+ content has very small influence on the unit-cell volume of both HfO 2 - and ZrO 2 -type solid solutions. The reason for such behaviour was discussed. The solubility of Hf 4+ and Zr 4+ ions in the aluminium oxides lattice appeared to be negligible

  13. Dispersion of nano-nickel into γ-Al2O3 studied by positron

    International Nuclear Information System (INIS)

    Jun Zhu; Wang, S.J.; Luo, X.H.

    2003-01-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina (γ-Al 2 O 3 ). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ 4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2 O 3 . The results showed that part of the nano-nickel had entered into γ-Al 2 O 3 by thermal diffusion at heating above 200 deg. C and had interacted with the face of the γ-Al 2 O 3 , but the length of diffusion is not very large

  14. Dispersion of nano-nickel into γ-Al 2O 3 studied by positron

    Science.gov (United States)

    Jun, Zhu; Wang, S. J.; Luo, X. H.

    2003-10-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina ( γ-Al 2O 3). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2O 3. The results showed that part of the nano-nickel had entered into γ-Al 2O 3 by thermal diffusion at heating above 200°C and had interacted with the face of the γ-Al 2O 3, but the length of diffusion is not very large.

  15. Nano-phases of ZrO2 doped with Y2O3

    International Nuclear Information System (INIS)

    Duteanu, Narcis; Monty, Claude

    2001-01-01

    This work reports the method of obtaining oxygen sensors by using nano-phases of ZrO 2 doped with Y 2 O 3 95% molar in thin layers. In the first phase it is necessary to prepare a substratum based on La 1-x Sr 30 MnO 3 . This substratum is obtained by grinding powders of base, followed by mixing and then by baking of the product. The nano-phases of ZrO 2 doped with Y 2 O 3 95% molar are obtained using solar energy in a solar furnace; in the focus the temperature has value of 3000 deg. C. Such temperatures are enough to realize the process of vapor condensation. The nano-phases obtained will have used in thin layers, representing the active element. This layers are obtained directly through the process of vapor condensation in solar focus or using the spray method. The goal of this work was obtaining oxygen sensors which function at low temperatures (below 300 deg. C), because the sensors which are found on market, operate at a temperature of 800 deg. C. Those sensors are used to obtain a good combustion with engines with internal combustion. (authors)

  16. Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE composites

    Science.gov (United States)

    Wang, Banghan; Lv, Qiujuan; Hou, Genliang

    2017-01-01

    The Nano-Al2O3 and PEEK particles synergetic filled PTFE composites were prepared by mechanical blending-molding-sintering method. The tribological behavior of composites with different volume fraction of fillers was tested on different test conditions by a MMW-1A block-on-ring friction and wear tester. The transfer film on counterpart 5A06 Aluminum alloy ring was inspected and anslyzed with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The results demonstrated that the lowest friction coefficient was gained when the PTFE composite was filled with only 10% PEEK. The friction coefficient decreases gradually with the increasing content of PEEK. The special wear rate of 10% PEEK/PTFE were decreased clearly with filled different contents of nano-Al2O3 particles. The special wear rate of the sample with 5% nano-Al2O3 and 10% PEEK had the lowest volume wear rate. The sliding speed effect significantly on the tribological behavior of nano-Al2O3/PEEK/PTFE composites.

  17. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    Science.gov (United States)

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  18. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  19. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  20. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  1. Preparation and characterization of squeeze cast-Al–Si piston alloy reinforced by Ni and nano-Al2O3 particles

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2016-07-01

    Full Text Available Al–Si base composites reinforced with different mixtures of Ni and nano-Al2O3 particles have been fabricated by squeeze casting and their metallurgical and mechanical characterization has been investigated. A mixture of Ni and nano-Al2O3 particles of different ratios was added to the melted Al–Si piston alloy at 700 °C and stirred under pressure. After the Al-base-nano-composites were fabricated by squeeze casting, the microstructure and the particle distribution inside the matrix have been investigated using optical and scanning electron microscopes. Moreover, the hardness and the tensile properties of the resulted Al-base-nano-composites were evaluated at room temperature by using Vickers hardness and universal tensile testers, respectively. As a result, in most cases, it was found that the matrix showed a fine eutectic structure of short silicon constituent which appeared in the form of islands in the α-phase around some added particle agglomerations of the nano-composite structures. The tendency of this structure formation increases with the increase of Ni particle addition. As the ratio of the added particles increases, the tendency of these particles to be agglomerated also increases. Regarding the tensile properties of the fabricated Al-base-nano-composites, ultimate tensile strength is increased by adding the Ni and nano-Al2O3 particles up to 10 and 2 wt.%, respectively. Moreover, the ductility of the fabricated composites is significantly improved by increasing the added Ni particles. The composite material reinforced with 5 wt.% Ni and 2 wt.% nano-Al2O3 particles showed superior ultimate tensile strength and good ductility compared with any other added particles in this investigation.

  2. Reinforcement of 2124 Al alloy with low micron SiC and nano Al2O3 via solid-state forming

    CSIR Research Space (South Africa)

    Gxowa, Z

    2015-07-01

    Full Text Available A powder metallurgical process was used to fabricate Metal Matrix Composites (MMCs). A 2124 aluminium alloy was reinforced with 5 and 10 vol. % of Al2O3 (40-70nm) to form Metal Matrix Nano Composites (MMNCs) as well as 10 and 15 vol. % of SiC (1...

  3. Comparative study of phase structure and dielectric properties for K0.5Bi0.5TiO3-BiAlO3 and LaAlO3-BiAlO3

    International Nuclear Information System (INIS)

    Hou, Yudong; Zheng, Mupeng; Si, Meiju; Cui, Lei; Zhu, Mankang; Yan, Hui

    2013-01-01

    In this work, two perovskite-type compounds, K 0.5 Bi 0.5 TiO 3 and LaAlO 3 , have been selected as host material to incorporate with BiAlO 3 using a solid-state reaction route. The phase evolution and dielectric properties for both systems have been investigated in detail. For the K 0.5 Bi 0.5 TiO 3 -BiAlO 3 system, it is interesting to find that when using Bi 2 O 3 , Al 2 O 3 , K 2 CO 3 , and TiO 2 as starting materials, the formed compounds are K 0.5 Bi 0.5 TiO 3 -K 0.5 Bi 4.5 Ti 4 O 15 and Al 2 O 3 only plays a dopant role. There are two distinct dielectric peaks appearing in the patterns of temperature dependence of dielectric constant, corresponding to the phase-transition points of perovskite-type K 0.5 Bi 0.5 TiO 3 and Aurivillius-type K 0.5 Bi 4.5 Ti 4 O 15 , independently. In comparison, using Bi 2 O 3 , Al 2 O 3 , and La 2 O 3 as starting materials, the pure perovskite phase LaAlO 3 -BiAlO 3 can be obtained. Compared to the inherent paraelectric behavior in LaAlO 3 , the diffuse phase-transition phenomena can be observed in the LaAlO 3 -BiAlO 3 binary system, which corresponds well to the Vogel-Fulcher (VF) relationship. Moreover, compared to pure LaAlO 3 , the synthesized LaAlO 3 -BiAlO 3 compound shows enhanced dielectric properties, which are promising in application as gate dielectric materials. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  5. Atomic-Scale Structure of Al2O3-ZrO2 Mixed Oxides Prepared by Laser Ablation

    International Nuclear Information System (INIS)

    Yang Xiuchun; Dubiel, M.; Hofmeister, H.; Riehemann, W.

    2007-01-01

    By means of x-ray diffractometry (XRD) and X-ray absorption fine structure spectroscopy, the phase composition and atomic structure of laser evaporated ZrO2 and ZrO2-Al2O3 nanopowders have been studied. The results indicate that pure ZrO2 exists in the form of tetragonal structure, Al2O3 doped ZrO2 nanoparticles, however, have cubic structure. Compared to bulk tetragonal ZrO2, pure tetragonal ZrO2 nanoparticles have a shorter Zr-O- and Zr-Zr shell, indicating that the lattice contracts with decreasing particle size. For Al2O3 doped ZrO2 solid solution, the distances of first Zr-O and Zr-Zr (Al) coordination decrease with increasing solid solubility. The disorder degree of the ZrO2 lattice increases with increasing solid solubility. The coevaporated ZrO2-Al2O3 is quickly solidified into amorphous phase when it is ablated in a higher pressure. The amorphous phase contains Zr-O-Zr (Al) clusters and has shorter Zr-O distance and tower Zr-O coordination number

  6. Electrical and mechanical properties of 0.5Ba (Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 (BZT-BCT) lead free ferroelectric ceramics reinforced with Al2O3 nano-oxide

    International Nuclear Information System (INIS)

    Adhikari, Prativa; Mazumder, R.

    2014-01-01

    Piezoelectric ceramics are widely used as actuator, resonator, and spark igniter. Recently, much attention has been paid to prepare 0.5Ba (Zr 0.2 Ti 0.8 )O 3 -0.5 (Ba 0.7 Ca 0.3 )TiO 3 (BZT-BCT) piezoelectric ceramics because of its good dielectric, piezoelectric properties and environment friendly nature. However, piezoelectric ceramics based on BaTiO 3 suffer from low reliability and poor mechanical properties such as strength and toughness. For practical application improvement of the mechanical properties of BaTiO 3 -based ceramics is strongly required. A novel method has been used to improve the mechanical properties of structural ceramics by reinforcement of oxide (Al 2 O 3 , MgO, ZrO 2 and Stabilized-ZrO 2 ) or non-oxide (SiC) particles. It is well known that electrical properties of ferroelectric ceramics generally degrade with non-ferroelectric additives and decrease in sinterability usually encountered with refractory oxide additives. Use of nano-oxide additives may drastically reduce the amount of additive and electrical property may not degrade much. In this report we would show the electrical and mechanical properties of BZT-BCT with Al 2 O 3 nano oxide additive. Modified BZT-BCT nanocomposites were prepared by mixing and sintering of solid state synthesized Zr, Ca modified barium titanate powder and small amount (0.1-2.0 vol %) of nano-oxides, i.e. Al 2 O 3 . Effect of sintering temperature, time, particle size of the nano-oxide additives on electrical (dielectric constant, loss factor, Curie temperature, d 33 ) and mechanical (flexural strength, fracture toughness, hardness) properties were studied. We obtained ∼ 94% dense BZT-BCT reinforced with Al 2 O 3 nano-oxide at 1300℃ without degrading electrical properties (dielectric constant (4850), low dissipation factor (0.0242)) and superior mechanical properties (flexural strength - 60.3 MPa, Vickers hardness-750-800 MPa). (author)

  7. Development of nano-sized α-Al2O3:C films for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.

    2011-01-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon (α-Al 2 O 3 :C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized α-Al 2 O 3 samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized α-Al 2 O 3 :C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized α-Al 2 O 3 :C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized α-Al 2 O 3 :C, in view of their improved resolution provided by nano-particulates. (author)

  8. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  9. Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p nano composite fabricated by semi solid stir casting method

    Directory of Open Access Journals (Sweden)

    Sameer Kumar D.

    2017-03-01

    Full Text Available The present study confers to the fabrication and its characterization of magnesium alloy (AZ91E based nano composites with nano Al2O3 particulate reinforcements. A novel Semi Solid stir casting technique was adopted for the fabrication of the composite. An average particle size of 50 nm was used as reinforcement to disperse in matrix. The effects of change in weight fraction of reinforcements on the distribution of particles, particle–matrix interfacial reactions, physical as well as mechanical properties were reported. The SEM and EDS analysis has shown the uniform distribution of particles in the composite along with the presence of elements. The mechanical properties of reinforced and unreinforced composite were evaluated and presented. Fractography of tensile specimens was also discussed.

  10. Solid-state reaction mechanism and microwave dielectric properties of CaTiO3–LaAlO3 ceramics

    International Nuclear Information System (INIS)

    Jiang, Juan; Fang, Danhua; Lu, Chao; Dou, Zhanming; Wang, Gan; Zhang, Fan; Zhang, Tianjin

    2015-01-01

    Highlights: • CaTiO 3 –LaAlO 3 perovskite ceramics were prepared by four sintering reaction routes. • The solid-state reaction mechanism was investigated by XRD and TG/DSC techniques. • Sintering routes had more influence on the parameters of Q × f and τ f than on ε r . - Abstract: 0.675CaTiO 3 –0.325LaAlO 3 perovskite ceramics were prepared by a conventional sintering process through four reaction routes. The solid-state reaction mechanisms were investigated by X-ray diffraction and thermogravimetric/differential scanning calorimetric analysis techniques. The results show that interactions occurred between mixtures of CaCO 3 and TiO 2 as well as La 2 O 3 and Al 2 O 3 , and they can influence the sintering behavior of the mixtures. Prior to the formation of solid solutions, the perovskite phases CaTiO 3 and LaAlO 3 were formed regardless of the combination of oxide powders used as reagents. From the powder mixtures which were calcined at 1200 °C, a Ca-rich Ca 9 Al 6 O 18 phase was present at 1400 °C if free La 2 O 3 and Al 2 O 3 used in the reaction mixtures. Ca-rich phases were also formed at higher temperature (1450 °C) if LaAlO 3 was present. The densities of the ceramics obtained by the four routes were different at specific sintering temperatures, and the highest density was obtained for the reaction route two. Results indicated that the preparation pathways had more influence on Q × f and temperature coefficient of the resonant frequency (τ f ) than on the dielectric constants (ε r ), and Q × f decreased and τ f increased rapidly when the secondary phase presented. Route four is considered as an optimal pathway for the preparation of 0.675CaTiO 3 –0.325LaAlO 3 ceramics.

  11. Thermal expansion of Cr2xFe2-2xMo3O12, Al2xFe2-2xMo3O12 and Al2xCr2-2xMo3O12 solid solutions

    International Nuclear Information System (INIS)

    Ari, M.; Jardim, P.M.; Marinkovic, B.A.; Rizzo, F.; Ferreira, F.F.

    2008-01-01

    The transition temperature from monoclinic to orthorhombic and the thermal expansion of the orthorhombic phase were investigated for three systems of the family A 2 M 3 O 12 : Cr 2x Fe 2-2x Mo 3 O 12 , Al 2x Fe 2-2x Mo 3 O 12 and Al 2x Cr 2-2x Mo 3 O 12 . It was possible to obtain a single-phase solid solution in all studied samples (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1). A linear relationship between the transition temperature and the fraction of A 3+ cations (x) was observed for each system. In all orthorhombic solid solutions studied here the observed thermal expansion was anisotropic. These anisotropic thermal expansion properties of crystallographic axes a, b and c result in a low positive or near-zero overall linear coefficient of thermal expansion (α l =α V /3). The relationship between the size of A 3+ cations in A 2 M 3 O 12 and the coefficient of thermal expansion is discussed. Near-zero thermal expansion of Cr 2 Mo 3 O 12 is explained by the behavior of Cr-O and Mo-O bond distances, Cr-Mo non-bond distances and Cr-O-Mo bond angles with increasing temperature, estimated by Rietveld analysis of synchrotron X-ray powder diffraction data. - Graphical abstract: In this figure, all published overall linear coefficients of thermal expansion for orthorhombic A 2 M 3 O 12 family obtained through diffraction methods as a function of A 3+ cation radii size, together with dilatometric results, are plotted. Our results indicate that Cr 2 Mo 3 O 12 does not exactly follow the established relationship

  12. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing

    International Nuclear Information System (INIS)

    Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A.

    2009-01-01

    In this study, a new processing technique, friction stir processing (FSP) was attempted to incorporate nano-sized Al 2 O 3 into 6082 aluminum alloy to form particulate composite surface layer. Samples were subjected to various numbers of FSP passes from one to four, with and without Al 2 O 3 powder. Microstructural observations were carried out by employing optical and scanning electron microscopy (SEM) of the cross sections both parallel and perpendicular to the tool traverse direction. Mechanical properties include microhardness and wear resistance, were evaluated in detail. The results show that the increasing in number of FSP passes causes a more uniform in distribution of nano-sized alumina particles. The microhardness of the surface improves by three times as compared to that of the as-received Al alloy. A significant improvement in wear resistance in the nano-composite surfaced Al is observed as compared to the as-received Al

  13. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  14. Chemical quenching of positronium in Fe2O3/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Li, C.; Zhang, H.J.; Chen, Z.Q.

    2010-01-01

    Fe 2 O 3 /Al 2 O 3 catalysts were prepared by solid state reaction method using α-Fe 2 O 3 and γ-Al 2 O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ 3 and τ 4 are attributed to positronium annihilation in two types of pores distributed inside Al 2 O 3 grain and between the grains, respectively. With increasing Fe 2 O 3 content from 3 wt% to 40 wt%, the lifetime τ 3 keeps nearly unchanged, while the longest lifetime τ 4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2 O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ 4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  15. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    Science.gov (United States)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  16. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited electro-brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianchi [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); Ge, Shirong [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China)

    2015-11-30

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al{sub 2}O{sub 3} composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al{sub 2}O{sub 3} Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  17. Development of nano-sized {alpha}-Al{sub 2}O{sub 3}:C films for application in digital radiology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edna C., E-mail: edca@cdtn.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear; Fontainha, Crissia C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Dept. de Propedeutica Complemetar; Oliveira, Vitor H.; Ferraz, Wilmar B.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon ({alpha}-Al{sub 2}O{sub 3}:C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized {alpha}-Al{sub 2}O{sub 3} samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized {alpha}-Al{sub 2}O{sub 3}:C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized {alpha}-Al{sub 2}O{sub 3}:C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized {alpha}-Al{sub 2}O{sub 3}:C, in view of their improved resolution provided by nano-particulates. (author)

  18. Synthesis of Mg–Al2O3 nanocomposites by mechanical alloying

    International Nuclear Information System (INIS)

    Liu, Jinling; Suryanarayana, C.; Ghosh, Dipankar; Subhash, Ghatu; An, Linan

    2013-01-01

    Highlights: ► Mg nanocomposites were synthesized by high-energy ball milling. ► A uniform distribution of the nano-sized reinforcements in the matrix was successfully obtained. ► The thermal stability of the formed nanocomposite was evaluated by annealing it at a high temperature. ► A reaction occurred between the initial Mg powder and Al formed as a result of the displacement reaction, leading to the formation of Mg 17 Al 12 , Al 0.58 Mg 0.42 , and Al 3 Mg 2 phases. -- Abstract: Mg–Al 2 O 3 nanocomposite powders, with Al 2 O 3 particles of 50 nm size, were synthesized by mechanical alloying starting from a mixture of 70 vol.% pure Mg and 30 vol.% Al 2 O 3 powders. A steady-state condition was obtained on milling the powder mix for about 20 h, when the crystallite size of the Mg powder was about 10 nm. The structural evolution during milling was monitored using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction methods. The results showed that a mixture of Mg, Al 2 O 3 , and MgO phases were obtained on mechanical alloying. On annealing the milled powders at 600 °C for 30 min, a displacement reaction occurred between the Mg and Al 2 O 3 phases, when the formation of a mixture of pure Al and MgO phases was observed. Also, a reaction occurred between the initial Mg powder and Al formed as a result of the displacement reaction, leading to the formation of Mg 17 Al 12 , Al 0.58 Mg 0.42 , and Al 3 Mg 2 phases. Thus, the powder annealed after milling the Mg + Al 2 O 3 powder mix for 25 h consisted of Al, MgO and Al 3 Mg 2 phases

  19. Fabrication and Characterization of 5 vol.% (Al2O3p + 8 vol.% (Al2O3f/A336 Hybrid Micron and Nano-Composites

    Directory of Open Access Journals (Sweden)

    Ren Luyang

    2017-01-01

    Full Text Available Hybrid composites are fabricated by adding two reinforcements into matrix materials so that the expected excellent properties can be achieved through the combined advantages of short fibres, and different size particles (micron or nano, which provide a high degree of design freedom. In this paper, hybrid preforms were produced with the different size reinforcement of the Al2O3 particles and short fibres. The Al-Si alloy-based hybrid composites reinforced by 5 vol. % Al2O3 particles and 8 vol. % Al2O3 fibres were fabricated by preform-squeezing casting route. The structure and performance of composite materials were studied with Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM. The results show that the reinforcements, both particles and fibres, distribute homogeneously in the matrix materials, and the properties of composites are found to improve in comparison with the matrix Al-Si alloy.

  20. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)

  1. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  2. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    Science.gov (United States)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  3. Study on crystallization kinetics and phase evolution in Li2O-Al2O3-GeO2-P2O5 glass-ceramics system

    Science.gov (United States)

    Das, Anurup; Dixit, Anupam; Goswami, Madhumita; Mythili, R.; Hajra, R. N.

    2018-04-01

    To address the safety issues related to liquid electrolyte and improve the battery performance, Solid State Electrolytes (SSEs) are now in frontier area of research interest. We report here synthesis of Li-SSE based on Li2O-Al2O3-GeO2-P2O5 (LAGP) system with NASICON structure. Glass sample with nominal composition Li1.5Al0.5Ge1.5P2.5Si0.5O12 was prepared by melt-quenching technique. Non-isothermal crystallization kinetics was studied using DSC and activation energy of crystallisation was calculated to be ˜ 246 kJ/mol using Kissinger's equation. XRD of heat treated samples show the formation of required LiGe2(PO4)3 phase along with other minor phases. Compositional analysis using SEM-EDX confirms enrichment of Ge and Si along the grain boundaries.

  4. Phase separation, crystallization and polyamorphism in the Y{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrie B; Barnes, Adrian C [H H Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Salmon, Philip S [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom); Crichton, Wilson A [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, Grenoble Cedex, F-38043 (France)], E-mail: a.c.barnes@bristol.ac.uk

    2008-05-21

    A detailed study of glass formation from aerodynamically levitated liquids in the (Y{sub 2}O{sub 3}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} system for the composition range 0.21{<=}x{<=}0.41 was undertaken by using pyrometric, optical imaging and x-ray diffraction methods. Homogeneous and clear single-phase glasses were produced over the composition range 0.27{<=}x{<=}0.33. For Y{sub 2}O{sub 3}-rich compositions (0.33{<=}x{<=}0.375), cloudy materials were produced which contain inclusions of crystalline yttrium aluminium garnet (YAG) of diameter up to 40 {mu}m in a glassy matrix. For Y{sub 2}O{sub 3}-poor compositions around x = 0.24, cloudy materials were also produced, but it was not possible to deduce whether this resulted from (i) sub-micron inclusions of a nano-crystalline or glassy material in a glassy matrix or (ii) a glass formed by spinodal decomposition. For x = 0.21, however, the sample cloudiness results from crystallization into at least two phases comprising yttrium aluminium perovskite and alumina. The associated pyrometric cooling curve shows slow recalescence events with a continuous and slow evolution of excess heat which contrasts with the sharp recalescence events observed for the crystallization of YAG at compositions near x = 0.375. The materials that are the most likely candidates for demonstrating homogeneous nucleation of a second liquid phase occur around x = 0.25, which corresponds to the limit for formation of a continuous random network of corner-shared AlO{sub 4} tetrahedra.

  5. Surface and catalytic properties of MoO3/Al2O3 system doped with Co3O4

    International Nuclear Information System (INIS)

    Zahran, A.A.; Shaheen, W.M.; El-Shobaky, G.A.

    2005-01-01

    Thermal solid-solid interactions in cobalt treated MoO 3 /Al 2 O 3 system were investigated using X-ray powder diffraction. The solids were prepared by wet impregnation method using Al(OH) 3 , ammonium molybdate and cobalt nitrate solutions, drying at 100 deg. C then calcination at 300, 500, 750 and 1000 deg. C. The amount of MoO 3 , was fixed at 16.67 mol% and those of cobalt oxide were varied between 2.04 and 14.29 mol% Co 3 O 4 . Surface and catalytic properties of various solid samples precalcined at 300 and 500 deg. C were studied using nitrogen adsorption at -196 deg. C, conversion of isopropanol at 200-500 deg. C and decomposition of H 2 O 2 at 30-50 deg. C. The results obtained revealed that pure mixed solids precalcined at 300 deg. C consisted of AlOOH and MoO 3 phases. Cobalt oxide-doped samples calcined at the same temperature consisted also of AlOOH, MoO 3 and CoMoO 4 compounds. The rise in calcination temperature to 500 deg. C resulted in complete conversion of AlOOH into very poorly crystalline γ-Al 2 O 3 . The further increase in precalcination temperature to 750 deg. C led to the formation of Al 2 (MoO 4 ) 3 , κ-Al 2 O 3 besides CoMoO 4 and un-reacted portion of Co 3 O 4 in the samples rich in cobalt oxide. Pure MoO 3 /Al 2 O 3 preheated at 1000 deg. C composed of MoO 3Al 2 O 3 solid solution (acquired grey colour). The doped samples consisted of the same solid solution together with CoMoO 4 and CoAl 2 O 4 compounds. The increase in calcination temperature of pure and variously doped solids from 300 to 500 deg. C increased their specific surface areas and total pore volume which suffered a drastic decrease upon heating at 750 deg. C. Doping the investigated system with small amounts of cobalt oxide (2.04 and 4 mol%) followed by heating at 300 and 500 deg. C increased its catalytic activity in H 2 O 2 decomposition. This increase, measured at 300 deg. C, attained 25.4- and 12.9-fold for the solids precalcined at 300 and 500 deg. C, respectively

  6. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. BF3/nano-γ-Al2O3 Promoted Knoevenagel Condensation at Room Temperature

    Directory of Open Access Journals (Sweden)

    B. F. Mirjalili

    2015-10-01

    Full Text Available The Knoevenagel condensation of aromatic aldehydes with barbituric acid, dimedone and malononitrile occurred in the presence of BF3/nano-γ-Al2O3 at room temperature in ethanol. This catalyst is characterized by powder X-ray diffraction (XRD, fourier transform infrared spectroscopy (FT-IR, thermal gravimetric analysis (TGA, field emission scanning electron microscopy (FESEM and energy-dispersive X-ray spectroscopy (EDS.

  8. Solid-state reaction mechanism and microwave dielectric properties of CaTiO{sub 3}–LaAlO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Juan [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Fang, Danhua; Lu, Chao; Dou, Zhanming; Wang, Gan; Zhang, Fan [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China)

    2015-07-25

    Highlights: • CaTiO{sub 3}–LaAlO{sub 3} perovskite ceramics were prepared by four sintering reaction routes. • The solid-state reaction mechanism was investigated by XRD and TG/DSC techniques. • Sintering routes had more influence on the parameters of Q × f and τ{sub f} than on ε{sub r}. - Abstract: 0.675CaTiO{sub 3}–0.325LaAlO{sub 3} perovskite ceramics were prepared by a conventional sintering process through four reaction routes. The solid-state reaction mechanisms were investigated by X-ray diffraction and thermogravimetric/differential scanning calorimetric analysis techniques. The results show that interactions occurred between mixtures of CaCO{sub 3} and TiO{sub 2} as well as La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}, and they can influence the sintering behavior of the mixtures. Prior to the formation of solid solutions, the perovskite phases CaTiO{sub 3} and LaAlO{sub 3} were formed regardless of the combination of oxide powders used as reagents. From the powder mixtures which were calcined at 1200 °C, a Ca-rich Ca{sub 9}Al{sub 6}O{sub 18} phase was present at 1400 °C if free La{sub 2}O{sub 3} and Al{sub 2}O{sub 3} used in the reaction mixtures. Ca-rich phases were also formed at higher temperature (1450 °C) if LaAlO{sub 3} was present. The densities of the ceramics obtained by the four routes were different at specific sintering temperatures, and the highest density was obtained for the reaction route two. Results indicated that the preparation pathways had more influence on Q × f and temperature coefficient of the resonant frequency (τ{sub f}) than on the dielectric constants (ε{sub r}), and Q × f decreased and τ{sub f} increased rapidly when the secondary phase presented. Route four is considered as an optimal pathway for the preparation of 0.675CaTiO{sub 3}–0.325LaAlO{sub 3} ceramics.

  9. Ti{sub 2}Al(O,N) formation by solid-state reaction between substoichiometric TiN thin films and Al{sub 2}O{sub 3} (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.O.A., E-mail: perpe@ifm.liu.se; Hoeglund, C.; Birch, J.; Hultman, L.

    2011-02-01

    Titanium nitride TiN{sub x} (0.1 {<=} x {<=} 1) thin films were deposited onto Al{sub 2}O{sub 3}(0001) substrates using reactive magnetron sputtering at substrate temperatures (T{sub s}) ranging from 800 to 1000 {sup o}C and N{sub 2} partial pressures (pN{sub 2}) between 13.3 and 133 mPa. It is found that Al and O from the substrates diffuse into the substoichiometric TiN{sub x} films during deposition. Solid-state reactions between the film and substrate result in the formation of Ti{sub 2}O and Ti{sub 3}Al domains at low N{sub 2} partial pressures, while for increasing pN{sub 2}, the Ti{sub 2}AlN MAX phase nucleates and grows together with TiN{sub x}. Depositions at increasingly stoichiometric conditions result in a decreasing incorporation of substrate species into the growing film. Eventually, a stoichiometric deposition gives a stable TiN(111) || Al{sub 2}O{sub 3}(0001) structure without the incorporation of substrate species. Growth at T{sub s} 1000 {sup o}C yields Ti{sub 2}AlN(0001), leading to a reduced incorporation of substrate species compared to films grown at 900 {sup o}C, which contain also Ti{sub 2}AlN(101-bar3) grains. Finally, the Ti{sub 2}AlN domains incorporate O, likely on the N site, such that a MAX phase oxynitride Ti{sub 2}Al(O,N) is formed. The results were obtained by a combination of structural methods, including X-ray diffraction and (scanning) transmission electron microscopy, together with spectroscopy methods, which comprise elastic recoil detection analysis, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy.

  10. Cell characteristics of FePt nano-dot memories with a high-k Al2O3 blocking oxide

    International Nuclear Information System (INIS)

    Lee, Gae Hun; Lee, Jung Min; Yang, Hyung Jun; Song, Yun Heub; Bea, Ji Cheol; Tanaka, Testsu

    2012-01-01

    The cell characteristics of an alloy FePt nano-dot (ND) charge trapping memory with a high-k dielectric as a blocking oxide was investigated. Adoption of a high-k Al 2 O 3 material as a blocking oxide for the metal nano-dot memory provided a superior scaling of the operation voltage compared to silicon oxide under a similar gate leakage level. For the 40-nm-thick high-k (Al 2 O 3 ) blocking oxide, we confirmed an operation voltage reduction of ∼7 V under the same memory window on for silicon dioxide. Also, this device showed a large memory window of 7.8 V and a low leakage current under 10 -10 A in an area of Φ 0.25 mm. From these results, the use of a dielectric (Al 2 O 3 ) as a blocking oxide for a metal nano-dot device is essential, and a metal nano-dot memory with a high-k dielectric will be one of the candidates for a high-density non-volatile memory device.

  11. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  12. Phase studies in the CdO-Al2O3-TiO2 system: radioactive waste implications

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, P E.D.; Koutsoutis, M S

    1985-10-01

    With the study of new compounds such as CaTi3Al8O19, and the isotypic RETi2Al9O19 (where RE = light rare earth), the question arose as to whether a cadmium analogue existed. The relative stability of the aforementioned phases to hydrothermal water further suggested the cadmium analogue as a host phase for radioactive wastes that might contain cadmium as a neutron poison. Ti-Al(-Fe) matrix compositions are potentially useful as crystalline radwaste hosts. Experimental details are given for the preparation of the cadmium compounds. The subsolidus region of the CdO-Al2O3-TiO2 diagram at 1100C is shown. The compound CdTi3Al8O19 does not exist, but a new orthorhombic ternary compound CdTi2Al2O8 was found. The complete X-ray powder data for CdTi2Al2O8 are presented. CdAl4O7 was confirmed to decompose at approx. 1180C and melts occur in the centre of the diagram at approx. 1200C. At temperatures below approx. 900C, el-Al2O3 and the ilmenite form of CdTiO3 form; the latter suddenly converts to the perovskite form between 900 and 925C. Both forms of CdTiO3 and CdTi2Al2O8 were water resistant and survived unchanged when held in water at 150C for one month in teflon-lined stainless steel bombs.

  13. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    Science.gov (United States)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  14. Estudo da viabilidade de obtenção de cerâmicas de SiC por infiltração espontânea de misturas eutéticas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN Study of the viability to produce SiC ceramics by Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN spontaneous infiltration

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2008-06-01

    Full Text Available As cerâmicas de carbeto de silício, SiC, apresentam excelentes propriedades quando obtidas por infiltração de determinados líquidos. Na infiltração o tempo de contato entre o líquido e o SiC a temperaturas elevadas é muito curto, diminuindo a probabilidade de formação dos produtos gasosos que interferem negativamente na resistência da peça final, como ocorre na sinterização via fase líquida. O objetivo deste trabalho é mostrar uma correlação entre molhabilidade e capacidade de infiltração de alguns aditivos em compactos de SiC. Foram preparados compactos de SiC por prensagem isostática a frio e posterior pré-sinterização via fase sólida. Nesses compactos foram infiltradas misturas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN, nas composições eutéticas, 10 ºC acima da temperatura de fusão das respectivas misturas por 4, 8 e 12 min. Após infiltração, as amostras foram analisadas quanto à densidade aparente e real, fases cristalinas, microestrutura e grau de infiltração, sendo que as amostras infiltradas com Y2O3-AlN apresentaram melhores resultados.Silicon carbide ceramics, SiC, obtained by liquid infiltration have shown excellent properties. In infiltration process the contact time of the liquid with SiC at elevated temperature is short, decreasing the probability to form gaseous products that contribute negatively in the final product properties. This phenomenon occurs during SiC liquid phase sintering. The purpose of the present study was to investigate the correlation between wettability and infiltration tendency of some additives in SiC compacts. SiC compacts were prepared by cold isostatic pressing followed by solid phase pre-sintering. Into the compacts were introduced Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN liquids with eutectic compositions at a temperature 10 ºC higher than the melting point of each mixture for 4, 8 and 12 min. Before infiltration, the samples were analyzed by determining densities, crystalline phases

  15. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  16. Synthesis of chelating agent free-solid phase extractor (CAF-SPE) based on new SiO2/Al2O3/SnO2 ternary oxide and application for online preconcentration of Pb2+ coupled with FAAS

    International Nuclear Information System (INIS)

    Tarley, César R.T.; Scheel, Guilherme L.; Zappielo, Caroline D.; Suquila, Fabio A.C.; Ribeiro, Emerson S.

    2018-01-01

    A new online solid phase preconcentration method using the new SiO 2 /Al2O 3 /SnO 2 ternary oxide (designated as SiAlSn) as chelating agent free-solid phase extractor (CAF-SPE) coupled to flame atomic absorption spectrometry (FAAS) for Pb 2+ determination at trace levels in different kind of samples is proposed. The solid adsorbent has been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectroscopy (XRF) and textural data. The method involves the preconcentration using time-based sampling of Pb 2+ solution at pH 4.3 through 100.0 mg of packed adsorbed into a mini-column under flow rate of 4.0 mL min -1 during 5 min. The elution step was accomplished by using 1.0 mol L -1 HCl. A wide range of analytical curve (5.0-400.0 μg L -1 ), high enrichment factor (40.5), low consumption index (0.5 mL) and low limits of quantification and detection, 5.0 and 1.5 μg L -1 , respectively, were obtained with the developed method. Practical application of method was tested on water samples, chocolate powder, Ginkgo biloba and sediment (certified reference material). On the basis of the results, the SiAlSn can be considered an effective adsorbent belonging to the class of CAF-SPE for Pb 2+ determination from different matrices. (author)

  17. Dual mode emission and harmonic generation in ZnO-CaO-Al{sub 2}O{sub 3}: Er{sup 3+} nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Verma, R.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Nano-technology Application Centre, University of Allahabad, Allahabad (India); Rai, S.B., E-mail: sbrai49@yahoo.co.i [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2011-05-15

    Er{sup 3+} doped ZnO-CaO-Al{sub 2}O{sub 3} nano-composite phosphor has been synthesized through combustion method and its emission and harmonic generation properties have been studied. The X-ray diffraction and thermal analysis techniques have been used to prove the dual phase (ZnO and CaO-Al{sub 2}O{sub 3}) nature of the phosphor. The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er{sup 3+} and thus behaves as a dual mode phosphor. On excitation with 976 nm diode laser, material shows color tunability (calcination of composite material at different temperatures). Formation of ZnO nanocrystals on heat treatment of as-synthesized sample has shown its characteristic emission at 388 nm and also the energy transfer from ZnO to Er{sup 3+} ions. The low temperature emission measurements have been carried out and the results have been discussed. Phosphor has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm excitation. - Research highlights: {yields} We have synthesized Er{sup 3+} doped composite material by combustion method. The two phases of composites are ZnO and CaO-Al{sub 2}O{sub 3}. {yields} The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er{sup 3+} and thus behaves as a dual mode phosphor. This material also shows colour tenability on excitation of 976 nm diode laser at different temperature calcinations (i.e., As-synthesized to calcinated at 1473 K). {yields} Low temperature effects on Er{sup 3+} as well as ZnO emission have been carried out. We observed that at low temperature the efficiency of Er{sup 3+} increases while in the case of ZnO its intensity increases and also 12 nm shifting observed. {yields} Composite material has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm

  18. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  19. Development and characterization of nickel catalysts supported in CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 matrixes evaluated for methane reforming reactions

    International Nuclear Information System (INIS)

    Abreu, Amanda Jordão de

    2012-01-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al 2 O 3 . However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al 2 O 3 supported on solid solutions formed by ZrO 2 -CeO 2 , La 2 O 3 and CeO 2 -ZrO 2 -La 2 O 3 were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al 2 O 3 catalysts and the best catalysts are Ni/CeO 2 -La 2 O 3 -Al 2 O 3 . (author)

  20. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives

    International Nuclear Information System (INIS)

    Safran, G.; Suzuki, T.; Ouchi, K.; Barna, P.B.; Radnoczi, G.

    2006-01-01

    Perpendicular magnetic recording media samples were prepared by sputter deposition on sapphire with a layer sequence of MgO seed-layer/Cr under-layer/FeSi soft magnetic under-layer/MgO intermediate layer/FePt-oxide recording layer. The effects of MgO, Al 2 O 3 and SiO 2 additives on the morphology and orientation of the FePt layer were investigated by transmission electron microscopy. The samples exhibited (001) orientation of the L1 FePt phase with the mutual orientations of sapphire substrate//MgO(100)[001]//Cr(100)[11-bar0]//FeSi(100)[11-bar0]//MgO(100) [001]//FePt(001)[100]. The morphology of the FePt films varied due to the co-deposited oxides: The FePt layers were continuous and segmented by stacking faults aligned at 54 o to the surface. Films with SiO 2 addition, beside the oriented columnar FePt grains, exhibited a fraction of misoriented crystallites due to random repeated nucleation. Al 2 O 3 addition resulted in a layered structure, i.e. an initial continuous epitaxial FePt layer covered by a secondary layer of FePt-Al 2 O 3 composite. Both components (FePt and MgO) of the MgO-added samples were grown epitaxially on the MgO intermediate layer, so that a nano-composite of intercalated (001) FePt and (001) MgO was formed. The revealed microstructures and formation mechanisms may facilitate the improvement of the structural and magnetic properties of the FePt-oxide composite perpendicular magnetic recording media

  1. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2017-08-01

    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.

  2. Sequential evolution of different phases in metastable Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) system: crucial role of reaction conditions.

    Science.gov (United States)

    Shukla, Rakesh; Sayed, Farheen N; Phapale, Suhas; Mishra, Ratikant; Tyagi, Avesh K

    2013-07-15

    The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.

  3. Strengthening analyses and mechanical assessment of Ti/Al{sub 2}O{sub 3} nano-composites produced by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Shafiei-Zarghani, Aziz, E-mail: ashafiei@ut.ac.ir [Center of Excellence for Surface Engineering and Corrosion Protection of Industries, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kashani-Bozorg, Seyed Farshid, E-mail: fkashani@ut.ac.ir [Center of Excellence for Surface Engineering and Corrosion Protection of Industries, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Gerlich, Adrian P., E-mail: adrian.gerlich@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-04-17

    The present work investigates strengthening mechanisms and mechanical assessment of Ti/Al{sub 2}O{sub 3} nano-composites produced by friction stir processing of commercially pure titanium using nano-sized Al{sub 2}O{sub 3} with different volume fractions and particle sizes. Microstructural analyses were conducted to characterize the grain size of matrix, size and dispersion of reinforcing particles. The mean grain size of the composites ranged from ~0.7 to 1.1 μm that is much lower than 28 μm of the as-received material. Reduction of grain size was found to be in agreement with Rios approach (based on energy dissipated during the motion of an interface through particle dispersion), and showed deviation from Zener pinning model. Scanning and transmission electron microscopies revealed a near uniform dispersion of Al{sub 2}O{sub 3} nano-particles, with only a small fraction of widely spaced clusters. The maximum compression yield strength of the fabricated nano-composite (Ti/3.9%vol of 20 nm-Al{sub 2}O{sub 3}) was found to be ~494 MPa that is ~1.5 times higher than that of the as-received material. Strengthening analyses based on grain refining (Hall–Petch approach), load transfer from matrix to reinforcements, Orowan looping, and enhanced dislocation density due to thermal mismatch effects were carried out considering Al{sub 2}O{sub 3} reinforcement with different volume fractions and sizes. However, Hall–Petch approach was found to be the dominant mechanism for the enhancement of yield strength.

  4. DC ionic conductivity of NaNO3: γ-Al2O3 composite solid electrolyte system

    International Nuclear Information System (INIS)

    Madhava Rao, M.V.; Narender Reddy, S.; Sadananda Chary, A.

    2005-01-01

    We present DC ionic conductivity measurements on composites formed between Na + ion conductor (NaNO 3 ) and dispersed insulating oxide (alumina). Enhancement of conductivity is noticed to increase with mole percent (m/o) of the dispersoid. The maximum enhancement observed is more than two orders of magnitude with respect to the host material. X-ray diffraction and differential scanning calorimetry studies ruled out the formation of solid solutions between the host material and the dispersoid. The experimental data indicating higher conductivity in dispersed system is interpreted in terms of the formation of space charge layer between the host material and the dispersoid in which defect concentration increases and that is thought to be the possible mechanism of conductivity enhancement. Activation energies obtained from the conductivity data in the extrinsic conduction region indicated least value for the systems at threshold mole percentage

  5. Phase selection in the containerless solidification of undercooled CaO · 6Al2O3 melts

    International Nuclear Information System (INIS)

    Li Mingjun; Kuribayashi, Kazuhiko

    2004-01-01

    The CaO · 6Al 2 O 3 melts were solidified on an aero-acoustic levitator under a containerless processing condition at various undercoolings. A high-speed video was operated to monitor the recalescence behavior, from which the growth velocity as a function of melt undercooling was determined. The microstructures were observed and the crystalline phases were identified using the X-ray diffraction technique, indicting that the Al 2 O 3 was solidified when the melt temperature was higher than the peritectic temperature, T p . When the melt was undercooled below T p , the CaO · 6Al 2 O 3 (CA 6 ) peritectic phase was crystallized directly from the undercooled melts. With respect to the direct formation of the peritectic phase, further analysis from the viewpoints of competitive nucleation indicated that the minimum free energy principle may be applied to elucidate the nucleation of CA 6 phase. In terms of the competitive growth behavior, the interface attachment kinetics for Al 2 O 3 and CA 6 phases are calculated by using the classical BCT model indicating that although the Al 2 O 3 phase doped by CaO has about four times larger interface kinetic coefficient than that of the CA 6 peritectic phase, the growth kinetics of Al 2 O 3 in the melt with the CaO · 6Al 2 O 3 chemical composition is not sufficiently high to replace the CA 6 phase as the primary phase. Therefore, once CA 6 is nucleated, it can develop into a macro crystal as the primary phase. The competitive nucleation and growth behavior in the CA 6 system is different from those in other well-studied peritectic alloys and the present investigation on the phase formation will be an essential supplement to the phase selection theory

  6. The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Van Nong, Ngo; Le, Thanh Hung

    2013-01-01

    A systematic investigation on the microstructure and thermoelectric properties of Al-doped ZnO using α- and γ-Al2O3 as dopants was conducted in order to understand the doping effect and its mechanism. The samples were prepared by the spark plasma sintering technique from precursors calcined...... at various temperatures. Clear differences in microstructure and thermoelectric properties were observed between the samples doped with α- and γ-Al2O3. At any given calcination temperature, γ-Al2O3 resulted in the formation of a larger amount of the ZnAl2O4 phase in the Al-doped ZnO samples. The average...... grain size was found to be smaller for the γ-Al2O3-doped samples than that for the α-Al2O3-doped ones under the same sintering condition. It is proposed that the ZnAl2O4 phase is the reason for the observed suppression of grain growth and also for the slightly reduced lattice thermal conductivity...

  7. Effect of Nano Al2O3 Doping on Thermal Aging Properties of Oil-Paper Insulation

    Directory of Open Access Journals (Sweden)

    Ningchuan Liang

    2018-05-01

    Full Text Available The thermal aging property of oil-paper insulation is a key factor affecting the service life of transformers. In this study, nano-Al2O3 was added to insulating paper to improve its anti-thermal aging property and delay the aging rate of the insulating oil. The composite paper containing 2% nano-Al2O3 had the highest tensile strength and therefore was selected for the thermal aging test. The composite and normal papers were treated with an accelerated thermal aging experiment at the temperature of 130 °C for 56 days. The variations of the degree of polymerization (DP and tensile strength of the insulating papers with aging time were obtained. The characteristics of the insulating oil, including color, acid content, breakdown voltage, and dielectric loss were analyzed. The results revealed that compared with a plain paper, the composite paper maintained a higher DP, and its tensile strength decreased more slowly during the aging process. The oil-impregnated composite paper presented a lighter-colored oil, less viscosity changes, and a considerably lower quantity of thermal aging products. In addition, nano-Al2O3 can effectively adsorb copper compounds and keep part of the acid products and water away from the thermal aging process. This characteristic restrained the catalysis of copper compounds and H+ in the thermal aging reaction and reduced the thermal aging speed of both the insulating paper and the insulating oil.

  8. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  9. Steady-state pool boiling heat transfer on nicr wire surface submerged in Al2O3 nano-fluids

    International Nuclear Information System (INIS)

    Dereje Shiferaw; Hyun Sun Park; Bal Raj Sehgal

    2005-01-01

    Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 23 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than

  10. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    OpenAIRE

    Qidi Xie; Bowen Li; Xin He; Mei Zhang; Yan Chen; Qingguang Zeng

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to ...

  11. Directed laser processing of compacted powder mixtures Al2O3-TiO2-Y2O3

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2013-01-01

    Full Text Available The phase formation, microstructure and surface texture of laser treated ternary powder mixtures of Al2O3-TiO2-Y2O3 had been studied. Rapid high temperature heating and subsequent rapid cooling due to the directed movement of the laser beam forms concave ceramic tracks. Phase composition and microstructure of the tracks depends on the Al2O3 content and the TiO2/Y2O3 ratio of the initial mixtures. The main phases observed are Y3Al5O12, Y2Ti2O7, Al2O3 and Al2TiO5. Due to the temperature gradient in the heating zone, complex layered structures are formed. The tracks consist of three main layers: a thin surface layer, a layer of crystallization products of eutectic alloys, and a lower sintered layer. The thickness of the crystallization layer and the shrinkage of the irradiation zone depend on the amount of Y3Al5O12 and Al2O3 crystallized from the melt.

  12. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  13. Single-phased CaAl2Si2O8:Tm3+, Dy3+ white-light phosphors under ultraviolet excitation

    International Nuclear Information System (INIS)

    Yang, Penghui; Yu, Xue; Xu, Xuhui; Jiang, Tingming; Yu, Hongling; Zhou, Dacheng; Yang, Zhengwen; Song, Zhiguo; Qiu, Jianbei

    2013-01-01

    A novel white-light-emitting phosphor CaAl 2 Si 2 O 8 :Tm, Dy was synthesized in ambient atmosphere by solid-state reaction. The energy transfer from Tm 3+ to Dy 3+ ions via a dipole–quadrupole reaction was observed and investigated. Upon UV excitation, white light emission was achieved by integrating a blue emission band located at 455 nm and an orange one located at 574 nm attributed to Tm 3+ and Dy 3+ ions, respectively. In addition, the energy-transfer efficiency and critical distance were calculated. Results suggested that the phosphor might be promising as a single-phased white-light-emitting phosphor for UV white-light LED. - Graphical abstract: The results indicate the existence of energy transfer from Tm 3+ to Dy 3+ . By tuning the concentration of Dy 3+ , single-phased white light can be realized. - Highlights: ► Energy transfer from Tm 3+ to Dy 3+ was investigated. ► Color tunable from blue to white can be achieved. ► White light can be realized in CaAl 2 Si 2 O 8 :Tm 3+ , Dy 3+ phosphor

  14. Combustion synthesis of AlB2-Al2O3 composite powders with AlB2 nanowire structures

    Science.gov (United States)

    Yang, Pan; Xiao, Guoqing; Ding, Donghai; Ren, Yun; Yang, Shoulei; Lv, Lihua; Hou, Xing

    2018-05-01

    Using of Al and B2O3 powders as starting materials, and Mg-Al alloy as additives, AlB2-Al2O3 composite powders with AlB2 nanowire structures were successfully fabricated via combustion synthesis method in Ar atmosphere at a pressure of 1.5 MPa. The effect of different amount of Mg-Al alloy on the phase compositions and morphology of the combustion products was investigated. The results revealed that AlB2 and Al2O3 increased, whereas Al decreased with the content of Mg-Al alloy increasing. The impurities MgAl2O4 and AlB12 would exist in the sample with adding of 18 wt% Mg-Al alloy. Interestingly, FESEM/TEM/EDS results showed that AlB2 nanowires were observed in the products when the content of Mg-Al alloy is 6 wt% and 12 wt%. The more AlB2 nanowires can be found as the content of Mg-Al alloy increased. And the yield of AlB2 nanowires with the diameter of about 200 nanometers (nm) and the length up to several tens of micrometers (μm) in the combustion product is highest when the content of Mg-Al alloy is 12 wt%. The vapor, such as Mg-Al (g), B2O2 (g), AlO (g) and Al2O (g), produced during the process of combustion synthesis, reacted with each other to yield AlB2 nanowires by vapor-solid (VS) mechanism and the corresponding model was also proposed.

  15. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  16. Synthesis, microstructure and mechanical properties of (Ti1−x,Nbx)2AlC/Al2O3 solid solution composites

    International Nuclear Information System (INIS)

    Zhu, Jianfeng; Han, Na; Wang, Anning

    2012-01-01

    (Ti,Nb) 2 AlC/Al 2 O 3 in-situ solid solution composites were successfully synthesized from the elemental powder mixtures of Nb 2 O 5 , Ti, Al and carbon black using hot-press-aided reaction synthesis. The reaction path was investigated by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), and a possible reaction mechanism was proposed to explain the formation of (Ti,Nb) 2 AlC/Al 2 O 3 composites in which the thermite reaction between Al and Nb 2 O 5 formed Al 2 O 3 and Nb, and the latter together with TiAl and TiC reacted to form (Ti,Nb) 2 AlC. The synthesized composites show plate-like grains packed in a laminated structure typical of Ti 2 AlC, and the fine Al 2 O 3 particles formed in-situ tend to disperse on the matrix grain boundaries. Compared with the monolithic Ti 2 AlC synthesized using an identical process, the Vickers hardness, maximum compressive stress, flexural strength and fracture toughness of (Ti 0.96 ,Nb 0.04 ) 2 AlC/5 wt% Al 2 O 3 were enhanced by 33.8%, 12.1%, 118.4% and 111.8%, respectively. The mechanisms by which Al 2 O 3 increases the strength and toughness of the material were also discussed.

  17. Various characteristics of Ni and Pt-Al2O3 nano catalysts prepared by microwave method to be applied in some petrochemical processes

    International Nuclear Information System (INIS)

    Gobara, H.M.; Mohamed, A.R.S.; Khalil, F.H.; El-Shall, M.S.; Hassan, S.A.

    2014-01-01

    Alumina-supported metal nano catalysts were prepared via the microwave method, by loading nano Ni particles (at 1, 3 and 5 wt %) or nano Pt particles (at 0.3, 0.6 and 0.9 wt %). Structural and adsorption features of the nano catalysts were revealed through XRD, DSC- DTA, TEM, H 2 -chemisorption and N 2 -physisorption. N 2 -adsorption-desorption isotherms of type IV were related typically to meso porous materials with H 2 class of hysteresis loops characterizing ink bottle type of pores. The well dispersed nano-sized metal particles were evidenced in the studied catalytic systems, exhibiting marked thermal stability up to 800 degree C. The catalytic performances of different catalyst samples were assessed during cyclohexane, normal hexane and ethanol conversions, using the micro-catalytic pulse technique at different operating conditions. The 5% Ni-γAl 2 O 3 sample was found to be the most active in dehydration of ethanol to produce ethylene, as well as in n -hexane cracking. However, the 1% Ni-Al 2 O 3 sample showed the highest dehydrogenation activity for selective production of benzene from cyclohexane. On the other hand, the 0.9% Pt-γAl 2 O 3 sample exhibited the highest activity in the dehydration of ethanol and in the dehydrogenation of cyclohexane. The 0.3% Pt-γAl 2 O 3 sample was the most active in the dehydrocyclization of normal hexane, as compared to the other catalyst samples under study

  18. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  19. The investigation of YAlO{sub 3}-NdAlO{sub 3} system, synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Szysiak, A., E-mail: agnieszka.szysiak@itme.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Klimm, D.; Ganschow, S. [Leibniz Institute for Crystal Growth, Max-Born Str. 2, 12489 Berlin (Germany); Mirkowska, M.; Diduszko, R.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Kwasniewski, A. [Leibniz Institute for Crystal Growth, Max-Born Str. 2, 12489 Berlin (Germany); Pajaczkowska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2011-09-01

    Highlights: {center_dot} The system YAlO{sub 3}-NdAlO{sub 3} is pseudo-binary. {center_dot} Both end members show high mutual solubility >25% in the solid phase. {center_dot} A solid solution Y{sub 0.8}Nd{sub 0.2} melts azeotropic ca. 20{sup o} below pure YAP. {center_dot} All YAP-rich solid solutions have the 2-phase region between solidus and liquidus. - Abstract: The pseudo-binary phase diagram of the YAlO{sub 3} (YAP)-NdAlO{sub 3} (NAP) system was determined by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) measurements. High purity nanocrystalline powders and small single crystals of Y{sub 1-x}Nd{sub x}AlO{sub 3} (0 {<=} x {<=} 1) have been produced successfully by modified sol-gel (Pechini) and micro-pulling-down methods, respectively. Both end members show high mutual solubility >25% in the solid phase, with a miscibility gap for intermediate compositions. A solid solution with x {approx} 0.2 melts azeotropic ca. 20{sup o} below pure YAP. Such crystals can be grown from the melt without segregation. The narrow solid/liquid region near the azeotrope point could be measured with a 'cycling' DTA measurement technique.

  20. Ab initio study of the effect of Si on the phase stability and electronic structure of γ- and α-Al2O3

    International Nuclear Information System (INIS)

    Nahif, F; Music, D; Mráz, S; To Baben, M; Schneider, J M

    2013-01-01

    Using density functional theory, the effect of Si on the stability and electronic structure of γ- and α-Al 2 O 3 has been investigated. The concentration range from 0 to 5 at.% is probed and the additive is positioned at different substitutional sites in the γ-phase. The calculations for (Al,Si) 2 O 3 predict a trend towards spontaneous decomposition into α-/γ-Al 2 O 3 and SiO 2 . Therefore, the formation of the metastable γ-(Al,Si) 2 O 3 phase can only be expected during non-equilibrium processing where the decomposition is kinetically hindered. The Si-induced changes in stability of this metastable solid solution may be understood based on the electronic structure. As the Si concentration is increased, stiff silicon–oxygen bonds are formed giving rise to the observed stabilization of the γ-phase. (paper)

  1. Microstructural characterization of HIP consolidated NiTi–nano Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Farvizi, M., E-mail: mmfarvizi@yahoo.com [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Ebadzadeh, T. [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Vaezi, M.R. [Nanotechnology and Advanced Materials Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Yoon, E.Y.; Kim, Y-J. [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kim, H.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Simchi, A. [Department of Materials Science and Engineering and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Highlights: • NiTi–6 wt.% nano α-Al{sub 2}O{sub 3} composites have been produced using a HIP method. • Both elemental and prealloyed powders were used for the fabrication of composites. • Generation of mismatch stress and intermetallics affected martensitic transformation. • Nanoparticles partially inhibited thermally induced martensitic transformation. • An interwoven austenite–martensite structure was observed in the composite samples. - Abstract: The microstructure and phase transformational behavior of NiTi-based composites reinforced with 6 wt.% of α-alumina nanoparticles have been investigated. Two kinds of starting materials, elemental Ni–Ti and prealloyed austenitic NiTi, were used to prepare the composites. The samples were consolidated using a hot isostatic pressing method. The X-ray diffraction results showed that while unreinforced NiTi mainly contained B2 phase at room temperature, martensitic B19′ phase appeared in the microstructure after addition of the α-alumina nanoparticles. The differential scanning calorimetry measurements indicated that the martensitic transformation temperatures were elevated in the composite samples, but the transformational enthalpy was reduced in comparison with the NiTi sample. It is believed that the generation of thermal mismatch stress during the sintering and the formation of small contents of NiTi{sub 2}/Ni{sub 3}Ti intermetallics in the composite samples are responsible for this increment of the martensitic transformation temperatures. Also, due to the nanometric size of α-Al{sub 2}O{sub 3}, a larger fraction of the matrix is disturbed by the presence of the nanoparticles, which yields the formation of effective barriers to the thermally induced martensitic transformation in the nanocomposite samples. The high-resolution transmission electron microscopy studies of the samples confirmed the higher defect density and partial microplastic deformation in the composite samples.

  2. PEG/SiO2Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  3. Friction and wear of Synfluo 180XF wax and nano-Al2O3 filled Nomex fabric composites

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Wang Kun; Liu Weimin

    2006-01-01

    Nomex fabric composites filled with the particulates of Synfluo 180XF wax (SFW) and nano-Al 2 O 3 was prepared by dip-coating of Nomex fabric in a phenolic resin containing particulates to be incorporated and the successive curing. The friction and wear performance of the pure and filled Nomex fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high temperature friction and wear tester. The microstructure of the composites, and the morphologies of the worn surfaces and the morphologies of counterpart steel pins were analyzed by means of scanning electron microscopy. And the elemental plane distribution of Al on the cross-section of the Nomex fabric composites filled with nano-Al 2 O 3 was analyzed with an energy dispersive X-ray analyzer (EDAX). The results showed that the addition of Synfluo 180XF wax in composites have the potential to increase wear resistance and friction reduction of Nomex fabric composites, and the addition of the nano-Al 2 O 3 with the optimum mass fraction in composites can improve the anti-wear ability of the composites. Besides the self-properties of the filler, the character of the microstructure of the Nomex fabric composites filled with different particles, coupled with the character of the transfer film, largely accounts for the improved anti-wear and friction-reducing abilities of the filled Nomex fabric composites as compared with the unfilled one

  4. Synthesis of chelating agent free-solid phase extractor (CAF-SPE) based on new SiO{sub 2}/Al{sub 2}O{sub 3}/SnO{sub 2} ternary oxide and application for online preconcentration of Pb{sup 2+} coupled with FAAS

    Energy Technology Data Exchange (ETDEWEB)

    Tarley, César R.T.; Scheel, Guilherme L.; Zappielo, Caroline D.; Suquila, Fabio A.C., E-mail: ctarleyquim@yahoo.com.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Química; Ribeiro, Emerson S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Grupo LaDANM

    2018-05-01

    A new online solid phase preconcentration method using the new SiO{sub 2}/Al2O{sub 3}/SnO{sub 2} ternary oxide (designated as SiAlSn) as chelating agent free-solid phase extractor (CAF-SPE) coupled to flame atomic absorption spectrometry (FAAS) for Pb{sup 2+} determination at trace levels in different kind of samples is proposed. The solid adsorbent has been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectroscopy (XRF) and textural data. The method involves the preconcentration using time-based sampling of Pb{sup 2+} solution at pH 4.3 through 100.0 mg of packed adsorbed into a mini-column under flow rate of 4.0 mL min{sup -1} during 5 min. The elution step was accomplished by using 1.0 mol L{sup -1} HCl. A wide range of analytical curve (5.0-400.0 μg L{sup -1}), high enrichment factor (40.5), low consumption index (0.5 mL) and low limits of quantification and detection, 5.0 and 1.5 μg L{sup -1}, respectively, were obtained with the developed method. Practical application of method was tested on water samples, chocolate powder, Ginkgo biloba and sediment (certified reference material). On the basis of the results, the SiAlSn can be considered an effective adsorbent belonging to the class of CAF-SPE for Pb{sup 2+} determination from different matrices. (author)

  5. The temperature influence against conductivity of solid state electrolyte of (CuI)0,5(β-Al2O3)0,5

    International Nuclear Information System (INIS)

    Purwanto, -P; Kartini, -E; Purnama, Safei

    2004-01-01

    The solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 has been prepared by a solid state reaction, by mixing of CuI with β-Al 2 O 3 powders. The mixture was compacted and heated at the temperature 300 o C for 3 hours. The conductivity values of (CuI) 0,5 (β-Al 2 O 3 ) 0,5 increased with the temperature and frequency. The x ray diffraction peaks of the solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 are dominated by the peaks of CuI than the peaks of β-Al 2 O 3 . The activation energy of the solid electrolyte is relatively stable, with the range from 0.09 eV to 0.13 eV. The conductivities solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 at room temperature and at 300 o C are 1.48 x 10 -5 S/cm and 8.33 x 10 -4 S/cm, respectively

  6. Effects of Al{sub 2}O{sub 3} phase and Cl component on dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Liu, Changcheng; Ma, Aizeng; Rong, Junfeng; Da, Zhijian, E-mail: dazhijianripp@163.com; Zheng, Aiguo; Qin, Ling

    2016-04-15

    Graphical abstract: - Highlights: • Comparative study of Al{sub 2}O{sub 3} phase on dehydrogenation of propane was implemented. • Pore structures and acid properties of Pt-Al{sub 2}O{sub 3} are correlated to the activities. • Pt-θ-Al{sub 2}O{sub 3} with abundant Cl content shows the highest activity and stability. - Abstract: The effects of two Al{sub 2}O{sub 3} phases, γ- and θ-Al{sub 2}O{sub 3}, and Cl component on the performances of Pt-Al{sub 2}O{sub 3} catalysts in the dehydrogenation of propane were investigated in this work. The catalysts were systematically characterized by various techniques, such as scanning transmission electron microscopy (STEM), temperature-programmed desorption with ammonia as probe molecules (NH{sub 3}-TPD) and temperature-programmed oxidation (TPO). The characterizations and catalytic results show that: (i) the pore structures and acid properties of the two Al{sub 2}O{sub 3} phases can change the quantity, location and property of the carbon deposition, (ii) the existence of Cl plays a significant role on the agglomeration of Pt particles and carbon deposition, which further influence the catalytic performances of Pt-Al{sub 2}O{sub 3} catalysts with different support phases for propane dehydrogenation.

  7. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    Science.gov (United States)

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Liquid phase surface melting of AA8011 aluminum alloy by addition of Al/Al{sub 2}O{sub 3} nano-composite powders synthesized by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Sohi, M. Heydarzadeh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Hojjatzadeh, S.M.H., E-mail: Hojatzadeh@yahoo.com [Department of Welding, Science and Research Branch, Azad University, Tehran (Iran, Islamic Republic of); Moosavifar, Sh. S.; Heshmati-Manesh, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Aluminum matrix composite layers reinforced with alumina particles were fabricated. • Non milled powders caused porosity in the microstructures because of poor wettability. • The ball milling of powders was significantly improved the wettability of nano ceramic particles. • The micro hardness of the layers was approximately 3 times greater than that of the base metal. - Abstract: Poor wettability of particles is an obstacle in formation of sound composite layer via surface melting. Pre-coating of particles with metallic material by different techniques, such as ball milling may enhance the wettability of the particles with molten metal. In this study, composite surface layers containing Al{sub 2}O{sub 3} particles were fabricated on the surface of AA8011 aluminum substrates by tungsten inert gas (TIG) surface melting using preplaced layers of Al/Al{sub 2}O{sub 3} powder mixtures in two different forms: (1) a mixture of 40 wt% Al and 60 wt% of 50 nm Al{sub 2}O{sub 3} powders and (2) a mixture obtained by mechanical alloying of 40 wt% Al and 60 wt% of 60 μm Al{sub 2}O{sub 3} powders. Morphology evolution of powders during ball milling and the microstructure of the fabricated composite layers were studied through conventional characterization techniques, such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Microhardness measurements were also performed across the alloyed zone. The results indicated that the layer fabricated by the second route showed a defect free structure with a more uniform distribution of Al{sub 2}O{sub 3} particles in comparison with the layer obtained by the first route. It was also noticed that the uniform dispersion of Al{sub 2}O{sub 3} particles in the fabricated layer increased the hardness to 133 HV which was over 3 times of that of the base metal.

  9. Nanoscale formation of new solid-state compounds by topochemical effects: The interfacial reactions ZnO with Al2O3 as a model system

    International Nuclear Information System (INIS)

    Pin, Sonia; Ghigna, Paolo; Spinolo, Giorgio; Quartarone, Eliana; Mustarelli, Piercarlo; D'Acapito, Francesco; Migliori, Andrea; Calestani, Gianluca

    2009-01-01

    The chemical reactivity of thin layers (ca. 10 nm thick) of ZnO deposited onto differently oriented Al 2 O 3 single crystals has been investigated by means of atomic force microscopy inspections and X-ray absorption spectroscopy at the Zn-K edge. The (0001) ZnO -parallel (112-bar0) sapphire interface yields the ZnAl 2 O 4 spinel and a quite stable film morphology. Instead, the (112-bar0) ZnO -parallel (11-bar02) sapphire and (0001) ZnO -parallel (0001) sapphire interfaces give origin to a new compound (or, possibly, even two new compounds), whose chemical nature is most likely that of a ZnO/Al 2 O 3 phase, with still unknown composition and crystal structure. In addition, in the last two cases, films collapse into prismatic twins of ca. 1 μm in dimension. These experimental findings demonstrate that in a solid-state reaction, the topotactical relationships between the reacting solids are of crucial importance not only in determining the kinetic and mechanisms of the process in its early stages, but even the chemical nature of the product. - Graphical abstract: EXAFS Fourier transforms and morphology of different reactive interfaces between ZnO and Al 2 O 3 .

  10. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    Science.gov (United States)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  11. Study of the solid-solid surface adsorption of Eu2O3 on various Al2O3 supports

    International Nuclear Information System (INIS)

    Liu Rongchuan; Yu Zhi; Zhou Yuan; Yoshitake Yamazaki

    1997-12-01

    Solid-solid surface interactions of Eu 2 O 3 on various oxide substrates are investigated with X-ray and Moessbauer experiments. The results indicate that the interaction of Eu 2 O 3 on the complex support differs from that having simple support. An incorporation model is used to explain how Eu 2 O 3 disperses onto the surface of γ-alumina or η-alumina

  12. Al{sub 2}O{sub 3} reinforced nanoparticle ZrO{sub 2} (3at%?Y{sub 2}O{sub 3}); Al{sub 2}O{sub 3} reforcado com nanoparticulas de ZrO{sub 2}(3%mol Y{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Cossu, C.M.F.A.; Alves, M.F.R.P.; Campos, L.Q.B.; Magnago, R.O.; Santos, C., E-mail: caio.cossu@usp.br [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil). Faculdade de Tecnologia; Simba, B.G. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia

    2016-07-01

    This work developed a composite Al{sub 2}O{sub 3}-based reinforced with nanoparticles of ZrO{sub 2} (Y{sub 2}O{sub 3}), to evaluate the effect of the content of ZrO{sub 2} nanoparticles (Y{sub 2}O{sub 3}) on the mechanical properties. Mixtures containing a matrix of Al{sub 2}O{sub 3} with fractions in weight of 3%, 5%, 10% and 15%, ZrO{sub 2} (Y{sub 2}O{sub 3}), and were mixed in mortar mill. Mixtures received 5% polymeric binder (PVA); and after adding the binder, the material was pressed uniaxially to 50MPa, and then sintered at a temperature of 1600 ° C - 2h. The sintered products were characterized by X-ray diffraction, scanning electron microscopy (SEM), relative density, hardness and fracture toughness. The results of X-ray diffraction showed that Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2} as crystal phases found after sintering. Furthermore, the relative green density of 55% was predominant in the compact; and after sintering, varied depending on the ZrO{sub 2} content, reaching 97% in sintered compositions with 3% ZrO{sub 2} nanoparticles (Y{sub 2O}3). The hardness of the samples showed values of 1670HV and the maximum toughness of 3.2 MPa × m{sup 1/2}, directly influenced by the presence of nanoparticles ZrO{sub 2} uniformly dispersed in the matrix Al{sub 2}O{sub 3}, which results in at least two main mechanisms tenacifiers: transformation of tetragonal-monoclinic phase of zirconia, and compressive residual strain between the two phases present, Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2}. (author)

  13. Subsolidus phase relationships of the {beta}-sialon solid solution in the oxygen-rich part of the Nd-Si-Al-O-N system

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A.; Telle, R. [Rheinisch Westfaelische Technische Hochschule Aachen (Germany). Inst. fuer Gesteinshuettenkunde; Herrmann, M.; Richter, H.J.; Hermel, W. [Fraunhofer Inst. Keramische Technologien und Sinterwerkstoffe, Dresden (Germany)

    2001-10-01

    The subsolidus phase relationships in the Nd{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} system and in the Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z} (0 {<=} z {<=} 4)-''Al{sub 2}O{sub 3}:AlN''-Al{sub 2}O{sub 3}-Nd{sub 2}O{sub 3}-SiO{sub 2}-range of the Nd-Si-Al-O-N system have been determined. 50 three- and four-phase equilibria were established in this phase region. The phase equilibria define the regions of stable coexistence between {beta}-sialon Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z} (0 {<=} z {<=} 4) and oxide or oxynitride compounds, which are potential grain boundary phases for silicon nitride ceramics. {beta}-Si{sub 3}N{sub 4} coexists with N-melilite (Nd{sub 2}Si{sub 3-x}Al{sub x}N{sub 4-x} (0 {<=} x {<=} 1)), N-{alpha}-wollastonite NdSi{sub 2}ON, a nitrogen-rich (Al, N)-apatite solid solution and Nd{sub 2}Si{sub 2}O{sub 7}. Between 0 {<=} z {<=} 0.8 {beta}-sialon (Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z}) is compatible with N-melilite (Nd{sub 2}Si{sub 3-x}Al{sub x}N{sub 4-x} (x = 1)), an (Al,N)-apatite of intermediate composition and Nd{sub 2}Si{sub 2}O{sub 7}. The equilibrium phases between z = 0.8 to z = 4 are NdAlO{sub 3} and the U-phase (Nd{sub 3}Si{sub 3-x}Al{sub 3+x}O{sub 12+x}N{sub 2-x}) as well as NdAl{sub 11+x}O{sub 18}N{sub x} (x = 1) and corundum at the Al-rich terminal composition (z = 4). (orig.)

  14. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  15. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  16. Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

    Directory of Open Access Journals (Sweden)

    A. Mostafapour

    2012-10-01

    Full Text Available Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to implement powder mixture into the aluminum alloy matrix. Microstructural properties were investigated by means of optical microscopy and scanning electron microscopy (SEM. It was found that reinforcement particle mixture was distributed uniformly in nugget zone. Wear resistance of composite was measured by dry sliding wear test. As a result, hybrid composite revealed significant reduction in wear rate in comparison with Al/AL2O3 composite produced by friction stir processing. Worn surface of the wear test samples were examined by SEM in order to determine wear mechanism.

  17. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  18. Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12

    Science.gov (United States)

    Anovitz, Lawrence M.; Essene, E.J.; Metz, G.W.; Bohlen, S.R.; Westrum, E.F.; Hemingway, B.S.

    1993-01-01

    The heat capacity of a synthetic almandine, Fe3Al2Si3O12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ?? 1.4 J/mol ?? K and S298o = 342.60 J/mol ?? K. Mo??ssbauer characterizations show the almandine to contain less than 2 ?? 1% of the total iron as Fe3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ?? 0.001 A?? and V298o = 115.11 +- 0.01 cm3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ??Gf,298o = -4938.3 kJ/mol and ??Hf,298o= -5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T P for almandine and is metastably located at ca. 570??C at P = 1 bar, with a dP dT of +17 bars/??C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In {norm of matrix}O2-T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartz and almandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks. ?? 1993.

  19. Phase relationships in the area of the beta aluminate of the system K{sub 2}O-MgO-AL{sub 2}O{sub 3}; Phasenbeziehungen im Bereich der Beta-Aluminate des Systems K{sub 2}O-MgO-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P de

    1996-12-01

    The aim of this work was to be able to make statements about the thermodynamic stability of K-{beta}``-Al{sub 2}O{sub 3} in the pseudo-binary system K{sub 2}O-Al{sub 2}O{sub 3} and in the pseudo-ternary system K{sub 2}O-MgO-Al{sub 2}O{sub 3} relative to the adjacent phases of KAlO{sub 2} {alpha}-Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4} and K-{beta}-Al{sub 2}O{sub 3}. (orig./MM) [Deutsch] Ziel dieser Arbeit war es, Aussagen ueber die thermodynamische Stabilitaet von K-{beta}``-Al{sub 2}O{sub 3} im pseudobinaeren System K{sub 2}O-Al{sub 2}O{sub 3} und im pseudoternaeren System K{sub 2}O-MgO-Al{sub 2}O{sub 3} relativ zu den benachbarten Phasen KAlO{sub 2}, {alpha}-Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4} und K-{beta}-Al{sub 2}O{sub 3} machen zu koennen. (orig./MM)

  20. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  1. Liquidus Temperature of SrO-Al2O3-SiO2 Glass-Forming Compositions

    DEFF Research Database (Denmark)

    Abel, Brett M.; Morgan, James M.; Mauro, John C.

    2013-01-01

    . In the composition range of interest for industrial glasses, Tliq tends to decrease with increasing strontium-to-alumina ratio. We find that cristobalite, mullite, and slawsonite are the dominant devitrification phases for the compositions with high SiO2, SiO2+Al2O3, and SrO contents, respectively. By comparison...... with the phase diagrams for CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 systems, we have found that for the highest [RO]/[Al2O3] ratios, Tliq exhibits a minimum value for R = Ca. Based on the phase diagram established here, the composition of glass materials, for example, for liquid crystal display substrates, belonging...... to the SrO-Al2O3-SiO2 family may be designed with a more exact control of the glass-forming ability by avoiding the regions of high liquidus temperature....

  2. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  3. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    Science.gov (United States)

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  4. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    Science.gov (United States)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  5. Development and characterization of nickel catalysts supported in CeO{sub 2}-ZrO{sub 2}-Al{sub 2}O{sub 3}, CeO{sub 2}-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3} e ZrO{sub 2}-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3} matrixes evaluated for methane reforming reactions; Desenvolvimento e caracterização de catalisadores de níquel suportados em matrizes CeO{sub 2}-ZrO{sub 2}-Al{sub 2}O{sub 3}, CeO{sub 2}-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3} e ZrO{sub 2}-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3} avaliados para as reações de reforma do metano

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Amanda Jordão de

    2012-07-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al{sub 2}O{sub 3}. However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al{sub 2}O{sub 3} supported on solid solutions formed by ZrO{sub 2}-CeO{sub 2}, La{sub 2}O{sub 3} and CeO{sub 2}-ZrO{sub 2}-La{sub 2}O{sub 3} were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al{sub 2}O{sub 3} catalysts and the best catalysts are Ni/CeO{sub 2}-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}. (author)

  6. The crystallization kinetic model of nano-CaCO3 in CO2-ammonia-phosphogypsum three-phase reaction system

    Science.gov (United States)

    Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang

    2018-06-01

    Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.

  7. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  8. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  9. Investigation into isomolar series of Al(NO3)3, Na3VO4 solution mixture and composition of solid phases

    International Nuclear Information System (INIS)

    Chernysh, L.F.; Nakhodnova, A.P.; Makarova, R.A.

    1979-01-01

    Conducted is investigation of properties of isomolar series of aluminium nitrate and sodiUm vanadate solutions at pH of the latter 12.5; 10.0; 7.0 and the temperature of 25 deg C using the methods of pH-metry, conductometry, ''seeming'' volume of precipitations, residual concentration of aluminium and vanadium. It is shown, that the composition property diagram of the system investigated does not reflect the true composition of solid-phase products of the reaction, which depends on the component ratio in solution. Bottom phases of isomolar series are mainly heterogeneous. At the excess of sodium vanadate solution and its high pH values conditions for the basic salt formation are created. At pH of the Na 3 VO 4 solution of 12.5 and 10.0 and Al(NO 3 ) 3 : Na 3 VO 4 ratios 4:6 and 3:7 respectively obtained are the basic aluminium vanadates of the (AlOH) 3 (VO 4 ) 2 x 7.5H 2 O and (AlOH) 2 V 2 O 7 x5H 2 O composition, some of their physicochemical properties being investigated

  10. Subsolidus phase relations of Bi2O3-Nd2O3-CuO

    International Nuclear Information System (INIS)

    Sun Yezhou

    1997-01-01

    The subsolidus phase relations of the Bi 2 O 3 -Nd 2 O 3 -CuO ternary system and its binary systems along with crystallographic parameters of the compounds were investigated by X-ray powder diffraction and differential thermal analysis. The room temperature section of the phase diagram of the Bi 2 O 3 -Nd 2 O 3 -CuO system can be divided into two diphase regions and six triphase regions. No ternary compound was found. There exist two solid solutions (α, β) and a compound Bi 0.55 Nd 0.45 O 1.5 in the (Bi 2 O 2 ) 1-x (Nd 2 O 3 ) x system. Both solid solution α (0.05≤x≤0.30) and β (0.53≤x≤0.73) belong to the rhombohedral system (R3m). The lattice parameters represented by a hexagonal cell are a=3.9832(4), c=27.536(5) A for Bi 0.8 Nd 0.2 O 1.5 (α phase) and a=3.8826(3), c=9.727(1) A for Bi 0.4 Nd 0.8 O 1.5 (β phase). The Bi 0.55 Nd 0.45 O 1.5 compound crystallizes in a face-centered cubic (f.c.c.) lattice with a=5.5480(2) A. (orig.)

  11. Solid state reaction synthesis of Ba0.75Sr0.25AlSi2O8 - Al2O3 ceramic composites from mechanically activated precursor mixtures

    Directory of Open Access Journals (Sweden)

    Ramos-Ramírez, M. V.

    2014-06-01

    Full Text Available Ceramic composites with Ba0.75Sr0.25AlSi2O8 (SBAS/Al2O3 mass ratios of: 1 90/10, 2 70/30, and 3 50/50, were in situ synthesized at 900-1500 °C/5 h from mixtures of fly ash, BaCO3, SrCO3 and Al2O3. The green mixtures were mechanically activated for 0, 4 and 8 h in an attrition mill. As a result, the solid state reactions were faster and occurred at lower temperatures. Only the SBAS and Al2O3 phases were obtained at 1300-1500°C, with the SBAS present in composition 1 achieving full conversion from its hexagonal (Hexacelsian into its monoclinic (Celsian form, with or without milling. The higher nominal SBAS content of composition 1 facilitated in it the mentioned conversion, in comparison with the other two studied compositions, which required to be mechanically activated for times that increased with increasing Al2O3 content, in order to attain in them similarly high Hexacelsian to Celsian conversions. The mechanical properties of the synthesized materials increased with increasing milling time, sintering temperature and Al2O3 content. Thus, the best mechanical properties were obtained for composition 3 milled for 8 h and sintered at 1500 °C.Compósitos cerámicos con relaciones Ba0.75Sr0.25AlSi2O8 (SBAS/Al2O3 en masa de: 1 90/10, 2 70/30, y 3 50/50, fueron sintetizados in situ a 900-1500 °C/5 h usando mezclas de cenizas volantes, BaCO3, SrCO3 y Al2O3 . Las mezclas en verde fueron activadas mecánicamente por 0, 4 y 8 h en un molino de atrición. Como resultado, las reacciones en el estado sólido fueron más rápidas y ocurrieron a menores temperaturas. A 1300-1500°C sólo se obtuvo las fases SBAS y Al2O3 , con el SBAS presente en la composición 1 transformado completamente de su forma hexagonal (Hexacelsiana a la monoclínica (Celsiana, con o sin molienda. El mayor contenido nominal de SBAS en esa composición facilitó dicha conversión, en comparación con las otras dos composiciones estudiadas, las cuales requirieron ser activadas mec

  12. Evaluation of liquid-phase sintering SiC using as additive the system Al2O3/DyO3

    International Nuclear Information System (INIS)

    Oliveira, M.R.; Atilio, I.; Garcia, G.C.R.; Ribeiro, S.

    2012-01-01

    The objective of this work was to study the liquid-phase sintering SiC with additives that has not been studied yet, Al 2 O 3 /Dy 2 O 3 , with 10% in volume. The powders were mixed, dried, and pressed in uniaxial and isostatic pressing. It was studied the melting temperature of the additives and bars were sintered at temperatures of 1900, 1950 e 2000 deg C, with averaged linear shrinkage of 17%, phase transformations of β-SiC into α-SiC and formation of Dy 3 Al 5 O 12 at all temperatures. The results showed that for further densification, the temperature of 1950 deg C is enough for a higher densification, with a low wetting angle, transformations of SiC and formation of Dy 3 Al 5 O 12 . (author)

  13. Argon Ion Irradiation Effect on the Magnetic Properties of Fe-Al2O3 Nano Granular Film

    Directory of Open Access Journals (Sweden)

    Setyo Purwanto

    2014-10-01

    Full Text Available We studied the effect of Argon (Ar ion irradiation on Fe-Al2O3 nanogranular thin film. X-ray diffraction (XRD patterns show that the ion dose might promote the growth of the Fe2O3 phase from an amorphous phase to a crystalline phase. The magnetic and magnetoresistance properties were investigated using a vibrating sample magnetometer (VSM and a four point probe (FPP. The results suggest that percolation concentration occurred at the 0.55 Fe volume fraction and with a maximum magnetoresistance (MR ratio of 3%. The present MR ratio was lower than that of previous results, which might be related to the existence of the α-Fe2O3 phase promoted by Ar ion irradiation. CEMS spectra show ion irradiation induces changes from superparamagnetic characteristics to ferromagnetic ones, which indicates the spherical growth of Fe particles in the Al2O3 matrix.

  14. Influence of Al{sub 2}O{sub 3} addition on microstructure and mechanical properties of 3YSZ-Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Abden, Md. Jaynul [International Islamic Univ., Chittagong (Bangladesh). Dept. of Electrical and Electronic Engineering; Afroze, Jannatul Dil [Noakhali Science and Technology Univ. (Bangladesh). Faculty of Science and Engineering; Gafur, Md. Abdul [Bangladesh Council of Scientific and Industrial Research, Dhaka (Bangladesh). Pilot Plant and Process Development Centre; Chowdhury, Faruque-Uz-Zaman [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2015-07-01

    The effect of the amount of Al{sub 2}O{sub 3} content on microstructure, tetragonal phase stability and mechanical properties of 3YSZ-Al{sub 2}O{sub 3} composites are investigated in this study. The ceramic composites are obtained by means of uniaxial compacting at 210 MPa and green compacts are sintered at 1550 C for 3 h in air. The monoclinic zirconia (m-ZrO{sub 2}) phase has completely been transformed into tetragonal zirconia (t-ZrO{sub 2}) phase with corresponding higher Al{sub 2}O{sub 3} content. The t-ZrO{sub 2} grains induce transgranular fracture mode that has contribution in improvement of fracture toughness. The maximum flexural strength of 340 MPa, Vickers hardness value of 14.31 GPa and fracture toughness of 5.1 MPa x m{sup 1/2} in the composition containing 40 wt.-% Al{sub 2}O{sub 3} is attributed to the microstructure with t-ZrO{sub 2} grains as inter- and intragranular particles in the Al{sub 2}O{sub 3} grains, which makes it suitable for dental applications.

  15. Experimental Establishment of the 1300 degree centigrade Isothermal Section within the CaO - Al{sub 2}O{sub 3} - CoO Ternary System; Determinacion experimental de la seccion isotermal de 1300 degree centigrade del Sistema CaO - Al{sub 2}O{sub 3} - CoO

    Energy Technology Data Exchange (ETDEWEB)

    Torres-martinez, L. M.; Zarazua Morin, M. E.; Vasquez mendez, B. A.

    2011-07-01

    The subsolidus of the system CaO-Al{sub 2}O{sub 3}-CoO has been studied. Was established the existence of nine compatibility triangles. It had been found a phase Ca{sub 3}Al{sub 4}CoO{sub 1}0, isostructural to Ca{sub 3}MgAl{sub 4}O{sub 1}0. Solid solutions of CaO, CoO and CoAl{sub 2}O{sub 4} were determined. Color variation on different samples was observed as function of the phase diagram region. When Co was substituted for other bivalents cations (Sr, a, n, Ni, Cu, Cd, Sn and Pb), were not found new phases. This study depicts the most outstanding results concerning the alternate materials research line. The importance focused on the stability of the new compound into the matrix of other materials from some technological processes such as the cement one, into which industrial wastes can be incorporated as alternate raw materials and fuels. (Author) 46 refs.

  16. Synthesis, microstructure and magnetic properties of Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.

  17. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  18. Thermophysical characterization of Al2O3 and ZrO2 nano-fluids as emergency cooling fluids of future generations of nuclear reactors - 15504

    International Nuclear Information System (INIS)

    Rocha, M.S.; Cabral, E.L.L.; Sabundjian, G.; Yoriyaz, H.; Lima, A.C.S.; Belchior Junior, A.; Prado, A.C.; Filho, T.F.; Andrade, D.A.; Shorto, J.M.B.; Mesquita, R.N.; Otubo, L.; Filho, B.D.B.; Ribatsky, G.; Ubices de Moraes, A.A.

    2015-01-01

    Among the countless applications presently proposed for the nano-fluids, the applications in energy have special attention by academic and industrial interest. Studies demonstrate that nano-fluids based on metal oxide nanoparticles have physical properties that characterize them as promising working fluids, mainly, in industrial systems in which high heat flux want to be removed. Nuclear reactors for power production are examples of industry where such an application has been proposed. However, there are no concrete results about the ionizing radiation effects on nano-fluids properties. This work aims to present the initial results of the current study carried out with the objective to check the effects caused by that ionizing radiation on nano-fluids based on Al 2 O 3 and ZrO 2 nanoparticles. Results from thermophysical analyses demonstrate that particular behavior on thermal conductivity, and density of such nano-fluids can be observed as a function of temperature under no ionizing radiation effect. New investigations will analyze the application potentiality of some nano-fluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. (authors)

  19. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Science.gov (United States)

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  20. Characterization of Ni-P-SiO_2-Al_2O_3 nanocomposite coatings on aluminum substrate

    International Nuclear Information System (INIS)

    Rahemi Ardakani, S.; Afshar, A.; Sadreddini, S.; Ghanbari, A.A.

    2017-01-01

    In the present work, nano-composites of Ni-P-SiO_2-Al_2O_3 were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO_2 in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO_2 and Al_2O_3 in Ni-P coating at the SiO_2 concentration of 10 g/L and 14 g/L Al_2O_3 led to the lowest corrosion rate (i_c_o_r_r = 0.88 μA/cm"2), the most positive E_c_o_r_r and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE_d_l and improve porosity. - Highlights: • The maximum content of Al_2O_3 and SiO_2 in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO_2-Al_2O_3 was measured to be 537 μHV.

  1. Solid Phase Equilibrium Relations in the CaO-SiO2-Nb2O5-La2O3 System at 1273 K

    Science.gov (United States)

    Qiu, Jiyu; Liu, Chengjun

    2018-02-01

    Silicate slag system with additions Nb and RE formed in the utilization of REE-Nb-Fe ore deposit resources in China has industrial uses as a metallurgical slag system. The lack of a phase diagram, theoretical, and thermodynamic information for the multi-component system restrict the comprehensive utilization process. In the current work, solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 quaternary system at 1273 K (1000 °C) were investigated experimentally by the high-temperature equilibrium experiment followed by X-ray diffraction, scanning electron microscope, and energy dispersive spectrometer. Six spatial independent tetrahedron fields in the CaO-SiO2-Nb2O5-La2O3 system phase diagram were determined by the Gibbs Phase Rule. The current work combines the mass fraction of equilibrium phase and corresponding geometric relation. A determinant method was deduced to calculate the mass fraction of equilibrium phase in quaternary system according to the Mass Conservation Law, the Gibbs Phase Rule, the Lever's Rule, and the Cramer Law.

  2. Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology

    International Nuclear Information System (INIS)

    Tahamtan, S.; Halvaee, A.; Emamy, M.; Zabihi, M.S.

    2013-01-01

    Highlights: ► Uniform distribution of alumina particles in molten Al alloy by using MMMC. ► Improvement in wettability of alumina particles with molten Al alloy by using MMMC. ► Porosity content in Al/A206-alumina composite decreased by using MMMC. ► Improvement in tensile strength of Al/A206-alumina composite by using MMMC. ► Decrease in interfacial reaction product by incorporating MMMC in semi-solid state. - Abstract: Al206/5vol.%Al 2 O 3p cast composites were fabricated by the injection of reinforcing particles into molten Al alloy in two different forms, i.e. as Al 2 O 3 particles and milled particulates of alumina with Al and Mg powders. The resultant milled powders (Master Metal Matrix Composite (MMMC)) were then added into the molten Al alloy both in semi-solid state and above liquidus temperature. Effects of powder addition technique, reinforcement particle size and casting temperature on distribution and incorporation of reinforcing particles into molten Al alloy were investigated. Morphology evolution of powders during milling, microscopic examinations of composite and matrix alloy were studied by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was also used to determine the possible interaction between powders after ball milling process. Results showed that injection of powders in the form of MMMC leads to considerable improvement in incorporation and distribution of Al 2 O 3p in the Al206 matrix alloy leading to the improvement in tensile properties. Improvement in tensile properties is attributed to the better wetting of Al 2 O 3p by melt as well as removing microchannels and roughness on alumina particles as a consequence of ball milling process

  3. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  4. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  5. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F.A.; Abdelkareem, Mohamed A. A.

    2016-01-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al 2 O 3 and TiO 2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al 2 O 3 and TiO 2 nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al 2 O 3 and TiO 2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  6. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    Science.gov (United States)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  7. Optical and Dielectric Properties of CuAl2O4 Films Synthesized by Solid-Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Leu, L. C. [University of Florida, Gainesville; Norton, David P. [University of Florida; Jellison Jr, Gerald Earle [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Xiong, X. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    The synthesis and properties of CuAl{sub 2}O{sub 4} thin films have been examined. The CuAl{sub 2}O{sub 4} films were deposited via reactive direct current magnetron sputter using a CuAl{sub 2} target. As-deposited films were amorphous. Post-deposition annealing at high temperature in oxygen yielded solid-phase epitaxy on MgO. The film orientation was cube-on-cube epitaxy on (001) MgO single-crystal substrates. The films were transparent to visible light. The band gap of crystalline CuAl{sub 2}O{sub 4} was determined to be {approx} 4 eV using a Tauc plot from the optical transmission spectrum. The dielectric constant of the amorphous films was determined to be {approx} 20-23 at 1-100 kHz.

  8. CEMS and XRD studies on changing shape of iron nano-particles by irradiation of Au ions of Fe-implanted Al2O3 granular layer

    International Nuclear Information System (INIS)

    Kato, T.; Wakabayashi, H.; Hashimoto, M.; Toriyama, T.; Taniguchi, S.; Hayashi, N.; Sakamoto, I.

    2007-01-01

    In order to observe an inverse Ostwald ripening of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers, 3 MeV Au ions were irradiated to Fe nano-particles in these layers with doses of 0.5x and 1.5x10 16 ions/cm 2 . It was found by Conversion Electron Mossbauer Spectroscopy (CEMS) that the inverse Ostwald ripening occurred by fractions of percentages and the magnetic anisotropy of Fe nano-particles was induced to the direction of Au ion beam, i.e. perpendicular to the granular plane. The average crystallite diameters of Fe nano-particles for Au ions unirradiated and irradiated samples were measured using Scherrer's formula from FWHM of Fe (110) X-ray Diffraction (XRD) patterns obtained by 2θ and 2θ/θ methods. It was confirmed that the average crystallite diameters of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers were extended by Au ions irradiation. (author)

  9. Effect of nano-CeO2 on microstructure properties of TiC/TiN+nTi(CN) reinforced composite coating

    International Nuclear Information System (INIS)

    Jianing, Li; Chuanzhong, Chen; Cuifang, Zhang

    2012-01-01

    TiC/TiN+TiCN reinforced composite coatings were fabricated on Ti-6Al-4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO 2 was able to suppress crystallization and growth of the crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO 2 , this coating exhibited fine microstructure. In this study, the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coatings were studied by means of X-ray diffraction and scanning electron microscope. The X-ray diffraction results indicated that the Al 3 Ti+TiC/TiN+nano-CeO 2 laser-cladded coating consisted of Ti 3 Al, TiC, TiN, Ti 2 Al 20 Ce, TiC 0.3 N 0.7 , Ce(CN) 3 and CeO 2 , this phase constituent was beneficial to increase the microhardness and wear resistance of Ti-6Al-6V alloy. (author)

  10. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  11. The influence of SiO2 Addition on 2MgO-Al2O3-3.3P2O5 Glass

    DEFF Research Database (Denmark)

    Larsen, P.H.; Poulsen, F.W.; Berg, Rolf W.

    1999-01-01

    2MgO-Al2O3-3.3P2O5 glasses with increasing amounts of SiO2 are considered for sealing applications in Solid Oxide Fuel Cells (SOFC). The change in chemical durability under SOFC anode conditions and the linear thermal expansion is measured as functions of the SiO2 concentration. Raman spectroscopy...... analysis of the glasses reveals no sign of important changes in the glass structure upon SiO2 addition. Some increase in glass durability with SiO2 concentration is reported and its cause is discussed....

  12. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  13. Phase transitions in complex oxide systems based on Al2O3 and ZrO2

    International Nuclear Information System (INIS)

    Gorski, L.

    1999-01-01

    Different compositions of materials based on Al 2 O 3 and ZrO 2 and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al 2 O 3 containing aluminium titanate and coatings based on ZrO 2 stabilised by 7-8% of Y 2 O 3 . (author)

  14. Subcooled film boiling heat transfer on a high temperature sphere in very dilute Al2O3 nano-fluids

    International Nuclear Information System (INIS)

    Hyun Sun Park; Dereje Shiferaw; Bal Raj Sehgal

    2005-01-01

    Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 23 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than

  15. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  16. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  17. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces

    KAUST Repository

    Xing, G. Z.; Wang, D. D.; Cheng, C.-J.; He, M.; Li, S.; Wu, Tao

    2013-01-01

    We report that room-temperature ferromagnetism emerges at the interface formed between ZnO nanowire core and Al2O3 shell although both constituents show mainly diamagnetism. The interface-based ferromagnetism can be further enhanced by annealing the ZnO/Al2O3 core-shell nanowires and activating the formation of ZnAl2O4 phase as a result of interfacial solid-state reaction. High-temperature measurements indicate that the magnetic order is thermally stable up to 750 K. Transmission electron microscopy studies reveal the annealing-induced jagged interfaces, and the extensive structural defects appear to be relevant to the emergent magnetism. Our study suggests that tailoring the spinterfaces in nanostructure-harnessed wide-band-gap oxides is an effective route towards engineered nanoscale architecture with enhanced magnetic properties.

  18. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces

    KAUST Repository

    Xing, G. Z.

    2013-07-08

    We report that room-temperature ferromagnetism emerges at the interface formed between ZnO nanowire core and Al2O3 shell although both constituents show mainly diamagnetism. The interface-based ferromagnetism can be further enhanced by annealing the ZnO/Al2O3 core-shell nanowires and activating the formation of ZnAl2O4 phase as a result of interfacial solid-state reaction. High-temperature measurements indicate that the magnetic order is thermally stable up to 750 K. Transmission electron microscopy studies reveal the annealing-induced jagged interfaces, and the extensive structural defects appear to be relevant to the emergent magnetism. Our study suggests that tailoring the spinterfaces in nanostructure-harnessed wide-band-gap oxides is an effective route towards engineered nanoscale architecture with enhanced magnetic properties.

  19. Sintering of SiC ceramics, via liquid phase, with Al{sub 2}O{sub 3}-Yb{sub 2}O{sub 3} additives; Sinterizacao de ceramicas de SiC, via fase liquida, com aditivos de Al{sub 2}O{sub 3}-Yb{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Atilio, I.; Oliveira, M.R.; Garcia, G.C.R.; Ribeiro, S., E-mail: isabelaatilio@hotmail.com [Universidade de Sao Paulo (USP/EEL), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materiais

    2012-07-01

    The objective of this work was to study the sintering of SiC, through liquid phase, using the additive system Al{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} for the first time. The samples were sintered at temperatures of 1900, 1950 and 2000 deg C for 60 minutes. The melting point of the system was determined according to DIN 51730. It has been found the ability of wetting of SiC in the system. The densification results were: 86,36% at 1900 deg C, 88,25% at 1950 deg C and 82,09% at 2000 deg C. The average linear shrinkage was approximately 17%. There was a conversion of β-SiC in α-SiC at all temperatures and sintering phase formation Yb{sub 3}Al{sub 5}O{sub 12}. The melting temperature was 1850 deg C for de system, consistent with the value in the phase diagram, and the wetting angle of 20 deg. The system (Yb{sub 2}O{sub 3}-Al{sub 2}O{sub 3}) is promising to make liquid phase sintering of SiC, for presenting a good result of wettability. (author)

  20. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  1. Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Povoden-Karadeniz, E.; Chen, Ming; Ivas, Toni

    2012-01-01

    The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8......, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1xSrxCrO3d and LaMn1xCrxO3d are reproduced by the model. The presented oxide database can be used for applied computational...... thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells...

  2. Optical evidences for an intermediate phase in relaxor ferroelectric Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 single crystals

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhang

    2016-02-01

    Full Text Available The mechanism of low-temperature structural transformation and evolution of polar nano-structures in relaxor ferroelectric Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-xPbTiO3 (x = 0.33, 0.35, and 0.42 single crystals have been investigated with the aid of temperature dependent low-wavenumber Raman scattering (LWRS and photoluminescence (PL spectra. The E(TO1 phonon mode reveals the characteristic relaxational polarization fluctuations associated with the reorientation of either polar nano-regions or polar nano-domains. It was found that these mechanisms are not independent and they can be ascribed to the phonon localization. In addition, a short-range monoclinic phase (Mc can be found below 250 K in the tetragonal phase region by LWRS, which is always associated with the morphotropic phase boundary (MPB and excellent electromechanical properties. It is interesting that PL spectra confirm these results. The present work indicates that external field modulation and change of composition can result in the monoclinic phase and co-existence of multi-phase.

  3. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al2O3 gate oxides

    International Nuclear Information System (INIS)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig

    2008-01-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al 2 O 3 tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I DS -V GS ) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper

  4. In situ formation of CA6 platelets in Al2O3 and Al2O3/ZrO2 matrices

    International Nuclear Information System (INIS)

    Belmonte, M.; Sanchez-Herencia, A.J.; Moreno, R.; Miranzo, P.; Moya, J.S.; Tomsia, A.P.

    1993-01-01

    Al 2 O 3 and Al 2 O 3 /ZrO 2 compacts containing CaO as a dopant have been sintered under different conditions and atmospheres: air, high vacuum (> 10 -6 torr). SEM observations have been made on the polished surfaces of sintered and also of annealed samples. Only after the annealing treatment in air at temperatures ranging from 1400 to 1500 C, a massive formation of CA 6 platelets was detected in samples sintered in low oxygen partial pressure atmospheres. In order to clarify the mechanism of formation of this secondary phase at the grain boundaries, CaO has been introduced in the form of either plaster of Paris (to reproduce a possible contamination provided by the molds in slip casting) or CaCO 3 . The obtained results indicate the important role of the firing atmosphere on the precipitation of secondary phases at grain boundary. (orig.)

  5. Effect of Ga2O3 addition on the properties of Y2O3-doped AlN ceramics

    Directory of Open Access Journals (Sweden)

    Shin H.

    2015-01-01

    Full Text Available Effect Ga2O3 addition on the densification and properties of Y2O3-doped AlN ceramics was investigated under the constraint of total sintering additives (Y2O3 and Ga2O3 of 4.5 wt%. Ga was detected in the AlN grain as well as the grain boundary phases. YAlO3 and Y4Al2O9 were observed as the secondary crystalline phases in all of the investigated compositions. As the substitution of Ga2O3 for Y2O3 increased, the quantity of the Y4Al2O9 phase decreased while that of YAlO3 was more or less similar. Neither additional secondary phases was identified, nor was the sinterability inhibited by the Ga2O3 addition; the linear shrinkage and apparent density were above 20 percent and 3.34-3.37 g/cm3, respectively. However, the optical reflectance and the elastic modulus generally decreased whereas the Poisson ratio increased significantly. The dielectric constant and the loss tangent of 4.0Y2O3-0.5Ga2O3-95.5Y2O3 at the resonant frequency of 8.22 GHz were 8.63 and 0.003, respectively.

  6. Micro-nanocomposites Al2O3/ NbC/ WC and Al2O3/ NbC/ TaC

    International Nuclear Information System (INIS)

    Santos, Thais da Silva

    2014-01-01

    Alumina based ceramics belong to a class of materials designated as structural, which are widely used in cutting tools. Although alumina has good properties for application as a structural ceramics, composites with different additives have been produced with the aim of improving its fracture toughness and mechanical strength. New studies point out micro-nanocomposites, wherein the addition of micrometric particles should enhance mechanical strength, and nano-sized particles enhance fracture toughness. In this work, alumina based micro nanocomposites were obtained by including nano-sized NbC and micrometer WC particles at 2:1, 6:4, 10:5 and 15:10 vol% proportions, and also with the inclusion of nano-sized NbC and micrometer TaC particles at 2:1 vol% proportion. For the study of densification, micro-nanocomposites were sintered in a dilatometer with a heating rate of 20°C/min until a temperature of 1800°C in argon atmosphere. Based on the dilatometry results, specimens were sintered in a resistive graphite furnace under argon atmosphere between 1500°C and 1700°C by holding the sintering temperature for 30 minutes. Densities, crystalline phases, hardness and tenacity were determined, and micro-nanocomposites microstructures were analyzed. The samples Al 2 O 3 : NbC: TaC sintered at 1700 ° C achieved the greater apparent density (~ 95% TD) and the sample sintered at 1600 ° C showed homogeneous microstructure and increased hardness value (15.8 GPa) compared to the pure alumina . The compositions with 3% inclusions are the most promising for future applications. (author)

  7. Experiment and prediction on thermal conductivity of Al2O3/ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    Experiment and prediction on thermal conductivity of Al2O3/ZnO nano thin film interface structure. PING YANG*, LIQIANG ZHANG, HAIYING YANG†, DONGJING LIU and XIALONG LI. Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS,. School of Mechanical Engineering, Jiangsu University, ...

  8. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  9. The Characteristics of natural convection heat transfer of Al_2O_3–water nano fluid flow in a vertical annulus pipe

    International Nuclear Information System (INIS)

    Reinaldy Nazar

    2016-01-01

    Results of several researches have shown that nano fluids have better thermal characteristics than conventional fluid (water). In this regard, ideas for using nano fluids as an alternative heat transfer fluid in the reactor coolant system have been well developed. Meanwhile the natural convection in a vertical annulus pipe is one of the important mechanisms of heat transfer and is found at the TRIGA research reactor, the new generation nuclear power plants and other energy conversion devices. On the other hand, the heat transfer characteristics of nano fluids in a vertical annulus pipe has not been known. Therefore, it is important to do research continuously to analyze the heat transfer nano fluids in a vertical annulus pipe. This study has carried out numerical analysis by using computer code of CFD (computational of fluids dynamic) on natural convection heat transfer characteristics of nano fluids flow of Al_2O_3-water 2 % volume in the vertical annulus pipe. The results showed an increase in heat transfer performance (Nusselt numbers - NU) by 20.5 % - 35 %. In natural convection mode with Rayleigh numbers 2.471 e"+"0"9 ≤ Ra ≤ 1.955 e"+"1"3 obtained empirical correlations for water is N_U = 1.065 (R_a(D_H/x))"0"."1"7"9 and empirical correlations for Al_2O_3-water nano fluids is N_U = 14.869 (R_a(D_H/x))"0"."1"1"5.(author)

  10. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  11. Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films

    Science.gov (United States)

    Zhen, Congmian; Zhang, XiaoZhe; Wei, Wengang; Guo, Wenzhe; Pant, Ankit; Xu, Xiaoshan; Shen, Jian; Ma, Li; Hou, Denglu

    2018-04-01

    Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo2O4 (1 1 1)/MgAl2O4 (1 1 1) and the NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, they show metallic and semiconducting electrical transport, respectively. Post-growth annealing decreases the resistivity of NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, but the annealed films are still semiconducting. While the semiconductivity and the large magnetoresistance in NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films cannot be accounted for in terms of non-optimal valence mixing and spinel inversion, the presence of anti-phase boundaries between nano-sized crystallites, generated by the structural mismatch between NiCo2O4 and Al2O3, may explain all the experimental observations in this work. These results reveal nanostructural disorder as being another key factor for controlling the electrical transport of NiCo2O4, with potentially large magnetoresistance for spintronics applications.

  12. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  13. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  14. Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings

    International Nuclear Information System (INIS)

    Ciubotariu, Alina-Crina; Benea, Lidia; Lakatos-Varsanyi, Magda; Dragan, Viorel

    2008-01-01

    In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al 2 O 3 -Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al 2 O 3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al 2 O 3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year)

  15. Homogeneity of peraluminous SiO2-B2O3-Al2O3-Na2O-CaO-Nd2O3 glasses: Effect of neodymium content

    International Nuclear Information System (INIS)

    Gasnier, E.; Bardez-Giboire, I.; Massoni, N.; Montouillout, V.; Pellerin, N.; Allix, M.; Ory, S.; Cabie, M.; Poissonnet, S.; Massiot, D.

    2014-01-01

    Considering the interest of developing new glass matrices able to immobilize higher concentration of high level nuclear wastes than currently used nuclear borosilicate compositions, glasses containing high rare earth contents are of particular interest. This study focuses on a peraluminous alumino borosilicate system SiO 2 -B 2 O 3 -Al 2 O 3 -Na 2 O-CaO-Nd 2 O 3 defined by a per-alkaline/peraluminous ratio RP = ([Na 2 O] + [CaO])/ ([Na 2 O] + [CaO] + [Al 2 O 3 ]) ≤ 0.5. Samples with various contents of Nd 2 O 3 from 0 to 10 mol% were studied using DSC, XRD, SEM, TEM, STEM and EMPA methods. The glasses present a high thermal stability even after a slow cooling treatment from the melt. Only a slight mullite crystallization is detected for low Nd 2 O 3 content (≤2.3 mol%) and crystallization of a neodymium borosilicate crystalline phase combined to a phase separation occurred at high Nd 2 O 3 content (≥8 mol%). The solubility of neodymium in the presence of aluminum is demonstrated, with higher neodymium incorporation amounts than in per-alkaline glasses. (authors)

  16. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  17. The phase transformation and crystallization kinetics of (1 - x)Li2O-xNa2O-Al2O3-4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Li, Wang-Long; Cheng, Chih-Wei; Chang, Kuo-Ming; Chen, Yong-Feng; Hsi, Chi-Shiung

    2010-01-01

    The phase transformation and crystallization kinetics of (1 - x)Li 2 O-xNa 2 O-Al 2 O 3 -4SiO 2 glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na 2 O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na 2 O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 ± 22.2 to 284.0 ± 10.8 kJ mol -1 when the Na 2 O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 ± 10.8 to 446.0 ± 23.2 kJ mol -1 when the Na 2 O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 - x)Li 2 O-xNa 2 O-Al 2 O 3 -4SiO 2 glasses.

  18. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    Science.gov (United States)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  19. Comparison on the interaction of Al3+/nano-Al13 with calf thymus DNA /salmon sperm DNA

    Science.gov (United States)

    Ma, Fei; Ma, Yue; Du, Changwen; Yang, Xiaodi; Shen, Renfang

    2015-11-01

    The conformation change, binding mode and binding site between Al3+/nano-Al13 and calf thymus DNA/salmon sperm DNA were investigated by UV-vis absorption, FTIR spectra, Raman spectroscopy and CD spectra, as well as melting curves measurement. The UV-vis spectra and circular dichroism spectra results suggested that the phosphate group structure was changed when Al3+ interacted with DNA, while the double-helix was distorted when nano-Al13 interacted with DNA. The FTIR and Raman spectroscopy revealed that the binding sites were Al3+ … PO2, Al3+ … N7/guanine PO2Al13 … N7-C8/guanine with calf thymus DNA, and Al3+ … N3-O2/cytosine, Al3+ … N7-C8/guanine, PO2Al13 … N7-C8/guanine, PO2Al13 … N1/adenine with salmon sperm DNA, respectively. The electrostatic binding was existed between Al3+ and DNA, and the electrostatic binding and complexing were found between nano-Al13 and DNA.

  20. Thermodynamic modeling of the CeO{sub 2}–CoO nano-phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung S., E-mail: sungkim@wow.hongik.ac.kr

    2014-03-05

    Highlights: • The CeO{sub 2}–CoO nano-phase diagram was modeled thermodynamically. • The surface energies of the solution phases were modeled with Butler’s equation. • The present work agreed with the experimental work on the nanoparticle sintering. -- Abstract: A nano-phase diagram of the CeO{sub 2}–CoO system was modeled thermodynamically with experimental data available in the literatures. The surface energies of CeO{sub 2} and CoO unavailable in the literatures were estimated reasonably on the thermodynamic basis. Butler’s model was used to describe the surface energy and the surface composition of the solution phases and then the nano interaction parameters on the particle radius were assessed through the multiple linear regression method. A consistent set of optimized interaction parameters in the present system was derived for describing the Gibbs energy of liquid, fluorite, and halite solution phases as a function of particle radius. The eutectic temperatures calculated in the present work interpreted well the experimental data for the unusual low sintering temperature of the nanoparticles with the tri-modal particle size distribution. Furthermore, with the aid of the present result, the microstructure evolution in the CGO–CoO system during the nanoparticle sintering was described reasonably. It is concluded that the present modeling will be a good guide for the condition of the liquid phase sintering to obtain the rapid densification of the nanoparticles at lower temperatures.

  1. A study on 2% PdO/Al2O3 by means of free positron annihilation technique in the solid surface layer

    International Nuclear Information System (INIS)

    Shi Zikang; Huang Cunping

    1992-01-01

    The relationship between heat treatment and space structure of the PdO layer in 2% PdO/Al 2 O 3 was studied by the positrons from 2 2N a radiative source, and grain size was calculated by the positron annihilation parameters, demonstrating that the free positron annihilation technique for the solid surface layer can be applied can be applied to catalyst research

  2. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes.

    Science.gov (United States)

    Rettenwander, Daniel; Redhammer, Günther; Preishuber-Pflügl, Florian; Cheng, Lei; Miara, Lincoln; Wagner, Reinhard; Welzl, Andreas; Suard, Emmanuelle; Doeff, Marca M; Wilkening, Martin; Fleig, Jürgen; Amthauer, Georg

    2016-04-12

    Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li 7 La 3 Zr 2 O 12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet ( Ia 3̅ d , No. 230) to "non-garnet" ( I 4̅3 d , No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10 -4 S cm -1 to 1.2 × 10 -3 S cm -1 , which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm 2 , the lowest reported value for LLZO so far. These results illustrate that understanding the structure-properties relationships in this class of materials

  3. Effect of Y2O3-Al2O3 ratio on inter-granular phases and films in tape-casting α-SiC with high toughness

    International Nuclear Information System (INIS)

    Huang Rong; Gu Hui; Zhang Jingxian; Jiang Dongliang

    2005-01-01

    Silicon carbide (SiC) ceramics prepared from liquid phase sintering after aqueous-tape-casting can yield high toughness when appropriate amount of Y 2 O 3 -Al 2 O 3 are added, even though no elongated grains are present. Grain boundaries (GB), second-phases and hetero-phase boundaries (HB) in 2 samples with additive mole ratios of 3:5 and 3:7 are investigated using high-resolution and analytical electron microscopy (HREM and AEM). The meta-stable YAlO 3 (YAP) was nucleated from SiC surfaces in the sample with Y/Al = 3:5 as revealed by crystallographic relations across the HB, whilst relatively thick amorphous films were found at GB. In contrary, the higher level of Al 2 O 3 additives decreases the GB film thickness in the sample with Y/Al = 3:7, and the homogeneous nucleation of Y 3 Al 5 O 12 (YAG) occurs at triple pockets accompanying with thick HB films. The strong variation of GB widths is a result of GB wetting in the sample with Y/Al = 3:5 and HB wetting in the sample of Y/Al = 3:7, both by liquid Al 2 O 3 . The energy of GB in the former sample is higher than the energy of HB as exhibited by the preferential nucleation of meta-stable YAP on SiC surfaces, which results in wetting of GB by the liquid; the situation is opposite in the latter sample as the wetting of HB occurs, leading to de-wetting of GB. The thermal mismatch between SiC and YAP or YAG as well as the presence of amorphous films facilitate the creation of micro-crack to promote inter-granular fracture and result in high toughness in both SiC ceramics

  4. Phase stabilization in transparent Lu2O3:Eu ceramics by lattice expansion

    Science.gov (United States)

    Seeley, Z. M.; Dai, Z. R.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2012-11-01

    Gadolinium lutetium oxide transparent ceramics doped with europium (Gd,Lu)2O3:Eu were fabricated via vacuum sintering and hot isostatic pressing (HIP). Nano-scale starting powder with the composition GdxLu1.9-xEu0.1O3 (x = 0, 0.3, 0.6, 0.9, 1.0, and 1.1) were uniaxially pressed and sintered under high vacuum at 1625 °C to obtain ˜97% dense structures with closed porosity. Sintered compacts were then subjected to 200 MPa argon gas at temperatures between 1750 and 1900 °C to reach full density. It was observed that a small portion of the Eu3+ ions were exsolved from the Lu2O3 cubic crystal lattice and concentrated at the grain boundaries, where they precipitated into a secondary monoclinic phase creating optical scattering defects. Addition of Gd3+ ions into the Lu2O3 cubic lattice formed the solid solution (Gd,Lu)2O3:Eu and stretched the lattice parameter allowing the larger Eu3+ ions to stay in solid solution, reducing the secondary phase and improving the transparency of the ceramics. Excess gadolinium, however, resulted in a complete phase transformation to monoclinic at pressures and temperatures sufficient for densification. Light yield performance was measured and all samples show equal amounts of the characteristic Eu3+ luminescence, indicating gadolinium addition had no adverse effect. This material has potential to improve the performance of high energy radiography devices.

  5. Minimizing of the boundary friction coefficient in automotive engines using Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohamed Kamal Ahmed, E-mail: eng.m.kamal@mu.edu.eg; Xianjun, Hou, E-mail: houxj@whut.edu.cn; Elagouz, Ahmed [Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Components (China); Essa, F.A. [Kafrelsheikh University, Mechanical Engineering Department, Faculty of Engineering (Egypt); Abdelkareem, Mohamed A. A. [Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Components (China)

    2016-12-15

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al{sub 2}O{sub 3} and TiO{sub 2} nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al{sub 2}O{sub 3} and TiO{sub 2} nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  6. Development and characterization of glass-ceramic sealants in the (CaO-Al2O3-SiO2-B2O3) system for Solid Oxide Electrolyzer Cells

    International Nuclear Information System (INIS)

    Khedim, Hichem; Nonnet, Helene; Mear, Francois O.

    2012-01-01

    The efficiency of glass-ceramic sealants plays a crucial role in Solid Oxide Electrolyzer Cell performance and durability. In order to develop suitable sealants, operating around 800 degrees C, two parent glass compositions, CAS1B and CAS2B, from the CaO-Al 2 O 3 -SiO 2 -B 2 O 3 system were prepared and explored. The thermal and physicochemical properties of the glass ceramics and their crystallization behavior were investigated by HSM. DTA and XRD analyses. The microstructure and chemical compositions of the crystalline phases were investigated by microprobe analysis. Bonding characteristic as well as chemical interactions of the parent glass with yttria-stabilized zirconia (YSZ) electrolyte and ferritic steel-based interconnect (Crofere (R)) were also investigated. The preliminary results revealed the superiority of CAS2B glass for sealing application in SOECs. The effect of minor additions of V 2 O 5 , K 2 O and TiO 2 on the thermal properties was also studied and again demonstrated the advantages of the CAS2B glass composition. Examining the influence of heat treatment on the seal behavior showed that the choice of the heating rate is a compromise between delaying the crystallization process and delaying the viscosity drop. The thermal Expansion Coefficients (TEC) obtained for the selected glass ceramic are within the desired range after the heat treatment of crystallization. The crystallization kinetic parameters of the selected glass composition were also determined under non-isothermal conditions by means of differential thermal analysis (DTA) and using the formal theory of transformations for heterogeneous nucleation. (authors)

  7. Effect of molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dong, E-mail: 1078155409@qq.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Luo, Xudong, E-mail: luoxudongs@aliyun.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Guodong [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Xie, Zhipeng [Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-01-01

    In order to determine the relationship between the property of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics and molar ratios of MgO/Al{sub 2}O{sub 3}, especially the sintering behavior and thermal shock resistance, the MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics were fabricated with micro-size MgO, Al{sub 2}O{sub 3} powder and nano-size SiO{sub 2} as main raw materials. The sample was characterized by phase analysis, densification and thermal shock times. Moreover, field emission scanning electron microscope was also conducted to study microstructure of the samples before and after thermal shock. Effect of different molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of composite ceramics were investigated. The results showed that the sample possess better sintering behavior and thermal shock resistance with the molar ratio of MgO/Al{sub 2}O{sub 3} equal to 2/1. Grains of periclase and spinel were directly bonded together, resulting in a dense and compact microstructure, and the bulk density of obtained sample reached 3.4 g/cm{sup 3}. The microstructure of sample after thermal shock revealed that the crack propagation path was deflected and bifurcated, the main-crack propagation was restricted and more fracture energy was consumed, the thermal shock resistance of composite ceramics was greatly improved. - Highlights: • Effect of MgO/Al{sub 2}O{sub 3} on the composite ceramic was firstly researched with 1 mol% SiO{sub 2}. • Microcracks for a short distance by interlinking can eliminate the crack propagation. • The composite ceramic have optimal synthetic property with MgO/Al{sub 2}O{sub 3} was 2/1.

  8. Crystallization of pyroxene phases and physico-chemical properties of glass-ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic glass system

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A., E-mail: abomosallam@yahoo.com.au

    2015-01-15

    The crystallization characteristics, crystalline phase assemblages and solid solution phases developed due to thermally crystallized glasses based on the Li{sub 2}SiO{sub 3}–Li{sub 2}Si{sub 2}O{sub 5}–LiCrSi{sub 2}O{sub 6} (1028 ± 3 °C) eutectic glass system by replacing some trivalent oxides instead of Cr{sub 2}O{sub 3} were investigated. The microhardness and chemical durability of the glass-ceramics were also determined. Lithium meta and disilicate (Li{sub 2}SiO{sub 3} and Li{sub 2}Si{sub 2}O{sub 5}), lithium gallium silicate (LiGaSiO{sub 4}), and varieties of pyroxene phases, including Cr-pyroxene phase, i.e. lithium-kosmochlor (LiCrSi{sub 2}O{sub 6}), lithium aluminum silicate (LiAlSi{sub 2}O{sub 6}), lithium indium silicate (LiInSi{sub 2}O{sub 6}) and pyroxene solid solution of Li-aegerine type [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}] were the main crystalline phases formed in the crystallized glasses. There is no evidence for the formation of solid solution or liquid immiscibility gaps between LiAlSi{sub 2}O{sub 6} or LiInSi{sub 2}O{sub 6} phases and LiCrSi{sub 2}O{sub 6} phase. However, LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} components were accommodated in the pyroxene structure under favorable conditions of crystallization to form monomineralic pyroxene solid solution phase of the probably formula [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}]. The type and compatibility of the crystallized phases are discussed in relation to the compositional variation of the glasses and heat-treatment applied. The microhardness values of the crystalline materials ranged between 5282 and 6419 MPa while, the results showed that the chemical stability of the glass-ceramics was better in alkaline than in acidic media. - Highlights: • Glass ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic (1028 ± 3 °C) glass were prepared. • LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} phases form monomineralic pyroxene solid

  9. Interface behaviour of Al2O3/Ti joints produced by liquid state bonding

    International Nuclear Information System (INIS)

    Lemus R, J.; Guevara L, A. O.; Zarate M, J.

    2014-08-01

    The main objective of this work was to determine various aspects during brazing of Al 2 O 3 samples to commercially titanium alloy grade 4 with biocompatibility properties, using a Au-foil as joining element. Al 2 O 3 ceramic was previously produced by sintering of powder cylindrical shape at 1550 grades C for 120 minutes. Previously to joining experiments, the surface of Al 2 O 3 samples were coating, by chemical vapor depositions (CVD) process, with a Mo layer of 2 and 4 μm thick and then stacked together with the Ti samples. Joining experiments were carried out on Al 2 O 3 -Mo/Au/Ti combinations at temperature of 1100 grades C using different holding times under vacuum atmosphere. The experimental results show a successful joining Mo-Al 2 O 3 to Ti. Analysis by scanning electron microscopy (Sem) revealed that joining of Al 2 O 3 to metal occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Results by electron probe micro analysis (EPMA) of Al 2 O 3 -Mo/Au/Ti combinations revealed that Mo traveled inside the joining elements and remained as solid solutions, however during cooling process Mo had a tendency to stay as a precipitate phase and atomic distributions of elements show a concentration line of Mo inside the joining element Au. On the other hand, well interaction of Ti with Au form different phases; like Ti 3 Au and Ti Au. (author)

  10. The Effect of Nano sized Carbon Black on the Physical and Thermomechanical Properties of Al2O3-SiC-SiO2-C Composite

    International Nuclear Information System (INIS)

    Amin, M.H.; Ebrahimabadi, M.A.; Rahimipour, M.R.

    2009-01-01

    The effects of using nano sized carbon black in the range of 010 weight percentages on the physical and thermomechanical properties of Al 2 O 3 -Si C-SiO 2 graphite refractory composites were investigated. Nano sized carbon black addition improved the relative heat resistance and oxidation resistance of composites. The bulk density of the composites is reduced with increasing carbon black (CB) content. Increase in CB content first causes an increase in the apparent porosity, but at more than 3 wt % amount of CB, a decrease of apparent porosity was observed. The cold crushing strength (CCS) increased with increasing CB content in samples fired at 800 degree C and in samples fired at 1500 degree C when the content is increased to 3 wt %, but the CCS decreased with increasing CB content in samples fired at 1500 degree C when the CB content was less than 3 wt %. The composite without CB exhibits the highest value of CCS at firing temperature of 1500 degree C.

  11. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  12. Hot corrosion performance of LVOF sprayed Al2O3–40% TiO2 ...

    Indian Academy of Sciences (India)

    ficients of thermal expansions of the two. ... size 40 mesh just prior to deposition of the coating. Al2O3–. 40% TiO2 ... the laboratory Kanthal wire tube furnace, which was cali- ... formation of TiO2, Al2O3 and Al2Ti7O15 phases in the coat- ing.

  13. Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano Mo-Ni/AL2O3 catalysts for the methane steam reforming reaction

    Directory of Open Access Journals (Sweden)

    Silvia Sálua Maluf

    2003-03-01

    Full Text Available Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0.

  14. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hosseini

    2017-04-01

    Full Text Available The photocatalytic activity of Bi2O3 and Ag2O-Bi2O3 was evaluated by degradation of aqueous methyl orange as a model dye effluent. Bi2O3 was synthesized using chemical precipitation method. Structural analysis revealed that Bi2O3 contain a unique well-crystallized phase and the average crystallite size of 22.4 nm. The SEM analysis showed that the size of Bi2O3 particles was mainly in the range of 16-22 nm. The most important variables affecting the photocatalytic degradation of dyes, namely reaction time, initial pH and catalyst dosage were studied, and their optimal amounts were found at 60 min, 5.58 and 0.025 g, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model. Incorporation of Ag2O in the structure of composite caused decreasing band gap and its response to visible light. Because a high percentage of sunlight is visible light, hence Ag2O-Bi2O3 nano-composite could be used as an efficient visible light driven photocatalyst for degradation of dye effluents by sunlight. Copyright © 2017 BCREC GROUP. All rights reserved Received: 15th August 2016; Revised: 20th December 2016; Accepted: 21st December 2016 How to Cite: Hosseini, S.A., Saeedi, R. (2017. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 96-105 (doi:10.9767/bcrec.12.1.623.96-105 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.623.96-105

  15. Characterization of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings on aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahemi Ardakani, S., E-mail: saeed.rahemi69@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Afshar, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sadreddini, S., E-mail: sina.sadreddini1986@gmail.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghanbari, A.A. [Department of Materials Science and Engineering, Sharif University of Technology, International Campus, Kish Island (Iran, Islamic Republic of)

    2017-03-01

    In the present work, nano-composites of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO{sub 2} and Al{sub 2}O{sub 3} in Ni-P coating at the SiO{sub 2} concentration of 10 g/L and 14 g/L Al{sub 2}O{sub 3} led to the lowest corrosion rate (i{sub corr} = 0.88 μA/cm{sup 2}), the most positive E{sub corr} and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE{sub dl} and improve porosity. - Highlights: • The maximum content of Al{sub 2}O{sub 3} and SiO{sub 2} in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} was measured to be 537 μHV.

  16. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors

    International Nuclear Information System (INIS)

    Zhang Weiwei; Zhang Junying; Chen Ziyu; Wang Tianmin; Zheng Shukai

    2010-01-01

    Low-temperature photoluminescent spectra of ZnGa 2 O 4 :Cr 3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr 3+ ions in different sites including ideal octahedral, Zn-interstitial, Ga ZN 4 -Zn Ga 6 sites and Ga 2 O 3 impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al 3+ is substituted in Ga 3+ sites to form Zn(Ga 1-y Al y ) 2 O 4 :Cr 0.01 3+ (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al 3+ and Ga 3+ .

  17. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  18. A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al2O3 MMC

    NARCIS (Netherlands)

    Mussert, K.M.; Vellinga, W.P.; Bakker, A.; Zwaag, van der S.

    2002-01-01

    The nano-indentation technique is a suitable technique to measure hardness and elastic moduli profiles of AA6061 reinforced with Al2O3 particles, since it allows measurements of mechanical properties on a micrometer range. To investigate possible local variations in mechanical behaviour of the

  19. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Fathy, A.; El-Kady, Omyma

    2013-01-01

    Highlights: ► The copper–alumina composites were prepared by powder metallurgy (P/M) method with nano-Cu/Al 2 O 3 powders. ► The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. ► The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. ► The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. ► Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. - Abstract: Copper–alumina composites were prepared by powder metallurgy (P/M) technology. Nano-Cu/Al 2 O 3 powders, was deoxidized from CuO/Al 2 O 3 powders which synthesized by thermochemical technique by addition of Cu powder to an aqueous solution of aluminum nitrate. The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. The large variation in the thermal conductivities can be related to the microstructural characteristics of the interface between Al 2 O 3 and the Cu-matrix. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The reduction of thermal conductivity and coefficient of thermal expansion were

  20. Phase formation in K2O(K2CO3)-CdO-MoO3 system

    International Nuclear Information System (INIS)

    Tsirenova, G.D.; Tsybikova, B.A.; Bazarova, Zh.G.; Solodovnikov, S.F.; Zolotova, E.S.

    2000-01-01

    Phase formation in K 2 O(K 2 CO 3 )-CdO-MoO 3 system are studied by the methods of x-ray diffraction, thermal and crystal optical analyses. Three potassium-cadmium molybdates are detected: K 4 Cd(MoO 4 ) 3 with a new structure, alluodite-like K 4-2x Cd 1+x (MoO 4 ) 3 (0.26≤x≤0.38 at 470 Deg C) and K 4 CdMo 4 O 15 of K 4 MnMo 4 O 15 type. First of them decomposes in solid phase at 580 Deg C, and others melt incongruently at 720 and 515 Deg C correspondingly. It is established that K 4-2x Cd 1+x (MoO 4 ) 3 compound undergoes phase transition of the second type in the temperature interval of 500-550 Deg C. Phase diagram of quasibinary cross section K 2 MoO 4 -CdMoO 4 is plotted [ru

  1. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    Science.gov (United States)

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  2. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    Science.gov (United States)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  3. Application of silver vanadate solid electrolyte mixed with Al2O3 in Ag/I2 batteries

    International Nuclear Information System (INIS)

    Abdul Karim bin Arof.

    1993-01-01

    The glassy silver vanadate electrolyte of the composition 70AgI-20Ag20-10V205 was added with Al2O3 in varying percentages to form several physical mixtures that will be used to fabricate several solid stare electrochemical cells in order to study the influence of the dispersoid on the silver vanadate cells internal resistance and lifetime of the silver vanadate cells. The internal resistance of the cells increased on addition of Al2O3 but the cell with the mixture of Al2O3 and electrolyte in the weight ratio 2:3 has the lowest internal resistance. The increase in the internal resistance of the cell is attributed to the insulating nature of Al2O3. Although the internal resistance of the cell increased, it was observed that the time needed for the cell potential to drop to 400 mV at a constant discharge current of 30 uA increase in discharge lifetime was also observed when a second cell of the same mixed electrolyte constituents was discharged at 40 uA current drain. We have attempted to explain the increase in discharge lifetime in terms of the space charge layer developed between the insulator and the ionic conductor which results in a dipole region across which a potential difference is developed. This potential difference is responsible in prolonging the discharge lifetime of the cells

  4. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    Science.gov (United States)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear complex Al 2(OH) 2(C 2O 4) 44- to exist in a

  5. Synthesis, characterization and electrochemical performance of Al-substituted Li_2MnO_3

    International Nuclear Information System (INIS)

    Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Huq, Ashfia; Dhital, Chetan; Paranthaman, Mariappan Parans; Katiyar, Ram S.; Manivannan, Ayyakkannu

    2015-01-01

    Graphical abstract: Comparison of the cycling performances for pure Li_2MnO_3 and Al-substituted Li_2MnO_3 compounds at a current density of 10 mAh g"−"1 for 100 cycles. Al-substitution increases the spinel phase and hence improves the cycling behavior. - Highlights: • Pure and Al-doped Li_2MnO_3 compounds were synthesized by a Pechini method. • Presence of monoclinic and spinel phases confirmed by Raman and Neutron diffraction. • Al substitution occurs at both Mn and Li sites in Li_2MnO_3 structure. • Al substitution reduces Mn valence state and promotes spinel phase formation. • Stable cycling capacity of 70 mAh g"−"1 was observed for nominal Li_0_._5Al_0_._5MnO_3. - Abstract: Li_2MnO_3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li_2MnO_3, Li_1_._5Al_0_._1_7MnO_3, Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 were synthesized by a sol–gel Pechini method. All the samples were characterized with XRD, Raman, XPS, SEM, Tap density and BET analyzer. XRD patterns indicated the presence of monoclinic phase for pristine Li_2MnO_3 and mixed monoclinic/spinel phases (Li_2_−_xMn_1_−_yAl_x_+_yO_3_+_z) for Al-substituted Li_2MnO_3 compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. XPS analysis for Mn 2p orbital reveals a significant decrease in binding energy for Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g"−"1 for Li_2MnO_3, 68 mAh g"−"1 for Li_1_._5Al_0_._1_7MnO_3, 58 mAh g"−"1 for Li_1_._0Al_0_._3_3MnO_3 and 74 mAh g"−"1 for Li_0_._5Al_0_._5MnO_3 were obtained. Aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  6. ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Casati, R., E-mail: riccardo.casati@polimi.it [Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, Milano (Italy); Fabrizi, A. [Department of Management and Engineering, Università di Padova, Stradella S. Nicola 3, Vicenza (Italy); Tuissi, A. [CNR-IENI, Corso Promessi Sposi 29, Lecco (Italy); Xia, K. [Department of Mechanical Engineering, University of Melbourne, Victoria 3010 (Australia); Vedani, M. [Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, Milano (Italy)

    2015-11-11

    This work is aimed at proposing a method to prepare aluminum matrix composites reinforced with γ-Al{sub 2}O{sub 3} nanoparticles and at describing the effects of an in-situ reaction on the resulting nano-reinforcement dispersed throughout the metal matrix. Al nano- and micro-particles were used as starting materials. They were consolidated by equal channel angular pressing (ECAP) in as-received conditions and after undergoing high-energy ball milling. Further, γ-Al{sub 2}O{sub 3} reinforcing nanoparticles were produced in-situ from the hydroxide layer that covered the Al powder particles. The powder particle morphology and the composites microstructures were investigated by electron microscopy. The transformation process was monitored by X-ray diffraction, differential scanning calorimetry and thermo-gravimetric analysis.

  7. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  8. Exergy analysis of the solar still integrated nano composite phase change materials

    International Nuclear Information System (INIS)

    Methre, V.K.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the exergy analysis of solar still integrated with nano composite phase change materials for design and operating parameters. Al_2O_3 nano materials (50 nm) is dispersed by weight ratio in paraffin wax at melting state and its thermophysical properties are evaluated using developed correlation. Exergy balance equation for basin liner, thermal energy storage, glass cover and saline water is developed and exergy efficiency is analysed. It is found that exergy efficiency is improved by higher weight ratio of Al_2O_3 nano materials with paraffin wax alone. (author)

  9. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} nano-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin, E-mail: sjding@fudan.edu.cn [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2015-07-07

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2} stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  10. Effect of Al2O3 on the sintering of garnet-type Li6.5La3Zr1.5Ta0.5O12

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Yan, Pengfei; Xiao, Jie; Lu, Xiaochuan; Zhang, Ji-Guang; Sprenkle, Vincent L.

    2016-10-01

    It is widely recognized that Al plays a dual role in the fabrication of garnet-type solid electrolytes, i.e., as a dopant that stabilizes the cubic structure and a sintering aid that facilitates the densification. However, the sintering effect of Al2O3 has not been well understood so far because Al is typically “unintentionally” introduced into the sample from the crucible during the fabrication process. In this study, we have investigated the sintering effect of Al on the phase composition, microstructure, and ionic conductivity of Li6.5La3Zr1.5Ta0.5O12 by using an Al-free crucible and intentionally adding various amounts of γ-Al2O3. It was found that the densification of Li6.5La3Zr1.5Ta0.5O12 occurred via liquid-phase sintering, with evidence of morphology change among different compositions. Among all of the compositions, samples with 0.05 mol of Al per unit formula of garnet oxide (i.e., 0.3 wt% Al2O3) exhibited the optimal microstructure and the highest total ionic conductivity of 5 10-4 S cm-1 at room temperature.

  11. Synthetic of Zr2Al3C5 material

    International Nuclear Information System (INIS)

    Leela-Adisorn, U.; Yamaguchi, A.

    2005-01-01

    Synthesis method of Zr 2 Al 3 C 5 via solid state reaction between Al, ZrC and carbon powder was studied. Al-ZrC-C compact with equivalent mol ratio of Zr 2 Al 3 C 5 was heated up to 1600 C in Ar atmosphere for 1 h and 4 h but ZrC phase still existed as major phase with very small amount of Zr 2 Al 3 C 5 . Because ZrC started to oxidize at low temperature under very low oxygen partial pressure, the same mol ratio of Al-ZrC-C compact was heated at 1600 C in vacuum for 1 h as parallel test. After firing in vacuum, some carbon still exist with small amount of AlZrC 2 occurred with Zr 2 Al 3 C 5 as a main phase, but no ZrC was found. Different result from firing in Ar atmosphere and in vacuum had been discussed here. It was believed that very small amount of impurities in Ar had some effect on the formation of Al-Zr-C compound. The effect of very small amount of impurities in Ar was studied by thermal analysis (DTA/TG) and XRD. It was found that very small amount of impurities in Ar has effect on the reaction between Al, ZrC and carbon by diffusion through the surface and form Zr-C-O-N solid solution. This solid solution cannot differentiate from ZrC by XRD. With help of thermal analysis method (DTA/TG), Zr-C-O-N solid solution can be differentiated from ZrC. Therefore, synthesis of Al-Zr-C compound should be done in vacuum. Zr 2 Al 3 C 5 can be prepared from mixture of Al-ZrC-C with excess amount of Al at 1600 C for 1 h. (orig.)

  12. Mechanochemically synthesized Al2O3-TiC nanocomposite

    International Nuclear Information System (INIS)

    Mohammad Sharifi, E.; Karimzadeh, F.; Enayati, M.H.

    2010-01-01

    Al 2 O 3 -TiC nanocomposite was synthesized by ball milling of aluminum, titanium oxide and graphite powder mixtures. Effect of the milling time and heat treatment temperatures were investigated. The structural evolution of powder particles after different milling times was studied by X-ray diffractometry and scanning electron microscopy. The results showed that after 40 h of ball milling the Al/TiO 2 /C reacted with a self-propagating combustion mode producing Al 2 O 3 -TiC nanocomposite. In final stage of milling, alumina and titanium carbide crystallite sizes were less than 10 nm. After annealing at 900 o C for 1 h, Al 2 O 3 and TiC crystallite sizes remained constant, however increasing annealing temperature to 1200 o C increased Al 2 O 3 and TiC crystallite size to 65 and 30 nm, respectively. No phase change was observed after annealing of the synthesized Al 2 O 3 -TiC powder.

  13. Synthesis of High Crystalline Al-Doped ZnO Nanopowders from Al2O3 and ZnO by Radio-Frequency Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Min-Kyeong Song

    2015-01-01

    Full Text Available High crystalline Al-doped ZnO (AZO nanopowders were prepared by in-flight treatment of ZnO and Al2O3 in Radio-Frequency (RF thermal plasma. Micron-sized (~1 μm ZnO and Al2O3 powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm. The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations.

  14. Investigation into isomolar series of Al(NO/sub 3/)/sub 3/, Na/sub 3/VO/sub 4/ solution mixture and composition of solid phases

    Energy Technology Data Exchange (ETDEWEB)

    Chernysh, L F; Nakhodnova, A P; Makarova, R A [Donetskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1979-11-01

    Conducted is investigation of properties of isomolar series of aluminium nitrate and sodium vanadate solutions at pH of the latter 12.5; 10.0; 7.0 and the temperature of 25 deg C using the methods of pH-metry, conductometry, ''seeming'' volume of precipitations, residual concentration of aluminium and vanadium. It is shown, that the composition property diagram of the system investigated does not reflect the true composition of solid-phase products of the reaction, which depends on the component ratio in solution. Bottom phases of isomolar series are mainly heterogeneous. At the excess of sodium vanadate solution and its high pH values conditions for the basic salt formation are created. At pH of the Na/sub 3/VO/sub 4/ solution of 12.5 and 10.0 and Al(NO/sub 3/)/sub 3/: Na/sub 3/VO/sub 4/ ratios 4:6 and 3:7 respectively obtained are the basic aluminium vanadates of the (AlOH)/sub 3/(VO/sub 4/)/sub 2/x 7.5H/sub 2/O and (AlOH)/sub 2/V/sub 2/O/sub 7/x5H/sub 2/O composition, some of their physicochemical properties being investigated.

  15. Neutron studies of nanostructured CuO-Al2O3 NOx removal catalysts

    International Nuclear Information System (INIS)

    Ozawa, Masakuni; Loong Chun-Keung

    1997-01-01

    Nanostructured powders of automotive catalytic system CuO0Al 2 O 3 , targeted for nitrogen oxides (NOx) removal under lean-burn engine conditions, were investigated using neutron diffraction and small-angle neutron scattering. The crystal phases, structural transformations and microstructure of 10 mol% Cu-Al 2 O 3 powders are characterized according to the heat-treatment conditions. These properties are correlated with the pore structure and NOx removal efficiency determined by nitrogen adsorption isotherm, electron spin resonance, and temperature programmed reaction measurements. The γ-(Cu, Al) 2 O 3 phase and the mass-fractal-like aggregate of particles (size ∼ 26 nm) at annealing temperatures below 900 degrees C were found to be crucial to the high NOx removal performance. The transformation to bulk crystalline phases of α-Al 2 O 3 + CuAl 2 O 4 spinel above ∼1050 degrees C corresponds to a drastic drop of Nox removal efficiency. The usefulness of neutron-scattering techniques as well as their complementarity with other traditional methods of catalytic research are discussed

  16. Dependence of glass-forming ability on starting compositions in Y2O3Al2O3–SiO2 system

    Directory of Open Access Journals (Sweden)

    Yixiang Chen

    2011-09-01

    Full Text Available The dependence of glass-forming ability on starting compositions in Y2O3Al2O3–SiO2 (YAS system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1, or 1/3, crystallization occurs with the formation of Y3Al5O12, Y2Si2O7, Al6Si2O13, or SiO2. The densities of the YAS glasses increase with decreasing SiO2 contents and increasing Y/Al ratios, and for the samples with Y/Al = 3/5 there is a good linear relationship between the density and SiO2 content.

  17. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    International Nuclear Information System (INIS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-01-01

    High pressure powder X-ray diffraction studies of several A 2 Mo 3 O 12 materials (A 2 =Al 2 , Fe 2 , FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga 2 Mo 3 O 12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al 2 Mo 3 O 12 collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A 2 Mo 3 O 12 (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga 2 Mo 3 O 12 undergoes the same sequence of transitions.

  18. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    Science.gov (United States)

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  19. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  20. Microstructure and Mechanical Properties of Al2O3/Er3Al5O12 Binary Eutectic Ceramic Prepared by Bridgman Method

    Science.gov (United States)

    Song, Caiyu; Wang, Shunheng; Liu, Juncheng; Zhai, Shuoyan

    2018-01-01

    Directionally solidified Al2O3/Er3Al5O12 (EAG) eutectic ceramic was prepared via vertical Bridgman method with high-frequency induction heating. The effects of the growth rate on the microstructure and mechanical properties of the solidified ceramic were investigated. The experimental results showed that there were no pores or amorphous phases in the directionally solidified Al2O3/EAG eutectic ceramic. Al2O3 phase was embedded in the EAG matrix phase, and the two phases were intertwined with each other to form a typical binary eutectic “hieroglyphic” structure. With the increase of growth rate, the phase size and spacing of the solidified Al2O3/EAG ceramic both decreased, and the growth rate and phase spacing satisfied the λ2v ≈ 60 formula of Jackson-Hunt theory. The cross section microstructure of the solidified ceramic always exhibited an irregular eutectic growth, while the longitudinal section microstructure presented a directional growth. The mechanical properties of the solidified ceramic gradually increased with the increase of growth rate, and the maximum hardness and fracture toughness could reach 21.57 GPa and 2.98 MPa·m1/2 respectively. It was considered that the crack deflection and branching could enhance the toughness of the solidified ceramic effectively. PMID:29601545

  1. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Łuka, Grzegorz; Włodarski, Maksymilian

    2016-01-01

    Highlights: • Al nano-concave arrays with different interpore distance (D c ) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al 2 O 3 spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D c and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D c ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D c ) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al 2 O 3 spacer was placed between the textured Al and the ZnO films (the Al/Al 2 O 3 -ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D c = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ (0,1) SPP resonance mode. In the Al/Al 2 O 3 -ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ (0,1) plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ (0,1) SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al 2 O 3 -ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further enhancement of the SP-modulated UV emission from ZnO thin films.

  2. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    Energy Technology Data Exchange (ETDEWEB)

    Norek, Małgorzata, E-mail: mnorek@wat.edu.pl [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Łuka, Grzegorz [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Włodarski, Maksymilian [Institute of Optoelectronics, Military University of Technology, Str. Kaliskiego 2, 00-908 Warszawa (Poland)

    2016-10-30

    Highlights: • Al nano-concave arrays with different interpore distance (D{sub c}) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al{sub 2}O{sub 3} spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D{sub c} and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D{sub c} ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D{sub c}) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al{sub 2}O{sub 3} spacer was placed between the textured Al and the ZnO films (the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D{sub c} = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ{sub (0,1)} SPP resonance mode. In the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ{sub (0,1)} plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ{sub (0,1)} SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al{sub 2}O{sub 3}-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further

  3. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} glass system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianan, E-mail: lja@qlu.edu.cn; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-15

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained. - Highlights: • Magnetite nano-crystals are formed spontaneously in the investigated glass systems. • The crystallization behavior of the glasses with the alumina content is examined. • Ferromagnetic glass fibers containing magnetite nano-crystals are obtained.

  4. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    International Nuclear Information System (INIS)

    Angelov, O; Stoyanova, D; Ivanova, I; Todorova, S

    2016-01-01

    The influence of Al 2 O 3 , Ag and Al 2 O 3 /Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al 2 O 3 and Ag targets or through sequential sputtering of Al 2 O 3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al 2 O 3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al 2 O 3 /Ag bilayer films (Al 2 O 3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida . A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida . (paper)

  5. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi; Howard, John W.; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Lü, Xujie [Center for Integrated Nanotechnologies and Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Yutao [Materials Research Program and The Texas Materials Institute, University of Texas at Austin, Texas 78712 (United States); Zhao, Yusheng, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Department of Physics, South University of Science and Technology of China, Guangdong 518055 (China)

    2016-09-05

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.

  6. Study of spinodal decomposition and formation of nc-Al2O3/ZrO2 nanocomposites by combined ab initio density functional theory and thermodynamic modeling

    International Nuclear Information System (INIS)

    Sheng, S.H.; Zhang, R.F.; Veprek, S.

    2011-01-01

    Using ab initio density functional theory, the equilibrium properties, such as the total energy, the molar volume, the bulk modulus and its first derivative, as well as the formation enthalpy of monoclinic ZrO 2 and hexagonal α-Al 2 O 3 phases, were calculated and compared with the published theoretical and experimental data. Based on the good agreement of these data, we calculated the lattice instabilities of hypothetical binary hexagonal Zr 2 O 3 and monoclinic AlO 2 , and the interaction parameters of ternary Zr 1-x Al x O y solid solutions. The binodal and spinodal diagrams were then constructed to predict the possibility of the formation of oxide-based nanocomposites which may display hardness enhancement above that of the solid solutions. It is shown that exponential dependence of the interaction parameter on temperature yields the most reliable results. The system should undergo spinodal phase segregation within the composition range that is relevant for the formation of hard or superhard nanocomposites with high thermal and oxidation stability, which are important for their applications.

  7. Improvement of High-Temperature Stability of Al2O3/Pt/ZnO/Al2O3 Film Electrode for SAW Devices by Using Al2O3 Barrier Layer

    Directory of Open Access Journals (Sweden)

    Xingpeng Liu

    2017-12-01

    Full Text Available In order to develop film electrodes for the surface acoustic wave (SAW devices operating in harsh high-temperature environments, novel Al2O3/Pt/ZnO/Al2O3 multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE at 150 °C. The first Al2O3 layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La3Ga5SiO14 (LGS substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al2O3/Pt/ZnO/Al2O3 electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al2O3/Pt/ZnO/Al2O3 film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al2O3/Pt/ZnO/Al2O3 film electrode has great potential for application in high-temperature SAW devices.

  8. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al{sub 2}O{sub 3} gate oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig [Department of Electrical Engineering and Institute for Nano Science, Korea University, Seoul 136-701 (Korea, Republic of)], E-mail: sangsig@korea.ac.kr

    2008-10-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al{sub 2}O{sub 3} tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I{sub DS}-V{sub GS}) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper.

  9. Microwave dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12}-Al{sub 2}O{sub 3} composite

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Zaman, Rosyaini Afindi; Ahmad, Zainal Arifin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Karim, Saniah Ab; Mohamed, Julie Juliewatty, E-mail: juliewatty.m@umk.edu.my [Advance Materials Research Cluster, Faculty of Earth Sciences, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan (Malaysia); Ain, Mohd Fadzil [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2016-07-19

    (1-x)CaCu{sub 3}Ti{sub 4}O{sub 12} + (x)Al{sub 2}O{sub 3} composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO{sub 3}, CuO and TiO{sub 2} powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al{sub 2}O{sub 3} were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl{sub 2}O{sub 4} and Corundum (Al{sub 2}O{sub 3}) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al{sub 2}O{sub 3} (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al{sub 2}O{sub 3} (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al{sub 2}O{sub 3} was reduced both dielectric loss and permittivity at least for an order of magnitude.

  10. Microstructural and mechanical properties of Al-Mg/Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Safari, J., E-mail: safari.jam@gmail.com [Department of Material Science and Engineering, Shahid Bahonar University of Kerman, P.O. Box No. 76135-133, Kerman (Iran, Islamic Republic of); Akbari, G.H. [Department of Material Science and Engineering, Shahid Bahonar University of Kerman, P.O. Box No. 76135-133, Kerman (Iran, Islamic Republic of); Research Center for Mineral Industries, Shahid Bahonar University of Kerman, P.O. Box No. 76135-133, Kerman (Iran, Islamic Republic of); Shahbazkhan, A. [Islamic Azad University, Saveh Branch, Saveh (Iran, Islamic Republic of); Delshad Chermahini, M. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2011-09-29

    Highlights: > The presence of Mg has remarkable effects on crystallite size and lattice strain. > The solution of Mg in the Al matrix accelerates the mechanical milling stages. > The microhardness increased in the presence of Mg. > The presence of Mg has significant effect on lattice parameter. > Steady-state situation was occurred in presence of Mg. - Abstract: The effect of milling time on the microstructure and mechanical properties of Al and Al-10 wt.% Mg matrix nanocomposites reinforced with 5 wt.% Al{sub 2}O{sub 3} during mechanical alloying was investigated. Steady-state situation was occurred in Al-10Mg/5Al{sub 2}O{sub 3} nanocomposite after 20 h, due to solution of Mg into Al matrix, while the situation was not observed in Al/5Al{sub 2}O{sub 3} nanocomposite at the same time. For the binary Al-Mg matrix, after 10 h, the predominant phase was an Al-Mg solid solution with an average crystallite size 34 nm. Up to 10 h, the lattice strain increased to about 0.4 and 0.66% for Al and Al-Mg matrix, respectively. The increasing of lattice parameter due to dissolution of Mg atom into Al lattice during milling was significant. By milling for 10 h the dramatic increase in microhardness (155 HV) for Al-Mg matrix nanocomposite was caused by grain refinement and solid solution formation. From 10 to 20 h, slower rate of increasing in microhardness may be attributed to the completion of alloying process, and dynamic and static recovery of powders.

  11. Preparation and Characterization of Liquid Crystalline Polyurethane/Al2O3/Epoxy Resin Composites for Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Shaorong Lu

    2012-01-01

    Full Text Available Liquid crystalline polyurethane (LCPU/Al2O3/epoxy resin composites were prepared by using LCPU as modifier. The mechanical properties, thermal stability, and electrical properties of the LCPU/Al2O3/epoxy resin composites were investigated systematically. The thermal oxidation analysis indicated that LCPU/Al2O3/epoxy resin composites can sustain higher thermal decomposition temperature. Meanwhile, coefficient of thermal expansion (CTE was also found to decrease with addition of LCPU and nano-Al2O3.

  12. Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO

    Directory of Open Access Journals (Sweden)

    Maryam Zirak

    2017-05-01

    Full Text Available Synthesis of pyrano-chromenes and pyrano-pyrans was developed by three-component reactions of kojic acid and aromatic aldehydes with dimethone and malononitrile, catalyzed with nano-Bi2O3-ZnO and nano-ZnO, respectively. Reactions proceeded smoothly and the corresponding heterocyclic products were obtained in good to high yields. Nano ZnO and nano Bi2O3-ZnO were prepared by sol-gel method and characterized by X-ray diffraction (XRD, energy-dispersive X-ray analysis (EDX, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Supporting Bi3+ on ZnO nanoparticles as Bi2O3, is the main novelty of this work. The simple reaction procedure, easy separation of products, low catalyst loading, reusability of the catalyst are some advantageous of this protocol.

  13. Dependence of glass-forming ability on starting compositions in Y2O3Al2O3–SiO2 system

    OpenAIRE

    Yixiang Chen; Zengchao Yang; Bin He; Guanghua Liu; Jiangtao Li; Liang Wu

    2011-01-01

    The dependence of glass-forming ability on starting compositions in Y2O3Al2O3–SiO2 (YAS) system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1,...

  14. Solid phase crystallisation of HfO2 thin films

    International Nuclear Information System (INIS)

    Modreanu, M.; Sancho-Parramon, J.; O'Connell, D.; Justice, J.; Durand, O.; Servet, B.

    2005-01-01

    In this paper, we report on the solid phase crystallisation of carbon-free HfO 2 thin films deposited by plasma ion assisted deposition (PIAD). After deposition, the HfO 2 films were annealed in N 2 ambient for 3 h at 350, 550 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used for the physical characterisation of as-deposited and annealed HfO 2 . XRD has revealed that the as-deposited HfO 2 film is in an amorphous-like state with only traces of crystalline phase and that the annealed films are in a highly crystalline state. These results are in good agreement with the SE results showing an increase of refractive index by increasing the annealing temperature. XRR results show a significant density gradient over the as-deposited film thickness, which is characteristic of the PIAD method. The AFM measurements show that the HfO 2 layers have a smooth surface even after annealing at 750 deg. C. The present study demonstrates that the solid phase crystallisation of HfO 2 PIAD thin films starts at a temperature as low as 550 deg. C

  15. Complex structural hierarchies observed in Y2O3Al2O3–SiO2 eutectic ceramics prepared by laser melting

    Directory of Open Access Journals (Sweden)

    Dian-Zheng Wang

    2015-03-01

    Full Text Available Amorphous Y2O3Al2O3–SiO2 beads were directly melted by a Nd:YAG laser. The structural features in multi-scale of the samples after solidification were investigated. The results showed that the cooling speed in the applied processing conditions was not high enough to retain the amorphous nature of ceramic beads into the consolidated bulks. In addition to an amorphous phase two crystalline phases, YAG and α-Al2O3, were formed yielding the formation of complex structural hierarchies.

  16. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    Science.gov (United States)

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  17. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  18. Partial redetermination of the phase diagram of the system Al2O3 - ZrO2 - SiO2

    International Nuclear Information System (INIS)

    Greca, M.C.; Emiliano, J.V.; Segadaes, A.M.

    1990-01-01

    Current research on the mechanical behaviour of ceramic matrices reinforced by zirconia particles, and on the processing of mullite-zirconia via reaction-sintering, has brought about the need to update the phase diagram of the system Al 2 O 3 -ZrO 2 -SiO 2 , whose available version dates back to 1956. In the present work, selected compositions in this system were prepared from reagent-grade oxides, uniaxially pressed into 6 mm cylindrical pellets, fired at temperatures between 1550 and 1750 0 C for 6 to 24 h, water-quenched, and observed by X-ray diffraction and SEM, the composition of some of the phases identified being evaluated by EPMA. The data so obtained led to the relocation of the boundary curves neighbouring the ternary eutectic involving alumina, zirconia and mullite. This eutectic was found to occur at ∼ 1750 0 C, a temperature significantly lower than previously reported. (author) [pt

  19. Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform

    Science.gov (United States)

    Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.

    2018-02-01

    Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects Beer-Lambert-law.

  20. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  1. Compatibility of hydrogarnet, Ca3Al2(SiO4)x(OH)4(3−x), with sulfate and carbonate-bearing cement phases: 5–85 °C

    International Nuclear Information System (INIS)

    Okoronkwo, Monday Uchenna; Glasser, Fredrik Paul

    2016-01-01

    The stable existence of hydrogarnet in Portland cement compositions cured at temperatures below 55 °C has long been predicted from application of equilibrium thermodynamics. However hydrogarnet is not often reported in hydrated commercial Portland cements. The substitutions (SO 4 –CO 3 –OH) in AFm have previously been shown to stabilise AFm to higher temperatures and raise the temperature at which AFm converts to Si-free hydrogarnet, C 3 AH 6 . But unanswered question remains about the compatibility of AFm and AFm solid solutions with Si-substituted hydrogarnet, Ca 3 Al 2 (SiO 4 ) x (OH) 4(3 − x) . Phase relations of C 3 AH 6 and Ca 3 Al 2 (SiO 4 ) x (OH) 4(3 − x) at sulfate and carbonate activities conditioned respectively by (gypsum and SO 4 -AFt) and (calcite and CO 3 -AFt) have been determined experimentally in the range 5–85 °C. The results confirm the instability of Si-free hydrogarnet with carbonate and sulfate-bearing cement phases, but do indicate that a range of silica-substituted hydrogarnet solid solutions are stable under conditions likely to be encountered in blended cement systems.

  2. Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering

    Institute of Scientific and Technical Information of China (English)

    Khalil Abdelrazek KHALIL; Sug Won KIM

    2007-01-01

    Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique.

  3. Microstructural evolution and characterisation of interfacial phases in Al2O3/Ag–Cu–Ti/Al2O3 braze joints

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2015-01-01

    Alumina ceramics with different levels of purity have been joined to themselves using an active braze alloy (ABA) Ag–35.3Cu–1.8Ti wt.% and brazing cycles that peak at temperatures between 815 °C and 875 °C for 2 to 300 min. The microstructures of the joints have been studied using scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. A limited number of joints prepared with the ABA Ag–26.7Cu–4.5Ti wt.% have also been studied. In terms of characterising the interfacial phases, efforts were made to understand the interfacial reactions, and to determine the influence of various brazing parameters, such as the peak temperature (T p ) and time at T p (τ), on the microstructure. In addition, the extent to which impurities in the alumina affect the interfacial microstructure has been determined. Ti 3 Cu 3 O has been identified as the main product of the reactions at the ABA/alumina interfaces. At the shortest joining time used, this phase was observed in the form of a micron-size continuous layer in contact with the ABA, alongside a nanometre-size layer on the alumina that was mostly composed of γ-TiO grains. Occasionally, single grains of Ti 3 O 2 were observed in the thin layer on alumina. In the joints prepared with Ag–35.3Cu–1.8Ti wt.%, the interfacial structure evolved considerably with joining time, eventually leading to a high degree of inhomogeneity across the length of the joint at the highest T p . The level of purity of alumina was not found to affect the overall interfacial microstructure, which is attributed to the formation of various solid solutions. It is suggested that Ti 3 Cu 3 O forms initially on the alumina. Diffusion of Ti occurs subsequently to form titanium oxide at the Ti 3 Cu 3 O/alumina interface

  4. Carbon doped lanthanum aluminate (LaAlO3:C) synthesized by solid state reaction for application in UV thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Alves, N.

    2015-01-01

    In this work we discuss the TL output for LaAlO 3 :C crystals grown by using three different combinations of Al 2 O 3 , La 2 O 3 and carbon atoms during the synthesis process. Recently, LaAlO 3 single crystals, co-doped with Ce 3+ and Dy 3+ rare earth trivalent ions and grown under hydrothermal conditions, have been reported to show high thermoluminescent response (TL) when exposed to low levels of ultraviolet radiation (UVR). However, undoped LaAlO 3 synthesized by solid state reaction method from the 1:1 mixture of aluminum and lanthanum oxide under reducing atmosphere revealed to have still higher thermoluminescent sensitivity to UV photon fields than the co-doped with Ce 3+ and Dy 3+ . It is well known that carbon doped aluminum oxide monocrystals have excellent TL and photoluminescent response properties for X-rays, UV and gamma radiation fields. Thus, we conducted three different syntheses of LaAlO 3 by this solid state reaction method, doping the mixture with carbon. The lanthanum aluminate polycrystals were synthesized from the 1:1 mixture of aluminum and lanthanum oxide, adding 0.1wt.% carbon and annealed at 1700°C for two hours in hydrogen atmosphere. The X-ray diffraction analysis revealed the formation of rhombohedral LaAlO 3 crystallographic phase, however a small percentage (15%) of Al 2 O 3 has been also identified. The UV-Vis absorbance spectra were obtained and F and F + - center were ascribed. The UV irradiations were carried out using a commercial 8W UV lamp. Thermoluminescence measurements were performed at a Harshaw 4500 TL reader. All compositions investigated have shown high TL sensitivity to UVR. (author)

  5. Nanocrystalline AL2 O2 powders produced by laser induced gas phase reactions

    International Nuclear Information System (INIS)

    Borsella, E.; Botti, S.; Martelli, S.; Zappa, G.; Giorgi, R.; Turt, S.

    1993-01-01

    Nanocrystalline Al 2 O 3 powders were successfully synthesized by a CO 2 laser-driven gas-phase reaction involving trimethylaluminium (Al(CH 3 ) 3 ) and nitrous-oxide (N 2 O). Ethylene (C 2 H 4 ) was added as gas sensitizer. The as-synthesized powder particles showed a considerable carbon contamination and an amorphous-like structure. After thermal treatment at 1200-1400 degrees C, the powder was transformed to hexagonal a-Al 2 O 3 with very low carbon contamination as confirmed by X-ray diffraction, X-ray photo-electron spectroscopy and chemical analysis. The calcinated powders resulted to be spherical single crystal nanoparticles with a mean size of 15-20 nm, as determined by X-ray diffraction, electron microscopy and B.E.T. specific surface measurements. The laser synthesized Al 2 O 3 particles are well suited dispersoids for intermetallic alloy technology

  6. [Structure and luminescence properties of Ga2O3 : Cr3+ by Al doping].

    Science.gov (United States)

    Wang, Xian-Sheng; Wan, Min-Hua; Wang, Yin-Hai; Zhao, Hui; Hu, Zheng-Fa; Li, Hai-Ling

    2013-11-01

    The Al doping gallate phosphor (Ga(1-x)Al(x))2O3 : Cr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by a high temperature solid-state reaction method. The X-ray diffractions show that the phase of the phosphors remains to be Ga2 O3 structure with increase in the contents of Al3+ ion. Beside, the fact that the X-ray diffraction peak shifts towards big angles with increasing Al3+ ions content shows that Al3+ ions entered the Ga2 O3 lattice. The peaks of the excitation spectra located at 258, 300, 410 and 550 nm are attributed to the band to band transition of the matrix, charge transfer band transition, and 4A2 --> 4T1 and 4A2 --> 4T2 transition of Cr3+ ions, respectively. Those excitation spectrum peak positions show different degrees of blue shift with the increase in the Al3+ ions content. The blue shift of the first two peaks are due to the band gap energy of substrate and the electronegativity between Cr3+ ions and ligands increasing, respectively. The blue shift of the energy level transition of Cr3+ ion is attributed to crystal field strength increasing. The Cr3+ ion luminescence changes from a broadband emission to a narrow-band emission with Al3+ doping, because the emission of Cr3+ ion changed from 4 T2 --> 4A2 to 2E --> 4A2 transition with the crystal field change after Al3+ ions doping. The Al3+ ions doping improved the long afterglow luminescence properties of samples, and the sample showed a longer visible near infrared when Al3+ ions content reaches 0.5. The thermoluminescence curve shows the sample with suitable trap energy level, and this is also the cause of the long afterglow luminescence materials.

  7. Temperature-programmed reaction of CO2 reduction in the presence of hydrogen over Fe/Al2O3, Re/Al2O3 and Cr-Mn-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Mirzabekova, S.R.; Mamedov, A.B.; Krylov, O.V.

    1996-01-01

    Regularities in CO 2 reduction have been studied using the systems Fe/Al 2 O 3 , Re/Al 2 O 3 and Cr-Mn-O/Al 2 O 3 under conditions of thermally programmed reaction by way of example. A sharp increase in the reduction rate in the course of CO 2 interaction with reduced Fe/Al 2 O 3 and Re/Al 2 O 3 , as well as with carbon fragments with addition in CO 2 flow of 1-2%H 2 , has been revealed. The assumption is made on intermediate formation of a formate in the process and on initiating effect of hydrogen on CO 2 reduction by the catalyst. Refs. 26, figs. 10

  8. Obtenção de substratos cerâmicos no sistema Si-Al-O-N-C empregando polissiloxanos e carga de Si e Al2O3 Ceramic tapes of Si-Al-O-N-C compounds using mixtures of polyssiloxane and Si-Al2O3 fillers

    Directory of Open Access Journals (Sweden)

    R. M. Rocha

    2005-03-01

    Full Text Available A técnica de processamento de colagem por fita (tape casting tem sido amplamente utilizada na obtenção de cerâmicas para diferentes aplicações: substratos cerâmicos e estruturas planares em multicamadas para circuitos integrados e capacitores; eletrólitos sólidos para células a combustível e sensores; cerâmicas piezoelétricas para atuadores e transdutores; membranas de separação para micro-filtragem; compósitos estruturais e trocadores de calor. Neste trabalho, a técnica convencional de colagem por fita foi adaptada com a utilização do processo de pirólise controlada de misturas de polímeros e carga, empregando-se polissiloxanos e cargas de silício e alumina nas suspensões. Foram preparadas suspensões com 60% vol. de fase polimérica (polissiloxanos e metil-trietoxi-silano e 40% vol. de carga (Si e Al2O3, com diferentes concentrações dos polímeros e das cargas. As amostras na forma de substratos foram pirolisadas em atmosfera de nitrogênio a 1400 °C/2 h e 1500 °C/2 h, sendo convertidas em materiais cerâmicos no sistema Si-Al-O-N-C. O processo de pirólise foi caracterizado até a temperatura de 1000 ºC por análise termogravimétrica. As cerâmicas foram caracterizadas quanto às fases formadas, microestrutura, massa específica aparente e condutividade térmica. Os substratos cerâmicos apresentaram porosidade relativamente alta (entre 12 e 22% e baixa condutividade térmica (entre 3 e 8 W/m.K, sendo constituídos por fases cristalinas de beta-SiC, Si2ON2, O'-SiAlON, Al2O3, mulita e fase amorfa de SiOC; o Si foi observado nas amostras pirolisadas a 1400 ºC.The tape casting technique has been widely used to prepare ceramic tapes for different applications: ceramic substrates and multilayer planar structures for integrated circuits and capacitors, solid electrolytes for fuel cells and sensors, piezoelectric ceramics for actuators and transducers, membrane systems for micro-filtration, structural composites and

  9. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  10. Surface and interface analysis of PVD Al-O-N and {gamma}-Al{sub 2}O{sub 3} diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, R.; Witthaut, M.; Reichert, K.; Neuschuetz, D. [Technische Hochschule Aachen (Germany). Lehrstuhl fuer Metallurgie der Kernbrennstoffe und Theoretische Huettenkunde

    1999-10-01

    The suitability of PVD films of {gamma}-Al{sub 2}O{sub 3} and of ternary Al-O-N as diffusion barriers between a nickel based superalloy CMSX-4 and NiCoCrAlY for a possible application in gas turbines was investigated. Therefore, an Al{sub 2}O{sub 3} film and, alternatively, an Al-O-N film were deposited on CMSX-4 at 100 C substrate temperature by means of reactive magnetron sputtering ion plating (MSIP). After characterization of composition and structure of the films by X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (XRD), a NiCoCrAlY coating was deposited onto the diffusion barriers and, for comparison, directly onto CMSX-4 by MSIP as well. The composites were annealed for 4 h at 1100 C under inert atmosphere. Wavelength dispersive X-ray (WDX) element mappings and line-scans of the cross-sectional cut served to evaluate the suitability of the films as diffusion barriers. After detachment of the coatings from the substrate, the phase stabilities of the two metastable phases {gamma}-Al{sub 2}O{sub 3} and Al-O-N were determined by means of grazing incidence XRD. Without a diffusion barrier, enhanced interdiffusion was observed. Analyses of the composite with the {gamma}-Al{sub 2}O{sub 3} interlayer revealed diffusion of Ti and Ta from the substrate into the NiCoCrAlY coating. No interdiffusion of Ni, Ti, Ta, and Cr could be detected in case of the ternary Al-O-N film. Whereas the ternary Al-O-N film remained in the as-deposited X-ray amorphous structure after annealing, a phase change from the {gamma} to the {alpha} modification could be observed in case of the Al{sub 2}O{sub 3} film, presumably responsible for its lower efficiency as a diffusion barrier. (orig.)

  11. Interface behaviour of Al{sub 2}O{sub 3}/Ti joints produced by liquid state bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lemus R, J.; Guevara L, A. O.; Zarate M, J., E-mail: jlruiz@umich.mx [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigaciones Metalurgicas, Ciudad Universitaria, Edificio U, 58060 Morelia, Michoacan (Mexico)

    2014-08-15

    The main objective of this work was to determine various aspects during brazing of Al{sub 2}O{sub 3} samples to commercially titanium alloy grade 4 with biocompatibility properties, using a Au-foil as joining element. Al{sub 2}O{sub 3} ceramic was previously produced by sintering of powder cylindrical shape at 1550 grades C for 120 minutes. Previously to joining experiments, the surface of Al{sub 2}O{sub 3} samples were coating, by chemical vapor depositions (CVD) process, with a Mo layer of 2 and 4 μm thick and then stacked together with the Ti samples. Joining experiments were carried out on Al{sub 2}O{sub 3}-Mo/Au/Ti combinations at temperature of 1100 grades C using different holding times under vacuum atmosphere. The experimental results show a successful joining Mo-Al{sub 2}O{sub 3} to Ti. Analysis by scanning electron microscopy (Sem) revealed that joining of Al{sub 2}O{sub 3} to metal occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Results by electron probe micro analysis (EPMA) of Al{sub 2}O{sub 3}-Mo/Au/Ti combinations revealed that Mo traveled inside the joining elements and remained as solid solutions, however during cooling process Mo had a tendency to stay as a precipitate phase and atomic distributions of elements show a concentration line of Mo inside the joining element Au. On the other hand, well interaction of Ti with Au form different phases; like Ti{sub 3}Au and Ti Au. (author)

  12. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  13. Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition

    International Nuclear Information System (INIS)

    Jin Qian; Xue Wenbin; Li Xijin; Zhu Qingzhen; Wu Xiaoling

    2009-01-01

    A Al 2 O 3 coating was prepared on titanium substrate by cathodic microarc electrodeposition method in Al(NO 3 ) 3 ethanol solution. The coating thickness was about 80 μm when a 400 V cathodic potential was applied. The morphology and phase constituent of the Al 2 O 3 coating were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The isothermal oxidation at 700 deg. C and electrochemical corrosion behavior of the coated titanium were analyzed. The coating was composed of γ-Al 2 O 3 and little α-Al 2 O 3 phases. The oxidation resistance of the titanium subjected to cathodic microarc treatment was obviously improved. The polarization test indicated that the coated titanium has better corrosion resistance.

  14. Microestructura de Al2O3/TZP codopado con Fe2O3 y TiO2 fabricado por reacción (RBAO

    Directory of Open Access Journals (Sweden)

    Jiménez, M.

    2003-02-01

    Full Text Available Reaction-bonded 80 vol% Al2O3/TZP (2 mol% Y2O3-stabilized tetragonal zirconia polycrystals composites co-doped with 1 vol% Fe2O3 and 1 vol% TiO2 have been produced, and then presureless sintered (1450 ºC, 60 min or sinter-forged (20 MPa, 1200 ºC, 60 min. The resulting microstructures have been characterized using scanning electron microscopy. Both types of materials are dense, with a fine and homogeneous dual microstructure consisting of Al2O3 and TZP grains without intermediate grain boundary phases. Sinter-forged composites exhibit a very narrow pore size distribution, essentially smaller than the grain size of the alumina and zirconia phases. Co-doping promotes the sintering of alumina at lower temperatures, while still retains a fine grain size due to the presence of the dispersed zirconia phase. First results on presureless sintered RBAO materials show a fracture strength higher than in conventionally sintered and sinter-forged composites.Se han fabricado compuestos de 80% vol. Al2O3/TZP (ZrO2 estabilizada con 2% mol Y2O3 codopados con 1% vol. Fe2O3 y 1% vol. TiO2 mediante la tecnología RBAO (“Reaction Bonding of Aluminum Oxide”, que se han sinterizado libremente (1450 ºC, 60 min y bajo carga uniaxial (20 MPa, 1200 ºC, 60 min. Se ha caracterizado la microestructura mediante microscopía electrónica de barrido. Ambos materiales son densos con una microestructura homogénea formada por granos de alúmina y de circona, sin fases en juntas de grano. En el caso de la sinterización bajo carga, la distribución del tamaño de los poros es muy estrecha, y esencialmente menor que las correspondientes a los granos de Al2O3 y TZP. El codopado promueve la sinterización de la alúmina, mientras que los granos dispersos de circona inhiben su crecimiento de grano. Los ensayos preliminares de flexión en cuatro puntos realizados sobre los materiales sinterizados sin carga indican una resistencia a la fractura superior a la que presentan los

  15. Calcite Phase Conversion Prediction Model for CaO-Al2O3-SiO2 Slag: An Aqueous Carbonation Process at Ambient Pressure

    Science.gov (United States)

    Zhang, Huining; Dong, Jianhong; Li, Hui; Xiong, Huihui; Xu, Anjun

    2018-06-01

    To evaluate the effect of the mineralogical phase on carbonation efficiency for CaO-Al2O3-SiO2 slag, a calcite phase conversion prediction model is proposed. This model combines carbon dioxide solubility with carbonation reaction kinetic analysis to improve the prediction capability. The effect of temperature and carbonation time on the carbonation degree is studied in detail. Results show that the reaction rate constant ranges from 0.0135 h-1 to 0.0458 h-1 and that the mineralogical phase contribution sequence for the carbonation degree is C2S, CaO, C3A and CS. The model accurately predicts the effect of temperature and carbonation time on the simulated calcite conversion, and the results agree with the experimental data. The optimal carbonation temperature and reaction time are 333 K and 90 min, respectively. The maximum carbonation efficiency is about 184.3 g/kg slag, and the simulation result of the calcite phase content in carbonated slag is about 20%.

  16. Electrochemical impedance spectroscopy and corrosion behaviour of Al{sub 2}O{sub 3}-Ni nano composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ciubotariu, Alina-Crina [Dunarea de Jos, University of Galati, Metallurgy and Materials Science Faculty, Competences Center Interfaces-Tribocorrosion-Electrochemical Systems, CC-ITES, 47 Domneasca Street, 80008 Galati (Romania)], E-mail: Alina.Ciubotariu@ugal.ro; Benea, Lidia [Dunarea de Jos, University of Galati, Metallurgy and Materials Science Faculty, Competences Center Interfaces-Tribocorrosion-Electrochemical Systems, CC-ITES, 47 Domneasca Street, 80008 Galati (Romania); Lakatos-Varsanyi, Magda [Bay Zoltan Foundation, Institute for Materials Science and Technology, Budapest H-1116 (Hungary); Dragan, Viorel [Dunarea de Jos, University of Galati, Metallurgy and Materials Science Faculty, Competences Center Interfaces-Tribocorrosion-Electrochemical Systems, CC-ITES, 47 Domneasca Street, 80008 Galati (Romania)

    2008-05-20

    In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al{sub 2}O{sub 3}-Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 {mu}m on steel support and an average of nano Al{sub 2}O{sub 3} particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al{sub 2}O{sub 3} particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 {mu}m/year) and a little bit bigger in 0.5 M sodium chloride (5.03 {mu}m/year)

  17. Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology

    International Nuclear Information System (INIS)

    Li, Xiangru; Hu, Hao; Huang, Sheng; Yu, Gaige; Gao, Lin; Liu, Haowen; Yu, Ying

    2013-01-01

    Graphical abstract: - Highlights: • Nano-sized Li 4 Ti 5 O 12 has been prepared through solid state reaction by using axiolitic TiO 2 as precursor. • The prepared nano-sized Li 4 Ti 5 O 12 anode material shows excellent electrochemical performance. • The utilization of precursor with special morphology and size is one of the useful ways to prepare more active electrode materials. - Abstract: Spinel nano-sized Li 4 Ti 5 O 12 anode material of secondary lithium-ion battery has been successfully prepared by solid state reaction using axiolitic TiO 2 assembled by 10–20 nm nanoparticles and Li 2 CO 3 as precursors. The synthesis condition, grain size effect and corresponding electrochemical performance of the special Li 4 Ti 5 O 12 have been studied in comparison with those of the normal Li 4 Ti 5 O 12 originated from commercial TiO 2 . We also propose the mechanism that using the nano-scaled TiO 2 with special structure and unexcess Li 2 CO 3 as precursors can synthesize pure phase nano-sized Li 4 Ti 5 O 12 at 800 °C through solid state reaction. The prepared nano-sized Li 4 Ti 5 O 12 anode material for Li-ion batteries shows excellent capacity performance with rate capacity of 174.2, 164.0, 157.4, 146.4 and 129.6 mA h g −1 at 0.5, 1, 2, 5 and 10 C, respectively, and capacity retention of 95.1% after 100 cycles at 1 C. In addition, the specific capacity fade for the cell with the different Li 4 Ti 5 O 12 active materials resulted from the increase of internal resistance after 100 cycles is compared

  18. Order-disorder transition and electrical conductivity of the brownmillerite solid-solutions system Ba2(In, M)2O5 (M=Ga, Al)

    International Nuclear Information System (INIS)

    Yamamura, Hiroshi; Hamazaki, Hirohumi; Kakinuma, Katsuyoshi; Mori, Toshiyuki; Haneda, Hajime

    1999-01-01

    The brownmillerite solid-solution systems Ba 2 (In 1-x M x ) 2 O 5 (M=Ga, Al) were investigated by means of high-temperature X-ray diffraction (XRD), dilatometry, and electrical-conductivity measurements. XRD showed that the Ba 2 (In 1-x Ga x ) 2 O 5 system had orthorhombic symmetry in the composition range 0.0≤x≤0.2 and cubic symmetry in the range 0.3≤x. The Al system also changed to cubic symmetry from orthorhombic symmetry in the range 0.2≤x. While the orthorhombic phase showed an order-disorder transition in the electrical conductivity measurements, the transition temperature decreased with increasing the M content. The order-disorder transition temperature and the crystal-structure transition temperature were very different. Such a transition was not observed in the cubic phases, and their electrical conductivity were fairly low compared to those of the disordered cubic phase after the transition due to the heating process. These phenomena are discussed in terms of disordering of the tetrahedral site in the brownmillerite structure, which is occupied by the smaller Ga 3+ or Al 3+ rather than ny In 3+

  19. Phosphorescent and thermoluminescent properties of SrAl2O4:Eu2+, Dy3+ phosphors prepared by solid state reaction method

    International Nuclear Information System (INIS)

    Mothudi, B.M.; Ntwaeaborwa, O.M.; Kumar, A.; Sohn, K.; Swart, H.C.

    2012-01-01

    Long persistent SrAl 2 O 4 :Eu 2+ phosphors co-doped with Dy 3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl 2 O 4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl 2 O 4 :Eu 2+ , Dy 3+ were observed and the emission is attributed to the 4f 6 5d 1 to 4f 7 transition of Eu 2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy 3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  20. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    International Nuclear Information System (INIS)

    Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Reyes, E.

    2018-01-01

    The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results. [es

  1. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    Directory of Open Access Journals (Sweden)

    M. A. Sanjuán

    2018-03-01

    Full Text Available The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP measurements, pore-size distribution (PSD, total porosity and critical pore diameter also confirmed such results.

  2. Densification and mechanical properties of sintered Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12} ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Paneto, Flavio Jose; Pereira, Joaquim Lopes; Oliveira, Jean de Lima; Jesus Filho, Edson de; Silva, Leandro Anselmo da; Cabral, Ricardo de Freitas; Santos, Claudinei dos [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Lima, Eduardo de Sousa [Institutlo Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2014-06-15

    In this work, Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12} ceramic composites were developed with different proportions of Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12}, which were mixed and compacted at different pressures of 40MPa to 100MPa, being consequently sintered at 1600 deg C-2h. The sintered samples were characterized by X-ray diffraction presenting α-Al{sub 2}O{sub 3} and Y{sub 3}Al{sub 5}O{sub 12} as crystalline phases. Samples with relative densities ranging from 78 to 80% and 87 to 91% were obtained depending on the composition and the compaction pressure used. The hardness values obtained were of 1010 to 1080HV and 370- 470HV, for mixes Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12} having the composition with levels of 20 and 36.5wt.%, respectively. (author)

  3. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  4. Al2O3 doped TiO2 ceramic waste forms

    International Nuclear Information System (INIS)

    Uno, Masayoshi; Kinoshita, Hajime; Sakai, Etsuro; Ikeda, Akira; Matsumoto, Y.; Yamanaka, Shinsuke

    1999-01-01

    Melting of the mixture of Nd 2 O 3 , CeO 2 , SrO, TiO 2 and Al 2 O 3 at 1673 K for 1 hour produced one RE 2 Ti 3 O 9 phase compound. Differential Scanning Calorimetry (DSC) measurement showed that the melting temperature of this compound was 1646 K. Density of the alumina doped oxide was higher than that of the oxide obtained by the pressing and sintering without alumina. Vickers hardness of the oxide obtained by the pressing and sintering was 5.3 GPa and nearly same as that of glass waste. That of the alumina doped oxide was around 7 GPa. 7 days Soxhlet leach test (MCC-5) followed by Inductively Coupled Plasma Spectrometry (ICP) showed that normalized leaching rate of Ti for the oxide obtained by the pressing and sintering was 5.54 x 10 -3 kg/m 2 and that for the alumina doped oxide was 2.24 x 10 -3 kg/m 2 . The value of Sr for the pressed and sintered sample was 0.034 x 10 -3 kg/m 2 but that for alumina doped sample was below the detection limit (0.01 x 10 -3 kg/m 2 ). Al was not detected from the leachate of the alumina doped sample. (author)

  5. ??????????? ??????????????? ????? ??????-???????? ????????????? ?????????? ??????? ?aO?Al2O3?TiO2 ??? ???????? ?????? ?????

    OpenAIRE

    ???????, ????; ??????, ?????????

    2011-01-01

    ? ????? ?????? ?????????? ???????? ?????????????? ??????????? ????????????? ??? ??????-????????? ???????????????? ?????????? ??????? ?aO?Al2O3?TiO2, ?? ???????? ??????? ? ???????????? ??????? ??? ???????? ? ?????? ????????? ?????? ?????. ???????? ?????????? ???????? ??? ??????????? ?????????? ??????? ????????? ???????????? ?????????? ??? ??????????? 12000?, ?? ????????? ?????????????? ????????????? ???????, ????????? ???? ? ?????????? ????? ???????? ??????? ???????????. ????????, ?? ?? ...

  6. Effect of nano-oxide layers on giant magnetoresistance in pseudo-spin-valves using Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Miao, J.; Jiang, Y.

    2011-01-01

    We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2 FeAl/NOL 1 /Co 2 FeAl/Cu/Co 2 FeAl/NOL 2 /Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2 FeAl (CFA) PSV with a structure of Ta/Co 2 FeAl/Cu/Co 2 FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2 O 3 )(Al 2 O 3 )] in NOL 1 and [(Fe 2 O 3 )(Al 2 O 3 )(Ta 2 O 5 )] in NOL 2 . Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure. - Research highlights: → Nano-oxide layers are applied in the pseudo-spin-valves with the Heusler alloy. → The CIP-GMR of pseudo-spin-valves is improved from 0.03% to 5.84%. → The GMR ratio is decided by the position of nano-oxide layers.

  7. Phase transitions and Al partitioning in a pyrolitic MgO-Al2O3-SiO2 composition at 16-31 GPa and 1500-2300 K

    Science.gov (United States)

    Ye, Y.; Gu, C.; Shim, S.; Prakapenka, V.; MacDowell, A.

    2013-12-01

    In order to understand strong seismic heterogeneities found in the base of the mantle transition zone, it is important to explore the effects of temperature and composition on the phase boundaries in the region. We have determined the phase boundaries near the 660-km discontinuity in an iron-free pyrolitic MgO-Al2O3-SiO2 (MAS) composition by combining in-situ synchrotron X-ray diffraction and laser-heated diamond-anvil cell at 16-31 GPa and 1500-2300 K. The pyrolitic MAS composition glass starting materials were mixed with platinum (laser coupler and internal pressure scale) and loaded into the diamond-anvil cells together with argon (pressure transmitting medium and thermal insulator). The in-situ measurements were conducted at the GSECARS sector of Advanced Photon Source and beamline 12.2.2 of Advanced Light Source. We found that the post-spinel transition (ringwoodite to perovskite+periclase) occurs at the pressure and temperature conditions expected for the 660-km discontinuity at 1800 K if the shockwave platinum pressure scale by Holmes et al. (1989) is used. At temperatures above 1900 K, ringwoodite breaks down to garnet+periclase, instead of perovskite+periclase, followed by the post-garnet transition (garnet to perovskite) at the pressure-temperature conditions expected for warm heterogeneities at 650-680 km depths (23-24 GPa and 1900-2300 K). The Clapeyron slopes of the post-spinel and post-garnet boundaries are constrained to be -2.8×0.2 and +2.4×0.3 MPa/K, respectively, indicating similar magnitude of thermal effects (with opposite signs) on the topography of the 660-km discontinuity by these phase boundaries. The dominance of the post-garnet transition above normal mantle temperatures will facilitate material exchange across the 660 discontinuity in warm mantle heterogeneities due to its positive Clapeyron slope. In our pyrolitic MAS composition, akimotoite was observed up to 2000-2300 K between 20 and 22 GPa in both fresh sample heating and reversal

  8. Refractories in the Al2O3-ZrO2-SiO2 system

    International Nuclear Information System (INIS)

    Banerjee, S.P.; Bhadra, A.K.; Sircar, N.R.

    1978-01-01

    The effect of addition of ZrO 2 in different proportions in the refractories of the Al 2 O 3 -SiO 2 system was studied. The investigation was confined to two broad ranges of compositions incorporating zirconia (15-30 percent and 80-85 percent) in the Al 2 O 3 -ZrO 2 -SiO 2 system. The overall attainment of properties is dependent upon the mode of fabrication and firing, and bears a relationship with the phase assemblages and the relative proportion thereof. Of the different characteristics, the trend of dissociation of zircon has been found to be specially significant vis-a-vis the temperature of firing and thermal shock resistance. Reassociation of the dissociated products has been ascribed to bring forth improved resistance to thermal spalling. The different products developed during this investigation are considered to be very promising which find useful applications in view of the properties attained by them. (auth.)

  9. Characterization of Nd{sub 2}AlO{sub 3}N and Sm{sub 2}AlO{sub 3}N oxynitrides synthesized by carbothermal reduction and nitridation

    Energy Technology Data Exchange (ETDEWEB)

    Chevire, Francois, E-mail: francois.chevire@univ-rennes1.fr [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , Equipe Verres et Ceramiques, Groupe Materiaux Azotes et Ceramiques, Universite de Rennes 1, 35042 Rennes Cedex (France); Pallu, Arthur; Ray, Erwan; Tessier, Franck [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , Equipe Verres et Ceramiques, Groupe Materiaux Azotes et Ceramiques, Universite de Rennes 1, 35042 Rennes Cedex (France)

    2011-05-12

    Research highlights: > Carbothermal reduction and nitridation leads to rare earth aluminum oxynitride starting from oxide mixture. > Absorption shifts towards visible in Nd{sub 2}AlO{sub 3}N (orange) and Sm{sub 2}AlO{sub 3}N (yellow). > Oxynitrides are stable up to 600 deg. C in air. > The so-called 'intermediate phase' phenomenon is evidenced in Sm{sub 2}AlO{sub 3}N. - Abstract: The Nd{sub 2}AlO{sub 3}N and Sm{sub 2}AlO{sub 3}N oxynitrides with the K{sub 2}NiF{sub 4}-type structure have been prepared from oxide mixture at 1250 deg. C using the carbothermal reduction and nitridation route (CRN). Optimization of the process is discussed to prevent surface oxidation of the oxynitrides during the synthesis. The absorption of Nd{sub 2}AlO{sub 3}N and Sm{sub 2}AlO{sub 3}N, orange and yellow respectively, has been characterized by diffuse reflectance as well as their thermal stability versus oxidation by thermogravimetric analyses.

  10. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  11. Identification of ε-Fe{sub 2}O{sub 3} nano-phase in borate glasses doped with Fe and Gd

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.S.; Ivantsov, R.D. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Petrakovskaja, E.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Velikanov, D.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.V. [NRC “Kurchatov Institute”, 123182 Moscow (Russian Federation); Zaikovskii, V.I. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Stepanov, S.A. [Vavilov State Optical Institute, All-Russia Research Center, 192371 Petersburg (Russian Federation)

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe{sub 2}O{sub 3}, γ-Fe{sub 2}O{sub 3}, or Fe{sub 3}O{sub 4} nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe{sub 2}O{sub 3}. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles’ nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics. - Highlights: • Alumina-potassium-borate glasses co-doped with Fe and Gd are studied. • Magnetic nanoparticles with structure close to ε-Fe{sub 2}O{sub 3} are shown to arise in glasses • Magnetic hysteresis loops and EMR evidence on the ferromagnetic and paramagnetic nano-phases coexistence. • Magnetic circular dichroism for ε-Fe{sub 2}O{sub 3} is studied for the first time.

  12. Influence of Al2O3 reinforcement on precipitation kinetic of Cu–Cr nanocomposite

    International Nuclear Information System (INIS)

    Sheibani, S.; Ataie, A.; Heshmati-Manesh, S.; Caballero, A.; Criado, J.M.

    2011-01-01

    Highlights: ► Cr precipitation in Cu-1 wt.% Cr solid solution is based on nucleation and growth models. ► The overall ageing process is accelerated by the presence of Al 2 O 3 reinforcement. ► Al 2 O 3 –Cu interfaces act as primary nucleation sites. ► Structural defects act as secondary nucleation sites. - Abstract: In this paper, the kinetic of precipitation process in mechanically alloyed Cu-1 wt.% Cr and Cu-1 wt.% Cr/3 wt.% Al 2 O 3 solid solution was compared using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The ageing kinetics in Cu–Cr and Cu–Cr/Al 2 O 3 can be described using Johnson–Mehl–Avrami (JMA) and Sestak–Berggren (SB) models, respectively. These different behaviors have been discussed in details. It was found that in presence of Al 2 O 3 reinforcement, the ageing activation energy is decreased and the overall ageing process is accelerated. This behavior is probably due to higher dislocation density previously obtained during ball milling and Al 2 O 3 –Cu interface. TEM observations confirm that Al 2 O 3 –Cu interface and structural defects act as a primary and secondary nucleation sites, respectively.

  13. In situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH4+ on Pd/Al2O3 and Pt/Al2O3.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on

  14. Preparation and Characterization of PVC-Al2O3-LiClO4 Composite Polymeric Electrolyte

    International Nuclear Information System (INIS)

    Azizan Ahmad; Mohd Yusri Abdul Rahman; Siti Aminah Mohd Noor; Mohd Reduan Abu Bakar

    2009-01-01

    Ionic conductivity of composite polymer electrolyte PVC-Al 2 O 3 -LiClO 4 as a function of Al 2 O 3 concentration has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with Al 2 O 3 concentration. The highest room temperature conductivity of the electrolyte of 3.43 x 10 -10 S.cm -1 was obtain at 25 % by weight of Al 2 O 3 and that without Al 2 O 3 filler was found to be 2.43 x 10 -11 S.cm -1 . The glass transition temperature decreases with the increase of Al 2 O 3 percentage due to the increasing amorphous state, meanwhile the degradation temperature increases with the increase of Al 2 O 3 percentage. Both of these thermal properties influence the enhancement of the conductivity value. The morphology of the samples shows the even distribution of the Al 2 O 3 filler in the samples. However, the filler starts to agglomerate in the sample when high percentage of Al 2 O 3 is being used. In conclusion, the addition of Al 2 O 3 filler improves the ionic conductivity of PVC- Al 2 O 3 -LiCIO 4 solid polymer electrolyte. (author)

  15. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    Science.gov (United States)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  16. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    Science.gov (United States)

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  17. Effect of MgO on compositions of the system CaO-Al2O3-Fe2O3. Solubility

    Directory of Open Access Journals (Sweden)

    Palomo, Ángel

    1986-12-01

    Full Text Available Five different compositions belonging to the equilibrium system CaO-Al2O3-Fe2O3 were dopep with a fixed quantity of MgO (6,5% wt. The compositions, which lie in different primary fields of crystallization and in different triangles of compatibility, were submitted to several thermal treatments. Each composition, which had previously been melted, originates in its solidification the aluminates and ferrites which are usual in the interstitial phase of clinker Portland, although they are in different microstructural arrangements. The effect of MgO on the generated microstructures has been shown. Also, the solubility of MgO on the aluminic and ferritic phases has been measured.CCinco composiciones diferentes pertenecientes al sistema de equilibrio CaO-Al2O3-Fe2O3 fueron dopadas con una cantidad fija de MgO (6,5%. Las cinco composiciones, que están situadas sobre diferentes campos primarios de cristalización y/o sobre diferentes triángulos de compatibilidad, fueron sometidas a varios tratamientos térmicos. Cada composición (previamente fundida origina en su solidificación los aluminatos y ferritos habituales en la fase intersticial del clinker portland, aunque ordenados en microestructuras diferentes. Se ha comprobado el efecto del MgO sobre las microestructuras generadas, así como su solubilidad en las fases alumínicas y ferríticas.

  18. Characterization of Al-Ti phases in cycled TiF3-enhanced Na2LiAlH6

    International Nuclear Information System (INIS)

    Nakamura, Y.; Fossdal, A.; Brinks, H.W.; Hauback, B.C.

    2006-01-01

    TiF 3 -enhanced Na 2 LiAlH 6 was investigated after dehydrogenation-hydrogenation cycles by synchrotron X-ray diffraction. There was no sign of Ti after ball-milling with TiF 3 , but two types of Al-Ti phases were observed in the cycled samples. In a sample after measuring five pressure-composition isotherms in the temperature range from 170 to 250 deg. C, a fcc phase with a = 3.987 A was observed. This phase is considered to be Al 3 Ti with the L1 2 structure. Samples after one or four cycles at selected temperatures between 170 and 250 deg. C showed diffraction from another fcc phase with a ∼ 4.03 A. This indicates formation of an Al 1-y Ti y solid-solution phase with y ∼ 0.15 similar to previously reported for cycled NaAlH 4 with Ti additives

  19. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate

    International Nuclear Information System (INIS)

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-01-01

    Highlights: • A route to prepare nano α-Fe 2 O 3 red pigment from waste ferrous sulfate is proposed. • Acidithiobacillus ferrooxidans is introduced for accelerating iron oxidation. • The particle size of synthetic α-Fe 2 O 3 is ranged from 22 nm to 86 nm. • The prepared nano α-Fe 2 O 3 red pigment fulfills ISO 1248-2006. - Abstract: Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe 2 O 3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe 2 O 3 red pigment powders contained 98.24 wt.% of Fe 2 O 3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22 nm to 86 nm and averaged at 45 nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments.

  20. Phase equilibria in the CdMoO4-Gd2(MoO4)3 system

    International Nuclear Information System (INIS)

    Tunik, T.A.; Fedorov, N.F.; Razumovskij, S.N.

    1980-01-01

    The constitutional diagram of the CdMoO 4 -Cd 2 (MoO 4 ) 3 system has been plotted using statistical and dynamic methods as well as a complex of instrumental analysis procedures. Three major phases have been found to occur in the systems, viz.: CdMoO 4 based solid solutions that crystallize in the range from 0 to 25 mol.percent of Cd 2 (MoO 4 ) 3 and pass in transit the two-phase narrow region becoming then solid solutions having a distorted scheelite structure and existing in concentrations from 40 to 65 mol.% of Cd 2 (MoO 4 ) 3 . The entire range, in which the Cd 2 (MoO 4 ) 3 solid solutions can exist, amounts to less than 5 mol.%. Certain crystallochemical constants of the phases that occur in the system have been determined [ru

  1. Nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruo-Ping [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2013-02-01

    We have demonstrated nano-structured Cu(In,Al)Se{sub 2} (CIAS) near-infrared (NIR) photodetectors (PDs). The CIAS NIR PDs were fabricated on ZnO nanowires (NWs)/ZnO/Mo/ITO (indium tin oxide) glass substrate. CIAS film acted as a sensing layer and sparse ZnSe NWs, which were converted from ZnO NWs after selenization process, were embedded in the CIAS film to improve the amplification performance of the NIR PDs. X-ray diffraction patterns show that the CIAS film is a single phased polycrystalline film. Scanning electron microscopy was used to examine the morphology of the CIAS film and the growth of NWs. Two detection schemes, plain Al–CIAS–Al metal–semiconductor–metal structure and vertical structure with CIAS/ZnSe NWs annular p–n junctions, were studied. The nano-structured NIR PDs demonstrate two orders of magnitude for the annular p–n junction and one order of magnitude for the MSM structure in photocurrent amplification. The responsivities of the PDs using both sensing structures have the same cut-off frequency near 790 nm. - Highlights: ► We demonstrate nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors. ► Photodetectors were fabricated on ZnO nanowires/ZnO/Mo/ITO glass substrate. ► Two detection schemes studied: a plain MSM structure and a vertical structure. ► Photocurrent amplification for the vertical structure is two orders of magnitude. ► Photocurrent amplification for the MSM structure is one order of magnitude.

  2. Synthesis of Tetrahydropyran from Tetrahydrofurfuryl Alcohol over Cu–Zno/Al2O3 under a Gaseous-Phase Condition

    Directory of Open Access Journals (Sweden)

    Fengyuan Zhang

    2018-03-01

    Full Text Available Tetrahydropyran (THP represents an O-containing hetero-cyclic compound that can be used as a promising solvent or monomer for polymer synthesis. In this work, Cu–ZnO/Al2O3 catalysts have been prepared by a facile precipitation–extrusion method and used for the synthesis of THP through gaseous-phase hydrogenolysis of tetrahydrofurfuryl alcohol (THFA. The effect of the molar ratio of Cu/Zn/Al, reaction temperature, and hydrogen pressure was investigated. An 89.4% selectivity of THP was achieved at 270 °C and 1.0 MPa H2. Meanwhile, the optimum molar ratio of Cu/Zn/Al was determined to be 4:1:10. The Cu–ZnO/Al2O3 catalyst exhibited high catalytic activity and stability for 205 h on-stream. A possible reaction mechanism involving several consecutive reactions was proposed: THFA was firstly rearranged to 2-hydroxytetrahydropyran (2-HTHP, followed by the dehydration of 2-HTHP to 3,4-2H-dihydropyran (DHP over acid sites; finally, the DHP was hydrogenated to THP. The synergy of acid sites and metal sites of Cu–ZnO/Al2O3 played an important role during the production of THP.

  3. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  4. and α-Fe 2 O 3 nano powders synthesized by emulsion precipitation

    African Journals Online (AJOL)

    Nano crystals of γ-Fe2O3 (maghemite) were synthesized by emulsion precipitation method using kerosene as oil phase, SPAN- 80 (sorbitane monooleate) as the surfactant and sodium hydroxide as the precipitating agent. The characterization of the samples by FTIR (Fourier transform infra-red) and XRD (X-ray diffraction) ...

  5. Crystallization behavior of (1 - x)Li2O.xNa2O.Al2O3.4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Cheng, Chih-Wei; Chang, Kuo-Ming; Hsi, Chi-Shiung

    2010-01-01

    The crystallization behavior of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of β-spodumene. The isothermal crystallization kinetics of β-spodumene from the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of β-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na 2 O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na 2 O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses.

  6. Preparation and encapsulation performance of Al_2O_3-SiO_2-B_2O_3 glass-ceramic for high temperature thermal storage

    International Nuclear Information System (INIS)

    Li, Ruguang; Zhu, Jiaoqun; Zhou, Weibing; Cheng, Xiaomin; Liu, Fengli

    2017-01-01

    Highlights: • Al_2O_3-B_2O_3-SiO_2 has good chemical durability, corrosion resistance and dense structure. • The material rarely used in high temperature thermal storage. • The material was prepared and characterized in the paper. - Abstract: In this paper, Al_2O_3-SiO_2-B_2O_3 glass-ceramic was prepared and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), further, the porosity was detected by Archimedes principle, thermo physical properties were investigated by differential scanning calorimeter (DSC), respectively. The phase composition was detected by XRD, and the morphology was observed by SEM. The results indicated that the thermal conductivities of the Al_2O_3-SiO_2-B_2O_3 glass-ceramic were between 1.3 and 1.5 W·(m·K)"−"1, and the material had good thermal stability in the range of 300–900 °C. The porosity and apparent density were increased with the temperature. The porosity of Al_2O_3-SiO_2-B_2O_3 glass-ceramic in ranging from 1.2 to 9.6%, the apparent density were between 2.12 and 2.67 g·cm"−"3, and heat capacities were between 0.64 and 0.79 kJ/(kg·K). All the results indicated that the Al_2O_3-SiO_2-B_2O_3 glass-ceramic can be applied as encapsulation material in high temperature latent thermal energy storage.

  7. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    Science.gov (United States)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  8. The phase transformation and crystallization kinetics of (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Cheng, Chih-Wei [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming; Chen, Yong-Feng [Department of Electrical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China)

    2010-09-01

    The phase transformation and crystallization kinetics of (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na{sub 2}O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na{sub 2}O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 {+-} 22.2 to 284.0 {+-} 10.8 kJ mol{sup -1} when the Na{sub 2}O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 {+-} 10.8 to 446.0 {+-} 23.2 kJ mol{sup -1} when the Na{sub 2}O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses.

  9. Processing and characterisation of novel metal-reinforced Al{sub 2}O{sub 3}-composites; Herstellung und Charakterisierung neuartiger metallverstaerkter Al{sub 2}O{sub 3}-Verbundwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    Using a new processing route, Al{sub 2}O{sub 3}-based ceramic composites have been prepared, that consist of 3-d networks of the ceramic and different metallic phases. The damage tolerance of these composites could be significantly improved over monolithic Al{sub 2}O{sub 3}: fracture strength and fracture toughness were increased by a factor of 4 up to 1393 MPa and 11.8 MPa {radical}(m), respectively. Similarly, resistance against abrasive wear was successfully improved by a factor of two over monolithic Al{sub 2}O{sub 3}. In combination with the good electrical and thermal conductivity, these superior mechanical properties are of great interest for automotive and biomedical industries. (orig.) [German] Mit einem neu entwickelten Verfahren werden keramische Al{sub 2}O{sub 3}-Verbundwerkstoffe hergestellt, die sich durch eine dreidimensionale Vernetzung der (inter)metallischen und der keramischen Phase auszeichnen. Die Schadenstoleranz derartiger Verbundwerkstoffe konnte im Vergleich zu monolithischer Al{sub 2}O{sub 3}-Keramik deutlich gesteigert werden: Die Bruchfestigkeit und die Bruchzaehigkeit wurden jeweils um einen Faktor 4 auf 1393 MPa bzw. 11,8 MPa {radical}(m) erhoeht, die Abriebfestigkeit um einen Faktor 2 verbessert. In Kombination mit der elektrischen und thermischen Leitfaehigkeit sind diese aussergewoehnlichen mechanischen Eigenschaften in Automobilbau und in der Medizintechnik von grossem Interesse. (orig.)

  10. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    Science.gov (United States)

    Seteni, Bonani; Rapulenyane, Nomasonto; Ngila, Jane Catherine; Mpelane, Siyasanga; Luo, Hongze

    2017-06-01

    Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 and Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 are characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The scanning electron microscopy shows the agglomeration of the materials and their nanoparticle size ∼100 nm. The transmission electron microscopy confirms that LiFePO4 forms a rough mat-like surface and Al2O3 remain as islandic particles on the surface of the Li1.2Mn0.54Ni0.13Co0.13O2 material. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with LiFePO4 and Li1.2Mn0.54Ni0.13Co0.13O2 coated with Al2O3 exhibits improved electrochemical performance. The initial discharge capacity is enhanced to 267 mAhg-1 after the LiFePO4 coating and 285 mAhg-1 after the Al2O3 coating compared to the as-prepared Li1.2Mn0.54Ni0.13Co0.13O2 material that has an initial discharge capacity of 243 mAhg-1. Galvanostatic charge-discharge tests at C/10 display longer activation of Li2MnO3 phase and higher capacity retention of 88% after 20 cycles for Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3 of 80% after 20 cycles and LMNC of 80% after 20 cycles. Meanwhile Li1.2Mn0.54Ni0.13Co0.13O2-LiFePO4 also shows higher rate capability compared to Li1.2Mn0.54Ni0.13Co0.13O2-Al2O3.

  11. Preparation mechanism of (Bi{sub 2}O{sub 3}){sub 0.75}(Dy{sub 2}O{sub 3}){sub 0.25} nano-crystalline solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong [Nano-science and Nano-technology Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); UCCS: Unite de Catalyse et de Chimie du Solide - UMR CNRS 8181, ENSCL, Batiment C7, BP 90108, 59652 Villeneuve d' Ascq Cedex (France); Zhen Qiang, E-mail: zhenqiang@263.ne [Nano-science and Nano-technology Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Drache, Michel; Rubbens, Annick; Vannier, Rose-Noelle [UCCS: Unite de Catalyse et de Chimie du Solide - UMR CNRS 8181, ENSCL, Batiment C7, BP 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2010-04-02

    (Bi{sub 2}O{sub 3}){sub 0.75}(Dy{sub 2}O{sub 3}){sub 0.25} nanopowder was prepared by reverse chemical titration co-precipitation method. The reaction mechanism during the precipitation process was discussed by thermodynamic analysis. Thermal decomposition behavior of the precursor was investigated using X-ray diffractometry and TG-MS analysis. The precursor was calcined at 500 {sup o}C for 3 h to obtain (Bi{sub 2}O{sub 3}){sub 0.75}(Dy{sub 2}O{sub 3}){sub 0.25} nanopowder. Using the nanopowder, pellets with relative density higher than 94% were obtained at 700 {sup o}C for 2 h by pressureless sintering, and the grains remained at the nano-scale with size of 72 nm.

  12. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgOAl2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgOAl2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  13. Effect of titanium and calcium oxide additions on Zr2O2 polymorphism during Al2O3+Zr2O2 mixture fusion

    International Nuclear Information System (INIS)

    Gladkov, V.E.; Zhekhanova, N.B.; Fotiev, A.A.; Viktorov, V.V.; Ivashinnikov, V.T.; Zubov, A.S.

    1985-01-01

    The effect of titanium and calcium containing additions introduced into the Al 2 O 3 +ZrO 2 melt on the phase composition and temperature ranges of ZrO 2 polymorphous transformation in the material is investigated. It is shown that introducing sponge titanium into the 70Al 2 O 3 +30ZrO 2 prepared composition melt (mass. %) with its subsequent intensive cooling one can conserve upto room temperatures 50-70% of ZrO 2 metastable tetragonal modification and therefore reduce the volume changes causing metal cracking. Calcium oxide doping stabilizes the ZrO 2 cubic modification and reduces α-Al 2 O 3 content due to formation of aluminates

  14. Nano-ilmenite FeTiO3 : synthesis and characterization

    OpenAIRE

    Raghavender, A. T.; Hoa Hong, Nguyen; Lee, Kyu Joon; Jung, Myung-Hwa; Skoko, Z.; Vasilevskiy, Mikhail; Cerqueira, M. F.; Samantilleke, A. P.

    2013-01-01

    In general, ilmenite FeTiO3 is synthesized by solid-state reaction at very high pressure and high temperature. Synthesis of FeTiO3 is not an easy task as the Fe2+ ions are not stable. Therefore, it is really challenging to prepare this material. In this work nano-ilmenite FeTiO3 was synthesized by the sol-gel method. Structural, optical and magnetic characterizations were performed. The bandgap of FeTiO3 was determined to be 2.8 eV showing FeTiO3 as suitable wide bandgap material for technolo...

  15. Spectrum designation and effect of Al substitution on the luminescence of Cr{sup 3+} doped ZnGa{sub 2}O{sub 4} nano-sized phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.c [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen Ziyu; Wang Tianmin [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zheng Shukai [College of Electronic and Information Engineering, Hebei University, Baoding 071200 (China)

    2010-10-15

    Low-temperature photoluminescent spectra of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr{sup 3+} ions in different sites including ideal octahedral, Zn-interstitial, Ga{sub ZN}{sup 4}-Zn{sub Ga}{sup 6} sites and Ga{sub 2}O{sub 3} impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al{sup 3+} is substituted in Ga{sup 3+} sites to form Zn(Ga{sub 1-y}Al{sub y}){sub 2}O{sub 4}:Cr{sub 0.01}{sup 3+} (0{<=}y{<=}0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al{sup 3+} and Ga{sup 3+}.

  16. Single step synthesis of GdAlO3 powder

    International Nuclear Information System (INIS)

    Sinha, Amit; Nair, S.R.; Sinha, P.K.

    2011-01-01

    Research highlights: → First report on direct formation of GdAlO 3 powder using a novel combustion process. → Study of combustion characteristics of Gd(NO 3 ) 3 and Al(NO 3 ) 3 towards three fuels. → Preparation of highly sinterable GdAlO 3 powders through fuel-mixture approach. → Significant reduction in energy consumption for production of GdAlO 3 sintered body. - Abstract: A novel method for preparation of nano-crystalline gadolinium aluminate (GdAlO 3 ) powder, based on combustion synthesis, is reported. It was observed that aluminium nitrate and gadolinium nitrate exhibit different combustion characteristics with respect to urea, glycine and β-alanine. While urea was proven to be a suitable fuel for direct formation of crystalline α-Al 2 O 3 from its nitrate, glycine and β-alanine are suitable fuels for gadolinium nitrate for preparation of its oxide after combustion reaction. Based on the observed chemical characteristics of gadolinium and aluminium nitrates with respect to above mentioned fuels for the combustion reaction, the fuel mixture composition could be predicted that could lead to phase pure perovskite GdAlO 3 directly after the combustion reaction without any subsequent calcination step. The use of single fuel, on the other hand, leads to formation of amorphous precursor powders that call for subsequent calcination for the formation of crystalline GdAlO 3 . The powders produced directly after combustion reactions using fuel mixtures were found to be highly sinterable. The sintering of the powders at 1550 o C for 4 h resulted in GdAlO 3 with sintered density of more than 95%. T.D.

  17. Crystal structure and magnetic properties of the solid-solution phase Ca3Co2-v Sc v O6

    International Nuclear Information System (INIS)

    Hervoches, Charles H.; Fredenborg, Vivian Miksch; Kjekshus, Arne; Fjellvag, Helmer; Hauback, Bjorn C.

    2007-01-01

    The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca 3 Co 2 O 6 form chains with alternating, face-sharing polyhedra of Co2O 6 trigonal prisms and Co1O 6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 (more specifically Ca 3 Co1Co2 1- v Sc v O 6 ) extends up to v∼0.55. The crystal structure belongs to space group R3-barc with lattice parameters (in hexagonal setting): 9.0846(3)≤a≤9.1300(2) A and 10.3885(4)≤c≤10.4677(4) A. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice. - Graphical abstract: The quasi-one-dimensional Ca 3 Co 2 O 6 phase forms a substitutional solid-solution system with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 extends up to v∼0.55. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice

  18. Characteristics of NaNO3-Promoted CdO as a Midtemperature CO2 Absorbent.

    Science.gov (United States)

    Kim, Kang-Yeong; Kwak, Jin-Su; An, Young-In; Oh, Kyung-Ryul; Kwon, Young-Uk

    2017-06-28

    In this study, we explored the reaction system CdO(s) + CO 2 (g) ⇄ CdCO 3 (s) as a model system for CO 2 capture agent in the intermediate temperature range of 300-400 °C. While pure CdO does not react with CO 2 at all up to 500 °C, CdO mixed with an appropriate amount of NaNO 3 (optimal molar ratio NaNO 3 /CdO = 0.14) greatly enhances the conversion of CdO into CdCO 3 up to ∼80% (5.68 mmol/g). These NaNO 3 -promoted CdO absorbents can undergo many cycles of absorption and desorption by temperature swing between 300 and 370 °C under a 100% CO 2 condition. Details of how NaNO 3 promotes the CO 2 absorption of CdO have been delineated through various techniques using thermogravimetry, coupled with X-ray diffraction and electron microscopy. On the basis of the observed data, we propose a mechanism of CO 2 absorption and desorption of NaNO 3 -promoted CdO. The absorption proceeds through a sequence of events of CO 2 adsorption on the CdO surface covered by NaNO 3 , dissolution of so-formed CdCO 3 , and precipitation of CdCO 3 particles in the NaNO 3 medium. The desorption occurs through the decomposition of CdCO 3 in the dissolved state in the NaNO 3 medium where CdO nanoparticles are formed dispersed in the NaNO 3 medium. The CdO nanoparticles are aggregated into micrometer-large particles with smooth surfaces and regular shapes.

  19. Carbon doped lanthanum aluminate (LaAlO3:C) UV thermoluminescent properties synthesized by solid state reaction with three different mixing methodologies

    International Nuclear Information System (INIS)

    Alves, N.

    2017-01-01

    In this work we discuss the thermoluminescent (TL) response for LaAlO 3 :C crystals grown by using three different combinations of Al 2 O 3 , La 2 O 3 and carbon atoms during the synthesis process. Recently, LaAlO 3 single crystals, co-doped with Ce 3+ and Dy 3+ rare earth trivalent ions and grown under hydrothermal conditions, have been reported to show high thermoluminescent response (TL) when exposed to low levels of ultraviolet radiation (UVR). However, undoped LaAlO 3 synthesized by solid state reaction method from the 1:1 mixture of aluminum and lanthanum oxide under reducing atmosphere revealed to have still higher thermoluminescent sensitivity to UV photon fields than the co-doped with Ce 3+ and Dy 3+ . It is well known that carbon doped aluminum oxide monocrystals have excellent TL and photoluminescent response properties for X-rays, UV and gamma radiation fields. Thus, we conducted three different syntheses of LaAlO 3 by the solid state reaction method, doping the mixture with carbon. The lanthanum aluminate polycrystals were synthesized from the 1:1 mixture of aluminum and lanthanum oxide, adding 0.1wt.% carbon and annealed at 1700°C for two hours in hydrogen atmosphere. The X-ray diffraction analysis revealed the formation of rhombohedral LaAlO 3 crystallographic phase, however a small percentage (15%) of Al 2 O 3 has been also identified. The UV-Vis absorbance spectra were obtained and F and F + - center were ascribed. The UV irradiations were carried out using a commercial 8W UV lamp. Thermoluminescence measurements were performed at a Harshaw 4500 TL reader. All compositions investigated have shown high TL sensitivity to UVR. (author)

  20. Nano-ZnO Particles’ Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy

    Directory of Open Access Journals (Sweden)

    Sravya Tekumalla

    2016-11-01

    Full Text Available Magnesium based nanocomposites, due to their excellent dimensional stability and mechanical integrity, have a lot of potential to replace the existing commercial Al alloys and steels used in aerospace and automotive applications. Mg-Al alloys are commercially used in the form of AZ (magnesium-aluminum-zinc and AM (magnesium-aluminum-manganese series in automobile components. However, the Mg17Al12 phase in Mg-Al alloys is a low melting phase which results in a poor creep and high temperature performance of the alloys. Rare earth additions modify the phase and hence improve the properties of the materials. In this paper, Ce and nano ZnO particles were added to Mg-Al alloys to attain a favorable effect on their properties. The developed materials exhibited promising properties in terms of thermal expansion coefficient (CTE, hardness, and tensile strength. Further, the ZnO addition refined the microstructure and helped in obtaining a uniform distribution, however without grain size refinement. The increased addition of ZnO and the improvement in the distribution led to an enhancement in the properties, rendering the materials suitable for a wide spectrum of engineering applications.

  1. Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James L.

    2018-03-01

    High temperature oxidation of alumina-forming MAX phases, Ti2AlC and Cr2AlC, were examined under turbine engine environments and coating configurations. Thermogravimetric furnace tests of Ti2AlC showed a rapid initial transient due to non-protective TiO2 growth. Subsequent well-behaved cubic kinetics for alumina scale growth were shown from 1273 K to 1673 K (1000 °C to 1400 °C). These possessed an activation energy of 335 kJ/mol, consistent with estimates of grain boundary diffusivity of oxygen ( 375 kJ/mol). The durability of Ti2AlC under combustion conditions was demonstrated by high pressure burner rig testing at 1373 K to 1573 K (1100 °C to 1300 °C). Here good stability and cubic kinetics also applied, but produced lower weight gains due to volatile TiO(OH)2 formation in water vapor combustion gas. Excellent thermal stability was also shown for yttria-stabilized zirconia thermal barrier coatings deposited on Ti2AlC substrates in 2500-hour furnace tests at 1373 K to 1573 K (1100 °C to 1300 °C). These sustained a record 35 µm of scale as compared to 7 μm observed at failure for typical superalloy systems. In contrast, scale and TBC spallation became prevalent on Cr2AlC substrates above 1423 K (1150 °C). Cr2AlC diffusion couples with superalloys exhibited good long-term mechanical/oxidative stability at 1073 K (800 °C), as would be needed for corrosion-resistant coatings. However, diffusion zones containing a NiAl-Cr7C3 matrix with MC and M3B2 particulates were commonly formed and became extensive at 1423 K (1150 °C).

  2. Ethanol Sensor of CdO/Al2O3/CeO2 Obtained from Ce-DOPED Layered Double Hydroxides with High Response and Selectivity

    Science.gov (United States)

    Xu, Dongmei; Guan, Meiyu; Xu, Qinghong; Guo, Ying; Wang, Yao

    2013-04-01

    In this paper, Ce-doped CdAl layered double hydroxide (LDH) was first synthesized and the derivative CdO/Al2O3/CeO2 composite oxide was prepared by calcining Ce-doped CdAl LDH. The structure, morphology and chemical state of the Ce doped CdAl LDH and CdO/Al2O3/CeO2 were also investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), solid state nuclear magnetic resonance (SSNMR), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing properties of CdO/Al2O3/CeO2 to ethanol were further studied and compared with CdO/Al2O3 prepared from CdAl LDH, CeO2 powder as well as the calcined Ce salt. It turns out that CdO/Al2O3/CeO2 sensor shows best performance in ethanol response. Besides, CdO/Al2O3/CeO2 possesses short response/recovery time (12/72 s) as well as remarkable selectivity in ethanol sensing, which means composite oxides prepared from LDH are very promising in gas sensing application.

  3. Effects of O in a binary-phase TiAl-Ti3Al alloy: from site occupancy to interfacial energetics

    International Nuclear Information System (INIS)

    Wei Ye; Xu Huibin; Zhou Hongbo; Zhang Ying; Lu Guanghong

    2011-01-01

    We have investigated site occupancy and interfacial energetics of a TiAl-Ti 3 Al binary-phase system with O using a first-principles method. Oxygen is shown to energetically occupy the Ti-rich octahedral interstitial site, because O prefers to bond with Ti rather than Al. The occupancy tendency of O in TiAl alloy from high to low is α 2 -Ti 3 Al to the γ-α 2 interface and γ-TiAl. We demonstrate that O can largely affect the mechanical properties of the TiAl-Ti 3 Al system. Oxygen at the TiAl-Ti 3 Al interface reduces both the cleavage energy and the interface energy, and thus weakens the interface strength but strongly stabilizes the TiAl/Ti 3 Al interface with the O 2 molecule as a reference. Consequently, the mechanical property variation of TiAl alloy due to the presence of O not only depends on the number of TiAl/Ti 3 Al interfaces but also is related to the O concentration in the alloy.

  4. Wear protection in cutting tool applications by PACVD (Ti,Al)N and Al2O3 coatings

    International Nuclear Information System (INIS)

    Kathrein, M.; Heiss, M.; Rofner, R.; Schleinkofer, U.; Schintlmeister, W.; Schatte, J.; Mitterer, C.

    2001-01-01

    Various (Ti,Al)N-, Al 2 O 3 -, and (Ti,Al)N/Al 2 O 3 multilayer coatings were deposited onto cemented carbide cutting tool inserts by a plasma assisted chemical vapor deposition (PACVD) technique. Al 2 O 3 coatings were deposited using the gaseous mixture AlCl 3 , Ar, H 2 , and O 2 . (Ti,Al)N intermediate layers were deposited in the same device using the process mentioned and the gases AICl 3 , Ar, H 2 , TiCl 4 and N 2 . The unique properties of (Ti,Al)N/Al 2 O 3 multilayer coatings result in superior wear protection for cutting inserts applied in severe multifunction cutting processes. The influence of different deposition temperatures an structure and properties of the coatings like crystallographic phases, chemical composition, mechanical and technological properties is shown. PACVD (Ti,Al)N/Al 2 O 3 coated cutting inserts with fine grained crystalline α/κ-Al 2 O 3 offer performance advantages which are superior with respect to coatings deposited by chemical vapor deposition (CVD) due to the low deposition temperature applied. (author)

  5. Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method

    International Nuclear Information System (INIS)

    Jbara, Ahmed S.; Othaman, Zulkafli; Ati, Ali A.; Saeed, M.A.

    2017-01-01

    Co-precipitation technique has been used to synthesize gamma-Al 2 O 3 (γ-Al 2 O 3 ) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m 2 /g. Morphology analysis indicates that γ-Al 2 O 3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al 2 O 3 may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al 2 O 3 nanopowders. • Pure gamma- Al 2 O 3 phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  6. Electrical transport of (1-x)La0.7Ca0.3MnO3+xAl2O3 composites

    International Nuclear Information System (INIS)

    Phong, P.T.; Khiem, N.V.; Dai, N.V.; Manh, D.H.; Hong, L.V.; Phuc, N.X.

    2009-01-01

    We report the resistivity (ρ)-temperature (T) patterns in (1-x)La 0,7 Ca 0,3 MnO 3 +xAl 2 O 3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al 2 O 3 addition has increased the resistivity of these composites. The Curie temperature (T C ) is almost independent on the Al 2 O 3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (T MI ) decreases with increasing Al 2 O 3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρ-T) from 50 to 300 K and find that the activation barrier increases as Al 2 O 3 content increases.

  7. Photocatalytic performance of nano-photocatalyst from TiO{sub 2} and Fe{sub 2}O{sub 3} by mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Tanmay K., E-mail: tanmay_ghorai@yahoo.co.in [Department of Chemistry, West Bengal State University, Barasat, North 24 Pgs, Kolkata 700126 (India); Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chakraborty, Mukut [Department of Chemistry, West Bengal State University, Barasat, North 24 Pgs, Kolkata 700126 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2011-08-11

    Graphical abstract: Nano-particles of homogeneous solution between TiO{sub 2} and Fe{sub 2}O{sub 3} (up to 5 mol%) have been prepared by mechanochemical milling. The results show that the alloy of TiO{sub 2} with 5 mol% of Fe{sub 2}O{sub 3} (YFT1) exhibit photocatalytic activity 3-5 times higher than that of P25 TiO{sub 2} for oxidation of various dyes (RB, MO, TB and BG) under visible light irradiation. The average particle size and crystallite size of YFT1 were found to be 30 {+-} 5 nm and 12 nm measured from TEM and XRD. Optical adsorption edge is found to be 2.26 eV. Tentative schematic diagram of reaction mechanism of YFT/RFT photocatalysts under visible light irradiation. Highlights: > Synthesis of nano-sized homogeneous solid solution between Fe{sub 2}O{sub 3} and TiO{sub 2} with high photocatalytic activity for oxidative degradation of different dyes was successfully obtained through mechanochemical synthesis. XRD data shows the formation of solid solution having anatase structure with no free Fe{sub 2}O{sub 3} up to 5 mol% of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3}/TiO{sub 2} catalyst have crystallite size about 12-13 nm measured from XRD and particle size about 30 {+-} 5 nm measured from TEM. FT-IR of all Fe{sub 2}O{sub 3}/TiO{sub 2} prepared catalysts is similar to pure TiO{sub 2}. The maximum solubility of Fe{sub 2}O{sub 3} in TiO{sub 2} is 5 mol% of Fe{sub 2}O{sub 3} irrespective of source and this composition has highest photocatalytic activity that is 3-5 times higher than P25 TiO{sub 2} for the oxidation of different dyes. We also observed that the rate of degradation of Rhodamine B is faster among all the four dyes under prepared catalyst and visible light. - Abstract: Nano-particles of homogeneous solid solution between TiO{sub 2} and Fe{sub 2}O{sub 3} (up to 10 mol%) have been prepared by mechanochemical milling of TiO{sub 2} and yellow Fe{sub 2}O{sub 3}/red Fe{sub 2}O{sub 3}/precipitated Fe (OH){sub 3} using a planetary ball mill. Such novel solid

  8. Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu–Cr–Zr alloy electrodes

    Directory of Open Access Journals (Sweden)

    Ping Luo

    2015-03-01

    Full Text Available To improve electrode life during the resistance spot welding of galvanized steel plates, an Al2O3–TiB2 composite coating was synthesized on the surfaces of spot-welding electrodes through an electrospark deposition process. The microstructure, elemental composition, phase structure, and mechanical properties of the coating were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and microhardness testing. It was found that extensive cracking occurred in the monolithic Al2O3–TiB2 coating and at the coating–electrode interface. When the Al2O3–TiB2 coating was deposited on electrodes precoated with Ni, the number of defects decreased significantly. Further, delamination did not occur, and fewer cracks were formed. The average hardness of the multilayered Al2O3–TiB2/Ni coating was approximately 2200 HV and higher than that of the monolithic Al2O3–TiB2 coating (1100 HV.

  9. Glass-ceramic enamels derived from the Li2O-Na2O-Al2O3-TiO2-SiO2 system

    Directory of Open Access Journals (Sweden)

    SNEZANA R. GRUJIC

    2002-02-01

    Full Text Available The results of research on the conditions for obtaining model glass-ceramic enamels, derived from the basic Li2O-Na2O-Al2O3-TiO2-SiO2 system, by varying the initial composition and thermal treatment conditions, are presented in this paper. Segregation of the crystal phases in the glassy-matrix was carried out during subsequent thermal treatment. The formation of different crystal phases was evidenced through the results of differential-thermal analysis and X-ray powder diffraction analysis.

  10. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

    Science.gov (United States)

    Chen, Chunmei; Thompson, Aaron

    2018-01-16

    Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

  11. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    Science.gov (United States)

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Properties of slip-cast transformation-toughened β''-Al2O3/ZrO2 composites

    International Nuclear Information System (INIS)

    Green, D.J.; Metcalf, M.G.

    1984-01-01

    The aim of this study was to fabricate β''-Al 2 O 3 /ZrO 2 composites by an alternative procedure than the dry-pressing route chosen by Lange et al. or Viswanathan et al. and to determine the amount of ZrO 2 that can be used to maximize the fracture toughness without significantly affecting the ionic resistivity. The fabrication technique chosen was that of slip casting, as this approach should allow the ZrO 2 phase to be well dispersed without the detrimental presence of agglomerates, which can act as failure origins in ceramics. Slip casting is a well-established ceramic fabrication technique and is versatile in being able to produce rather complex shapes. It has been used previously to fabricate β-Al 2 O 3 . In the present study, it was decided to perform the slip casting using organic media as water reacts with β''-Al 2 O 3 and leaches out the sodium by ion exchange and can significantly influence the ionic conductivity. It was important, therefore, to identify suitable organic media that could be used to control the dispersion of the β''-Al 2 O 3 and ZrO 2 powders and identify the important processing parameters that would give rise to a fine-grained microstructure in which the ZrO 2 was well dispersed and retained in its tetragonal form

  13. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Wang, Jung-Chang; Chen, Teng-Chieh

    2011-01-01

    Highlights: → The Al 2 O 3 nanofluid prepared with a surfactant with an HLB value = 12 had the lowest nanoparticle precipitation rate. → The nanofluids prepared with both a dispersant and surfactant had the lowest thermal conductivity . → The thermal conductivity decreased with storage time for all of the Al 2 O 3 nanofluids. → An increase in operating temperature leads to an increase in the thermal conductivity of Al 2 O 3 nanofluids. -- Abstract: Nanofluids that contain nanoparticles with excellent heat transfer characteristics dispersed in a continuous liquid phase are expected to exhibit superior thermal and fluid characteristics to those in a single liquid phase primarily because of their much greater collision frequency and larger contact surface between solid nanoparticles and the liquid phase. One of the major challenges in the use of nanofluids to dissipate the heat generated in electronic equipment such as LEDs is nanoparticles' precipitation due to their poor suspension in the fluid after periods of storage or operation, thereby leading to deterioration in the nanofluids' heat transfer rate. In this study, ultrasonic vibration was employed to prepare Al 2 O 3 nanofluids with a surfactant, a dispersant, and a combination of the two to evaluate their suspension and heat transfer characteristics. The experimental results show the Al 2 O 3 nanofluid prepared with a non-ionic surfactant with a hydrophile lipophile balance (HLB) value of 12 to have the lowest nanoparticle precipitation rate and, accordingly, the highest degree of emulsification stability. Moreover, the nanofluids prepared with both the dispersant and surfactant had the greatest dynamic viscosity and lowest degree of thermal conductivity. Both the precipitation rate and dynamic viscosity of the nanoparticles increased, and their thermal conductivity coefficient decreased, the longer they remained in the Al 2 O 3 nanofluids. Further, an increase in operating temperature caused an

  14. Microstructural characterization of Al{sub 2}O{sub 3}: Eu with dosimetric purposes; Cracterizacion microestructural de Al{sub 2}O{sub 3}: Eu con fines dosimetricos

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza A, D.; Espinosa P, M.E.; Gonzalez M, P.R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Rubio, E. [BUAP, Facultad de Ingenieria Quimica, 72570 Puebla (Mexico)

    2004-07-01

    In this work a microstructural analysis is presented, through Sem, EDS and XRD, of the alumina with Europium (Al{sub 2}O{sub 3}: Eu) synthesized by the sol gel method. According to those obtained results, a previous thermal treatment to 1000 C to the samples, induces the formation of the {gamma}-alumina phase for the samples that does not contain Eu; however when there is presence of this element, the {theta} alumina phase is obtained. Likewise, it was observed that the particle size is increased with the presence of Eu. When analyzing the thermoluminescent response (TL) induced by the gamma radiation, it was observed that the pure Al{sub 2}O{sub 3} presents an intense TL sign; while the Al{sub 2}O{sub 3}: Eu, the sign suffers a marked decrement. (Author)

  15. Dynamic grain growth in superplastic Y-TZP and Al2O3/YTZ

    International Nuclear Information System (INIS)

    Nieh, T.G.; Tomasello, C.M.; Wadsworth, J.

    1990-01-01

    This paper reports that both static and dynamic grain growth have been studied during superplastic deformation of fine-grained yttria-stabilized tetragonal zirconia (Y-TZP) and alumina reinforced yttria-stabilized tetragonal zirconia (Al 2 O 3 /YTZ). Grain growth was observed in both materials at temperatures above 1350 degrees C. In the case of Y-TZP, both static and dynamic grain growth were found to obey a similar equation of the form: D 3 -D 0 3 = kt where D is the instantaneous grain size, D 0 is the initial grain size, t is the time, and k is a kinetic constant which depends primarily on temperature and grain boundary energy. The activation energies for Y-TZP were approximately 580 and 520 kJ/mol, for static and dynamic grain growth, respectively. In the case of Al 2 O 3 /YTZ, it was found that the grain growth rate for the Al 2 O 3 phase was slower than that for the ZrO 2 phase. The growth rate of the ZrO 2 phase in Al 2 O 3 /YTZ is, however, similar to that in monolithic ZrO 2 i.e., Y-TZP

  16. Sintering behavior and property of bioglass modified HA-Al2O3 composite

    Directory of Open Access Journals (Sweden)

    Wang Li-li

    2012-01-01

    Full Text Available The bioglass modified HA-Al2O3 composites were successfully fabricated by mixing HA, synthesized by wet chemical method between precursor materials H3PO4 and Ca(OH2, with 25wt% Al2O3 and different content of bioglass (5%, 25%, 45%, 65wt% respectively, with a mole fraction of 53.9%SiO2, 22.6%Na2O, 21.8%CaO, and 1.7wt%P2O5, sintered in air at various temperatures (750-950°C for 2h. when the content of bioglass is below 45wt% in the composite, HA decomposes completely and transforms to β-TCP. The main phase in this case are β-TCP, Al2O3 and Ca3(AlO32.When the content of bioglass is above 45wt% in the composite, the decomposition of HA to β-TCP is suppressed and the main phases in this case are Al2O3 and HA, DCP□CaHPO4□ and β-TCP, which almost have the same chemical composition, forming ternary-glass phase, and have better bioactive than pure HA. It can also be found that at the certain addition of bioglass, the higher sintered temperature, the bigger volume density and flexural strength of the composite are, but when the sintered temperature reaches 950°C, they decrease. This modified HA-Al2O3 composites by calcium silicate glass have a much lower sintering temperature and decrease the production cost much.

  17. Fracto- mechanoluminescence and thermoluminescence properties of orange-red emitting Eu3+ doped Ca2Al2SiO7 phosphors

    International Nuclear Information System (INIS)

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D.P.; Sao, Sanjay K.; Khare, Ayush

    2017-01-01

    The suitability of nano-structured Ca 2 Al 2 SiO 7 :Eu 3+ phosphors for thermoluminescence and mechanoluminescence dosimeter were investigated. Europium doped di-calcium di-aluminum silicate phosphor was synthesised by the combustion assisted method and annealed at 1100 °C for 4 h in reducing and oxidizing environments. The prepared Ca 2 Al 2 SiO 7 :Eu 3+ phosphor was characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDX), photoluminescence (PL) and decay characteristics. The phase structure of sintered phosphor has akermanite type which belongs to the tetragonal crystallography; this structure is a member of the melilite group and forms a layered compound. The chemical composition of the sintered Ca 2 Al 2 SiO 7 :Eu 3+ phosphor was confirmed by EDX spectra. Mechanoluminescence (ML) and thermoluminescence (TL) studies revealed that the ML and TL intensity increases with activator concentration. Optimum ML was observed for the sample having 2 mol% of Eu ions. The TL intensity of Ca 2 Al 2 SiO 7 :Eu 3+ was recorded for different exposure times of γ -irradiation and it was observed that TL intensity is maximum for γ dose of 1770 Gy. The PL spectra indicated that Ca 2 Al 2 SiO 7 :Eu 3+ could be excited effectively by near ultraviolet (NUV) light and exhibited bright orange-red emission with excellent colour stability. CIE colour coordinates of the prepared Ca 2 Al 2 SiO 7 :Eu 3+ phosphor was found suitable as orange-red light emitting phosphor with a CIE value of (x=0.6142, y=0.3849) and correlated colour temperature (CCT) is 1250 K. Therefore, it is considered to be a new promising orange-red emitting phosphor for white light emitting diode (LED) application.

  18. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    Science.gov (United States)

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  19. ac Conductivity analysis and dielectric relaxation behaviour of NaNO3-Al2O3 composites

    International Nuclear Information System (INIS)

    Anantha, P.S.; Hariharan, K.

    2005-01-01

    The electrical conductivity of NaNO 3 -xAl 2 O 3 composites has been studied over the wide range of temperature and frequency by means of impedance spectroscopy. The real part of the frequency dependent conductivity exhibits a simple power law feature and the dimensionless frequency exponent n has been determined. The conductivity spectra show scaling behaviour when the conductivity spectra are scaled by σ dc T, where T is temperature in Kelvin. The real part of dielectric permittivity shows saturation at higher frequencies and a strong dispersion at lower frequencies. The imaginary part of permittivity varies inversely with frequency, due to the presence of dc conductivity. The frequency dependent plots of M' and Z' show that the conductivity relaxation is non-Debye in nature. The Kohlrausch-Williams-Watts stretched exponential function was used to describe the modulus spectra and the stretching exponent β is found to be temperature independent. The conductivity relaxation time has been estimated from the modulus spectra. The activation energy responsible for relaxation has been evaluated and it was found to be almost same as that of dc conductivity

  20. Titanium-bearing phases in the Earth's mantle (evidence from experiments in the MgO-SiO2-TiO2 ±Al2O3 system at 10-24 GPa)

    Science.gov (United States)

    Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo

    2017-04-01

    paragenesis of Web+Wad+Rt. With increasing Glk content in the starting composition, Gkl+Wad+Rt association is formed. At a pressure of >17 GPa, an association of two phases with Prv-type structure is stable within a narrow range of starting compositions. Addition of Al to the starting material allows us to simulate the composition of natural bridgmanites, since lower mantle bridgmanites are characterized by significant Al contents. In addition, this study shows that, in contrast to Al, the high contents of Ti can stabilize bridgmanite-like compounds at considerably lower pressure (18 GPa) in comparison with pure MgSiO3 bridgmanite. Small crystals of titanium-rich phases, including Ti-Al-Brd and Web were examined by single-crystal X-ray diffractometer, which allowed us to study the influence of Ti on crystallochemical peculiarities of the mantle phases and on the phase transformations. This study was supported by the Foundation of the President of the Russian Federation for Young Ph.D. (projects no. MK 1277.2017.5 to E.A. Sirotkina) and partly supported by the Russian Foundation for Basic Research (project nos. 17-55-50062 to E.A. Sirotkina and A.V.Bobrov) [1] Ringwood, A.E. The chemical composition and origin of the Earth. In: Advances in Earth science. Hurley, P.M. (Editors), M.I.T. Press, Cambridge. 1966. P. 287-356 [2] Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325-394. [3] Wilson, M. (1989) Igneous Petrogenesis—A global tectonic approach, 466 p. Kluwer, Dordrecht.

  1. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    Science.gov (United States)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  2. Non-stoichiometric mullites from Al2O3-SiO2-ZrO2 amorphous materials by rapid quenching

    International Nuclear Information System (INIS)

    Yoshimura, M.; Hanaue, Y.; Somiya, S.

    1990-01-01

    In order to study the formation of zirconia dispersed mullite ceramics from homogeneous starting materials hot-pressing and heat-treatments have been carried out for rapidly quenched amorphous materials with 0 to 20 wt% ZrO 2 mullite compositions. These amorphous materials crystallized directly to mullite for 0-10 wt% ZrO 2 samples or mullite + t-ZrO 2 for 20 wt% ZrO 2 at about 970 degrees C. An A1 2 O 3 - rich composition (82 wt% A1 2 O 3 ) and also a significant solid solubility of ZrO 2 (>10 wt%) were estimated for these mullites by XRD studies. Amorphous speres of 10 nm which were considered to be SiO 2 - rich phase were produced by a phase separation in mullite grains

  3. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  4. Formation and microstructure of Al{sub 2}O{sub 3}-YAG eutectic ceramics by phase transformation from metastable system to equilibrium system

    Energy Technology Data Exchange (ETDEWEB)

    Nagira, Tomoya; Yasuda, Hideyuki; Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: nagira@ams.eng.osaka-u.ac.jp

    2009-05-01

    Unidirectionally solidified Al{sub 2}O{sub 3}-YAG(Y{sub 3}Al{sub 5}O{sub 12}: yttrium-aluminum-garnet) eutectic ceramic composites have been recognized as encouraging heat-resistance materials because of the superior mechanical properties at high temperatures. In addition to the excellent mechanical properties at high temperatures, some interesting solidification phenomena have been reported in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The Al{sub 2}O{sub 3}-YAG equilibrium eutectic at 2099 K and the Al{sub 2}O{sub 3}-YAP metastable eutectic at 1975 K exist in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The heating the metastable eutectic up to temperatures above the metastable eutectic temperature produced the undercooled melt. Solidification in the equilibrium path accompanied the melting of the metastable eutectic. The solidification process using undercooled melt resulted in the fine and uniform eutectic structure. In this study, the effect of the initial Al{sub 2}O{sub 3}-YAP particles size on the undercooled melt formation was examined. The Al{sub 2}O{sub 3}-YAP particles with diameters more than several {mu}m resulted in the transformation through the undercooled melt. EBSD analysis showed that the domains of Al{sub 2}O{sub 3} grains with same crystallographic orientation were observed and that their domain size depended on the Al{sub 2}O{sub 3}-YAP particles size. On the other hand, for the Al{sub 2}O{sub 3}-YAP particles with a diameter of 500 nm, the each Al{sub 2}O{sub 3} grain with diameter of about 1 {mu}m had the different crystallographic orientations, which suggested that the transformation from metastable eutectic to equilibrium eutectic occurred in the solid state. The increase in the Al{sub 2}O{sub 3}-YAP free surface area suppressed the undercooled melt formation.

  5. The effect of dolomite type and Al2O3 content on the phase composition in aluminous cements containing spinel

    Directory of Open Access Journals (Sweden)

    R. Naghizadeh

    2011-06-01

    Full Text Available In this paper, the effect of dolomite type and Al2O3 content on the phase composition in aluminous cements containing MA spinel is investigated. For this reason, the raw and calcined dolomites are used as raw materials along with calcined alumina in the preparation of the cement. Then, different compositions are prepared at 1350°C using the sintering method and their mineralogical compositions are investigated using the diffractometric technique. Also, their microstructures arre evaluated. The results indicate that raw materials used have great effect on the type and amount of formed phases in cement composition. Independently of the dolomite type used, a mixed phase product consisting of spinel accompanied by CA and CA2 is obtained. The content of CA phase in the cement composition is decreased with increasing of Al2O3 in the raw materials composition. On the other hand, the content of CA2 phase is increased with the addition of Al2O3. In addition, the results show that the formation of C12A7 is favored by use of calcined dolomite.

  6. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles

    International Nuclear Information System (INIS)

    Gao, Zhifang; Zhao, Lei

    2015-01-01

    Highlights: • Nano-fillers were synthesized by a simple urea process. • Ternary filler system with synthesized nano-hybrid fillers was investigated. • Using of nano-hybrid filler for prevent nanofiller aggregation was presented. - Abstract: Nano-AlN particles, AlN/graphene nano-hybrids (AlN/GE) and AlN/carbon nanotubes nano-hybrids (AlN/CNTs) were prepared. The structures, morphologies of synthesized nano-materials were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the morphologies of the synthesized nano-materials were obviously different. In addition, the thermal conductivity of epoxy composites could be effectively improved by adding the produced nano-fillers. Especially, the epoxy composite with AlN/GE nano-hybrids had the highest enhancement in thermal conductivity comparison to the pure epoxy. Moreover, the density of epoxy composites with the synthesized nano-fillers was decreased and the corresponding thermal stability was enhanced

  7. Carbon doped lanthanum aluminate (LaAlO{sub 3}:C) UV thermoluminescent properties synthesized by solid state reaction with three different mixing methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Alves, N., E-mail: neire.radiologia@yahoo.com.br, E-mail: farialo@cdtn.br [Universidade Federal do Estado de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Ferraz, W.B.; Faria, L.O., E-mail: ferrazw@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In this work we discuss the thermoluminescent (TL) response for LaAlO{sub 3}:C crystals grown by using three different combinations of Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and carbon atoms during the synthesis process. Recently, LaAlO{sub 3} single crystals, co-doped with Ce{sup 3+} and Dy{sup 3+} rare earth trivalent ions and grown under hydrothermal conditions, have been reported to show high thermoluminescent response (TL) when exposed to low levels of ultraviolet radiation (UVR). However, undoped LaAlO{sub 3} synthesized by solid state reaction method from the 1:1 mixture of aluminum and lanthanum oxide under reducing atmosphere revealed to have still higher thermoluminescent sensitivity to UV photon fields than the co-doped with Ce{sup 3+} and Dy{sup 3+}. It is well known that carbon doped aluminum oxide monocrystals have excellent TL and photoluminescent response properties for X-rays, UV and gamma radiation fields. Thus, we conducted three different syntheses of LaAlO{sub 3} by the solid state reaction method, doping the mixture with carbon. The lanthanum aluminate polycrystals were synthesized from the 1:1 mixture of aluminum and lanthanum oxide, adding 0.1wt.% carbon and annealed at 1700°C for two hours in hydrogen atmosphere. The X-ray diffraction analysis revealed the formation of rhombohedral LaAlO{sub 3} crystallographic phase, however a small percentage (15%) of Al{sub 2}O{sub 3} has been also identified. The UV-Vis absorbance spectra were obtained and F and F{sup +}- center were ascribed. The UV irradiations were carried out using a commercial 8W UV lamp. Thermoluminescence measurements were performed at a Harshaw 4500 TL reader. All compositions investigated have shown high TL sensitivity to UVR. (author)

  8. Preparation and Application of a Nano α-Fe2O3/SAPO-34 Photocatalyst for Removal of the Anti-cancer Drug Doxorubicin using the Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Bigtan Mohammad Hosein

    2016-01-01

    Full Text Available The synthesis of α-Fe2O3/SAPO-34 nano photocatalyst was the first step of this study. The α-Fe2O3 nanocatalyst was synthesized applying forced hydrolysis and reflux condensation followed by solid-state dispersion that was used for supporting α-Fe2O3 on SAPO-34. The next step was a characterization of the catalyst that was performed using X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier Transform Infrared Spectroscopy (FT-IR. Then, for optimizing the operational parameters in Doxorubicin’s degradation process the effect of Doxorubicin concentration, the amount of α-Fe2O3/SAPO-34 nano photocatalyst, the pH, and H2O2 concentration was studied via the Taguchi method. The AL9 orthogonal array was adjusted and nine crucial runs were conducted. For calculating Signal/Noise ratio, each run was repeated three times. As the results showed, the concentration of Doxorubicin is the most effective parameter. Optimized conditions for removing the anti-cancer drug (based on Signal/Noise ratio were Doxorubicin concentration (20 ppm, H2O2 concentration (3 mol/L, catalyst amount (50 mg/L and pH = 8.

  9. Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling

    Directory of Open Access Journals (Sweden)

    VIŠESLAVA RAJKOVIĆ

    2009-05-01

    Full Text Available The powder Cu– Al2O3 composites were produced by high-energy milling. Various combinations of particle size and mixtures and approximately constant amount of Al2O3 were used as the starting materials. These powders were separately milled in air for up to 20 h in a planetary ball mill. The copper matrix was reinforced by internal oxidation and mechanical alloying. During the milling, internal oxidation of pre-alloyed Cu-2 mass %-Al powder generated 3.7 mass % Al2O3 nano-sized particles finely dispersed in the copper matrix. The effect of different size of the starting copper and Al2O3 powder particles on the lattice parameter, lattice distortion and grain size, as well as on the size, morphology and microstructure of the Cu– Al2O3 composite powder particles was studied.

  10. First results on Fe solid-phase extraction from coastal seawater using anatase TiO{sub 2} nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Quetel, Christophe R.; Petrov, Ivan [Joint Research Centre - European Commission, Institute for Reference Materials and Measurements, Geel (Belgium); Vassileva, Emilia [Joint Research Centre - European Commission, Institute for Reference Materials and Measurements, Geel (Belgium); IAEA-Marine Environment Laboratories, Principality of Monaco (Monaco); Chakarova, Kristina; Hadjiivanov, Konstantin I. [Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry, Sofia (Bulgaria)

    2010-03-15

    This paper describes the application of TiO{sub 2} nano-particles (anatase form) for the solid-phase extraction of iron from coastal seawater samples. We investigated the adsorption processes by infra-red spectroscopy. We compared in batch and on-(mini)column extraction approaches (0.1 and 0.05 g TiO{sub 2} per sample, respectively), combined to external calibration and detection by inductively coupled plasma mass spectrometry at medium mass resolution. Globally, this titania phase was slightly more efficient with seawater than with ultra-pure water, although between pH 2 and pH 7, the Fe retention efficiency progressed more in ultra-pure water than in seawater (6.9 versus 4.8 times improvement). Different reaction schemes are proposed between Fe(III) species and the two main categories of titania sites at pH 2 (adsorption of [FeL{sub x}]{sup (3-x)+} via possibly the mediation of chlorides) and at pH 7 (adsorption of [Fe(OH){sub 2}]{sup +} and precipitation of [Fe(OH){sub 3}]{sup 0}). Under optimised conditions, the inlet system was pre-cleaned by pumping 6% HCl for {proportional_to}2 h, and the column was conditioned by aspirating ultra-pure water (1.7 g min {sup -1}) and 0.05% ammonia (0.6 g min {sup -1}) for 1 min. Then 3 g seawater sample was loaded at the same flow rate while being mixed on-line with 0.05% ammonia at 0.6 g min {sup -1} to adjust the pH to 7. The iron retained on the oxide powder was then eluted with 3 g 6% HCl (<0.002% residual salinity in the separated samples). The overall procedural blank was 220 {+-} 46 (2 s, n = 16) ng Fe kg {sup -1} (the titania was renewed in the column every 20 samples, with 2-min rinsing in between samples with 6% HCl at 1.5 g min {sup -1}). The recovery estimated from the Canadian certified reference material CASS-2 was 69.5 {+-} 7.6% (2 s, n = 4). Typically, the relative combined uncertainty (k = 2) estimated for the measurement of {proportional_to}1 {mu}g Fe kg {sup -1} (0.45 {mu}m filtered and acidified to pH 1

  11. Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3

    Science.gov (United States)

    Mohammad, Mehedi Bin; Brooks, Geoffrey Alan; Rhamdhani, Muhammad Akbar

    2018-02-01

    A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 ( P_{{{O}2 }} = 1.0) compared to inert argon ( P_{{{O}2 }} = 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).

  12. Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3

    Science.gov (United States)

    Mohammad, Mehedi Bin; Brooks, Geoffrey Alan; Rhamdhani, Muhammad Akbar

    2018-06-01

    A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 ( P_{{{O}2 }} = 1.0) compared to inert argon ( P_{{{O}2 }} = 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).

  13. Comparative study of gamma ray shielding and some properties of PbO–SiO2Al2O3 and Bi2O3–SiO2Al2O3 glass systems

    International Nuclear Information System (INIS)

    Singh, K.J.; Kaur, Sandeep; Kaundal, R.S.

    2014-01-01

    Gamma-ray shielding properties have been estimated in terms of mass attenuation coefficient, half value layer and mean free path values, whereas, structural studies have been performed in terms of density, optical band gap, glass transition temperature and longitudinal ultrasonic velocity parameters. X-ray diffraction, UV–visible, DSC and ultrasonic techniques have been used to explore the structural properties of PbO–SiO 2Al 2 O 3 and Bi 2 O 3 –SiO 2Al 2 O 3 glass systems. - Highlights: • Bi 2 O 3 –SiO 2Al 2 O 3 and PbO–SiO 2Al 2 O 3 glasses can replace conventional concretes as gamma-ray shielding materials. • Gamma-ray shielding properties improve with the addition of heavy metals. • Rigidity deteriorates with the increase in the content of heavy metals. • Bi 2 O 3 –SiO 2Al 2 O 3 glass system is better than PbO–SiO 2Al 2 O 3 glass system in terms of gamma-ray shielding as well as structural properties

  14. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  15. The comparative study on microstructure and properties of nano-CeO 2 and Sm 2O 3 particulate reinforced nickel-based composites by laser deposition

    Science.gov (United States)

    Zhang, Shihong; Li, Mingxi; Yoon, Jae Hong; Cho, Tong Yul; Lee, Chan Gyu; He, Yizhu

    2008-09-01

    Micron size Ni-based alloy (NBA) powders are mixed with both 1.5 wt% nano-CeO 2 (n-CeO 2) and nano-Sm 2O 3 (n-Sm 2O 3) powders. These mixtures are coated on low carbon steel by laser deposition. Based on the thermodynamic characteristic of rare earth oxides, evolution of microstructure and variety of phase and properties of the coatings by the addition of n-CeO 2 and Sm 2O 3 powders to NBA have been investigated comparatively. The morphology of dendrite is transformed from bulky without n-CeO 2 and Sm 2O 3 into fine and compact with the addition of 1.5% n-CeO 2 and Sm 2O 3. And lamellar spacing of the eutectic of n-CeO 2/NBA is smaller than that of n-Sm 2O 3/NBA. The microhardness, wear resistance and corrosion resistance of the coatings are greatly improved by n-CeO 2 and Sm 2O 3 powder addition.

  16. The comparative study on microstructure and properties of nano-CeO2 and Sm2O3 particulate reinforced nickel-based composites by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul; Lee, Chan Gyu; He Yizhu

    2008-01-01

    Micron size Ni-based alloy (NBA) powders are mixed with both 1.5 wt% nano-CeO 2 (n-CeO 2 ) and nano-Sm 2 O 3 (n-Sm 2 O 3 ) powders. These mixtures are coated on low carbon steel by laser deposition. Based on the thermodynamic characteristic of rare earth oxides, evolution of microstructure and variety of phase and properties of the coatings by the addition of n-CeO 2 and Sm 2 O 3 powders to NBA have been investigated comparatively. The morphology of dendrite is transformed from bulky without n-CeO 2 and Sm 2 O 3 into fine and compact with the addition of 1.5% n-CeO 2 and Sm 2 O 3 . And lamellar spacing of the eutectic of n-CeO 2 /NBA is smaller than that of n-Sm 2 O 3 /NBA. The microhardness, wear resistance and corrosion resistance of the coatings are greatly improved by n-CeO 2 and Sm 2 O 3 powder addition

  17. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    Science.gov (United States)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  18. Microstructure, Thermal, Mechanical, and Dielectric Properties of BaO-CaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    Science.gov (United States)

    Li, Bo; Bian, Haibo; Fang, Yi

    2017-12-01

    BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) glass-ceramics were prepared via the method of controlled crystallization. The effect of CaO modification on the microstructure, phase evolution, as well as thermal, mechanical, and dielectric properties was investigated. XRD identified that quartz is the major crystal phase; cristobalite and bazirite are the minor crystal phases. Moreover, the increase of CaO could inhibit the phase transformation from quartz to cristobalite, but excessive CaO would increase the porosity of the ceramics. Additionally, with increasing the amount of CaO, the thermal expansion curve tends to be linear, and subsequently the CTE value decreases gradually, which is attributed to the decrease of cristobalite with high CTE and the formation of CaSiO3 with low CTE. The results indicated that a moderate amount of CaO helps attaining excellent mechanical, thermal, and dielectric properties, that is, the specimen with 9 wt% CaO sintered at 950 °C has a high CTE value (11.5 × 10-6/°C), a high flexural strength (165.7 MPa), and good dielectric properties (ɛr = 6.2, tanδ = 1.8 × 10-4, ρ = 4.6 × 1011 Ω•cm).

  19. X-ray photoelectron spectroscopy of nano-multilayered Zr-O/Al-O coatings deposited by cathodic vacuum arc plasma

    International Nuclear Information System (INIS)

    Zhitomirsky, V.N.; Kim, S.K.; Burstein, L.; Boxman, R.L.

    2010-01-01

    Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O 2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO 2 and Al 2 O 3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar + ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15 o , 45 o and 75 o relative to the sample surface. It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO 2 samples, producing ZrO and free Zr along with ZrO 2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al 2 O 3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering. Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.

  20. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  1. Compactibility of Al/Al2O3 Isotropic Composite with Variation of Holding Time Sintering.

    Directory of Open Access Journals (Sweden)

    Eddy S Siradj

    2008-11-01

    Full Text Available The requirement of component with structural ability, light weight and also strength is increasing base on Metal Matrix Composites (MMCs by aluminum as matrix (AMCs. A structural ability is connected to composites compactibility which is depend on quality of interfacial bounding. Powder metallurgy is one of method to produce composite with powder mixing, compacting and sintering. Volume fractions reinforced and sintering time can influence composites compactibility. Volume fractions reinforced variable can produce different reinforcement effect. Beside that, on sintering enables the formation of new phase during sintering time. In this research, Al/Al2O3 isotropic composites are made with aluminum as matrix and alumina (Al2O3 as reinforced. Volume fraction reinforced used 10%. 20%. 30% and 40%. Sintering temperature and compaction pressure are each 600oC and 15 kN. The tests that applied are compression and metallographic test. The result that obtained is optimum compactibility of Al/Al2O3 composite reached at holding time 2 hour. During sintering, new phase can occur that is aluminum oxides (alumina, with unstable properties. The best volume fraction reinforced and holding time sintering are 40% and 2 hours.

  2. Design and Fabrication of Al2O3-(W, TiC-TiN-Mo-Ni Nano-composite Cermet Tool Materials with Graded Structures

    Directory of Open Access Journals (Sweden)

    NI Xiu-ying

    2018-02-01

    Full Text Available Based on the analysis on temperature and stress distributions, as well as fatigue crack propagation in cutting tools, a model for designing compositional distribution and microstructure with graded characteristics was proposed. The addition of ductile phase and the introduction of the graded structure are beneficial to slow down the fatigue crack propagation rate and improve tool life.Al2O3-(W,TiC-TiN-Mo-Ni nano-composite tool material with graded structures was fabricated via two stage hot pressing sintering process, and the microstructure and mechanical properties were studied. The results show that the surface hardness, fracture toughness of inner layer and bending strength of the cermet with sintered gradient structure reach 19.258GPa, 10.015MPa·m1/2 and 1017.475MPa,respectively.The performance requirements to cutting tools were met. The dimple cleavage and torn edge of the binding phase in the fracture surfaces can be beneficial to the improvement of the fracture toughness and bending strength,so the resistance to fatigue crack propagation of tools is improved.

  3. Dynamic compaction of Al2O3-ZrO2 compositions

    International Nuclear Information System (INIS)

    Tunaboylu, B.; McKittrick, J.; Nutt, S.R.

    1994-01-01

    Shock compaction of Al 2 O 3 -ZrO 2 binary and ternary powder compositions resulted in dense, one-piece samples without visible cracks for pressures ≤12.6 GPa. Dynamic pressures were achieved by using a 6.5-m-long two-state gas gun. It is believed that plastic deformation by dislocation slip of α-Al 2 O 3 partially accommodates the tensile stresses created during the release of shock pressures. A fine and narrow particle size distribution is necessary to achieve high bulk densities, but the bulk structural integrity was not strongly related to the distribution. A high-pressure phase of ZrO 2 , which was formed from the monoclinic polymorph, was found at and above shock pressure of 6.3 GPa. No evidence of the orthorhombic cotunnite structure was observed. Compaction of glassy and submicrocrystalline rapidly solidified starting materials showed good structural integrity, although the bulk density was relatively low. It is not clear what the densification/bonding mechanism is in these materials, although it appears not to be plastic deformation. Microstructural analysis showed that fine and uniform microstructures are retained after compaction at appropriate dynamic pressures for all compositions, with some interparticle cohesion present

  4. High mobility In2O3:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    NARCIS (Netherlands)

    Macco, B.; Wu, Y.; Vanhemel, D.; Kessels, W.M.M.

    2014-01-01

    The preparation of high-quality In2O3:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In2O3:H films were deposited by atomic layer deposition at 100 °C, after which they underwent solid phase crystallization by a short anneal at 200 °C. TEM analysis has shown

  5. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  6. Relaxation electron excitations in Al2O3, Y3Al5O12 and YAlO3

    International Nuclear Information System (INIS)

    Kuznetsov, A.I.; Namozov, B.R.; Myurk, V.V.

    1985-01-01

    Excitation spectra of short-wave Al 2 O 3 , YAlO 3 and Y 3 Al 5 O 12 crystal luminescence, cathodoluminescence (including time resolution) and lay-temperature thermoluminescence are investigated. Analysis of experimental data permits to distingnish among these objects pairs of bands of supposedly characteristic luminescences: 7.5 and 3.8 eV (Al 2 O 3 ), 5.9 and 4.2 eV (YAlO 3 ), and 4.9 and 4.2 eV (Y 3 Al 5 O 12 ), where recombination luminescence is characteristic for long-wave ones, at that time exciton-like luminescence - for short-wave ones. A hypothesis about strong difference between states of an autolocalized exciton and ''autolocalized hole + electron'' (responsible for short-wave and long-wave bands of characteristic luminescence) is expressed; the difference is based on their genetic origin from different regions of a valent zone (in particular, long-wave bands - from the subzone of heavy holes of a valent zone ceiling, originating from nonbinding 2p-orbitals of oxygen)

  7. Production and study of mixed Al-Al2O3 thin films for passive electronic circuits

    International Nuclear Information System (INIS)

    Pruniaux, B.

    1966-09-01

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al 2 O 3 cermet resistors (R □ = 10000 Ω □ , CTR 2 O 3 capacitors (C □ = 60000 pf/cm 2 , tg δ [fr

  8. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    Science.gov (United States)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  9. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  10. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars; Influencia de la combinación de nano-SiO2 y nano-Fe2O3 en la resistencia a compresión, resistencia a tracción, porosidad y resistividad eléctrica de morteros de cemento.

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Reyes, E.

    2018-04-01

    The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results. [Spanish] Se estudia la resistencia a compresión y flexión, porosidad y resistividad eléctrica de morteros de cemento con nano-Fe2O3 y nano-SiO2. La sílice amorfa reacciona con el hidróxido de calcio formado en la hidratación del C3S y C2S. La tasa de reacción puzolánica es proporcional a la cantidad de sílice amorfa y la superficie disponible para la reacción, esperando que las partículas finas de nano-Fe2O3 y nano-SiO2 mejoren las propiedades de los morteros. Los resultados experimentales han mostrado que la resistencia a compresión a siete y 28 días de morteros con partículas de nano-Fe2O3 y nano-SiO2 era, en ocasiones, inferior a la obtenida con el mortero de referencia. Se muestra que las nano-partículas no siempre son capaces de mejorar la resistencia de los morteros. Las medidas mediante porosimetría de intrusión de mercurio (PIM) de la distribución de tamaño de poro (DTP), porosidad total y di

  11. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    Science.gov (United States)

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  12. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  13. Phase transitions in complex oxide systems based on Al{sub 2}O{sub 3} and ZrO{sub 2}; Przemiany fazowe w zlozonych ukladach tlenkowych na bazie Al{sub 2}O{sub 3} i ZrO{sub 2} zachodzace w procesach z szybkozmiennym dzialaniem temperatury

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, L [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1999-07-01

    Different compositions of materials based on Al{sub 2}O{sub 3} and ZrO{sub 2} and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al{sub 2}O{sub 3} containing aluminium titanate and coatings based on ZrO{sub 2} stabilised by 7-8% of Y{sub 2}O{sub 3}. (author)

  14. Study of directionally solidified eutectic Al2O3-ZrO2(3%Y2O3 doped with TiO2

    Directory of Open Access Journals (Sweden)

    Peña, J. I.

    2007-06-01

    Full Text Available An study of directionally grown samples of the eutectic composition in the Al2O3-ZrO2 (3 mol% Y2O3 system, with small TiO2 additions (1 wt%, is presented. The microstructural changes induced by this addition are analysed using SEM (EDX techniques. The mechanical changes, when TiO2 is added, are studied by measuring the flexural strength by three point bending. Also, the toughness is determined by Vickers indentation method. When slow growth rates (10 mm/h are used, interpenetratred and homogeneous microstructure is obtained, independently of the TiO2 doping. When growth rates are higher (300 and 1000 mm/h the structure changes and the phases are organized in form of colonies or cells, which have smaller size when TiO2 is present. This size reduction is accompanied with an increase of the toughness.Este trabajo presenta un estudio de muestras crecidas direccionalmente del sistema Al2O3-ZrO2 (3 mol% Y2O3 en su composición eutéctica con pequeñas adiciones de óxido de titanio (1% de TiO2 en peso. Se analizan los cambios microestructurales inducidos por esta adición mediante SEM (EDX y se estudian los cambios en su comportamiento mecánico medido por flexión en tres puntos, así como la tenacidad de fractura mediante indentación Vickers. Con velocidades lentas de solidificación (10 mm/h se obtiene en ambos casos una microestructura homogénea e interpenetrada, mientras que a velocidades mayores, 300 y 1000 mm/h, se forma una estructura en las que las fases se organizan en forma de colonias o células, siendo éstas de menor tamaño en las muestras dopadas. Esta disminución en el tamaño viene acompañada de un aumento de la tenacidad de fractura medida por indentación.

  15. Neutron irradiation damage in Al2O3 and Y2O3

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Bunch, J.M.; Ranken, W.A.

    1975-01-01

    Two ceramics under consideration for use in fusion reactors, Al 2 O 3 and Y 2 O 3 , were irradiated in the EBR-II fission reactor at 650, 875, and 1025 0 K to fluences between 2 and 6 x 10 21 n/cm 2 (E greater than 0.1 MeV). Samples evaluated include sapphire, Lucalox, alumina, Y 2 O 3 , and Y 2 O 3 -10 percent ZrO 2 (Yttralox). All Al 2 O 3 specimens swelled significantly (1 to 3 percent), with most of the growth observed in sapphire along the c-axis at the higher temperatures. Al 2 O 3 samples irradiated at 875 to 1025 0 K contained a high density of small aligned ''pores''. Irradiated Y 2 O 3 -based ceramics exhibited dimensional stability and a defect content consisting primarily of unresolved damage and/or dislocation loops. The behavior of these ceramics under irradiation is discussed, and the relevance of fission neutron damage studies to fusion reactor applications is considered. (auth)

  16. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al

    Science.gov (United States)

    Galazka, Zbigniew; Ganschow, Steffen; Fiedler, Andreas; Bertram, Rainer; Klimm, Detlef; Irmscher, Klaus; Schewski, Robert; Pietsch, Mike; Albrecht, Martin; Bickermann, Matthias

    2018-03-01

    We experimentally evaluated segregation of Cr, Ce and Al in bulk β-Ga2O3 single crystals grown by the Czochralski method, as well as the impact of these dopants on optical properties. The segregation of Cr and Ce and their incorporation into the β-Ga2O3 crystal structure strongly depends on O2 concentration in the growth atmosphere which has a noticeable impact on decomposition of Ga2O3 and Cr2O3, as well as on the charge state of Cr and Ce. Effective segregation coefficients for Cr are in the range of 3.1-1.5 at 7-24 vol% O2, while for Ce they are roughly below 0.01 at 1.5-34 vol% O2. The effective segregation coefficient for Al is 1.1 at 1.5-21 vol% O2. Both dopants Ce and Al have a thermodynamically stabilizing effect on β-Ga2O3 crystal growth by supressing decomposition. While Ce has no impact on the optical transmittance in the ultraviolet and visible regions, in Cr doped crystals we observe three absorption bands due to Cr3+ on octahedral Ga sites, one in the ultraviolet merging with the band edge absorption of β-Ga2O3 and two in the visible spectrum, for which we estimate the absorption cross sections. Al doping also does not induce dopant related absorption bands but clearly shifts the absorption edge as one expects for a solid-solution crystal Ga2(1-x)Al2xO3 still in the monoclinic phase. For the highest doping concentration (Ga1.9Al0.1O3) we estimate an increase of the energy gap by 0.11 eV.

  17. Thermodinamically stable phases in the CaO-SiO2-Al2O3-CaSO4-H2O closed system at 25 ºC. Application to cementitious systems

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2009-06-01

    Full Text Available One of the chief causes of cement and concrete deterioration is the loss of durability prompted by sulphate attack. The existing standards call for long test periods (2- 12 months. Thermodynamic modelling is a particularly appropriate technique for studying systems that only reach equilibrium in the long term. Used in the present study to establish the fields of thermodynamic stability for the phases in the CaO-SiO2-Al2O3-CaSO4-H2O system at 25 ºC. According to the model, gypsum is stable at sulphate ion concentrations of 1.23e-2 mol/kg and over, while ettringite exhibits stability at concentrations ranging from 7.64e-6 to 1.54e-2 mol/kg. Ettringite is compatible with all system phases except SH and gypsum only with ettringite, the C-S-H gels, AH3 and SH. None of the calcium aluminates or silicoaluminates in the system is compatible with gypsum: in its presence, they all decompose to cement deteriorating ettringite. Finally, the model revealed that the maximum sulphate concentration at which C-S-H gel is stable is slightly higher in systems with than without Al2O3.Uno de los principales problemas asociados al deterioro de cementos y hormigones es la pérdida de durabilidad por ataque de sulfatos. La normativa existente requiere largos tiempos de ensayo (2-12 meses. La modelización termodinámica es una técnica particularmente adecuada para el estudio de sistemas que alcanzan el equilibrio en tiempos largos. Aplicando esta metodología se han establecido los campos de estabilidad termodinámica de las fases del sistema CaO-SiO2-Al2O3-CaSO4-H2O a 25 ºC. El yeso es estable a partir de la [SO42-] = 1,23e-2 mol/kg, y la ettringita es estable en un rango de [SO42-] = 7,64e-6 -1,54e-2 mol/kg. La ettringita es compatible con todas las fases del sistema excepto con SH y el yeso sólo con la ettringita, los geles C-S-H, el AH3 y el SH. Ninguno de los aluminatos o silicoaluminatos cálcicos son compatibles con el yeso, en su presencia se descomponen

  18. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Chaichan, Miqdam T.; Kazem, Hussein A.; Sopian, K.

    2017-01-01

    Highlights: • Three types of nanoparticles (Al 2 O 3 , CuO and SiC) were added to water which was used as a base fluid. • The resulted nanofluid was used for cooling an indoor PV/T system. • The used nanofluids improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluids was examined for an extended period and found to be stable. • SiC nanofluid showed better thermal conductivity and stability compared with Al 2 O 3 and CuO nanofluids. - Abstract: The reduction in efficiency of photovoltaic (PV) units due to increases in cell temperature occurs when a small part of the absorbed solar radiation is converted into electricity and the remaining part is lost as heat. Recently, the addition of a range of nanomaterials with high thermal conductivity to the cooling fluid in PV/T systems has been the subject of much research. In this study, three nanomaterials were added to water as a base fluid with several volume fractions to determine the best concentration and nanoparticle for this application. The PV/T system was setup in an indoor laboratory. Knowing which material has a better effect on the PV unit in particular, and the PV/T unit in general, is important for deciding which nanomaterial is more suitable for the system. The results reveal that nanofluid gives higher thermal conductivity with very little increase in the fluid density and viscosity compared with the base fluid. The studied volume fractions were 0.5, 1, 2, 3, and 4% and the selected nanoparticles were Al 2 O 3 , CuO, and SiC. It was found that silicon carbide nanoparticles have the best stability and the highest thermal conductivity compared to the other two nano-substances. Copper oxide nanofluid has higher thermal conductivity than aluminium oxide but lower stability, although it was found here that this material reliably stable compared to in other studies. The nanofluid reduced the indoor PV/T system temperature and enhanced its generated power.

  19. Compressive strain-dependent bending strength property of Al2O3-ZrO2 (1.5 mol% Y2O3) composites performance by HIP

    International Nuclear Information System (INIS)

    Reyes-Rojas, A.; Esparza-Ponce, H.; De la Torre, S.D.; Torres-Moye, E.

    2009-01-01

    Nanometric powders and sintered ceramics of Al 2 O 3 -ZrO 2 (1.5 mol% Y 2 O 3 ) prepared by hot isostatic pressing HIP have been studied. A detailed crystallographic study has been performed through X-ray diffraction, Williamson-Hall method, Rietveld method and high-resolution electron microscopy HREM analysis. The crystallographic structure data, such as domain size, lattice parameters, wt% phase, and micro-strain direction have been obtained using Rietveld refinement and Williamson-Hall methods. The results revealed that the compressive strain (ε) increased from 0.56 to 1.18 (10 -3 ) as the t-ZrO 2 content increased too. The HREM interface study conducted along the [0 0 0 1]Al 2 O 3 ||[0 0 1]ZrO 2 zone axis revealed a micro-strain lattice distortion accumulated at the grain boundary due to the ZrO 2 martensitic phase transformation on cooling, t-ZrO 2 grains coalescence and to the grain growth of α-Al 2 O 3 which cause elongated tetragonal crystals. Micro-strain lattice distortion is adjusted by the shear displacements of the planes (1 1 0) and (11-bar0) along [1-bar10] and [1-bar1-bar0] crystallographic directions, respectively; these planes are arrested by the (101-bar0) alumina plane. In this case, semi-coherent interfaces were observed along the grain boundary. It is verified that the bending strength increased in connection with the strain accumulation and amount of tetragonal structure

  20. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  1. Determinación experimental de la sección isotermal de 1300º C del Sistema CaOAl2O3 – CoO

    Directory of Open Access Journals (Sweden)

    Vásquez Méndez, B. A.

    2011-04-01

    Full Text Available The subsolidus of the system CaO-Al2O3-CoO has been studied. Was established the existence of nine compatibility triangles. It had been found a phase Ca3Al4CoO10, isoestructural to Ca3MgAl4O10. Solid solutions of CaO, CoO and CoAl2O4 were determinated. Color variation on diferent samples was observed as function of the phase diagram region. When Co was substituted for other bivalents cations (Sr, a, n, Ni, Cu, Cd, Sn and Pb, were not found new phases. This study depicts the most outstanding results concerning the alternate materials research line. The importance focused on the stability of the new compound into the matrix of other materials from some technological processes such as the cement one, into which industrial wastes can be incorporated as alternate raw materials and fuels.Se ha estudiado el subsolidus del sistema CaO-Al2O3-CoO estableciendo la existencia de nueve triángulos de compatibilidad en estado sólido. Se ha encontrado una fase de fórmula Ca3CoAl4O10 isoestructural a Ca3MgAl4O10. Se ha establecido la existencia de soluciones sólidas de Co en CaO, de Ca en CoO y en CoAl2O4. Se ha observado la formación de fases con diversos colores en función de la zona del diagrama. Al sustituir Co por otros cationes bivalentes (Sr, Ba, Mn, Ni, Cu, Cd, Sn y Pb no se encontraron nuevas fases. Este estudio presenta los resultados más relevantes en relación con la línea de investigación del uso de materiales alternos. La relevancia se enfoca en mantener la estabilidad de un nuevo compuesto en la matriz de algún proceso tecnológico, como por ejemplo el proceso del cemento, en el cual pueden ser incorporados desechos industriales como materias primas y combustibles alternos.

  2. [Effect of different excitation monitoring wavelengths on emission spectrum of red long afterglow phosphor Sr3Al2O6 : Eu2+, Dy3+].

    Science.gov (United States)

    Cui, Cai-e; Li, Jian; Huang, Ping; Liang, Li-ping; Wu, Yin-lan

    2012-01-01

    The Eu2+ and Dy3+ ion co-doped Sr3Al2O6 phosphor powders with long afterglow were prepared with high temperature solid-state reaction. The phase and the spectra properties of the material were characterized by X-ray diffraction (XRD) and fluorescence spectrophotometer. It was found that the sample is composed of pure Sr3Al2O6 phase. Furthermore, the emission peak of 537 nm under 360 nm excitation and that of 590 nm excited by 468 nm-light were obtained, respectively, and it is more interesting that the emission peaks were at 537 and 590 nm under 394 nm excitation. The effects of different excitation wavelengths on the emission spectrum were explained reasonably by the effect of nephelauxetic effect and crystal field. It revealed that the two types of luminescence with different color were caused by the differences of the center of gravity of the 5d excited state energy level and the split range of 5d energy level.

  3. Doping of low-T{sub g} phosphate glass with Al{sub 2}O{sub 3}, B{sub 2}O{sub 3} and SiO{sub 2}: Part I- effect on glass property and stability

    Energy Technology Data Exchange (ETDEWEB)

    Rajbhandari, P., E-mail: p.rajbhandari@sheffield.ac.uk [UCCS UMR-CNRS 8181, Universite de Lille1, Villeneuve d' Ascq (France); Montagne, L. [UCCS UMR-CNRS 8181, Universite de Lille1, Villeneuve d' Ascq (France); Tricot, G. [UCCS UMR-CNRS 8181, Universite de Lille1, Villeneuve d' Ascq (France); LASIR UMR-CNRS 8516, Universite de Lille1, Villeneuve d' Ascq (France)

    2016-11-01

    A zinc alkali pyrophosphate system 46.6ZnO-20Na{sub 2}O-33.5P{sub 2}O{sub 5} presenting low-T{sub g} (339 °C) and good thermal stability has been doped with (1–4) mol% of Al{sub 2}O{sub 3}, B{sub 2}O{sub 3} and SiO{sub 2} to improve the stability of the glass with a minimal increase in glass transition temperature (T{sub g}). XRD and 1D {sup 31}P solid state NMR were used to monitor the isothermal crystallization process occurring at 130 °C above T{sub g}. If the Al{sub 2}O{sub 3} and B{sub 2}O{sub 3} doping significantly improved thermal stability, this property was marginally affected by SiO{sub 2} doping. Viscosity measurements were performed to observe the crystallization effects induced by the doping. It is noteworthy that the T{sub g} values of all the doped compositions with improved stability presented in this work are below 400 °C. Raman spectroscopy, 1D {sup 31}P, {sup 27}Al, {sup 11}B and {sup 29}Si solid state NMR were carried out to determine the structural modifications and coordination states of the doping elements all along the composition line. - Highlights: • Low-Tg phosphate glasses doped with Al{sub 2}O{sub 3}, B{sub 2}O{sub 3} and SiO{sub 2} have been formulated. • Thermal stability of the glass has been improved significantly. • The structural modification induced by doping elements has been studied by employing solid state NMR technique.

  4. Elasticity of phase-Pi (Al3Si2O7(OH)3) - A hydrous aluminosilicate phase

    Science.gov (United States)

    Peng, Ye; Mookherjee, Mainak; Hermann, Andreas; Bajgain, Suraj; Liu, Songlin; Wunder, Bernd

    2017-08-01

    Phase-Pi (Al3Si2O7(OH)3) is an aluminosilicate hydrous mineral and is likely to be stable in hydrated sedimentary layers of subducting slabs. Phase-Pi is likely to be stable between the depths of 60 and 200 km and is likely to transport water into the Earth's interior. Here, we use first principles simulations based on density functional theory to explore the crystal structure at high-pressure, equation of state, and full elastic stiffness tensor as a function of pressure. We find that the pressure volume results could be described by a finite strain fit with V0 , K0 , and K0‧ being 310.3 Å3, 133 GPa, and 3.6 respectively. At zero pressure, the full elastic stiffness tensor shows significant anisotropy with the diagonal principal components C11 , C22 , and C33 being 235, 292, 266 GPa respectively, the diagonal shear C44 , C55 , and C66 being 86, 92, and 87 GPa respectively, and the off-diagonal stiffness C12 , C13 , C14 ,C15 , C16 , C23 , C24 , C25 , C26 , C34 , C35 , C36 , C45 , C46 , and C56 being 73, 78, 6, -30, 15, 61, 17, 2, 1, -13, -15, 6, 3, 1, and 3 GPa respectively. The zero pressure, shear modulus, G0 and its pressure derivative, G0 ‧ are 90 GPa and 1.9 respectively. Upon compression, hydrogen bonding in phase-Pi shows distinct behavior, with some hydrogen bonds weakening and others strengthening. The latter eventually undergo symmetrization, at pressure greater (>40 GPa) than the thermodynamic stability of phase-Pi. Full elastic constant tensors indicate that phase-Pi is very anisotropic with AVP ∼22.4% and AVS ∼23.7% at 0 GPa. Our results also indicate that the bulk sound velocity of phase-Pi is slower than that of the high-pressure hydrous aluminosilicate phase, topaz-OH.

  5. Al and PEG effect on structural and physicochemical properties of CoFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mostaghni, Fatemeh; Abed, Yasaman, E-mail: mostaghnif@yahoo.com [Payam Noor University (Iran, Islamic Republic of)

    2017-05-15

    In this work, pure and Alumina doped cobalt ferrite nanoparticles CoFe{sub 2-x}Al{sub x}O{sub 4} (for x = 0.44) have been synthesized by the sol gel method. The influence of alumina doping on the morphological and mechanical properties of CoFe{sub 2}O{sub 4} nano-particles were investigated by means of X-ray powder diffraction (XRD) and Rietveld analysis. XRD analysis confirmed that the single phase formation of pure nano particles with the expected cubic inverse spinel structure with Fd3m space group and without any impurity phase. Alumina doping were led to a decrease in the crystallite size, lattice parameter, elastic constants and magnitude of moduli. It is explained on the basis of the replacement of Fe ions with half-filled d-shell (3d{sup 5}) and larger radius by Al{sup 3+} ions with a completely filled shell (2p{sup 6}) and smaller radius. (author)

  6. Effect of the heating rate on the microstructure of in situ Al2O3 particle-reinforced Al matrix composites prepared via displacement reactions in an Al/CuO system

    International Nuclear Information System (INIS)

    Zhao, Ge; Shi, Zhiming; Ta, Na; Ji, Guojun; Zhang, Ruiying

    2015-01-01

    Highlights: • The heating rate has a significant effect on the microstructures of composites. • The microstructure is determined by the diffusion rate of O and Cu in the heating stage. • The diffusion of Cu and O atoms is influenced by the heating rate. • With increasing heating rate, the Al 2 O 3 particle distribution becomes more uniformly. • With increasing heating rate, the form of Al 2 Cu changes from network to block-like. - Abstract: In this study, an in situ Al 2 O 3 particle-reinforced Al(Cu) matrix composite was successfully synthesized using a displacement reaction between Al and CuO powders. The powders were mixed at a weight ratio of 4:1 Al to CuO, cold-pressed and holding time at 900 °C for 1 h using varying heating rates. The effects of the heating rate on the microstructures of the composites were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical microscopy (MO), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results indicate that all of the composites contain Al, Al 2 O 3 particles and Al 2 Cu phases. Although the heating rate does not significantly affect the phase compositions of the composites, it has a significant effect on their microstructures, most likely because it strongly influences the diffusion rates of the Cu and O atoms. As the heating rate is increased, the Al 2 O 3 particles become more dispersed, and they have a more uniform particle size distribution. Meanwhile, the Al 2 Cu structure transforms from the network (Al + Al 2 Cu) eutectic to the block-like Al 2 Cu phase. The ∼2 μm Al 2 O 3 particles and the block-like Al 2 Cu phase are distributed uniformly in the Al matrix when the sample is placed directly into a 900 °C furnace. This sample has a relative higher Rockwell hardness B (HRB) value of 87

  7. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  8. Al2O3 adherence on CoCrAl alloys

    International Nuclear Information System (INIS)

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al 2 O 3 as both the dispersion and protective oxide; and the production of an HfO 2 dispersion while simultaneously aluminizing the alloy. It was found that an Al 2 O 3 dispersion will act to promote the adherence of an external scale of Al 2 O 3 to a degree comparable to previously tested dispersions and an HfO 2 dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization

  9. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  10. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  11. Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress

    Science.gov (United States)

    Götze, Lutz Christoph; Abart, Rainer; Rybacki, Erik; Keller, Lukas M.; Petrishcheva, Elena; Dresen, Georg

    2010-07-01

    We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as D_{MgO} = 1.4 ± 0.2 \\cdot 10^{-15} m2/s and D_{Al_2O_3} = 3.7 ± 0

  12. Development of α - Al_2O_3:C films nanoparticulate for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.; Fontainha, Crissia C.; Ferraz, Wilmar B.; Faria, Luiz O.

    2011-01-01

    Phosphorescent ceramics are widely used in Ionizing radiation sensors. In nuclear applications, alpha-alumina doped with carbon (α-Al_2O_3: C) is most commonly used because of its excellent properties photoluminescent (OSL) and thermoluminescent (TL) in ionizing radiation detections. Another application of OSL and TL materials is the use in digital radiography. Recently, Computerized Radiography (CR) equipment, which use OSL materials, have been replacing the old X-ray devices. In this work we investigated the thermoluminescence of α-Al_2O_3 doped with different percentages of carbon, sintered in reducing atmospheres, in temperatures from 1300 to 1750 ° C. The results indicate that micro alumina doped with 0.5% of carbon and nano-alumina doped with 2% of carbon present TL signal of the order of 30 to 100 times the signal of the TLD-100, the most widely used TL dosimeter in the world. The results indicate that α-Al_2O_3: C nano-particulate has great potential for application in digital thermoluminescent radiography, because of its high TL response to radiation Ionization and the possibility of forming TL digital images with resolution increased by about 1000 times, depending on the size of the nanoparticles

  13. Bacteria-assisted preparation of nano α-Fe{sub 2}O{sub 3} red pigment powders from waste ferrous sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui, E-mail: zhangyongkui@scu.edu.cn

    2016-11-05

    Highlights: • A route to prepare nano α-Fe{sub 2}O{sub 3} red pigment from waste ferrous sulfate is proposed. • Acidithiobacillus ferrooxidans is introduced for accelerating iron oxidation. • The particle size of synthetic α-Fe{sub 2}O{sub 3} is ranged from 22 nm to 86 nm. • The prepared nano α-Fe{sub 2}O{sub 3} red pigment fulfills ISO 1248-2006. - Abstract: Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe{sub 2}O{sub 3} red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe{sub 2}O{sub 3} red pigment powders contained 98.24 wt.% of Fe{sub 2}O{sub 3} were successfully prepared, with a morphology of spheroidal and particle size ranged from 22 nm to 86 nm and averaged at 45 nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments.

  14. Production and study of mixed Al-Al{sub 2}O{sub 3} thin films for passive electronic circuits; Realisation et etude des couches minces mixtes Al-Al{sub 2}O{sub 3} pour circuits electroniques passifs

    Energy Technology Data Exchange (ETDEWEB)

    Pruniaux, B [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al{sub 2}O{sub 3} cermet resistors (R{sub {open_square}} = 10000 {omega}{sub {open_square}}, CTR <{+-} 150 ppm/deg. C) which show oscillations of the resistivity versus the thickness of the layer, in distinction to classical theory. - Al{sub 2}O{sub 3} capacitors (C{sub {open_square}} = 60000 pf/cm{sup 2}, tg {delta} < 0.5 per cent). These thin film components present good electrical behaviour and should find interesting applications in integrated circuits. (author) [French] Une nouvelle technique de depot sous vide, l'evaporation reactive est utilisee pour realiser des circuits passifs en couches minces. En oxydant, en phase vapeur, de l'aluminium a differents degres, on obtient: - des resistances en cermet Al-Al{sub 2}O{sub 3} (R{sub {open_square}} = 10000 {omega}{sub {open_square}}, CTR <{+-} 150 ppm) dont Ia resistivite oscille en fonction de l'epaisseur, contrairement aux previsions de la theorie classique. - Des capacites en Al{sub 2}O{sub 3} (C{sub {open_square}} = 60000 pf/cm{sup 2}, tg {delta} < 0.5 pour cent). Ces elements presentent de bonnes caracteristiques electriques et seraient avantageusement utilises en circuits integres. (auteur)

  15. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  16. Preparation and mass spectrometrical high temperature investigations on compounds of the quasi-ternary system Cs2O-Al2O3-SiO2

    International Nuclear Information System (INIS)

    Odoj, R.; Hilpert, K.; Nuernberg, H.W.

    1977-09-01

    Additions of aluminium oxide and silicen oxide to ceramic fuel for pyrocarbon-coated nuclear fuel paticles counteract a release of fission-cesium by compound formation. The vapourization tests carried out here using samples from the quasi-ternary system cesium-oxide-aluminium-oxide-silicon-oxide by means of high-temperature mass spectroscopy using a Knudsen cell served the optimization of this retention effect. The aim of the apparative changes on the knudsen cell were to shield heat radiation on the temperature measuring borehole through the tungsten wire cathode in order to be able to perform exact temperature measurements even below 1,000 0 C. A new method of preparation was developed to obtain defined cesium aluminium silicates whose composition was determined by Guinier and goniometer pictures as well as by microscopic investigations. According to the latter, 3 ternary compounds are present in the system investigated: CsAlSiO 4 , CsAlSi 2 O 6 and CsAlSi 5 O 12 . Their lattice constants were determined from goniometric measurements; the vapour pressure equection were set up from the measured cesium vapour pressure values over each sample and the enthalpies of the vapourization reactions were found to be 84 kcal for CsAlSiO 4 at 1,400 0 K, 100 kcal for CsAlSi 2 O 6 at 1,550 0 K and 122 kcal for CsAlSi 5 O 12 at 1,650 0 K. The cesium vapour pressures of the glas phases investigated of the system are above the Cs partial pressures of the solid crystalline phases of the same composition. The results of the work explain the causes of the reduction of the Cs release and show that the vapour pressure can be lowered by more than 10 orders of magnitude at reactor relevant temperatures by compound formation. (RB) [de

  17. Solid state compatibility in the ZnO-rich region of ZnO-Bi2O3-Sb2O3 and ZnO-Bi2O3-Sb2O5 systems

    Directory of Open Access Journals (Sweden)

    Jardiel, T.

    2010-04-01

    Full Text Available The obtaining of ZnO-Bi2O3-Sb2O3 (ZBS based varistor thick films with high non-linear properties is constrained by the bismuth loss by vaporization that takes place during the sintering step of these ceramics, a process which is yet more critical in the thick film geometry due to its inherent high are/volume ratio. This volatilization can be controlled to a certain extent by modifying the proportions of the Bi and/or Sb precursors. Obviously this requires a clear knowledge of the different solid state compatibilities in the mentioned ZBS system. In this sense a detailed study of the thermal evolution of the ZnO-Bi2O3-Sb2O3 and ZnO-Bi2O3-Sb2O5 systems in the ZnO-rich region of interest for varistors, is presented in this contribution. A different behaviour is observed when using Sb2O3 or Sb2O5 as starting precursor, which should be attributed to the oxidation process experimented by Sb2O3 compound during the heating. On the other hand the use of high amounts of Bi in the starting formulation leads to the formation of a liquid phase at lower temperatures, which would allow the use of lower sintering temperatures.La obtención de varistors en lámina gruesa basados en ZnO-Bi2O3-Sb2O3 (ZBS y con propiedades altamente no-lineales está limitada por la perdida de bismuto por volatilización durante la sinterización de estos cerámicos, un proceso que es todavía más crítico en la geometría de lámina gruesa debido a su elevada relación área/volumen inherente. Dicha volatilización puede ser no obstante controlada hasta cierta extensión modificando las proporciones de los precursores de Bi y/o Sb. Obviamente ello conlleva un amplio conocimiento de las diferentes compatibilidades en estado sólido en el mencionado sistema ZBS. En este sentido, en la presente contribución se presenta un estudio detallado de la evolución térmica de los sistemas ZnO-Bi2O3-Sb2O3 y ZnO-Bi2O3-Sb2O5 en la región rica en ZnO de interés para varistores. Como

  18. Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties.

    Science.gov (United States)

    Li, Guogang; Peng, Chong; Zhang, Cuimiao; Xu, Zhenhe; Shang, Mengmeng; Yang, Dongmei; Kang, Xiaojiao; Wang, Wenxin; Li, Chunxia; Cheng, Ziyong; Lin, Jun

    2010-11-15

    LaCO(3)OH nano/microcrystals with a variety of morphologies/sizes including nanoflakes, microflowers, nano/microrhombuses, two-double microhexagrams sandwichlike microspindles, and peach-nucleus-shaped microcrystals have been synthesized via a facile homogeneous precipitation route under mild conditions. A series of controlled experiments indicate that the pH values in the initial reaction systems, carbon sources, and simple ions (NH(4)(+) and Na(+)) were responsible for the shape determination of the LaCO(3)OH products. A possible formation mechanism for these products with diverse architectures has been presented. After annealing at suitable temperatures, LaCO(3)OH was easily converted to La(2)O(2)CO(3) and La(2)O(3) with the initial morphologies. A systematic study on the photoluminescence and cathodoluminescence properties of Eu(3+)- or Tb(3+)-doped La(2)O(2)CO(3)/La(2)O(3) samples has been performed in detail. The excitation and site-selective emission spectra were recorded to investigate the microstructure, site symmetry, and difference in the (5)D(0) → (7)F(2) transition of Eu(3+) ions in La(2)O(2)CO(3) and La(2)O(3) host lattices. In addition, the dependence of the luminescent intensity on the morphology for the as-prepared La(2)O(2)CO(3)/La(2)O(3):Ln(3+) (Ln = Eu, Tb) samples has been investigated. The ability of generating diverse morphologies and multiemitting colors for different rare-earth activator ion (Ln = Eu, Tb) doped La(2)O(2)CO(3)/La(2)O(3) nano/microstructures provides a great opportunity for the systematic evaluation of morphology-dependent luminescence properties, as well as the full exploration of their application in many types of color display fields.

  19. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    CSIR Research Space (South Africa)

    Seteni, Bonani

    2017-06-01

    Full Text Available Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4...

  20. Synthesis and electrochemical characterization of LiCo_1_/_3Fe_2_/_3PO_4/C composite using nano CoFe_2O_4 as precursor

    International Nuclear Information System (INIS)

    Wu, Kaipeng; Hu, Guorong; Du, Ke; Peng, Zhongdong; Cao, Yanbing

    2015-01-01

    LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized by a solid state method with CoFe_2O_4 as the precursor and glucose as the carbon source. The composite consists of homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 with its particles covered by nano-carbon layers, which could prevent the growth of the particles as well as form a fast path for electronic transmission during charging and discharging process. It shows excellent electrochemical performance as the cathode for lithium-ion batteries, which delivers discharge capacities of 154.6, 152.9, 135.4, 122.3, 105.2 and 91.3 mAh g"−"1 at 0.05, 0.1, 0.5, 1, 2 and 5 C, respectively, and retains 94.6% of its initial discharge capacity after 30 cycles at 5 C. - Highlights: • Nano CoFe_2O_4 was prepared by a co-precipitation method. • LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized using nano CoFe_2O_4 as a precursor. • Homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 is obtained. • LiCo_1_/_3Fe_2_/_3PO_4/C composite exhibits a quite good electrochemical performance.

  1. Structure and crystallization of B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin, E-mail: zjbcy@126.co [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Xiao Hanning [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Shuguang Chen; Tang Bingzhong [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2009-05-01

    B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses with different B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratios of 0.4-1.3 were prepared by the melting-quenching method at 1500-1600 deg. C for 2 h. Fragility index F was used to estimate the glass-forming ability. The infrared (IR) absorption curves and differential scanning calorimetry (DSC) curves of the glasses have been investigated for estimating the influence of the B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratio on glass structure and crystallization of the B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glass system. The crystallization kinetics of the glasses were described by activation energy (E) for crystallization and calculated by the Kissinger method. X-ray diffraction (XRD) and SEM analyses were also used to describe the types and morphologies of the crystals precipitated from the B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses. The results show that with the increase of B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratio, glass stability improves and the trend of crystallization decreases relatively. However, when the B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratio reaches 1.3, boron-abnormal phenomenon appears and results in the raising trend of crystallization. Rod-like crystals of Al{sub 4}B{sub 2}O{sub 9} and Al{sub 20}B{sub 4}O{sub 36} were observed in the crystallized samples.

  2. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  3. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently...... synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for e.g. zinc aluminate particles to approximately 150 m2/g. The gas-to-particle conversion is initiated...

  4. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nano-Ticl 4 .SiO 2 : a Versatile and Efficient Catalyst for Synthesis of ...

    African Journals Online (AJOL)

    Nano-TiCl4.SiO2 has been found to be an extremely efficient catalyst for the preparation of 3,4-dihydropyrimidinones/thiones via three-component reactions of an aldehyde, β-ketoester or β-diketone and urea or thiourea under mild conditions. Nano-TiCl4.SiO2 as a solid Lewis acid has been synthesized by reaction of ...

  6. Interfacial phase formation of Al-Cu bimetal by solid-liquid casting method

    Directory of Open Access Journals (Sweden)

    Ying Fu

    2017-05-01

    Full Text Available The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures (700, 750, 800 oC was investigated by means of metallograph, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds (IMCs near the interface. However, a lower pouring temperature (700 oC resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.

  7. Thermal analysis and prediction of phase equilibria in the TiO2-Bi2O3 system

    International Nuclear Information System (INIS)

    Lopez-Martinez, Jaqueline; Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Zeifert, Beatriz; Gomez-Yanez, Carlos; Martinez-Sanchez, Roberto

    2011-01-01

    A thermodynamic study on the TiO 2 -Bi 2 O 3 system was carried out using differential thermal analysis (DTA) and X-Ray diffraction (XRD) techniques covering the composition range from 65 to 90 mol% Bi 2 O 3 . From the XRD results the only two intermediate compounds in the Bi 2 O 3 rich region were Bi 4 Ti 3 O 12 and Bi 12 TiO 20 . The Bi 4 Ti 3 O 12 phase presents the well known plate-like morphology. The experimentally determined phase transition temperatures with DTA technique were compared with thermodynamic calculated results and good agreement was obtained. The DTA results also showed that the limit of the peritectic reaction between liquid and Bi 4 Ti 3 O 12 occurs approximately at 90 mol% Bi 2 O 3 . The phase diagram of the TiO 2 -Bi 2 O 3 system was calculated using a quasichemical model for the liquid phase. The thermodynamic properties of the intermediate compounds were estimated from the data of TiO 2 and Bi 2 O 3 pure solids. In this manner, data for this binary system have been analysed and represented with a small adjustable parameter for the liquid phase.

  8. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-05-01

    Full Text Available Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  9. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications

    Directory of Open Access Journals (Sweden)

    M.F. Zawrah

    2016-12-01

    Full Text Available In this study, Al2O3–H2O nanofluids were synthesized using sodium dodecylbenzenesulfonate (SDBS dispersant agent by ultra-sonication method. Different amounts of SDBS i.e. 0.1, 0.2, 0.3, 0.6, 1 and 1.5 wt.% were tested to stabilize the prepared nanofluids. The stability of nanofluids was verified using optical microscope, transmission electron microscope and Zeta potential. After selecting the suitable amount of dispersant, nanofluids with different volume fractions of Al2O3 were prepared. Zeta potential measurement of nanofluids with low alumina and intermediate fractions showed good dispersion of Al2O3 nanoparticles in water, but nanofluids with high mass fraction were easier to aggregate. The stabilized nanofluids were subjected for measuring of rheological behavior and electrical conductivity. The electrical conductivity was correlated to the thermal conductivity according to Wiedemann–Franz law. The results revealed that the nanofluid containing 1% SDBS was the most stable one and settling was observed for the fluid contained 0.75 vol.% of Al2O3 nanoparticles which gave higher viscosity. The rheological measurements indicated that the viscosity of nanofluids decreased firstly with increasing shear rate (shear thinning behavior. Addition of nanoparticles into the base liquid enhanced the electrical conductivity up to 0.2 vol.% of Al2O3 nano-particles after which it decreased.

  10. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

    Science.gov (United States)

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-25

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  11. Preparation and characterization of Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, Bartlomiej; Lambrechts, Kalle [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Oye, Gisle, E-mail: gisle.oye@chemeng.ntnu.no [Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A facile method for preparing Au/CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical porosity. Black-Right-Pointing-Pointer Continuous-flow testing of the monoliths in liquid-phase oxidation of glucose. Black-Right-Pointing-Pointer Increased catalytic activity in the presence of cerium oxide (stirred-batch tests). - Abstract: Porous CeO{sub 2}-Al{sub 2}O{sub 3} monoliths with hierarchical pore structure were prepared by mixing boehmite particles with solutions containing different amounts of cerium chloride and aluminum nitrate. The monoliths were functionalized with gold nanoparticles using the incipient wetness method. The resulting materials were characterized by X-ray diffraction, nitrogen sorption, mercury porosimetry, UV-vis spectroscopy and transmission electron microscopy. The catalysts were tested in liquid phase glucose oxidation, comparing continuously stirred batch reactor and continuous-flow fix-bed reactor setups.

  12. Nano-PCMs for passive electronic cooling applications

    Science.gov (United States)

    Colla, L.; Fedele, L.; Mancin, S.; Buonomo, B.; Ercole, D.; Manca, O.

    2015-11-01

    The present work aims at investigating a new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in a paraffin wax having a melting temperature of 45°C. The thermophysical properties such as latent heat and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCM. Finally, a numerical comparison between the use of the pure paraffin wax and the nano-PCM in a typical electronics passive cooling device was implemented. Numerical simulations were carried out using the Ansys-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures, melting time and junction temperature were reported. Moreover, a comparison with experimental results was also performed.

  13. Characterization of Al-Ti phases in cycled TiF{sub 3}-enhanced Na{sub 2}LiAlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)]. E-mail: yumikon@ife.no; Fossdal, A. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Brinks, H.W. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, B.C. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2006-06-08

    TiF{sub 3}-enhanced Na{sub 2}LiAlH{sub 6} was investigated after dehydrogenation-hydrogenation cycles by synchrotron X-ray diffraction. There was no sign of Ti after ball-milling with TiF{sub 3}, but two types of Al-Ti phases were observed in the cycled samples. In a sample after measuring five pressure-composition isotherms in the temperature range from 170 to 250 deg. C, a fcc phase with a = 3.987 A was observed. This phase is considered to be Al{sub 3}Ti with the L1{sub 2} structure. Samples after one or four cycles at selected temperatures between 170 and 250 deg. C showed diffraction from another fcc phase with a {approx} 4.03 A. This indicates formation of an Al{sub 1-y}Ti {sub y} solid-solution phase with y {approx} 0.15 similar to previously reported for cycled NaAlH{sub 4} with Ti additives.

  14. Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70)

    International Nuclear Information System (INIS)

    Wu Qiaoli; Liu Zhen; Jiao Huan

    2009-01-01

    Stabled hexagonal phase Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl 2 O 4 :Eu 2+ calcined at 1350 deg. C in a reducing atmosphere for 5 h strongly depended on the Ba 2+ concentration. With increasing Ba 2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu 2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu 2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu 2+ changed with increasing content of Ba 2+ . The strongest green emission was obtained from Sr 0.61 Ba 0.37 Al 2 O 4 :Eu 2+ . The decay characteristics of Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.

  15. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  16. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    Science.gov (United States)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  17. Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios

    Directory of Open Access Journals (Sweden)

    Trochez, J. J.

    2015-03-01

    Full Text Available This paper assesses the feasibility of using a spent fluid catalytic cracking catalyst (SFCC as precursor for the production of geopolymers. The mechanical and structural characterization of alkali-activated SFCC binders formulated with different overall (activator + solid precursor SiO2/Al2O3 and Na2O/SiO2 molar ratios are reported. Formation of an aluminosilicate ‘geopolymer’ gel is observed under all conditions of activation used, along with formation of zeolites. Increased SiO2/Al2O3 induces the formation of geopolymers with reduced mechanical strength, for all the Na2O/SiO2 ratios assessed, which is associated with excess silicate species supplied by the activator. This is least significant at increased alkalinity conditions (higher Na2O/SiO2 ratios, as larger extents of reaction of the spent catalyst are achieved. SiO2/Al2O3 and Na2O/SiO2 ratios of 2.4 and 0.25, respectively, promote the highest compressive strength (67 MPa. This study elucidates the great potential of using SFCC as precursor to produce sustainable ceramic-like materials via alkali-activation.Este artículo estudia la factibilidad de usar un catalizador gastado del proceso de craqueo (SFCC para la producción de geopolímeros. Se evalúan las características mecánicas y estructurales de los geopolímeros producidos con diferentes relaciones molares (activador + precursor solido de SiO2/Al2O3 y Na2O/SiO2. La formación de un gel geopolimérico de tipo aluminosilicato se observa a las diferentes condiciones evaluadas, así como la formación de zeolitas. Un incremento en la relación SiO2/Al2O3 genera geopolímeros de baja resistencia mecánica, a las diferentes relaciones molares Na2O/SiO2 evaluadas, como consecuencia del exceso de especies silicato provenientes del activador. Este efecto es menos significativo al incrementar las condiciones de alcalinidad (mayores relaciones Na2O/SiO2, ya que un mayor grado de reacción del catalizador gastado es alcanzado. Las

  18. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc{sub 1−x}Al{sub x}F{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Gallington, Leighanne C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2015-02-15

    With the goal of thermal expansion control, the synthesis and properties of Sc{sub 1−x}Al{sub x}F{sub 3} were investigated. The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al{sup 3+} content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al{sup 3+} content. The slope of the pressure–temperature phase boundary is ∼0.5 K MPa{sup −1}, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ∼600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al{sup 3+} substitution causes softening at a given temperature. - Graphical abstract: The cubic-phase coefficient of thermal expansion for Sc{sub 1−x}Al{sub x}F{sub 3}(solubility limit ∼50% at ∼1340 K) becomes more positive with increased Al{sup 3+} substitution, but the average isothermal bulk modulus decreases (elastic softening). - Highlights: • The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. • The phase transition temperature of Sc{sub 1−x}Al{sub x}F{sub 3} increases smoothly with x. • The cubic-phase volume CTE varies from negative to positive with increasing x. • The cubic solid solutions elastically stiffen on heating. • Al{sup 3+} substitution causes softening at a given temperature.

  19. Espectroscopia Mössbauer e refinamento estrutural no sistema cerâmico isomórfico (alfa-Fe2O3-(alfa-Al2O 3 Mössbauer spectroscopy and structural refinement in the isomorphic (alpha-Fe2O3-( alpha-Al2O3 ceramic system

    Directory of Open Access Journals (Sweden)

    J. A. Moreto

    2007-06-01

    Full Text Available Os multiferróicos são materiais em que duas ou três propriedades tais como ferroeletricidade, ferromagnetismo e ferroelasticidade são observadas em uma mesma fase. Em particular, os multiferróicos magnetoelétricos representam os materiais que são simultaneamente (antiferromagnéticos e ferroelétricos, com ou sem ferroelasticidade. Especificamente, o sistema hematita (alfa-Fe2O3-alumina (alfa-Al2O3 tem sido estudado, principalmente devido às suas potencialidades para aplicações em metalurgia e como catalisador na síntese de amônia. Contudo, compostos deste sistema também podem apresentar efeitos magnetoelétricos. Neste trabalho um estudo estrutural do composto (alfa-Fe2O30,25(alfa-Al2O 30,75 submetido à moagem em altas energias e tratamento térmico pós-moagem é apresentado. As amostras foram caracterizadas por difração de raios X, refinamento estrutural Rietveld e espectroscopia Mössbauer. A determinação e identificação das fases cristalográficas, parâmetros de rede e volume de celas unitárias nas amostras moída e tratada termicamente permitiu verificar as mudanças dos parâmetros, a formação de espinélios e possíveis deformações relativas advindas do processo de moagem em altas energias.Multiferroics are materials in which two or all three of the properties, ferroelectricity, ferromagnetism, and ferroelasticity occur in the same phase. In particular, multiferroic magnetoelectrics represent the materials that are simultaneously ferromagnetic and ferroelectric, with or without ferroelasticity. Specifically, the hematite (alpha-Fe2O3-alumina (alpha-Al2O3 system has been studied, mainly due to its potential applications in metallurgy and as catalyst of ammonia synthesis. However, compounds of this system also may present magnetoelectric effects. In this work, a structural study of the high-energy ball milled and annealed (alpha-Fe2O3 0.25(alpha-Al2O30.75 compound was carefully conducted. The samples were

  20. Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration

    Science.gov (United States)

    Temam, H. B.; Temam, E. G.

    2016-04-01

    Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.

  1. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    Science.gov (United States)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  2. Various characteristics of Ni and Pt–Al2O3 nanocatalysts prepared by microwave method to be applied in some petrochemical processes

    Directory of Open Access Journals (Sweden)

    H.M. Gobara

    2014-03-01

    Full Text Available Alumina-supported metal nanocatalysts were prepared via the microwave method, by loading nano Ni particles (at 1, 3 and 5 wt% or nano Pt particles (at 0.3, 0.6 and 0.9 wt%. Structural and adsorption features of the nano catalysts were revealed through XRD, DSC-DTA, TEM, H2-chemisorption and N2-physisorption. N2-adsorption–desorption isotherms of type IV were related typically to mesoporous materials with H2 class of hysteresis loops characterizing ink bottle type of pores. The well dispersed nano-sized metal particles were evidenced in the studied catalytic systems, exhibiting marked thermal stability up to 800 °C. The catalytic performances of different catalyst samples were assessed during cyclohexane, normal hexane and ethanol conversions, using the micro-catalytic pulse technique at different operating conditions. The 5% Ni–γ–Al2O3 sample was found to be the most active in dehydration of ethanol to produce ethylene, as well as in n-hexane cracking. However, the 1% Ni–Al2O3 sample showed the highest dehydrogenation activity for selective production of benzene from cyclohexane. On the other hand, the 0.9% Pt–γ–Al2O3 sample exhibited the highest activity in the dehydration of ethanol and in the dehydrogenation of cyclohexane. The 0.3% Pt–γ–Al2O3 sample was the most active in the dehydrocyclization of normal hexane, as compared to the other catalyst samples under study.

  3. Investigation of multiphase equilibria in the subsolidus of BaO–CoO–Fe2O3Al2O3 system

    Directory of Open Access Journals (Sweden)

    Kostyrkin Oleg

    2017-01-01

    Full Text Available One of the most important problems related to the development of new nonmetal materials and their performance characteristics is to predict the phase composition. The most comprehensive information on phase interactions and the thermodynamic stability of phase combinations is given by the state diagrams. The materials synthesized in the system subsolidus domain can be predicted the most accurately, because their sintering occurs without participation of the melt. Due to the above fact, the studies of the subsolidus structure of BaO – CoO – Fe2O3Al2O3 system are of great interest, because on the basis of this system we can obtain a huge amount of nonmetal materials with prescribed properties, for example ferrimagnetic materials to protect from electromagnetic radiation, because the system compounds have cementing, refractory and ferrimagnetic properties. To study the structure of BaO – CoO – Fe2O3Al2O3 system in detail the authors summed up already known data on the thermodynamic constants of system compounds. This allowed us to do the thermodynamic analysis of multiphase equilibrium processes that occur in the subsolidus of BaO – CoO – Fe2O3Al2O3 system that was used as a basis for the plotting of the state diagram for the subsolidus domain of the system. A promising field for the application of obtained data is the cement production technology. The produced cement can be used independently and as a binding material to produce special cements and materials that retain their properties when exposed to the action of high-frequency electromagnetic radiation.

  4. The phase diagram of KNO3-KClO3

    International Nuclear Information System (INIS)

    Zhang Xuejun; Tian Jun; Xu Kangcheng; Gao Yici

    2004-01-01

    The binary phase diagram of KNO 3 -KClO 3 is studied by means of differential scanning calorimetry (DSC) and high-temperature X-ray diffraction. The limited solid solutions, K(NO 3 ) 1-x (ClO 3 ) x (0 3 ) 1-x (ClO 3 ) x (0.90 3 -based solid solutions and KClO 3 -based solid solutions phase, respectively. For KNO 3 -based solid solutions, KNO 3 ferroelectric phase can be stable from 423 to 223 K as a result of substituting of NO 3 by ClO 3 -radicals. The temperatures for solidus and liquidus have been determined based on limited solid solutions. Two models, Henrian solution and regular solution theory for KNO 3 -based (α) phase and KClO 3 -based (β) phase, respectively, are employed to reproduce solidus and liquidus of the phase diagram. The results are in good agreement with the DSC data. The thermodynamic properties for α and β solid solutions have been derived from an optimization procedure using the experimental data. The calculated phase diagram and optimized thermodynamic parameters are thermodynamically self-consistent

  5. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    Science.gov (United States)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  6. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  7. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    Science.gov (United States)

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  8. Effect of MgCl2 addition on the sintering behavior of MgAl2O4 spinel and formation of nano-particles

    Directory of Open Access Journals (Sweden)

    Mohammadi F.

    2014-01-01

    Full Text Available In this paper, the effect of MgCl2 addition on the sintering behavior of MgAl2O4 spinel produced via oxide mixture method was investigated. For this reason, the stoichiometric mixture of magnesite and calcined alumina as raw materials was calcined at 1100°C. The calcined mixture was milled, pressed and then, fired at 1300 and 1500°C after addition of various amounts of MgCl2. Besides, the physical properties, phase composition and microstructure of fired samples were investigated. The results showed that MgCl2 addition has great effect on the densification and particle size of spinel. Besides, MgCl2 addition increases the amount of spinel phase at all firing temperatures. Due to the decomposition of MgCl2 and then formation of ultra-fine MgO particles, the nano-sized spinel is formed on the surface of the larger spinel particles.

  9. The high temperature synthesis of CsAlSiO 4-ANA, a new polymorph in the system Cs 2OAl 2O 3SiO 2. I. The end member of ANA type of zeolite framework

    Science.gov (United States)

    Dimitrijevic, R.; Dondur, V.; Petranovic, N.

    1991-12-01

    High temperature phase transformations of Cs + exchanged zeolites were investigated. Above 1000°C, CsX, CsY (FAU), and Cs, ZK-4 (LTA) frameworks recrystallized in a pollucite phase. A Cs + loaded mordenite recrystallized at 1300°C in the orthorhombic CsAlSi 5O 12 phase. A Cs + exchanged zeolite A at 960°C recrystallized in a mixture of two polymorphic CsAlSiO 4 phases having different (Al,Si)O 4 frameworks. The unstable orthorhombic CsAlSiO 4ABW phase has a topotactic transition at 1150°C into an ordered low CsAlSiO 4-ANA framework. Further calcination produces, at 1200°C, transformation of the low CsAlSiO 4-ANA phase to the more stable high CsAlSiO 4-ANA polymorph having cubic ( a 0 = 13.6595 (5) Å) symmetry and an ordered SiAl distribution. The crystal structure of high CsAlSiO 4ANA, a new polymorph in the system Cs 2OAl 2O 3SiO 2, was determined using X-ray Rietveld analyses and 29Si MAS NMR spectroscopy.

  10. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  11. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal

    2013-06-11

    Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.

  12. Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al{sub 2}O{sub 3} skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Martin, E-mail: ummsbama@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava (Slovakia); Krizik, Peter; Nosko, Martin; Hajovska, Zuzana [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava (Slovakia); Victoria Castro Riglos, Maria [Centro Atómico Bariloche, Av. Bustillo 9.500, 8400 Bariloche, Río Negro (Argentina); Rajner, Walter [New Materials Development GmbH, Römerstrasse 28, 83410 Laufen, Leobendorf (Germany); Liu, De-Shin [National Chung Cheng University, 168 University Rd., Min-Hsiung, 62102 Chia-Yi, Taiwan (China); Simancik, Frantisek [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava (Slovakia)

    2014-09-08

    Bulk Al–Al{sub 2}O{sub 3} metal matrix composites (MMCs) named HITEMAL (high temperature aluminum) were fabricated in situ by forging compaction of five different types of gas-atomized commercial purity Al powders with a mean particle size in the range of 1–9 µm. As-forged HITEMAL consisted of (sub)micrometric Al grains (matrix) decorated with nanometric thick amorphous Al{sub 2}O{sub 3} (a-Al{sub 2}O{sub 3}) skeleton. Low-angle grain boundaries (LAGBs) free of Al{sub 2}O{sub 3} were located in the Al grain interior. The Al grain size and the portion of LAGBs increased with the increase in the relative powder surface area. As-forged HITEMAL shows excellent thermal stability up to 400 °C for 24 h. Annealing at temperatures ≥450 °C led to crystallization and morphological transformation from a-Al{sub 2}O{sub 3} skeleton to nanometric γ-Al{sub 2}O{sub 3} particles. Owing to the pinning effect of Al{sub 2}O{sub 3} phase, no Al grain growth took place during annealing up to 500 °C. HITEMAL showed attractive mechanical properties especially when tested at 300 °C (yield strength up to 220 MPa, Young's modulus up to 58 GPa). Despite the presence of a nearly continuous a-Al{sub 2}O{sub 3} skeleton along adjacent Al grains, forged HITEMAL materials had reasonable room temperature elongation of 7–26%. HITEMAL's elongation decreased as the Al grain size decreased and with increased testing temperature. The loss in elongation (uniform and total) was attributed to the inhomogeneous flow, which occurred due to high densities of high angle grain boundaries (dislocation sinks) and small content of LAGBs. The strength of HITEMAL stemmed from grain boundary mediated strengthening mechanisms. The results showed a positive deviation from the Hall–Petch plot, which is typical behavior of ultrafine-grained metals. Transformation of a-Al{sub 2}O{sub 3} skeleton to γ-Al{sub 2}O{sub 3} particles led to deterioration of the HITEMAL strength and Young's modulus.

  13. In situ formation of CA6 platelets in Al2O3 and Al2O3/ZrO2 matrices

    OpenAIRE

    Belmonte , M.; SÁnchez-Herencia , A.; Moreno , R.; Miranzo , P.; Moya , J.; Tomsia , A.

    1993-01-01

    Al2O3 and Al2O3/ZrO2 compacts containing CaO as a dopant have been sintered under different conditions and atmospheres: air, high vacuum (> 10-6torr). SEM observations have been made on the polished surfaces of sintered and also of annealed samples. Only after the annealing treatment in air at temperatures ranging from 1400° to 1 500°C, a massive formation of CA6 platelets was detected in samples sintered in low oxygen partial pressure atmospheres.ln order to clarify the mechanism of formatio...

  14. CLC in packed beds using syngas and CuO/Al2O3: Model description and experimental validation

    International Nuclear Information System (INIS)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2014-01-01

    Highlights: • CLC with CuO/Al 2 O 3 and syngas and air has been demonstrated experimentally. • Model predicts accurately only if kinetics describe the complete solid reduction. • CuO/Al 2 O 3 is proven to catalyze the reversed water gas shift reaction. • H 2 O is more effective to suppress carbon deposition on CuO/Al 2 O 3 than CO 2 . • The OC reaction rate is not permanently affected by exposure to H 2 S. - Abstract: The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al 2 O 3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while also studying the (possible) carbon deposition and the effect of sulphur impurities on the stability of the carrier. Both experiments and simulations are used in this work. Cyclic experiments (oxidation with air and reduction with syngas) have been carried out in a lab scale packed bed reactor with 13 wt% CuO/Al 2 O 3 . The experimental results were well described by a 1D reactor model, provided that critical attention was given to the reaction rate for the complete reduction reaction, including a dramatic decrease in reaction rate at high solid conversions. Feeding syngas (p H2 = p CO = 0.1 bar) resulted in 1.1% carbon deposition of the feed. Steam was proven to be more effective in reducing carbon deposition than CO 2 . Moreover, it has been found that CuO/Al 2 O 3 catalyzed the water gas shift reaction and the reaction rate was not permanently affected by exposure to H 2 S, two key factors for CLC operation. The results of this work imply that CuO/Al 2 O 3 is an effective oxygen carrier as the first packed bed reactor in a TSCLC process and that the developed model is able to describe the performance at larger scales accurately

  15. White light emission from Er2O3 nano-powder excited by infrared radiation

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul; Di Bartolo, Baldassare

    2017-07-01

    Phosphors of Er2O3 nano-crystalline powders were synthesized by the thermal decomposition method. The structural properties of the nano-powders were investigated with XRD and HRTEM measurements. The cubic phase with a = 10.540 Å was the only phase observed. The average crystalline sizes and the widths of the grain size distribution curves were determined to be 27.2, 18.7 and 9.7 nm, respectively. The spectroscopic properties of the Er2O3 nano-powder were studied by measuring the luminescence, decay and rise patterns under 808 and 975 nm diode laser excitations. A peculiar effect of the pressure was observed since an optically active ion (Er) is part of the complex and not a dopant. A broad band of the white light emission combined with blue, green and red up-conversion emission bands of Er3+ ions were observed at 0.03 mbar pressure under both excitation wavelengths. Only, an intense broad band white light emission was observed from these nanocrystals at atmospheric pressure. Rising patterns show that the white light intensity reaches its maximum value more rapidly under 975 nm excitation although it decays slower than that of 808 nm excitation. The color quality parameters such as the color coordinate (CRI), correlated color temperature and the color rendering index were found to vary with both the excitation wavelength and the ambient pressure indicating that these nanocrystals could be considered good white light emitting source under the infrared excitations.

  16. Solid solutions in the system Nd2(SeO4)3 - Sm2(SeO4)3 - H2O

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Tsybukova, T.N.; Velikov, A.A.

    1984-01-01

    Using the method of isothermal solubility at 25 deg C the system Nd 2 (SeO 4 ) 3 -Sm 2 (SeO 4 ) 3 -H 2 O has been studied. Roentgenographic recording of solid ''residues'' is realized. For solid solutions energies of interchange and formation heats are calculated. Formation heats of solid solutions on the basis of samarium selenates are also found experimentally

  17. Influence of Homogenization and Micro/Nano Source of Starting Powders on Format Ion of the Single YAP Phase

    Directory of Open Access Journals (Sweden)

    Michalik D.

    2016-12-01

    Full Text Available Manufacturing high purity polycrystalline YAlO3 (YAP ceramics could replace monocrystalline YAP thus recently it is an interesting task for low cost producers of scintillators. The paper presents influence of different source of initial oxide powders (micro/nano powders of Y2O3 and Al2O3 and the method of their homogenization on the formation of a YAP phase. The solid state reaction method was used to prepare YAP powder or ceramic pellets. After preheating, all samples in the form of powders and pellets were heat-treated in the temperature range of 1050-1650 °C. DTA method was applied for examination of the phase crystallization in the tested system. X-ray diffraction method (XRD was used for characterization of the phase composition. X-ray microanalysis (EDS was used to control homogeneity in the small areas. Morphology of the resultant samples are presented on SEM pictures. The results show a significant influence of the starting powders on the homogeneity, purity and temperature of formation of the main phase.

  18. Characterization of γ- Al{sub 2}O{sub 3} nanopowders synthesized by Co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Jbara, Ahmed S., E-mail: ahmedsbhe@yahoo.com [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Physics Department, Science College, Al-Muthanna University, Samawah - 66001 (Iraq); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Othaman, Zulkafli [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Ati, Ali A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Saeed, M.A., E-mail: moalsd@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Division of Science and Technology, University of Education, Township, Lahore - 54770 (Pakistan)

    2017-02-15

    Co-precipitation technique has been used to synthesize gamma-Al{sub 2}O{sub 3} (γ-Al{sub 2}O{sub 3}) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m{sup 2}/g. Morphology analysis indicates that γ-Al{sub 2}O{sub 3} nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al{sub 2}O{sub 3} may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al{sub 2}O{sub 3} nanopowders. • Pure gamma- Al{sub 2}O{sub 3} phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  19. Effect of Al and Y2O3 on Mechanical Properties in Mechanically Alloyed Nanograin Ni-Based Alloys.

    Science.gov (United States)

    Kim, Chung Seok; Kim, Il-Ho

    2015-08-01

    The effects of aluminum and Y2O3 on the mechanical properties in nano grain Ni-based alloys have been investigated. The test specimens are prepared by mechanical alloying at an Ar atmosphere. The addition of Y2O3 and Al may cause an increase in the tensile strength at room temperature, 400 °C and 600 °C. However, it was confirmed that the increase of tensile strength at room temperature and 400 °C was predominantly caused by addition of Y2O3, while that at 600 °C was mainly due to addition of Al. These results can be attributed to the dispersion strengthening of Y2O3, preventing the formation of Cr2O3 and the change of fracture mode at 600 °C by the addition of Al.

  20. Physicochemical investigation of Bi2MoO6 solid-phase interaction with Sm2MoO6

    International Nuclear Information System (INIS)

    Khajkina, E.G.; Kovba, L.M.; Bazarova, Zh.G.; Khal'baeva, K.M.; Khakhinov, V.V.; Mokhosoev, M.V.

    1986-01-01

    Bi 2 MoO 6 -Sm 2 MoO 6 interaction in the temperature range of 700-1000 deg C is studied using X-ray phase analysis and vibrational spectroscopy. Formation of monoclinic solid solutions based on γ'-Bi 2 MoO 6 and B 2-x Sm x MoO 6 varied composition phase with α-Ln 2 MoO 6 structure which homogeneity region extent at 1000 deg C constitutes ∼ 50 mol % (0.7≤x≤1.7) is stated. Crystallographic characteristics of the synthesized phases are determined

  1. Extruded Al-Al2O3 composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area

    International Nuclear Information System (INIS)

    Balog, Martin; Simancik, Frantisek; Walcher, Martin; Rajner, Walter; Poletti, Cecilia

    2011-01-01

    Highlights: → 25 gas atomised Al 99.5% powders with particle size 2 O 3 dispersoids. → Compacts showed good thermal stability due to grain pinning of Al 2 O 3 dispersoids. - Abstract: Twenty-five samples of commercially available, gas-atomised Al (99.5%) powders with particle sizes 2 O 3 composites formed in situ during extrusion. The effect of particle size, surface area, oxygen content and atomisation atmosphere of the powder on the microstructure and mechanical properties of the extruded compacts were studied by Brunauer, Emmett, Teller (BET) analysis, hot gas extraction, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. Thermal stability of the compacts and the individual strengthening mechanisms operating in the compacts were discussed. It was found that the properties of the compacts stemmed from the extraordinary grain boundary strengthening effect of the ultrafine-grained compacts due to their microstructures. The efficiency of the grain boundary strengthening was significantly enhanced by the presence of nano-metric Al 2 O 3 dispersoids introduced in situ. The strength of the compacts was closely related to the surface area of the powder particles. In addition, the entrapped gasses and chemically bonded humidity had a negative effect on the mechanical properties of the compacts.

  2. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb)

    International Nuclear Information System (INIS)

    Iwahara, H.; Esaka, T.; Sato, T.; Takahashi, T.

    1981-01-01

    The electrical conduction in various phases of the system Bi 2 O 3 -Ln 2 O 3 (Ln = La, Nd, Sm, Dy, Er, or Yb) was investigated by measuring ac conductivity and the emf of the oxygen gas concentration cell. High-oxide-ion conduction was observed in the rhombohedral and face-centered cubic (fcc) phase in these systems. The fcc phase could be stabilized over a wide range of temperature by adding a certain amount of Ln 2 O 3 . In these cases, the larger the atomic number of Ln, the lower the content of Ln 2 O 3 required to form the fcc solid solution, except in the case of Yb 2 O 3 . The oxide ion conductivity of this phase decreased with increasing content of Ln 2 O 3 . Maximum conductivity was obtained at the lower limit of the fcc solid solution formation range in each system, which was more than one order of magnitude higher than those of conventional stabilized zirconias. Lattice parameters of the fcc phase were calculated from the x-ray diffraction patterns. The relationship between the oxide ion conductivity and the lattice parameter was also discussed

  3. Micro- and nanostructured Al{sub 2}O{sub 3} surfaces for controlled vascular endothelial and smooth muscle cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Cenk, E-mail: cenk.aktas@inm-gmbh.de [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Doerrschuck, Eva; Schuh, Cathrin [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany); Miro, Marina Martinez; Lee, Juseok [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Puetz, Norbert; Wennemuth, Gunther [Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424 Homburg (Germany); Metzger, Wolfgang; Oberringer, Martin [Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Building 57, 66424 Homburg (Germany); Veith, Michael [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Department of Inorganic Chemistry, University of Saarland, Building C 4 1, 66123 Saarbruecken (Germany); Abdul-Khaliq, Hashim [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany)

    2012-07-01

    The effect of the micro- and nanotopography on vascular cell-surface interaction is investigated using nano- and microstructured Al{sub 2}O{sub 3} as model substrate. Two different nanostructured Al{sub 2}O{sub 3} surfaces composed of low density (LD) and high density (HD) nanowires (NWs) were synthesized by chemical vapour deposition (CVD) and commercially available microstructured Al{sub 2}O{sub 3} plates were used for comparison. A clear diverging response of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC) was observed on these nano- and microstructured surfaces. LD Al{sub 2}O{sub 3} NWs seem to enhance the proliferation of HUVECs selectively. This selective control of the cell-surface interaction by topography may represent a key issue for the future stent material design. - Highlights: Black-Right-Pointing-Pointer Nanostructured alumina surfaces triggers selective adhesion and proliferation of endothelial cells. Black-Right-Pointing-Pointer Catalyst free synthesis of nanowires. Black-Right-Pointing-Pointer Topography induces selective cell response.

  4. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-01-01

    Full Text Available Thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to ethanol vapour at 350°C for 80 ppm concentration. To improve the sensitivity and selectivity of the film towards a particular gas, In2O3 sensors were surface-modified by dipping them in a solution of 2% nanosilver for different intervals of time. Obtained results indicated that spherical nano-Ag grains are highly dispersed on the surface of In2O3sensor. The surface area of the nano-Ag/ In2O3 sensor is several times larger than that of pure In2O3 sensor. In comparison with pure In2O3 sensor, all of the nano-Ag-doped sensors showed better sensing performance in respect of response, selectivity, and optimum operating temperature. The surface-modified (30 min In2O3 sensor showed larger sensitivity to H2S gas (10 ppm at 100°C. Nano silver on the surface of the film shifts the reactivity of film from ethanol vapour to H2S gas. A systematic study of gas sensing performance of the sensor indicates the key role played by the nano silver species on the surface. The sensitivity, selectivity, response, and recovery time of the sensor were measured and presented.

  5. Synthesis and characterization of nano-crystalline Ce1-xGd xO2-x/2 (x = 0-0.30) solid solutions

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Jamale, A. P.

    2010-01-01

    glycine-nitrate process (GNP) has been presented. Evolution of structural and morphological properties of nano-powders as a function of heat treatment has also been studied. The prepared samples were characterized using TG-DTA, FT-IR, Raman spectroscopy, XRD, SEM, etc. In addition, the effect of Gd......In recent years, doped ceria is an established and promising candidate as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC). In this investigation, synthesis and characterizations of nano-crystalline Gd doped ceria, (Ce1-xGdxO2-x/2, where x = 0-0.3), prepared using...... of sintered samples was observed to hinder with an increase in Gd content....

  6. Improvement microstructural and damage characterization of ceramic composites Y{sub 2}O{sub 3} – V{sub 2}O{sub 5} with MgO nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Issa, T. T., E-mail: alazbrh@yahoo.com; Hasan, J. M.; Abdullah, E. T. [University of Baghdad, College of Science, Physics Department, Jaderiha, Baghdad (Iraq); Shokr, F. S. [King Abdul Aziz Universit, Faculty of Science& Art, Physics Department, Rabigh, KSA (Saudi Arabia)

    2016-04-21

    Compacted samples of Y{sub 2}O{sub 3}-V{sub 2}O{sub 5} – MgO Nano – particles wt. % sintered at different sintering temperature (700, 900, 1100, 1300) ) C° for 2 hours under static air were investigated by x-ray diffraction and differential thermal analysis(DTA), to identify the phase present .Microstructure examination achieved by scanning electron microscopy .Sintered density and porosity were measured for all sintered samples .Compression was tested too and the Brake down voltage and dielectric strength were measure for all sintered samples .The clear improvement were noticed in both microstructure and damage characterization respectively after existing the MgO Nano-particles, by increasing in about 30% in sintered density and 25% for the compressive strength .The improvement also noticed on both brake down voltage and dielectric strength.

  7. Hydrogen permeation on Al{sub 2}O{sub 3}-based nickel/cobalt composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihee; Jung, Miewon [Department of Chemistry/Institute of Basic Science, Sungshin Women' s University, Seoul 136-742 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials(ReSEM), Chungju National University, Chungju 380-702 (Korea, Republic of)

    2010-12-15

    Al{sub 2}O{sub 3} was synthesized using the sol-gel process with aluminum isopropoxide as the precursor and primary distilled water as the solvent. Nickel and cobalt metal powders were used to increase the strength of the membranes. The Al{sub 2}O{sub 3}-based membranes were prepared using HPS following a mechanical alloying process. The phase transformation, thermal evolution, surface and cross-section morphology of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-based membranes were characterized by XRD, TG-DTA and FE-SEM. The hydrogen permeation of Al{sub 2}O{sub 3}-based membranes was examined at 300-473 K under increasing pressure. Hydrogen permeation flux through an Al{sub 2}O{sub 3}-20wt%Co membrane was obtained to 2.36 mol m{sup -2} s{sup -1}. Reaction enthalpy was calculated to 4.5 kJ/mol using a Van't Hoff's plot. (author)

  8. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    Science.gov (United States)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  9. The Properties of Nano TiO2-Geopolymer Composite as a Material for Functional Surface Application

    Directory of Open Access Journals (Sweden)

    Syamsidar D.

    2017-01-01

    Full Text Available The aim of this study is to examine the properties of Nano TiO2-geopolymer as a material for functional surface applications such as walls, floors, bench top, arts and decoration materials. Class-C fly ash and metakaolin were used as raw materials to produce geopolymers pastes (binder. Geopolymers were synthesized through alkali activation method cured at 50°C for 2 hours using molar oxide ratios of SiO2/Al2O3 = 3.0, Na2O/SiO2 = 0.2, and H2O/Na2O = 10. Nano TiO2 was added into geopolymers paste at different concentration namely 0 wt%, 5wt%, 10wt% and 15wt % relative the weight of fly ash or metakaolin. The measurements were commenced after the samples aged 7 days. The samples made from fly ash were immersed in 1 M H2SO4 solution for 3 days for acid resistance examination. The self-cleaning properties of the composites were observed by immersing the sample into red clays solution. The X-Ray Diffraction (XRD was performed to examine the structure and phase of the samples before and after acid resistance measurement. Scanning Electron Microscopy (SEM was performed to examine the surface morphology of the resulting composites. The measurements results showed that Nano TiO2–geopolymers composite can be applied as functionally surface materials.

  10. Growth of uniform lath-like α-(Fe,Al)OOH and disc-like α-(Fe,Al)2O3 nanoparticles in a highly alkaline medium

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2010-01-01

    The effects of aluminium (Al 3+ )-dopant on the precipitation of uniform lath-like α-FeOOH particles, the obtention and growth of α-(Fe,Al)OOH and α-(Fe,Al) 2 O 3 solid solutions, particle size and shape were investigated using X-ray powder diffraction, Moessbauer and Fourier transform infrared spectroscopies, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Acicular α-FeOOH particles, precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH), were used as reference material. The influence of Al-dopant was investigated by adding varying amounts of Al 3+ ions to the initial FeCl 3 solution. In the presence of lower concentrations of aluminium ions (up to 11.11 mol%) α-(Fe,Al)OOH as a single phase was formed, whereas higher concentrations led to an additional obtention and growth of α-(Fe,Al) 2 O 3 . Al-for-Fe substitution in the α-FeOOH and α-Fe 2 O 3 structures was confirmed by a decrease in the unit-cell dimensions, a decrease in the hyperfine magnetic field and an increase in the wave number of the infrared absorption bands. The presence of lower concentrations of aluminium ions (up to 11.11 mol%) in the precipitation system did not affect the size and shape of the α-(Fe,Al)OOH particles, whereas higher concentrations influenced a decrease in the length and aspect ratio. In the presence of 42.86 mol% Al 3+ ions fairly uniform disc-shaped α-(Fe,Al) 2 O 3 were formed.

  11. Effect of alkali-earth ions on local structure of the LaAlO3-La0.67A0.33MnO3 (A = Ca, Sr, Ba) diluted solid solutions: 27Al NMR studies

    International Nuclear Information System (INIS)

    Charnaya, E.V.; Cheng Tien; Lee, M.K.; Sun, S.Y.; Chejina, N.V.

    2007-01-01

    27 Al Magic Angle Spinning (MAS) NMR studies are carried out for diluted alkali-earth metal doped lanthanum manganite solid solutions in the lanthanum aluminate (1-y)LaAlO 3 -yLa 0.67 A 0.33 MnO 3 (A = Ca, Sr, Ba) with y = 0, 2, 3, and 5 mol %. The spectra depend on the dopant species and show higher substitutional ordering for the Ba containing mixed crystals. Magnetically shifted lines are observed in all solid solutions and attributed to Al in the octahedral oxygen environment near manganese trivalent ions. Nonlinear dependences of their intensity are referred to the manganese-rich cluster formation. An additional MAS NMR line corresponding to aluminium at sites different from the octahedral site in pure LaAlO 3 is observed only in solutions doped with Ba. 3Q MAS NMR revealed that the broadening of this line is governed mainly by quadrupole coupling and allowed calculating the isotropic chemical shift [ru

  12. Effect of polymorphism of Al2O3 on the sintering and microstructure of transparent MgAl2O4 ceramics

    Science.gov (United States)

    Han, Dan; Zhang, Jian; Liu, Peng; Wang, Shiwei

    2017-09-01

    Transparent MgAl2O4 ceramics were fabricated by reactive sintering in air followed by hot isostatic press treatment using commercial Al2O3 powder (γ-Al2O3 or α-Al2O3) and MgO powder as raw materials. The densification rate, microstructure and optical properties of the ceramics were investigated. Densification temperature of the sample from γ-Al2O3/MgO was lower than that from α-Al2O3/MgO. However, in-line transmission (2 mm thick) of the sample from α-Al2O3/MgO at the wavelength of 600 nm and 1100 nm were respectively 77.7% and 84.3%, higher than those (66.7%, 81.4%) of the sample from γ-Al2O3/MgO. SEM observation revealed that the sample from α-Al2O3/MgO exhibited a homogeneous and pore-free microstructure, while, the sample from γ-Al2O3/MgO showed an apparent bimodal microstructure containing pores.

  13. Photoluminescence of the Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 ceramic system containing Fe3+ and Cr3+ as impurity ions

    Science.gov (United States)

    Sosman, L. P.; López, A.; Pedro, S. S.; Papa, A. R. R.

    2018-02-01

    This work presents the results of photoluminescence, excitation and radiative decay time for a ceramic system containing Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 with Fe3+ and Cr3+ as impurity ions. Emission data were obtained using several excitation wavelengths and the excitation data were acquired for the most intense emission bands. The optical results were analyzed according to the Tanabe-Sugano (TS) theory from which the crystalline field parameter Dq and Racah parameters B and C were obtained for the Fe3+ and Cr3+ sites. The results indicate that the Fe3+ and Cr3+ ions occupy tetrahedral and octahedral sites, respectively. The emission from Fe3+ and Cr3+ ions causes an intense and broad band ranging between 350 nm and 850 nm, showing that this material is a potential tunable radiation source at room temperature.

  14. Thermal conductivities for sintered and sphere-pac Li2O and γ-LiAlO2 solid breeders with and without irradiation effects

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1984-07-01

    Thermal conductivities (k, k/sub eff/) have been estimated for sintered and sphere-pac Li 2 O and γ-LiAlO 2 with and without neutron irradiation effects. The estimation is based on (1) data from unirradiated UO 2 , Li 2 O, and γ-LiAlO 2 ; (2) data from irradiated dielectric insulator materials; and (3) relatively simple physical models. Comparison of model predictions with limited ex- and in-reactor data found reasonable agreement, thus lending credence for their use in design applications. The impact of thermal conductivities on tritium breeding and power generation in fusion solid-breeder blankets is briefly highlighted

  15. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    Science.gov (United States)

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  16. Luminescent and scintillation properties of the Pr"3"+ doped single crystalline films of Lu_3Al_5_−_xGa_xO_1_2 garnet

    International Nuclear Information System (INIS)

    Gorbenko, V.; Zorenko, Yu; Zorenko, T.; Voznyak, T.; Paprocki, K.; Fabisiak, K.; Fedorov, A.; Bilski, P.; Twardak, A.; Zhusupkalieva, G.

    2016-01-01

    The Pr"3"+ d–f luminescence was investigated in the single crystalline films (SCF) of Lu_3Al_5_−_xGa_xO_1_2:Pr garnet solid solution at x = 1–3, grown by the liquid phase epitaxy (LPE) method from the melt-solution based on the PbO–B_2O_3 flux. The shape of CL spectra and decay kinetics of Pr"3"+ ions in Lu_3Al_5_−_xGa_xO_1_2 SCFs strongly depend on the total gallium concentration x and distribution of Ga"3"+ ions between the tetrahedral and octahedral position of the garnet host. The best scintillation properties of Lu_3Al_5_−_xGa_xO_1_2:Pr SCF are achieved at the nominal Ga content in melt-solution in the x = 22.5 range. - Highlights: • Single crystalline films of Lu_3Al_5_−_x Ga_xO_1_2:Pr garnet at x = 1–3 were grown by the LPE method. • Pr"3"+ emission spectra, light yield and decay time of films show strong dependence on Ga content. • The maximal light yield of Lu_3Al_5_−_x Ga_xO_1_2:Pr film is observed at Ga content x = 2.0–2.5.

  17. Synthesis of Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} via combustion route: Effects of Al{sub 2}O{sub 3} nanoparticles on superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Suan, Mohd Shahadan, E-mail: mohdshahadan@utem.edu.my [Department of Engineering Materials, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka (Malaysia); Johan, Mohd Rafie [Nanomaterial Engineering Research Group, Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-02-01

    Combustion reaction was used to synthesis Al{sub 2}O{sub 3} nanoparticles embedded Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} simultaneously. The effects of Al{sub 2}O{sub 3} nanoparticles with nominal molar mass (x{sub mol}) of 0.02, 0.04, 0.06, 0.08 and 0.10 towards the critical current density J{sub C} of Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} were verified by magnetic measurement. Resulted XRD patterns revealed that the calcined samples consist of pure Al{sub 2}O{sub 3} and Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} phases which had been confirmed by EDX results. The SEM images showed that Al{sub 2}O{sub 3} nanoparticles (~10 nm) were distributed in polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-δ} grains and grain boundaries. The presence of higher concentration of Al{sub 2}O{sub 3} nanoparticles has developed Al{sup 3+} rich spots which diffused within the YBa{sub 2}Cu{sub 3}O{sub 7-δ} superconducting matrix to form Y{sub 1-x}Al{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-δ} and was confirmed by EDX analysis. The samples were electrically superconducting at temperature above 85 K as measured by using standard four-probe technique. The magnetic field (H) dependent magnetization (M), M-H hysteresis loops measured at 77 K for x{sub mol}≤0.06 samples are significantly improved attributed to the increase of trapped fluxes in the samples. Remarkable increase of magnetic J{sub C} (H) in Al{sub 2}O{sub 3} nanoparticles added samples compared to the as prepared polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-δ} sample indicating strong pinning effect. It is suggested that well-distributed Al{sub 2}O{sub 3} nanoparticles in the polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-δ} matrix achieved via auto-combustion reaction has efficiently pin the magnetic vortex. The magnetic J{sub C} was optimized to ~6 kAcm{sup -2} in x{sub mol}=0.06 sample. On the other hand, insignificant magnetic J{sub C} improvement in x{sub mol}≥0.08 samples is probably resulted from the

  18. Monoclinic β-Li{sub 2}TiO{sub 3} nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Biranchi M., E-mail: biranchi.barc@gmail.com [Powder Metallurgy Division, Bhabha Atomic Research Centre, Vashi Complex, Navi Mumbai 400705 (India); Mohanty, Trupti; Prakash, Deep [Powder Metallurgy Division, Bhabha Atomic Research Centre, Vashi Complex, Navi Mumbai 400705 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sinha, P.K. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Vashi Complex, Navi Mumbai 400705 (India)

    2017-07-15

    Pure phase monoclinic nano-crystalline Li{sub 2}TiO{sub 3} powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li{sub 2}TiO{sub 3} powder has been obtained at slightly lower temperature (600–700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li{sub 2}TiO{sub 3} in the proposed method. The emergence of monoclinic Li{sub 2}TiO{sub 3} phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li{sub 2}TiO{sub 3} powder was calculated to be in the range of 15–80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li{sub 2}TiO{sub 3} powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li{sub 2}TiO{sub 3} powder compact attained about 98% of the theoretical density with fine grained (grain size: 23 μm) microstructure. It indicates excellent sinter-ability of Li{sub 2}TiO{sub 3} powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li{sub 2}TiO{sub 3}. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li{sub 2}TiO{sub 3}. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li{sub 2}TiO{sub 3} powder.

  19. Prediction of fracture strength in Al2O3/SiCp ceramic matrix nanocomposites

    Directory of Open Access Journals (Sweden)

    Z. Zhang and D.L. Chen

    2007-01-01

    Full Text Available Based primarily on a recent publication [S.M. Choi, H. Awaji, Sci. Tech. Adv. Mater. 6 (2005 2–10.], where the dislocations around the nano-sized particles in the intra-granular type of ceramic matrix nanocomposites (CMNCs were modeled, dislocation activities in Al2O3/SiCp CMNCs were discussed in relation to the processing conditions. The dislocations around the nano-sized particles, caused by the thermal mismatch between the ceramic matrix and nano-sized particles, were assumed to hold out the effect of Orowan-like strengthening, although the conventional Owowan loops induced by the movement of dislocations were unlikely in the ceramic matrix at room temperature. A model involving the yield strength of metal matrix nanocomposites (MMNCs, where the Owowan strengthening effect was taken into consideration, was thus modified and extended to predict the fracture strength of the intra-granular type of CMNCs without and with annealing. On the basis of the characteristics of dislocations in the CMNCs, the load-bearing effect and Orowan-like strengthening were considered before annealing, while the load-bearing effect and enhanced dislocation density strengthening were taken into account after annealing. The model prediction was found to be in agreement with the experimental data of Al2O3/SiCp nanocomposites reported in the literature.

  20. Kinetics of solid state phase transformation UAl3 + Al -> UAl4

    International Nuclear Information System (INIS)

    Cunha, C.A. da.

    1986-01-01

    The Kinetics of phase transformation UAl 3 + Al -> UAl 4 of two Al-U alloys, with 31.4 and 33.4 wt% U respectively, was studied by quantitative microscopy. The results have shown that this transformation is a nucleation and thermally activated growth process. The nucleation occurs heterogeneously at the UAl 3 /Al (∞) interfaces and the growth is controlled by volume diffusion. The empirical activation energy of the process was determined, which mean value is about 54.8 Kcal/mol. The growth Kinetic of UAl 4 phase is a parabolic law. The UAl 4 /UAl 3 and UAl 4 /Al (∞) interfaces migrates in opposite directions, with the UAl 4 /UAl 3 interface velocity being approximately 5 times greater than that of UAl 4 /Al (∞) interface. The chemical diffusion coefficient of Al and U in the UAl 4 phase were evaluated to be of the order of 10 -9 cm 2 /s at 600 0 C. (author) [pt

  1. Preparation of UO{sub 2}, ThO{sub 2} and (Th,U)O{sub 2} pellets from photochemically-prepared nano-powders

    Energy Technology Data Exchange (ETDEWEB)

    Pavelková, Tereza [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Čuba, Václav, E-mail: vaclav.cuba@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Visser-Týnová, Eva de [Nuclear Research and Consultancy Group (NRG), Research & Innovation, Westerduinweg 3, 1755 LE Petten (Netherlands); Ekberg, Christian [Nuclear Chemistry/Industrial Materials Recycling, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Persson, Ingmar [Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala (Sweden)

    2016-02-15

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely “ThO{sub 2} like” and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300–550 °C yielded nano-crystalline UO{sub 2}, ThO{sub 2} or solid (Th,U)O{sub 2} solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H{sub 2} (20:1) mixture (UO{sub 2} and (Th,U)O{sub 2} pellets) or at 1600 °C in ambient air (ThO{sub 2} pellets). The theoretical density of the sintered pellets varied from 91 to 97%. - Highlights: • Photochemically prepared UO{sub 2}/ThO{sub 2} nano-powders were pelletized. • The nano-powders of crystalline oxides were pelletized without any binder. • Pellets were sintered at 1300 °C (UO{sub 2} and (Th,U)O{sub 2}) or 1600 °C (ThO{sub 2} pellets). • The theoretical density of the sintered pellets varies from 91 to 97%.

  2. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  3. Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material

    International Nuclear Information System (INIS)

    Dan Yuanyuan; Lin Haibo; Liu Xiaolei; Lu Haiyan; Zhao Jingzhe; Shi Zhan; Guo Yupeng

    2012-01-01

    Highlights: ► We prepare nano-PbO 2 + Mn 3 O 4 composite material by composite deposition method. ► The nano-PbO 2 + Mn 3 O 4 composite has porous quasi three-dimensional structure. ► Maximum electrochemically effective area (R F ) of the composite is 72. ► The composite shows high specific capacitance up to ∼340 F g −1 . ► A general knowledge of the pesudocapacitance behavior of the composite is acquired. - Abstract: Nano-Mn 3 O 4 + PbO 2 composite electrode materials with different compositions are prepared by anodic composite electrodeposition in Pb 2+ plating solution containing suspended nano-Mn 3 O 4 particles (40–60 nm). The particles are synthesized via one-step homogeneous precipitation at low temperature. The composite materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) analyses. The results indicate that the composite composed of γ-Mn 3 O 4 and β-PbO 2 is porous and quasi three-dimensional (3D), and its maximum electrochemically effective area ratio (R F ) is 72. The capacitance performance of the composite is determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge–discharge test. The composite shows a high specific capacitance up to 338 F g −1 .

  4. Phosphorescent and thermoluminescent properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphors prepared by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Mothudi, B.M., E-mail: mothubm@unisa.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, University of South Africa, P.O. Box 392, Pretoria, ZA 6031 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Kumar, A.; Sohn, K. [Department of Material Science and Metallurgical Engineering, Sunchon National University, Sunchon, Chonam 540-742 (Korea, Republic of); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2012-05-15

    Long persistent SrAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors co-doped with Dy{sup 3+} were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl{sub 2}O{sub 4} were observed in all the samples. The broad band emission spectra at 497 nm for SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} were observed and the emission is attributed to the 4f{sup 6}5d{sup 1} to 4f{sup 7} transition of Eu{sup 2+} ions. The samples annealed at 1100-1200 Degree-Sign C showed similar broad TL glow curves centered at 120 Degree-Sign C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy{sup 3+} ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  5. Microstructural Investigations of Al2O3 Scale Formed on FeCrAl Steel during High Temperature Oxidation in SO2

    International Nuclear Information System (INIS)

    Homa, M.; Zurek, Z.; Morgiel, B.; Zieba, P.; Wojewoda, J.

    2008-01-01

    The results of microstructure observations of the Al 2 O 3 scale formed on a Fe-Cr-Al steel during high temperature oxidation in the SO 2 atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with 'whiskers, which look like very thin platelets and have random orientation. The cross section of a sample shows, that the 'whiskers' are approximately 2 μm high, however the compact scale layer on which they reside is 0.2 μm thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the θ-Al 2 O 3 phase and a residual amount of α-Al 2 O 3

  6. Polar phase transitions in heteroepitaxial stabilized La0.5Y0.5AlO3 thin films

    Science.gov (United States)

    Liu, Shenghua; Zhang, Chunfeng; Zhu, Mengya; He, Qian; Chakhalian, Jak; Liu, Xiaoran; Borisevich, Albina; Wang, Xiaoyong; Xiao, Min

    2017-10-01

    We report on the fabrication of epitaxial La0.5Y0.5AlO3 ultrathin films on (001) LaAlO3 substrates. Structural characterizations by scanning transmission electron microscopy and x-ray diffraction confirm the high quality of the film with a - b + c - AlO6 octahedral tilt pattern. Unlike either of the nonpolar parent compound, LaAlO3 and YAlO3, second harmonic generation measurements on the thin films suggest a nonpolar-polar phase transition at T c near 500 K, and a polar-polar phase transition at T a near 160 K. By fitting the angular dependence of the second harmonic intensities, we further propose that the two polar structures can be assigned to the Pmc2 1 and Pmn2 1 space group, while the high temperature nonpolar structure belongs to the Pbnm space group.

  7. Solubility limit and luminescence properties of Eu{sup 3+} ions in Al{sub 2}O{sub 3} powder

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yuya; Nakamura, Toshihiro, E-mail: tnakamura@gunma-u.ac.jp; Adachi, Sadao, E-mail: adachi@gunma-u.ac.jp

    2016-08-15

    Al–Eu–O compounds are synthesized from Al{sub 2}O{sub 3}:Eu{sub 2}O{sub 3}=(1–x):x mixtures (x=0–0.15) by the metal organic decomposition method and subsequently calcined at various temperatures from T{sub c}=750 to 1200 °C in dry O{sub 2} atmosphere. The structural and luminescence properties of these compounds are investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation spectroscopy, and luminescence lifetime measurements. The present study focuses on the effects of the Eu{sub 2}O{sub 3} addition (x) on the material and phosphor properties of Al{sub 2}O{sub 3}:Eu{sup 3+}. The stable phase of α-Al{sub 2}O{sub 3} is synthesized at T{sub c}>1100 °C and cubic γ-Al{sub 2}O{sub 3} phase at T{sub c}≤1100 °C. The calcination temperature dependence of the PL intensity yields an activation of E{sub a}~0.8 eV for Eu{sup 3+} ions in the Al{sub 2}O{sub 3} host. The luminescence decay time is determined to be ~0.8 ms, independent of x. Temperature dependence of the PL intensity at T=20–450 K exhibits thermal quenching behavior with energies of 17 meV and 0.28 eV at low (<200 K) and high temperatures (>200 K), respectively. The solubility limit of Eu{sup 3+} ions in α-Al{sub 2}O{sub 3} is determined to be ~1%. The schematic energy-level diagram of Eu{sup 3+} in α-Al{sub 2}O{sub 3} is also proposed for the sake of a better understanding of the luminescence process of this phosphor system.

  8. The Al-rich region of the Al-Mn-Ni alloy system. Part II. Phase equilibria at 620-1000 oC

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Meisterernst, G.; Grushko, B.; Feuerbacher, M.

    2011-01-01

    Research highlights: → Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 deg. C by means of SEM, TEM, powder XRD and DTA. → Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P63/mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P63/m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P1121/a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (basecentered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. → The existence of a thermodynamically stable R-phase of stoichiometry Al 60 Mn 11 Ni 4 , reported earlier in literature, was not confirmed in the present study. - Abstract: Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 o C. Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P6 3 /mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P6 3 /m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P112 1 /a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (base-centered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. Their physicochemical behaviour in the Al-Mn-Ni alloy system was studied.

  9. Óxidos Mistos de Al2O3/ZrO2 como Inibidores de Corrosão do Aço SAE 1020

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues da Silva

    2014-01-01

    Full Text Available This paper describes the use of Al2O3/ZrO2 mixed oxides synthesized by sol-gel process with different amounts of ZrO2 (5%, 10%, 15% and 20% by mass in the Al2O3 matrix and different temperatures of calcination, such as interesting inhibitor materials of corrosive processes of SAE 1020 steel. The materials were characterized by Infrared Spectroscopy Fourier Transform (FTIR and X-Ray Diffraction (XRD techniques. FTIR spectra show the typical Al-O and Zr-O bonds vibrations in the mixed oxides. The XRD patterns of the samples calcined at 800 °C and 1000 °C shows the ZrO2 tetragonal and γ-Al2O3 face-centered cubic (FCC phases. The corrosion tests showed that the SAE 1020 steel covered with mixed oxides have an anodic passive region, thereby inhibiting the corrosive processes on the metal surface. Furthermore, the found values for steel coated with mixed oxide synthesized indicate a decrease in corrosion potentials (Ecor and corrosion current (icor. With respect to different samples of mixed oxides, the sample with 20 % of ZrO2 in the Al2O3 matrix proved to be the best inhibitor of steel corrosion, with the lowest values of corrosion potential and corrosion current, - 1.32 V and 0.31 μA cm-2, respectively.

  10. Basic hydrolysis of 1, 3, 4, 6-tetra-O-acetyl-2-[18F] fluoro-D-glucose on solid phase extraction

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; He Yijie; Huan Dingcai; Liu Boli

    2003-01-01

    A new base hydrolysis method are used for 1, 3, 4, 6-tetra-O-acetyl-2-[ 18 F] fluoro-D-glucose on solid phase extraction. The labeled intermediate is trapped on an active C-18 solid phase extraction cartridge, and hydrolyzed in cartridge with 1 mL 2 mol/L NaOH at room temperature. The results show that there are over 99% of the labeled intermediate being turned into 18 F-FDG within 2 min. It is easy to get 18 F-FDG after neutralized with phosphate buffer, purified by C-18 and Alumina cartridge. The basic hydrolysis on solid extraction is a simple method for preparation of 18 F-FDG

  11. Crystallization behavior of (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Cheng, Chih-Wei; Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.t [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2010-07-02

    The crystallization behavior of the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of {beta}-spodumene. The isothermal crystallization kinetics of {beta}-spodumene from the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of {beta}-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na{sub 2}O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na{sub 2}O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses.

  12. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  13. Wearing mechanisms of Al{sub 2} O{sub 3}-Si C-C for torpedo car; Mecanismos de desgate dos refratarios de Al{sub 2}O{sub 3}-SiC-C para carro-torpedo

    Energy Technology Data Exchange (ETDEWEB)

    Quintela, Marco Antonio; Correa Filho, Gerson [USIMINAS, Ipatinga, MG (Brazil). Centro de Pesquisa e Desenvolvimento; Correa Filho, Joao Rodrigues [USIMINAS, Ipatinga, MG (Brazil). Gerencia de Manutencao de Refratarios e Civil

    1995-12-31

    Recently, with the improvement in the hot metal pretreatment practice in the torpedo car at USIMINAS, refractory linings were subjected to severe working conditions resulting in a considerable change in the performance of Al{sub 2} O{sub 3}-Si C-C bricks. A Post Mortem study of the torpedo car linings was carried out using ceramographic analysis and scanning electron microscopy. It was found that the wear mechanisms of Al{sub 2} O{sub 3}-Si C-C bricks comprise mainly the development of dense and secondary phases around Al{sub 2} O{sub 3} particles, together with the formation of low refractoriness phases on the slag and refractory interface. (author) 5 figs.

  14. Surface modified Al2O3 in fluorinated polyimide/Al2O3 ...

    Indian Academy of Sciences (India)

    guest group into a host structure without a major struc- tural modification of the ... on nano-structure size (Li et al 2009). Among ... naocomposite by the decrease of interfacial areas between ... pling agent which usually has a long alkyl tail shows a good ... the mechanical and thermal properties of polymers (Li et al. 2010).

  15. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    Science.gov (United States)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    Science.gov (United States)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  17. Formulation of calcium dialuminate (CaO·2Al2O3 refractory cement from local bauxite

    Directory of Open Access Journals (Sweden)

    A.B. Tchamba

    2015-06-01

    Full Text Available Three types of bauxites containing aluminum hydroxide of 58.1% gibbsite and 19.3% boehmite for BX3, 95.5% of gibbsite for BX55 and 84.5% of gibbsite for BX8 were used with lime at 95% of CaO through solid state sintering in one stage to prepare a refractory clinker at 1550 °C. The powder obtained after grinding the clinker showed in the XRD curves the presence of CaO·2Al2O3 and CaO·TiO2 phases in the cement samples. The density of cement powder varied between 2.95 and 3.17 g/cm3 and the specific area of powder obtained after grinding was between 0.72 and 0.85 m2/g. The properties of hydrated cement, W/C = 0.33, after stabilization of cement components for 48 h at 105 °C were showed by XRD, DTA, DTG and SEM (C3AH6, AH3, CA2 and CaO·TiO2. The Young's modulus of the cement made varied between 35.5 and 39.4 GPa, and these Young's moduli were compared to conventional CA14M cement.

  18. Potential of HfN, ZrN, and TiH as hot carrier absorber and Al2O3/Ge quantum well/Al2O3 and Al2O3/PbS quantum dots/Al2O3 as energy selective contacts

    Science.gov (United States)

    Shrestha, Santosh; Chung, Simon; Liao, Yuanxun; Wang, Pei; Cao, Wenkai; Wen, Xiaoming; Gupta, Neeti; Conibeer, Gavin

    2017-08-01

    The hot carrier (HC) solar cell is one of the most promising advanced photovoltaic concepts. It aims to minimise two major losses in single junction solar cells due to sub-band gap loss and thermalisation of above band gap photons by using a small bandgap absorber, and, importantly, collecting the photo-generated carriers before they thermalise. In this paper we will present recent development of the two critical components of the HC solar cell, i.e., the absorber and energy selective contacts (ESCs). For absorber, fabrication and carrier cooling rates in potential bulk materials — hafnium nitride, zirconium nitride, and titanium hydride are presented. Results of ESCs employing double barrier resonant tunneling structures Al2O3/Ge quantum well (QW)/Al2O3 and Al2O3/PbS quantum dots (QDs)/Al2O3 are also presented. These results are expected to guide further development of practical HC solar cell devices.

  19. Reacciones en estado sólido para el sistema Al-MoO3 en la fabricación de materiales compuestos Al2O3-aluminuros de Mo

    Directory of Open Access Journals (Sweden)

    Marín, J.

    2002-02-01

    Full Text Available Ceramic matrix composites reinforced with metallic particles exhibit good mechanical properties. One research line has involved the fabrication of 3A (alumina-aluminide alloys composites via in situ consolidation of aluminum reactive powders mixed with a metallic oxide. In this paper the solid state reactions for the Al-MoO3 system and the effect of the precursor compositions for obtaining Al2O3 composites and intermetallic aluminides are studied. The reactions in vacuum for the 25 °C to 750 °C temperature range, and the microstructural evolution up to 1200 °C were studied. DTA-TG and DSC were used to determine that a heating rate of 1 °C/min at the critical range of 500-600 °C, resulted in controlled aluminothermic reactions. XRD and SEM showed that in the sintered composites a microstructure composed of an Al2O3 matrix and a Mo aluminide /metallic Mo dispersed phase was present. The precursor composition affects the dispersed phase in the composite (Mo aluminides and/or metallic Mo, the relative Al2O3 /second phase quantities, and the hardness of the composite sintered at 1450 °C.

    Los materiales compuestos de matriz cerámica (CMC's de Al2O3 reforzados con partículas metálicas tienen propiedades mecánicas muy atractivas. Un área de investigación emergente es la fabricación de compuestos 3A (Alumina-Aluminide-Alloys, mediante la formación in situ de Al2O3 reforzada con metal elemental y/o aluminuros del metal, partiendo de polvos de aluminio y de óxidos metálicos. En este trabajo se estudian las reacciones en estado sólido para el sistema Al-MoO3. Las reacciones de aluminotermia se estudian en vacío para el rango de temperaturas entre 25 °C y 750 °C y su evolución microestructural hasta 1.200 °C. Mediante análisis calorimétrico (DTA-TG y DSC se determinó que para una

  20. Hot corrosion of the ceramic composite coating Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO plasma sprayed on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Amir Khodaparast; Kiahosseini, Seyed Rahim [Islamic Azad Univ., Damghan (Iran, Islamic Republic of). Dept. of Engineering

    2017-08-15

    Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO three-layered coatings with thicknesses of 50, 100, and 150 μm for Al{sub 2}O{sub 3}/MgO and 100 μm for the other layers were deposited on 316L stainless steel using plasma spraying. X-ray diffraction, atomic force microscopy, furnace hot corrosion testing in the presence of a mixture of Na{sub 2}SO{sub 4} and V{sub 2}O{sub 5} corrosive salts and scanning electron microscopy were used to determine the structural, morphological and hot corrosion resistance of samples. Results revealed that the crystalline grains of MgO and Al{sub 2}O{sub 3} coating were very small. Weight loss due to hot corrosion decreased from approximately 4.267 g for 316L stainless steel without coating to 2.058 g. The samples with 150 μm outer coating showed improved resistance with the increase in outer layer thickness. Scanning electron microscopy of the coated surface revealed that the coating's resistance to hot corrosion is related to the thickness and the grain size of Al{sub 2}O{sub 3}/MgO coatings.

  1. N-TiO2/gamma-Al2O3 granules: preparation, characterization and photocatalytic activity for the degradation of 2,4-dichlorophenol.

    Science.gov (United States)

    Huang, Donggen; Xie, Wenfa; Tu, Zhibin; Zhang, Feng; Quan, Shuiqing; Liu, Lei

    2013-01-01

    Nitrogen doping TiO2 and gamma-Al2O3 composite oxide granules (N-TiO2/gamma-Al2O3) were prepared by co-precipitation/oil-drop/calcination in gaseous NH3 process using titanium sulphate and aluminum nitrate as raw materials. After calcination at 550 degrees C in NH3 atmosphere, the composite granules showed anatase TiO2 and gamma-Al2O3 phases with the granularity of 0.5-1.0 mm. The anatase crystallite size of composite granules was range from 3.5-25 nm calculated from XRD result. The UV-Vis spectra and N 1s XPS spectra indicated that N atoms were incorporated into the TiO2 crystal lattice. The product granules could be used as a photocatalyst in moving bed reactor, and was demonstrated a higher visible-light photocatalytic activity for 2,4-dichlorophenol degradation compared with commercial P25 TiO2. When the mole ratio of TiO2 to Al2O3 equal to 1.0 showed the highest catalytic activity, the degradation percentage of 2,4-chlorophenol could be up to 92.5%, under 60 W fluorescent light irradiation for 9 hours. The high visible-light photocatalytic activity might be a synergetic effect of nitrogen doping and the form of binary metal oxide of TiO2 and gamma-Al2O3.

  2. Glass-ceramic materials of system MgO-Al{sub 2}O{sub 3}-SiO{sub 2} from rice husk ash; Materiales vitroceramicos del sistema MgO-Al2O3-SiO2 a partir de ceniza de cascara de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. I.; Rincon, J. M.; Andreola, F.; Barbieri, L.; Bondioli, F.; Lancellotti, I.; Romero, M.

    2011-07-01

    This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials. An original glass has been formulated in the base system MgO-Al{sub 2}O{sub 3}-SiO{sub 2} with addition of B{sub 2}O{sub 3} and Na{sub 2}O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis (DTA). Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction (XRD). Results show that it is possible to use ash rice husk to produce glass-ceramic materials by a sinter crystallization process, with nepheline (Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}) as major crystalline phase in the temperature interval 700-950 degree centigrade and forsterite (2MgO-SiO{sub 2}) at temperatures above 950 degree centigrade. (Author) 15 refs.

  3. New Trend for Acceleration Solid Phase Extraction Process Based on Using Magnetic Nano-adsorbents along with Surface Functionalization through Microwave Assisted Solvent-free Technique.

    Science.gov (United States)

    Ahmed, Salwa A; Soliman, Ezzat M

    2015-01-01

    The use of a microwave assisted solvent-free technique for silica coating of iron magnetic nanoparticles (Fe3O4-MNPs) and their functionalization with three aliphatic diamines: 1,2-ethylenediamine (1,2EDA), 1,5-pentanediamine (1,5PDA) and 1.8-octanediamine (1,8-ODA), were successfully achieved in a very short time. Only 60 min were needed for the nano-adsorbent modification as compared with more than 1000 min using conventional methods under reflux conditions. Their surface characteristics (observed by TEM, XRD and FT-IR), in addition to Cu(II) adsorption capacities (1.805, 1.928 and 2.116 mmol g(-1)) and time of equilibration (5 s) were almost the same. Thus, the time required to accomplish the solid phase extraction process is greatly reduced. On the other hand, the phenomenon of the fast equilibration kinetics was successfully extended on using the functionalized aliphatic diamines magnetic nano-adsorbents as precursors for further microwave treatment. Three selective magnetic nano-adsorbents (Fe3O4-MNPs-SiO2-1,2EDA-3FSA, Fe3O4-MNPs-SiO2-1,5PDA-3FSA and Fe3O4-MNPs-SiO2-1,8ODA-3FSA) were obtained via the reaction with 3-formayl salicylic acid (3FSA) as a selective reagent for Fe(III). At 5 s contact time, they exhibited maximum Fe(III) uptake equal to 4.512, 4.987 and 5.367 mmol g(-1), respectively. Furthermore, modeling of values of metal uptake capacity obtained at different shaking time intervals supports pseudo-second order kinetics.

  4. Order-disorder transition and electrical conductivity of the brownmillerite solid-solutions system Ba sub 2 (In, M) sub 2 O sub 5 (M=Ga, Al)

    CERN Document Server

    Yamamura, H; Kakinuma, K; Mori, T; Haneda, H

    1999-01-01

    The brownmillerite solid-solution systems Ba sub 2 (In sub 1 sub - sub x M sub x) sub 2 O sub 5 (M=Ga, Al) were investigated by means of high-temperature X-ray diffraction (XRD), dilatometry, and electrical-conductivity measurements. XRD showed that the Ba sub 2 (In sub 1 sub - sub x Ga sub x) sub 2 O sub 5 system had orthorhombic symmetry in the composition range 0.0<=x<=0.2 and cubic symmetry in the range 0.3<=x. The Al system also changed to cubic symmetry from orthorhombic symmetry in the range 0.2<=x. While the orthorhombic phase showed an order-disorder transition in the electrical conductivity measurements, the transition temperature decreased with increasing the M content. The order-disorder transition temperature and the crystal-structure transition temperature were very different. Such a transition was not observed in the cubic phases, and their electrical conductivity were fairly low compared to those of the disordered cubic phase after the transition due to the heating process. These p...

  5. Solid tritium breeder materials-Li2O and LiAlO2: a data base review

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Billone, M.C.; Clemmer, R.G.; Fischer, A.K.; Hollenberg, G.W.; Tam, S.W.

    1985-01-01

    The fabrication, properties, and irradiation behavior of Li 2 O and γ-LiAlO 2 are reviewed and assessed to determine the potential of these materials to satisfy the basic solid breeder blanket performance requirements. Based on the data analysis and theoretical modeling, a set of major technical uncertainties is identified. These uncertainties include: fabricability of sphere-pac solid breeders; high fluence and burnup effects on thermal conductivity and microstructural stability; high fluence and burnup effects on tritium diffusion coefficients at low temperature; relationship among purge flow chemistry, surface adsorption, and species of released tritium; and mechanical properties and the loads imposed on the structural materials by the breeder during blanket operation. Resolution of these issues is important in assuring that solid breeder blankets can be designed with confidence

  6. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    Science.gov (United States)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  7. Thermoluminescence studies of γ-irradiated Al{sub 2}O{sub 3}:Ce{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, S. Satyanarayana [Physics R & D Center, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Nagabhushana, K.R., E-mail: bhushankr@gmail.com [Physics R & D Center, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Department of Physics, PES University, BSK 3rd Stage, Bangalore 560085 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Pure and Ce{sup 3+} doped Al{sub 2}O{sub 3} phosphors were synthesized by solution combustion method. The synthesized samples were characterized by X-ray diffraction (XRD) and its shows α-phase of Al{sub 2}O{sub 3}. Crystallite size was estimated by Williamson–Hall (W–H) method and found to be 49, 59 and 84 nm for pure, 0.1 mol% and 1 mol% Ce{sup 3+} doped Al{sub 2}O{sub 3} respectively. Trace elemental analysis of undoped Al{sub 2}O{sub 3} shows impurities viz. Fe, Cr, Mn, Mg, Ti, etc. Photoluminescence (PL) spectra of Al{sub 2}O{sub 3}:Ce{sup 3+} shows emission at 367 nm and excitation peak at 273 nm, which are corresponding to {sup 5}D → {sup 4}F and {sup 4}F → {sup 5}D transitions respectively. PL intensity decreases with concentration up to 0.4 mol%, beyond this mol% PL intensity increases with doping concentration up to 2 mol%. Thermoluminescence (TL) studies of γ-rayed pure and Ce{sup 3+} doped Al{sub 2}O{sub 3} have been studied. Two well resolved TL glow peaks at 457.5 K and 622 K were observed in pure Al{sub 2}O{sub 3}. Additional glow peak at 566 K was observed in Al{sub 2}O{sub 3}:Ce{sup 3+}. Maximum TL intensity was observed for Al{sub 2}O{sub 3}:Ce{sup 3+} (0.1 mol%) beyond this TL intensity decreases with increasing Ce{sup 3+} concentration. Computerized glow curve deconvolution (CGCD) method was used to resolve the multiple peaks and to calculate TL kinetic parameters. Thermoluminescence emission (TLE) spectra of pure Al{sub 2}O{sub 3} glow peaks (457.5 K and 622 K) shows sharp emission at 694 nm and two small humps at 672 nm and 709 nm. The sharp peak at 696 nm corresponds to Cr{sup 3+} impurity of {sup 2}E{sub g} → {sup 4}A{sub 2g} transition of R lines and 713 nm hump is undoubtedly belongs to Cr{sup 3+} emission of near neighbor pairs. The emission at 672 nm is characteristic of Mn{sup 4+} impurity ions of {sup 2}E → {sup 4}A{sub 2} transition. TLE of Al{sub 2}O{sub 3}:Ce{sup 3+} (0.1 mol%) shows additional broad emission at 412 nm

  8. The effect of sintering time on synthesis of in situ submicron {alpha}-Al{sub 2}O{sub 3} particles by the exothermic reactions of CuO particles in molten pure Al

    Energy Technology Data Exchange (ETDEWEB)

    Dikici, Burak, E-mail: burakdikici@yyu.edu.tr [Yuzuncu Yil University, Department of Mechanical Engineering, 65080 Van (Turkey); Gavgali, Mehmet [Ataturk University, Department of Mechanical Engineering, 25240 Erzurum (Turkey)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Al-Cu/Al{sub 2}O{sub 3} composites were prepared successfully by means of hot pressing method. Black-Right-Pointing-Pointer Sintering time of the Al-CuO system effect the reaction rate and formation of Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Increase in sintering time accelerates formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} phase. Black-Right-Pointing-Pointer Hardness of the sintered composite for 30 min at 1000 Degree-Sign C increased from 60 to 174 HV. - Abstract: In this study, in situ {alpha}-Al{sub 2}O{sub 3} reinforcing particles have been successfully synthesised in an Al-Cu matrix alloy by means of the conventional Hot Pressing (HP) method. The effect of sintering time on the forming of the {alpha}-Al{sub 2}O{sub 3} phase at 1000 Degree-Sign C was investigated using Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and a Scanning Electron Microscope (SEM). The sintered composites contained thermodynamically stable {alpha}-Al{sub 2}O{sub 3} particles and {theta}-Al{sub 2}Cu eutectic phases, which were embedded in the Al-Cu matrix. The in situ {alpha}-Al{sub 2}O{sub 3} particles were generally spherical and their mean size was observed to be less than 0.5 {mu}m. The results showed that sintering time influences not only the reaction rate of copper and the formation of Al{sub 2}O{sub 3}. Also, an increase in the sintering time accelerates the formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} particles and decreases the quantity of {theta}-Al{sub 2}Cu intermetallic phase in the liquid aluminium. Additionally, sintering of composite for 30 min at 1000 Degree-Sign C increased the hardness from 60 to 174 HV.

  9. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    Science.gov (United States)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  10. Neutronic optimization of a LiAlO2 solid breeder blanket

    International Nuclear Information System (INIS)

    Levin, P.; Ghoniem, N.M.

    1986-02-01

    In this report, a pressurized lobular blanket configuration is neutronically optimized. Among the features of this blanket configuration are the use of beryllium and LiAlO 2 solid breeder pins in a cross-flow configuration in a helium coolant. One-dimensional neutronic optimization calculations are performed to maximize the tritium breeding ratio (TER). The procedure involves spatial allocations of Be, LiAlO 2 , 9-C (ferritic steel), and He; in such a way as to maximize the TBR subject to several material, engineering and geometrical constraints. A TBR of 1.17 is achieved for a relatively thin blanket (approx. = 43 cm depth), and consistency with all imposed constraints

  11. Thermal stability of alumina thin films containing γ-Al.sub.2./sub.O.sub.3./sub. phase prepared by reactive magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Musil, Jindřich; Blažek, J.; Zeman, P.; Prokšová, Š.; Šašek, M.; Čerstvý, R.

    2010-01-01

    Roč. 257, č. 3 (2010), s. 1058-1062 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z10100520 Keywords : Al 2 O 3 (alumina) * annealing * thermal stability * nanocrystalline material * sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010

  12. Structural and electrical properties of (1-x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 solid solution

    International Nuclear Information System (INIS)

    Lee, J.-K.; Yi, J.Y.; Hong, K.S.

    2004-01-01

    Structural, dielectric and piezoelectric properties of (1-x)(Na 1/2 Bi 1/2 )TiO 3 -xPb(Mg 1/3 Nb 2/3 )O 3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of ε r (T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process

  13. Study of Pd-Sn/Al{sub 2}O{sub 3} catalysts prepared by an oxide colloidal route; Etude de catalyseurs Pd-Sn/Al{sub 2}O{sub 3} prepares par voie colloidale oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Verdier, St.

    2001-09-01

    The oxide colloidal route, developed in the laboratory for mono-metallic catalysts, consists in preparing a metallic oxide hydro-sol which leads to the supported catalyst after deposition onto a support and an activation stage. In this work, this method has been adapted to the preparation of alumina supported bimetallic Pd-Sn catalysts to determine its interest for the control of the properties of the bimetallic phase (size, composition and structure). In the preliminary study concerning tin oxide sols, SnO{sub 2} (size=2,3 nm) and Sn{sub 6}O{sub 4}(OH){sub 4} (size = 25 nm) nano-particles were synthesized by neutralization respectively for tin(IV) and tin(H). The control through the pH of the aggregation of the PdO and SnO{sub 2} particles revealed that increasing oxide solubility promotes integral re-dispersion of the oxide particles. To synthesize oxide bimetallic sols, three strategies were defined. Copolymerization (formation of a mixed oxide nano-sol by cross condensation of both metals) does not lead to a mixed oxide Pd-Sn phase. Surface precipitation (neutralization of the second metal in the presence of the first oxide sol) yields nano-particles of both oxides in close interaction. Adsorption (adsorption of the second metal onto the first oxide sol) significantly occurs when contacting tin with a basic PdO sol (hydrolytic adsorption). The characterization and the assessment of the catalytic properties (selective hydrogenation of buta-1,3-diene) of the catalysts prepared by deposition of oxide bimetallic sols showed that the oxide colloidal route allows the control of the properties of the supported bimetallic phase. Moreover, our results display that both Pd-Sn alloy formation and,aggregation of the metallic particles contribute to increase the selectivity for this reaction. (author)

  14. Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating

    Directory of Open Access Journals (Sweden)

    Wahab Juyana A

    2017-01-01

    Full Text Available This paper focused on the effect of deposition conditions on the microstructural and mechanical properties of the ceramic coating. In this study, Al2O3 – 13%TiO2 coated mild steel were prepared by using atmospheric plasma spray technology with different plasma power ranging from 25 kW to 40 kW. The as-sprayed coatings consist of γ-Al2O3 phase as the major phase and small amount of the titania phase existed in the coating structure. High degree of fully melted region was observed in the surface morphology for the coating sprayed with high plasma power, which lead to the high hardness and low percentage of porosity. In this study, nanoindentation test was carried out to investigate mechanical properties of the coating and the results showed that the coatings possess high elastic behaviour, which beneficial in engineering practice.

  15. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  16. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  17. Quantitative determination of phases in ZrO2 (MgO) (Y2O3) using the Rietveld method

    International Nuclear Information System (INIS)

    Castro, Antonio Carlos de

    2007-01-01

    The key objective of this work is the crystallographic characterization of the zircon co-doped with Yttria and magnesium with the application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon monoclinic, tetragonal, and cubic). Samples of zircon polymorph were obtained from zircon doped with Yttria and magnesium at defined molar concentrations. The zircon polymorph stability during subeutetoid aging at 1350 deg C were investigated to determine ZrO 2 - MgO - Y 2 0 3 phases degradation and to define the solid solutions stability environment. ZrO 2 powders doped with 8 mol por cent of MgO and 1 mol por cent of Y 2 O 3 , and 9 mol por cent of MgO and 0 mol por cent of Y 2 O 3 have been prepared by chemical route using the co-precipitation method. These samples have been calcinate at 550 deg C, sintered at 1500 deg C and characterized by the Rietveld method using the X-ray diffraction data. The variation of the lattice parameter, changes in the phase composition and their microstructures are discussed. The application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon tetragonal and cubic) reveals no formation of tetragonal phase and indicating that the matrix is the cubic phase with low concentration of monoclinic phase.(author)

  18. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  19. Thermodynamics of Bi2O3-SiO2 system

    Directory of Open Access Journals (Sweden)

    Onderka B.

    2017-01-01

    Full Text Available Thermodynamic properties of the liquid Bi2O3-SiO2 solutions were determined from the results of the electrochemical measurements by use of the solid oxide galvanic cells with YSZ (Yttria-Stabilized-Zirconia electrolyte. Activities of Bi2O3 in the solutions were determined for 0.2, 0.3, 0.4, and 0.5 SiO2 mole fractions in the temperature range 1073-1293 K from measured electromotive force (e.m.f of the solid electrolyte galvanic cell: Bi, Bi2O3-SiO2 | YSZ | air (pO2 = 0.213 bar Additionally, heat capacity data obtained for two solid phases 6Bi2O3•SiO2 and 2Bi2O33SiO2 were included into optimization of thermodynamic properties of the system. Optimization procedure was supported by differential thermal analysis (DTA data obtained in this work as well as those accepted from the literature. Using the data obtained in this work, and the information about phase equilibria found in the literature, binary system Bi2O3-SiO2 was assessed with the ThermoCalc software.

  20. Boosted surface acidity in TiO{sub 2} and Al{sub 2}O{sub 3}-TiO{sub 2} nanotubes as catalytic supports

    Energy Technology Data Exchange (ETDEWEB)

    Camposeco, R. [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico); Department of Chemistry, UAM-A, 55534, México, D.F. (Mexico); Castillo, S., E-mail: scastill@imp.mx [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico); Department of Chemical Engineering, ESIQIE-IPN, 75876, México, D.F. (Mexico); Mejía-Centeno, Isidro; Navarrete, J.; Nava, N. [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico)

    2015-11-30

    Graphical abstract: - Highlights: • Surface acidity of NTs was modified by adding alumina. • Brönsted acid sites remain constant but Lewis acid sites are increased remarkably. • IR characterization by lutidine and pyridine confirms the surface acidity of NTs. • 98% of NO conversion was reached between 380 and 480 °C on NT-5Al. • The boosted surface acidity of NT-Al improves the catalytic activity for SCR-NO. - Abstract: In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH{sub 3}. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H{sub 2}Ti{sub 4}O{sub 9}·H{sub 2}O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH{sub 3} under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  1. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  2. Al{sub 2}O{sub 3}:Cr{sup 3+} microfibers by hydrothermal route: Luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dianguang [School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021 (China); Zhu, Zhenfeng, E-mail: zhuzf@sust.edu.cn [School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021 (China); Liu, Hui; Zhang, Zhengyang; Zhang, Yanbin; Li, Gege [School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021 (China)

    2012-09-15

    Highlights: ► Uniform Al{sub 2}O{sub 3}:Cr{sup 3+} microfibers were synthesized via a hydrothermal route and thermal decomposition. ► The length and diameter of Al{sub 2}O{sub 3}:Cr{sup 3+} microfibers were about 3–9 μm and 300 nm, respectively. ► Al{sub 2}O{sub 3}:Cr{sup 3+} microfibers presented a broad R band at 696 nm when excited at 400 nm. ► It is shown that the 0.07 mol% of doping concentration of Cr{sup 3+} ions in α-Al{sub 2}O{sub 3}:Cr{sup 3+} is optimum. ► Critical distance between Cr{sup 3+} ions for energy transfer was determined to be 38 Å. -- Abstract: Uniform Al{sub 2}O{sub 3}:Cr{sup 3+} microfibers were synthesized by using a hydrothermal route and thermal decomposition of a precursor of Cr{sup 3+} doped ammonium aluminum hydroxide carbonate (denoted as AAHC), and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra and decay curves. XRD indicated that Cr{sup 3+} doped samples calcined at 1473 K were the most of α-Al{sub 2}O{sub 3} phase. SEM showed that the length and diameter of these Cr{sup 3+} doped alumina microfibers were about 3–9 μm and 300 nm, respectively. PL spectra showed that the Al{sub 2}O{sub 3}:Cr{sup 3+} microfibers presented a broad R band at 696 nm. It is shown that the 0.07 mol% of doping concentration of Cr{sup 3+} ions in α-Al{sub 2}O{sub 3}:Cr{sup 3+} was optimum. According to Dexter's theory, the critical distance between Cr{sup 3+} ions for energy transfer was determined to be 38 Å. It is found that the curve followed the single-exponential decay.

  3. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    Science.gov (United States)

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dachuan; Wang, Huamin; Kovarik, Libor; Gao, Feng; Wan, Chuan; Hu, Jian Z.; Wang, Yong

    2018-04-21

    The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy and ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.

  5. Influence of Y2O3 Addition on Crystallization, Thermal, Mechanical, and Electrical Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramic for Ceramic Ball Grid Array Package

    Science.gov (United States)

    Li, Bo; Li, Wei; Zheng, Jingguo

    2018-01-01

    Y2O3 addition has a significant influence on the crystallization, thermal, mechanical, and electrical properties of BaO -Al2O3 -B2O3 -SiO2 (BABS) glass-ceramics. Semi-quantitative calculation based on x-ray diffraction demonstrated that with increasing Y2O3 content, both the crystallinity and the phase content of cristobalite gradually decreased. It is effective for the additive Y2O3 to inhibit the formation of cristobalite phase with a large coefficient of thermal expansion value. The flexural strength and the Young's modulus, thus, are remarkably increased from 140 MPa to 200 MPa and 56.5 GPa to 63.7 GPa, respectively. Also, the sintering kinetics of BABS glass-ceramics with various Y2O3 were investigated using the isothermal sintering shrinkage curve at different sintering temperatures. The sintering activation energy Q sharply decreased from 99.8 kJ/mol to 81.5 kJ/mol when 0.2% Y2O3 was added, which indicated that a small amount of Y2O3 could effectively promote the sintering procedure of BABS glass-ceramics.

  6. Creation of Y2Ti2O7 nanoprecipitates to strengthen the Fe-14Cr-3Al-2W steels by adding Ti hydride and Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Wang, Linbo; Bai, Zhonglian; Shen, Hailong; Wang, Chenxi; Liu, Tong

    2017-01-01

    In order to prohibit the formation of large Y-Al-O precipitates, Ti hydride nanoparticles (NPs) were prepared and used to replace Ti as raw particles to fabricate the oxide dispersion strengthened (ODS) Fe-14Cr-3Al-2W-0.35Y 2 O 3 steels by mechanical alloying (MA) and hot isostatic pressing (HIP). As the content of Ti hydride increases from 0.1 to 0.5 and 1.0 wt%, the oxide nanoprecipitates in the ODS steels changes from Y 3 Al 5 O 12 phase to Y 2 Ti 2 O 7 phase (semicoherent with the matrix), and the particle size is successfully reduced. The tensile strength of the ODS steel increases remarkably with increasing Ti hydride content. The sample with 1.0 wt% Ti hydride exhibits a high strength of 1049 MPa at 25 °C and 278 MPa at 700 °C. The creation of Y 2 Ti 2 O 7 nanoprecipitates by adding Ti hydride NPs opens a new way to control the structure and size of the oxide precipitates in the ODS steels. - Graphical abstract: The creation of Y 2 Ti 2 O 7 nanoprecipitates by adding Ti hydride nanoparticles remarkably increases the mechanical properties of the Al-containing ODS steels. - Highlights: •TiH 1.971 reacts with Y 2 O 3 to form Y 2 Ti 2 O 7 in the Al-containing ODS steel. •Addition of TiH 1.971 nanoparticles can prevent the formation of Y-Al-O phases. •Y 2 Ti 2 O 7 nanoparticles share semicoherent interface with the ferrite matrix. •The mean size of oxide dispersion is reduced to 11.2 ± 7.1 nm with 1.0 wt% TiH 1.971 . •The tensile strength of the ODS steel enlarges with increasing TiH 1.971 content.

  7. Luminescence of Ce3+ ions in Y3Al5O12 - Y3Ga5O12 solid solution

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Nazar, I.V.; Limarenko, L.N.; Pashkovskij, M.V.

    1996-01-01

    Regularities of changes in spectral and energetic characteristics of the Ce 3+ ions radiation in the Y 3 Al 5-x Ga x O 12 solid solutions, related to change in the matrix crystal field force and dissipation of the luminescence excitation energy because of transfers between the valency zone ceiling and the Ce 3+ excited ion basis state are obtained. 9 refs., 3 figs., 1 tab

  8. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  9. Emission properties of Ga2O3 nano-flakes: effect of excitation density.

    Science.gov (United States)

    Pozina, G; Forsberg, M; Kaliteevski, M A; Hemmingsson, C

    2017-02-08

    In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga 2 O 3 , new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH 3 and N 2 atmosphere, nano-flake films of monoclinic β-phase Ga 2 O 3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to V O and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film.

  10. Synthesis and luminescence properties of ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu, Sm) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Cho, Shin Ho [Silla University, Busan (Korea, Republic of)

    2014-01-15

    ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu or Sm) phosphor powders were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and luminescent properties of zinc aluminate phosphors were investigated. The X-ray diffraction patterns revealed that the phosphors synthesized with different concentrations of activator ions showed mixed phases of ZnAl{sub 2}O{sub 4}, ZnO, and Al{sub 2}O{sub 3}. The crystallite size was estimated using the Scherrer formula, and the maximum size was obtained for 0.20 mol of Eu{sup 3+} ions. The emission spectra of of Eu{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors under excitation at 303 nm exhibited one intense green band at approximately 520 nm and three weak bands centered at 590, 621, and 701 nm, respectively. The intensity of all the emission bands reached a maximum for 0.05 mol of Eu{sup 3+} ions. For the Sm{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors, a broad emission band peak at 526 nm and several weak lines in the range 470 - 700 nm were observed. The results suggest that the luminescent intensity of the phosphors can be enhanced by controlling the amount of activator ions incorporated into the host lattice.

  11. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  12. Photoluminescence properties of the Eu-doped alpha-Al2O3 microspheres

    International Nuclear Information System (INIS)

    Liu, Dianguang; Zhu, Zhenfeng

    2014-01-01

    Highlights: • Al 2 O 3 :Eu 3+ phosphors were prepared via a microwave solvothermal route. • The particles were hierarchically nanostructured microspheres packaged by nanosheets. • The powders presented excellent orange–red emission when excited at 393 nm. • Critical concentration and distance of Eu 3+ in Al 2 O 3 is 0.007, 18 Å, respectively. -- Abstract: Al 2 O 3 :Eu 3+ samples were synthesized via microwave solvothermal method and thermal decomposition of Eu 3+ doped precursors. The sample characterizations were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) spectra. XRD results indicated that Eu 3+ doped samples were most of α-Al 2 O 3 phase after being calcined at 1473 K. SEM results showed that the obtained α-Al 2 O 3 based powders via microwave solvothermal method were microspheres with an average diameter about 1.6 μm. PL spectra showed that upon excitation at 393 nm, the orange–red emission bands at the wavelength longer than 560 nm were from 5 D 0 → 7 F J (J = 1, 2) transitions. The asymmetry ratio of ( 5 D 0 → 7 F 2 )/( 5 D 0 → 7 F 1 ) intensity is about 1 and this value suggests that Eu 3+ ions occupy the same ratio of symmetry and asymmetry sites. It is shown that the 0.7 mol% of doping concentration of Eu 3+ ions in α-Al 2 O 3 :Eu 3+ is optimum. According to Dexter’s theory, the critical distance between Eu 3+ ions for energy transfer was determined to be 18 Å

  13. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  14. Annealing Effects on Microstructure and Mechanical Properties of Ultrafine-Grained Al Composites Reinforced with Nano-Al2O3 by Rotary Swaging

    Science.gov (United States)

    Chen, Cunguang; Wang, Wenwen; Guo, Zhimeng; Sun, Chunbao; Volinsky, Alex A.; Paley, Vladislav

    2018-03-01

    Microstructure evolution and variations in mechanical properties of Al-Al2O3 nanocomposite produced by powder metallurgy were investigated and compared with commercially pure aluminum (Al-1050) after furnace annealing. Fine gas-atomized Al powder compacts were first sintered in flowing nitrogen, subsequently consolidated into wires by rotary swaging and eventually annealed at 300 and 500 °C for 24 h each. Scanning and transmission electron microscopy with energy-dispersive spectroscopy was utilized to document the microstructure evolution. Rotary swaging was proven to lead to a marked decrease in grain size. After heavy swaging to true deformation degree of φ = 6 and annealing at 500 °C, obvious recrystallization was observed at Al-1050's existing grain boundaries and the crystals began to grow perpendicular to the flow direction. In the Al-Al2O3 nanocomposite, fabricated from d 50 = 6 μm Al powder, recrystallization partially occurred, while grains were still extremely fine. Due to the dual role of fine-grained Al2O3 dispersion strengthening, the nanocomposite showed improved mechanical performance in terms of tensile strength, approximately twice higher than Al-1050 after annealing at 500 °C.

  15. Hydrostatic pressing effect on some properties of Al2O3 and Sc2O3 base ceramics

    International Nuclear Information System (INIS)

    Artemova, K.K.; Rudenko, L.A.; Maslova, G.Ya.; Levkovich, N.A.; Orlova, L.A.

    1981-01-01

    Found is the effect of hydrostatic pressing pressure on some physico-mechanical properties of the ceramic on the Al 2 O 3 and Se 2 O 3 base. Mathematical models, describing dependences of the strength of materials made of Al 2 O 3 and Sc 2 O 3 on sintering conditions and on hydrostatic pressing pressure, are plotted. Production regimes on the Al 2 O 3 and Sc 2 O 3 base ceramics with improved properties are optimized [ru

  16. Solid state reaction studies in Fe3O4–TiO2 system by diffusion couple method

    International Nuclear Information System (INIS)

    Ren, Zhongshan; Hu, Xiaojun; Xue, Xiangxin; Chou, Kuochih

    2013-01-01

    Highlights: •The solid state reactions of Fe2O3-TiO2 system was studied by the diffusion couple method. •Different products were formed by diffusion, and the FeTiO3 was more stable phase. •The inter-diffusion coefficients and diffusion activation energy were estimated. -- Abstract: The solid state reactions in Fe 3 O 4 –TiO 2 system has been studied by diffusion couple experiments at 1323–1473 K, in which the oxygen partial pressure was controlled by the CO–CO 2 gas mixture. The XRD analysis was used to confirm the phases of the inter-compound, and the concentration profiles were determined by electron probe microanalysis (EPMA). Based on the concentration profile of Ti, the inter-diffusion coefficients in Fe 3 O 4 phase, which were both temperature and concentration of Ti ions dependent, were calculated by the modified Boltzmann–Matano method. According to the relation between the thickness of diffusion layer and temperature, the diffusion coefficient of the Fe 3 O 4 –TiO 2 system was obtained. According to the Arrhenius equation, the estimated diffusion activation energy was about 282.1 ± 18.8 kJ mol −1

  17. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 22H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 22H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 22H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  18. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  19. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  20. Structure and phase transitions at the interface between α-Al2O3 and Pt

    Science.gov (United States)

    Ophus, Colin; Santala, Melissa K.; Asta, Mark; Radmilovic, Velimir

    2013-06-01

    The structure and thermodynamics of interfaces between (111) Pt and the basal plane of α-Al2O3 have been studied through a combination of high-resolution electron microscopy and first-principles calculations. Within the framework of ab initio thermodynamics the structure and excess free energies are calculated as functions of temperature (T) and oxygen partial pressure (PO2), for three competing interface terminations. Comparisons between measurements and calculations establish that the interface is oxygen terminated, and a structural phase transition is predicted in the range of experimentally accessible T and PO2 from the calculated interfacial free energies.

  1. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5

    International Nuclear Information System (INIS)

    Tan, K.B.; Khaw, C.C.; Lee, C.K.; Zainal, Z.; Miles, G.C.

    2010-01-01

    Research highlights: → Combined XRD and ND Rietveld structural refinement of pyrochlores. → Structures and solid solution mechanisms of Bi-pyrochlores. → Bi and Zn displaced off-centre to different 96g A-site positions. → Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi 1.5 ZnTa 1.5 O 7 and non-stoichiometric Bi 1.56 Zn 0.92 Nb 1.44 O 6.86 . In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  2. Expansion during the formation of the magnesium aluminate spinel (MgAl(2)O(4)) from its basic oxide (MgO and Al(2)O(3)) powders

    Science.gov (United States)

    Duncan, Flavia Cunha

    The extraordinary expansion during the reaction sintering of the magnesium aluminate spinel (MgAl2O4) from its basic oxide (MgO and Al2O3) powders was studied. Experimental series of different size fractions of the reacting materials were formulated to produce the Mg-Al spinel. After batches were prepared, specimens were compacted and fired in air from 1200° to 1700°C for a fixed firing time. A separate set of specimens was fired as a function of time to determine the reaction kinetic parameters. Dimensional changes confirmed that extraordinary expansions of three to four times greater than the prediction from the reaction of solids occur. The solid-state reactions were monitored by X-ray diffraction. The activation energy of the spinel reaction formation was determined to be 280 +/- 20 kJ/mol. It is believed to be associated with the diffusivity of Mg 2+ in either magnesia or spinel during the development of the final spinel structure. New porosity developed in the compacts during the reaction formation of spinel. Scanning electron microscopy confirmed that the magnesia evaporated leaving behind porous magnesia grains, condensed on the alumina particles and reacted to form a shell of spinel. Hollow spinel particles resulted from the original particles of alumina. These porosities generated within the reacting materials influenced the expansions. Final volumetric expansion could potentially reach 56% as a result of the reaction of solids and the porosity generation within MgO and Al2O3. Models of a single alumina particle with and without development of internal porosity were developed. 3-D arrangements of particles showed additional porosity, influencing on the expansions. The decrease in porosity of some specimens fired at higher temperatures indicated that sintering and densification occur simultaneously with the reaction formation of spinel. The decrease in the interparticle porosity limits the full expansion of the particulates to levels lower than the

  3. Suppressing the Photocatalytic Activity of TiO2 Nanoparticles by Extremely Thin Al2O3 Films Grown by Gas-Phase Deposition at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2 pigment powders by extremely thin aluminum oxide (Al2O3 films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development.

  4. Synthesis by Sol-gel and characterization of catalysts Ag/Al2O3-CeO2

    International Nuclear Information System (INIS)

    Zayas, M.L.; Perez H, R.; Rubio, E.; Velasco, A.

    2004-01-01

    Aluminia, cerium and mixed oxides Al 2 O 3 -CeO 2 with different relationship Al/Ce (0.75, 0.50 and 0.25) were prepared by sol-gel and used as support for the Ag. The samples were characterized by XRD, DRIFT, TPR and adsorption of N 2 to temperature of liquid nitrogen. The surface area BET showed that the materials that contain aluminia present near values among them. XRD allowed to identify to the cerianite in the oxides that whose support contains cerium and to the α-aluminia. A mixture of phases was observed in the aluminia. Vibration bands attributed to the bond Al-O and Ce-O were observed by DRIFT in the catalytic materials. TPR showed differences in the reducibility of the Ag precursor in the indicative catalysts of a different interaction with the support. (Author)

  5. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    Science.gov (United States)

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  6. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Meysam Toozandehjani

    2017-10-01

    Full Text Available The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3 has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV, nano-hardness (HN, and Young’s modulus (E of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  7. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.; Trejo, Orlando; Roelofs, Katherine E.; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  8. Electrical transport of (1-x)La{sub 0.7}Ca{sub 0.3}MnO{sub 3}+xAl{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T. [Nhatrang Pedagogic College, Khanhhoa, 1st Nguyen Chanh, Nha Trang City, Khanhhoa (Viet Nam); Institute of Material Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Khiem, N.V. [Department of Natural Sciences, Hongduc University, 307 Le Lai Street Thanh Hoa City (Viet Nam)], E-mail: nvkhiem2002@yahoo.com; Dai, N.V.; Manh, D.H.; Hong, L.V.; Phuc, N.X. [Institute of Material Science, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)

    2009-10-15

    We report the resistivity ({rho})-temperature (T) patterns in (1-x)La{sub 0,7}Ca{sub 0,3}MnO{sub 3}+xAl{sub 2}O{sub 3} composites (0{<=}x{<=}0.05) over a temperature regime of 50-300 K. Al{sub 2}O{sub 3} addition has increased the resistivity of these composites. The Curie temperature (T{sub C}) is almost independent on the Al{sub 2}O{sub 3} content and is about 250 K for all the samples, while the metal-insulator transition temperature (T{sub MI}) decreases with increasing Al{sub 2}O{sub 3} content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data ({rho}-T) from 50 to 300 K and find that the activation barrier increases as Al{sub 2}O{sub 3} content increases.

  9. Processing simulated high-level liquid waste by heat treatment with addition of TiN and AlN or Al2O3

    International Nuclear Information System (INIS)

    Uno, Masayoshi; Kinoshita, Hajime; Sakai, Etsuro; Ikeda, Akira; Matsumoto, Y.; Yamanaka, Shinsuke

    1999-01-01

    The present study aims to decrease the melting temperature of the oxide phase by the addition of the mixture of TiN and AlN or Al 2 O 3 for reduction of the treatment temperature of super high temperature method. The addition of the mixture of TiN and AlN or Al 2 O 3 with the atomic ratio of Al to Ti of 1:9 caused the melting of both the alloy phase and oxide phase at 1673 K. The measured values of density and hardness for thus obtained oxide phase were same as those for the oxide phase obtained at 1873 K without Al. Thus, above mentioned method is achieved at 1673 K without degradation of the properties of the oxide phase as an waste. (author)

  10. X-ray fluorescence spectrometry of Al, Mg, Ca, Fe, S in solid phase of magnesite technology of combustion product desulfurization

    International Nuclear Information System (INIS)

    Vymola, R.; Hora, V.; Spitzer, Z.

    1989-01-01

    Solid phase samples of magnesite technology were moulded into pellets or melted into the shape of a glass disk. MgO, CaO, Fe 2 O 3 , S, Al 2 O 3 and SiO 2 were determined in the samples by X-ray fluorescence analysis. Fluorescence intensities were measured with an SRS 200 sequential X-ray spectrometer and the measured data were evaluated using a linked-up PDP 11/04 computer. The reproducibility of MgO, CaO, Fe 2 O 3 and S determinations was very good; higher measurement accuracy was achieved for moulded samples. The specificity of determinations was checked by a comparative chemical analysis. (E.J.). 8 tabs., 5 refs

  11. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  12. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in vapor phase packed bed reactor

    Science.gov (United States)

    The hydrogenation of furfural to furfuryl alcohol over a CuOCeO2/'-Al2O3 catalyst in a flow reactor is reported. The catalyst was prepared by the wet impregnation of Cu onto a CeO2/'-Al2O3 precursor. The calcined catalyst was then treated with HNO3 to remove surface CuO resulting in a mixed CuCe oxi...

  13. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    Science.gov (United States)

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  14. N2O Decomposition over Cu–Zn/γ–Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Runhu Zhang

    2016-12-01

    Full Text Available Cu–Zn/γ–Al2O3 catalysts were prepared by the impregnation method. Catalytic activity was evaluated for N2O decomposition in a fixed bed reactor. The fresh and used catalysts were characterized by several techniques such as BET surface area, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The Cu–Zn/γ–Al2O3 catalysts exhibit high activity and stability for N2O decomposition in mixtures simulating real gas from adipic acid production, containing N2O, O2, NO, CO2, and CO. Over the Cu–Zn/γ–Al2O3 catalysts, 100% of N2O conversion was obtained at about 601 °C at a gas hourly space velocity (GHSV of 7200 h−1. Cu–Zn/γ–Al2O3 catalysts also exhibited considerably good durability, and no obvious activity loss was observed in the 100 h stability test. The Cu–Zn/γ–Al2O3 catalysts are promising for the abatement of this powerful greenhouse gas in the chemical industry, particularly in adipic acid production.

  15. The structural studies of aluminosilicate gels and thin films synthesized by the sol-gel method using different Al2O3 and SiO2 precursors

    Directory of Open Access Journals (Sweden)

    Adamczyk Anna

    2015-12-01

    Full Text Available Aluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H54 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H93 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics substrates by the dip coating method. Thin films were annealed in air (steel and alundum and in argon (carbon at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations. Additionally, the electron microscopy (SEM together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.

  16. Characterization and H2-O2 reactivity of noble nano-metal tailored single wall nano-carbons

    International Nuclear Information System (INIS)

    K Kaneko; T Itoh; E Bekyarova; H Kanoh; S Utsumi; H Tanaka; M Yudasaka; S Iijima; S Iijima

    2005-01-01

    Full text of publication follows: Single wall carbon nano-tube (SWNT) and single wall carbon nano-horn (SWNH) have nano-spaces in their particles and the nano-spaces become open by oxidation. In particular, SWNH forms a unique colloidal structure which has micropores and meso-pores between the SWNH particles. Although non-treated SWNH colloids have quasi-one dimensional nano-pores [1], oxidized SWNH colloids have both of interstitial and internal nano-pores [2-5]. SWNH colloids show excellent supercritical methane storage ability [6], molecular sieving effect [7], and unique hydrogen adsorption characteristic [8]. Selective adsorptivity of SWNH colloids for H 2 and D 2 due to uncertainty principle of those molecules was shown [9-10]. As SWNH has no metallic impurities, we can study the effect of tailoring of metallic nano-particles on the surface activities of SWNH [11]. We tailored Pd or Pt nano-particles on SWNH and SWNH oxidized at 823 K (ox-SWNH) using poly[(2-oxo-pyrrolidine-1-yl)ethylene]. The oxidation of SWNH donates nano-scale windows to the single wall. The tailored metal amount was determined by TG analysis. TEM showed uniform dispersion of nano-metal particles of 2-3 nm in the diameter on SWNH. The nitrogen adsorption amount of SWNH oxidized decreases by tailoring, indicating that nano-particles are attached to the nano-scale windows. The electronic states of tailored metals were characterized by X-ray photoelectron spectroscopy. The surface activities of Pd tailored SWNH and ox-SWNH were examined for the reaction of hydrogen and oxygen near room temperature. The catalytic reactivities of Pd tailored SWNH and ox-SWNH were 4 times greater than that of Pd-dispersed activated carbon. The temperature dependence of the surface activity will be discussed with the relevance to the tube porosity. References [1] T. Ohba et al, J. Phys. Chem. In press. [2] S. Utsumi et al, J. Phys. Chem. In press. [3] C.- Min Yang, et al. Adv. Mater. In press. [4]C.M. Yang, J

  17. Co-hydrothermal synthesis of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Jun; Luo, Shaohua; Chang, Longjiao; Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo; Xu, Qian; Wang, Qing; Zhang, Yahui

    2017-01-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material in water/PEG system is present. • The Mn_1_-_xMg_xPO_4 precursor is prepared by precipitation reaction. • Co-modified with Mg"2"+ doping and LiAlO_2 compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C is synthesized by a co-hydrothermal method in water/PEG system using Li_2CO_3, AAO and Mn_1_-_xMg_xPO_4 as raw material. The electronic structure and micromorphology of multi-component compound LiMn_1_-_xMg_xPO_4/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C is 2.296 eV, which is lower than other percentages Mg"2"+ doping samples. Electrochemical tests exhibit LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C has better cycling performance and rate capability than other contents Mg"2"+ doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg"2"+ doping and LiAlO_2 compositing material can improve the electronic conductivity of LiMnPO_4/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  18. Method for calculating solid-solid phase transitions at high temperature: An application to N2O

    International Nuclear Information System (INIS)

    Kuchta, B.; Etters, R.D.

    1992-01-01

    Two similar techniques for calculating solid-solid phase transitions at high temperatures are developed, where the contribution of the entropy may be a decisive factor. They utilize an artificial reversible path from one phase to another by application of a control parameter. Thermodynamic averages are calculated using constant-volume and constant-pressure Monte Carlo techniques. An application to N 2 O at room temperature shows that the cubic Pa3 to orthorhombic Cmca transition occurs near 4.9-GPa pressure, very close to the value calculated at very low temperatures. These results support experimental evidence that the transition pressure is virtually independent of temperature

  19. Pair potentials for alumina from ab initio results on the Al2O3 molecule

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Cicek, Z.; Tosi, M.P.

    2000-08-01

    We use results from an ab initio investigation by Chang et al. on energetically low-lying stationary points of the Al 2 O 3 molecule to determine interionic potentials for the Al-O, O-O and Al-Al pairs. Our results are discussed in the perspective of previous studies of the condensed phases of alumina, with special regard to the structure of its molten state. (author)

  20. Melting relations of model lherzolite in the system CaO-MgO-Al2O3-SiO2 at 2.4-3.4 GPa and the generation of komatiites

    Science.gov (United States)

    Gudfinnsson, Gudmundur H.; Presnall, Dean C.

    1996-12-01

    Isobarically invariant phase relations in the CaO-MgO-Al2O3-SiO2 system (CMAS) involving the lherzolite phase assemblage in equilibrium with liquid have been determined at 2.4-3.4 GPa. These phase relations form the solidus of model lherzolite in the CMAS system. Our data, which include determinations of all phase compositions, are in excellent agreement with the 3.0 and 4.0 GPa points of Milholland and Presnall [1991] and Davis and Schairer [1965], respectively. The invariant transition on the P-T solidus curve from spinel- to garnet-lherzolite at 3.0 GPa, 1575°C [Milholland and Presnall, 1991], is confirmed, but we observe that the theoretically required temperature depression on the solidus curve at this point is not experimentally detectable. Composition trends along the solidus take a sharp turn at the transition. In the spinel-lherzolite stability field, melt compositions become increasingly Fo-normative and less En-normative with increasing pressure, but become less Fo-normative and more pyroxenitic as pressure increases in the garnet-lherzolite stability field. Calculated melting reactions indicate that forsterite is in reaction relationship with the melt up to 3.0 GPa. Orthopyroxene is also in reaction relationship at pressures higher than just over 2.8 GPa and is the only phase in reaction relationship with the melt in the garnet-lherzolite stability field. Comparison of the normative compositions and the CaO/Al2O3 values of the komatiites of Gorgona Island and of the Reliance Formation in Zimbabwe with the compositions of liquids along the solidus of model lherzolite in the CMAS system indicates that the former komatiites were generated at pressures close to 3.7 GPa and the latter at close to 4.5 GPa, assuming that the melt generation occurred in the presence of the complete garnet-lherzolite assemblage.