WorldWideScience

Sample records for nano structured thin

  1. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  2. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  3. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Xiaochao, E-mail: zhang13598124761@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Wang, Yunfang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Hui [Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-07-01

    A series of micro-nano-structure BiOBr thin films were prepared at a low temperature by the alcoholysis-coating method using BiBr{sub 3} as precursor. The as-prepared films were characterized by X-ray powder diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The obtained results indicated that micro-nano-structure tetragonal BiOBr films with different intensity ratios of (110) to (102) characteristic peaks could be synthesized through controlling the reaction temperature and the calcination temperatures. Furthermore, the photocatalytic activities of BiOBr thin films with different preparation conditions have been evaluated by the degradation of methyl orange (MO) under UV light irradiation, suggesting that the photocatalytic activity should be closely related to the solvent, the alcoholysis reaction temperature, and the calcining temperature. The best photocatalytic degradation efficiency of MO for BiOBr thin films reaches 98.5% under 2.5 h UV irradiation. The BiOBr thin films display excellent stability and their photocatalytic activity still remains above 90% after being used five times. The main reasons for the higher photocatalytic activity of micro-nano-structure BiOBr microspheres have been investigated. In addition, the possible formation mechanism of BiOBr thin films with micro-nano-structure and excellent photocatalytic activity was proposed and discussed. - Highlights: • The BiOBr film was prepared at low temperature via alcoholysis-coating method. • The optimum process conditions of preparing BiOBr film were discussed. • As-prepared BiOBr films were composed of micro-nano flake structures. • The BiOBr films demonstrated excellent photocatalytic activity. • The formation mechanism of BiOBr films with high activity was proposed.

  4. Self-organised nano-structuring of thin oxide-films under swift heavy ion bombardment

    International Nuclear Information System (INIS)

    Bolse, Wolfgang

    2006-01-01

    Surface instabilities and the resulting self-organisation processes play an important role in nano-technology since they allow for large-array nano-structuring. We have recently found that the occurrence of such instabilities in thin film systems can be triggered by energetic ion bombardment and the subsequent self-assembly of the surface can be nicely controlled by fine-tuning of the irradiation conditions. The role of the ion in such processes is of double nature: If the instability is latently present already in the virgin sample, but self-assembly cannot take place because of kinetic barriers, the ion impact may just supply the necessary atomic mobility. On the other hand, the surface may become instable due to the ion beam induced material modifications and further irradiation then results in its reorganisation. In the present paper, we will review recently observed nano-scale self-organisation processes in thin oxide-films induced by the irradiation with swift heavy ions (SHI) at some MeV/amu energies. The first example is about SHI induced dewetting, which is driven by capillary forces already present in the as-deposited samples. The achieved dewetting pattern show an amazing similarity to those observed for liquid polymer films on Si, although in the present case the samples were kept at 80 K and hence have never reached their melting point. The second example is about self-organised lamellae formation driven by planar stresses, which are induced by SHI bombardment under grazing incidence and result in a surface instability and anisotropic plastic deformation (hammering effect). Taking advantage of these effects and modifying the irradiation procedure, we were able to generate more complex structures like NiO-'nano-towers' of 2 μm height and 200 nm in diameter

  5. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    Science.gov (United States)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  6. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  7. Surface enhanced Raman spectroscopy and structural characterization of Ag/Cu chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Babaei, Reza

    2013-01-01

    Silver chiral nano-flower sculptured thin films with 3-, 4- and 5-fold symmetry were produced on copper substrates using oblique angle deposition method in conjunction with rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to obtain morphologies and nano-structure of the films. Raman spectroscopy was performed on all samples that were subject to impregnation by 4,4′-bipyridine (C 10 H 8 N 2 ) solution. A high degree of enhancement of the main bands at 1610, 1297, and 1009 cm −1 that can be assigned to the C=C stretching mode, aromatic ring stretching ring and in-plane ring mode of 4,4′-bipyridine, is achieved.

  8. Surface enhanced Raman spectroscopy and structural characterization of Ag/Cu chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Babaei, Reza, E-mail: reza_babaee_62@yahoo.com [Department of Physics, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Silver chiral nano-flower sculptured thin films with 3-, 4- and 5-fold symmetry were produced on copper substrates using oblique angle deposition method in conjunction with rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to obtain morphologies and nano-structure of the films. Raman spectroscopy was performed on all samples that were subject to impregnation by 4,4′-bipyridine (C{sub 10}H{sub 8}N{sub 2}) solution. A high degree of enhancement of the main bands at 1610, 1297, and 1009 cm{sup −1} that can be assigned to the C=C stretching mode, aromatic ring stretching ring and in-plane ring mode of 4,4′-bipyridine, is achieved.

  9. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  10. The first report on SILAR deposited nano-structured uranyl sulphide thin films and their chemical conversion to silver sulphide

    International Nuclear Information System (INIS)

    Garole, Dipak J.; Tetgure, Sandesh R.; Borse, Amulrao U.; Yogesh R Toda; Vaman J Garole; Babasaheb R Sankapal; Prashant K Baviskar

    2015-01-01

    This paper reports the novel synthesis of uranyl sulphide (UO_2S) thin films using the successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Cationic exchange reaction was used to convert uranyl sulphide (UO_2S) to silver sulphide (Ag_2S). The influence of concentration variation on the structural and optical properties of UO_2S and Ag_2S thin films was investigated. The structural, surface morphological, elemental analysis and optical absorption studies were performed. Structural studies revealed that all the deposited films were nano-sized and amorphous in nature. Surface morphology showed that all the grains were spherical and granular in nature and grains got conglomerated to form a large particle. Also, the variations of the optical band gap and the width of the tail of localized states were represented as a function of various parameters. (authors)

  11. Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Fakharpour, Mahsa [Department of Physics, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Siabi-Garjan, Araz [Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil (Iran, Islamic Republic of); Department of Materials Engineering and Nanotechnology, Sabalan University of Advanced Technologies (SUAT), Namin (Iran, Islamic Republic of); Placido, Frank [SUPA and Institute of Thin Films, Sensors and Imaging, University of The West of Scotland, High Street, Paisley (United Kingdom); Babaei, Ferydon [Department of Physics, University of Qom, Qom (Iran, Islamic Republic of)

    2017-01-30

    Highlights: • Graded helical square tower-like terraced sculptured Mn thin films are produced with different number of arms. • XRD, AFM, FESEM and optical analyses as well as theoretical calculations are carried out. • Intensity of Plasmon peaks depend on the polarization, the incident angle, and the distance from the shadowing block. • The presence of defects in these sculptured structures can be predicted by theoretical investigation. • Experimental and theoretical investigations show consistent results. - Abstract: Graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) are produced in three stages with different number of arms using oblique angle deposition together with rotation of substrate holder about its surface normal, plus a shadowing block fixed at the centre of the substrate holder. The structural characterization of the produced samples was obtained using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Results showed a structural gradient with distance from the edge of the shadowing block, which in turn is responsible for the decrease in the volume of void fraction and increase of grain size. Plasmon absorption peaks observed in the optical analysis of these nano-structures showed that their wavelength region and intensity depend on the polarization and the incident angle of light, as well as the distance from the edge of the shadowing block. According to our model and discrete dipole approximation (DDA) calculations, when the number of parallel nano-rods of different lengths and radii are increased the peak in the spectrum shifts to shorter wavelengths (blue shift). Also when the diameters of the nano-rods increases (a situation that occurs with increasing film thickness) the results is again a blue shift in the spectrum. The presence of defects in these sculptured structures caused by the shadowing effect is predicted by the theoretical DDA investigation of their optical spectra

  12. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D. [School of Energy Studies, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, S. R., E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-13

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  13. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    Science.gov (United States)

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  14. Alternative nano-structured thin-film materials used as durable thermal nanoimprint lithography templates

    Science.gov (United States)

    Bossard, M.; Boussey, J.; Le Drogoff, B.; Chaker, M.

    2016-02-01

    Nanoimprint templates made of diamond-like carbon (DLC) and amorphous silicon carbide (SiC) thin films and fluorine-doped associated materials, i.e. F-DLC and F-SiC were investigated in the context of thermal nanoimprint lithography (NIL) with respect to their release properties. Their performances in terms of durability and stability were evaluated and compared to those of conventional silicon or silica molds coated with antisticking molecules applied as a self-assembled monolayer. Plasma-enhanced chemical vapor deposition parameters were firstly tuned to optimize mechanical and structural properties of the DLC and SiC thin films. The impact of the amount of fluorine dopant on the deposited thin films properties was then analyzed. A comparative analysis of DLC, F-DLC as well as SiC and F-SiC molds was then carried out over multiple imprints, performed into poly (methyl methacrylate) (PMMA) thermo-plastic resist. The release properties of un-patterned films were evaluated by the measurement of demolding energies and surface energies, associated with a systematic analysis of the mold surface contamination. These analyses showed that the developed materials behave as intrinsically easy-demolding and contamination-free molds over series of up to 40 imprints. To our knowledge, it is the first time that such a large number of imprints has been considered within an exhaustive comparative study of materials for NIL. Finally, the developed materials went through standard e-beam lithography and plasma etching processes to obtain nanoscale-patterned templates. The replicas of those patterned molds, imprinted into PMMA, were shown to be of high fidelity and good stability after several imprints.

  15. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...

  16. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    Science.gov (United States)

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  17. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    Directory of Open Access Journals (Sweden)

    José Vergara

    2017-12-01

    Full Text Available We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM. Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  18. Nano structured TiO2 thin films by polymeric precursor method

    International Nuclear Information System (INIS)

    Stroppa, Daniel Grando; Giraldi, Tania Regina; Leite, Edson Roberto; Varela, Jose Arana; Longo, Elson

    2008-01-01

    This work focuses in optimizing setup for obtaining TiO 2 thin films by polymeric precursor route due to its advantages on stoichiometric and morphological control. Precursor stoichiometry, synthesis pH, solids concentration and rotation speed at deposition were optimized evaluating thin films morphology and thickness. Thermogravimetry and NMR were applied for precursor's characterization and AFM, XRD and ellipsometry for thin films evaluation. Results showed successful attainment of homogeneous nanocrystalline anatase TiO 2 thin films with outstanding control over morphological characteristics, mean grain size of 17 nm, packing densities between 57 and 75%, estimated surface areas of 90 m 2 /g and monolayers thickness within 20 and 128 nm. (author)

  19. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K. [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  20. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2016-01-01

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  1. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Prathap Pathi

    2017-01-01

    Full Text Available Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm and is slightly lower (by ~5% at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm silicon and just 1%–2% for thicker (>100 μm cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  2. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  3. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  4. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    Science.gov (United States)

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  5. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J., E-mail: dsirbuly@ucsd.edu [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  6. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    International Nuclear Information System (INIS)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-01-01

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  7. Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Kim, J.Y.; Kim, K.B. [Division of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2010-10-15

    Nano-structured anhydrous ruthenium oxide (RuO{sub 2}) thin films were prepared using an electrostatic spray deposition (ESD) technique followed by electrochemical lithiation and delithiation. During the electrochemical lithiation process, RuO{sub 2} decomposed to nano-structured metallic ruthenium Ru with the concomitant formation of Li{sub 2}O. Nano-structured RuO{sub 2} was formed upon subsequent electrochemical extraction of Li from the Ru/Li{sub 2}O nanocomposite. Electrochemical lithiation/deliathiation at different charge/discharge rates (C-rate) was used to control the nano-structure of the anhydrous RuO{sub 2}. Electrochemical lithiation/delithiation of the RuO{sub 2} thin film electrode at different C-rates was closely related to the specific capacitance and high rate capability of the nano-structured anhydrous RuO{sub 2} thin film. Nano-structured RuO{sub 2} thin films prepared by electrochemical lithiation and delithiation at 2C rate showed the highest specific capacitance of 653 F g{sup -1} at 20 mV s{sup -1}, which is more than two times higher than the specific capacitance of 269 F g{sup -1} for the as-prepared RuO{sub 2}. In addition, it showed 14% loss in specific capacitance from 653 F g{sup -1} at 20 mV s{sup -1} to 559 F g{sup -1} at 200 mV s{sup -1}, indicating significant improvement in the high rate capability compared to the 26% loss of specific capacitance of the as-prepared RuO{sub 2} electrode from 269 F g{sup -1} at 20 mV s{sup -1} to 198 F g{sup -1} at 200 mV s{sup -1} for the same change in scan rate. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com [Damascus University Faculty of Science, Department of physics, Homs (Syrian Arab Republic); Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com [Al –Mustansiriyah University, College of Education, Department of physics, Baghdad (Iraq)

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  9. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    Science.gov (United States)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  10. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  11. Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Sylivia [University of Groningen, The Netherlands; Nesterov, Okeksiy [ORNL; Rispens, Gregory [University of Groningen, The Netherlands; Heuver, J. A. [University of Groningen, The Netherlands; Bark, C [University of Wisconsin, Madison; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Noheda, Beatriz [University of Groningen, The Netherlands

    2014-01-01

    Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.

  12. Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method

    International Nuclear Information System (INIS)

    Rafea, M. Abdel; Farag, A.A.M.; Roushdy, N.

    2009-01-01

    In this work, a stoichiometry Zn 0.5 Cd 0.5 S nano-structured powder was synthesized. Thin films of different thicknesses of Zn 0.5 Cd 0.5 S were prepared by dip-coating method onto glass substrates. The X-ray diffraction analysis of the prepared powder and films were performed to investigate the crystalline structure. Some structural parameters such as the mean crystallite size and the internal lattice strain were calculated. The composition analysis was made by the energy dispersive X-ray technique, EDX. Scanning electron micrographs, SEM showed that the prepared films are nearly homogeneous and consists of nearly parallel surfaces and the thickness was determined by the cross section imaging. The transmission spectra, T(λ), of the films at normal incidence of light were obtained in the spectral region 190-1100 nm. The optical constants of Zn 0.5 Cd 0.5 S films were determined using the interference maxima and minima of the transmission spectrum. The dispersion of refractive index was discussed in terms of the single-oscillator model and the important oscillating parameters were determined. The dependence of absorption coefficient on the photon energy was determined and the analysis of the result showed that the optical transition in Zn 0.5 Cd 0.5 S is allowed and indirect. The thickness dependence of the obtained optical parameters was also considered.

  13. Structural study and fabrication of nano-pattern on ultra thin film of Ag grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Banerjee, S.; Mukherjee, S.; Kundu, S.

    2001-01-01

    We present the structural study of ultra thin Ag films using grazing incidence x-ray reflectivity and the modification of these films with the tip of an atomic force microscope. Ag thin films are deposited using dc magnetron sputtering on a Si(001) substrate. Initially, the growth of the film is carpet like and above a certain thickness (∼42 A) the film structure changes to form mounds. This ultra thin film of Ag having carpet-like growth can be modified by the tip of an atomic force microscope, which occurs due to the porous nature of the film. A periodic pattern of nanometer dimensions has been fabricated on this film using the atomic force microscope tip. (author)

  14. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  15. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  16. Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films

    International Nuclear Information System (INIS)

    Boudjouan, F.; Chelouche, A.; Touam, T.; Djouadi, D.; Khodja, S.; Tazerout, M.; Ouerdane, Y.; Hadjoub, Z.

    2015-01-01

    Nanostructured ZnO thin films with different molar ratios of MEA to zinc acetate (0.5, 1.0, 1.5 and 2.0) have been deposited on glass substrates by a sol–gel dip coating technique. X-ray diffraction, Scanning Electron Microscopy, UV–visible spectrophotometry and photoluminescence spectroscopy have been employed to investigate the effect of MEA stabilizer ratio on structural, morphological, absorbance and emission properties of the ZnO thin films. Diffraction patterns have shown that all the films are polycrystalline and exhibit a wurtzite hexagonal structure. The c axis orientation has been enhanced with increasing stabilizer ratio. SEM micrographs have revealed that the morphology of the ZnO films depend on stabilizer ratio. The UV–visible absorption spectra have demonstrated that the optical absorption is affected by stabilizer ratio. The photoluminescence spectra have indicated one ultraviolet and two visible emission bands (green and red), while band intensities are found to be dependent on stabilizer ratio. ZnO thin films deposited at MEA ratio of 1.0 show the highest UV emission while the minimum UV emission intensity is observed in thin films deposited at ratio of 0.5 and the maximum green has been recorded for films deposited at MEA ratio of 2.0. - Highlight: • c axis orientation increases with increasing MEA ratio. • The increase of MEA ration from 0.5 to 1.0 enhances greatly the UV emission. • The larger I UV /I visible is obtained for the MEA to Zn ratio of 1:1. • The MEA ratio of 0.5 favors the formation of large density of V zn . • The MEA ratio of 2.0 increases the V o density

  17. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    Science.gov (United States)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  18. Synthesis of nano-structured tin oxide thin films with faster response to LPG and ammonia by spray pyrolysis

    Science.gov (United States)

    PrasannaKumari, K.; Thomas, Boben

    2018-01-01

    Nanostructured SnO2 thin film have been efficiently fabricated by spray pyrolysis using atomizers of different types. The structure and morphology of as-prepared samples are investigated by techniques such as x-ray diffraction, and field-emission scanning electron microscopy. Significant morphological changes are observed in films by modifying the precursor atomization as a result of change of spray device. The optical characterization indicates that change in atomization, affects the absorbance and the band gap, following the varied crystallite size. Gas sensing investigations on ultrasonically prepared tin oxide films show NH3 response at operating temperatures lower down to 50 °C. For 1000 ppm of LPG the response at 350 °C for air blast atomizer film is about 99%, with short response and recovery times. The photoluminescence emmision spectra reveal the correlation between atomization process and the quantity of oxygen vacancies present in the samples. The favorable size reduction in microstructure with good crystallinity with slight change in lattice properties suggest their scope in gas sensing applications. On the basis of these characterizations, the mechanism of LPG and NH3 gas sensing of nanostructured SnO2 thin films has been proposed.

  19. Nano-enabled tribological thin film coatings: global patent scenario.

    Science.gov (United States)

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  20. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Czech Academy of Sciences Publication Activity Database

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Roč. 428, Jan (2018), s. 1159-1165 ISSN 0169-4332 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : amorphous silicon * nano-templates * nanostructures * electrical conductivity * electron emission * atomic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  1. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Surmeneva, Maria A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Surmenev, Roman A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Nikonova, Yulia A.; Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142292 (Russian Federation); Ivanova, Anna A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Putlyaev, Valery I. [Department of Chemistry, Moscow State University, Vorobievi Gory, 1, Moscow 119991 (Russian Federation); Prymak, Oleg; Epple, Matthias [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2014-10-30

    Highlights: • Growth of a columnar grain structure perpendicular to the substrate surface was observed. • Interplanar spacing distances measured using HRTEM were 0.82 and 0.28 nm, corresponding to the (0 0 1) and (2 1 1) lattice planes of hexagonal HA. • Grain size and crystallinity increased when increasing the deposition time. • Nanometer-thick low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules. - Abstract: A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  2. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Science.gov (United States)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  3. Effects of Topography in Nano-Structured Thin Films : A Lorentz Transmission Electron Microscopy and Electron Holography Study

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Raedt, Hans A. De

    2003-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  4. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    Science.gov (United States)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  5. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films

    Science.gov (United States)

    Zhang, Yan-ping; Liu, Hai-feng; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin

    2018-02-01

    LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3.

  6. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  7. Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ngom, B.D. [African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Groupes de Laboratoires de physique des Solides et Sciences des Materiaux, Faculte des sciences et Techniques Universite Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Senegal); NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa)], E-mail: bdngom@tlabs.ac.za; Mpahane, T. [NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa); Manyala, N. [Department of Physics and Electronics National University of Lesotho (Lesotho); Nemraoui, O. [NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa); Buttner, U. [Engineering Department, University of Stellenbosch (South Africa); Kana, J.B. [Department of Physique University of Yaounde 1 (Cameroon); Fasasi, A.Y. [Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Osun State (Nigeria); Maaza, M. [African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa); Beye, A.C. [African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Groupes de Laboratoires de physique des Solides et Sciences des Materiaux, Faculte des sciences et Techniques Universite Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Senegal)

    2009-01-15

    Novel highly c-oriented tungsten-doped zinc oxide (WZO) thin films with 1 wt% were grown by pulsed laser deposition (PLD) technique on corning 1737F glass substrate. The effects of laser energy on the structural, morphological as well as optical transmission properties of the films were studied. The films were highly transparent with average transmittance exceeding 87% in the wavelength region lying between 400 and 2500 nm. X-ray diffraction analysis (XRD) results indicated that the WZO films had c-axis preferred orientation with wurtzite structure. Film thickness and the full width at half maximum (FWHM) of the (0 0 2) peaks of the films were found to be dependent on laser fluence. The composition determined through Rutherford backscattering spectroscopy (RBS) appeared to be independent of the laser fluence. By assuming a direct band gap transition, the band gap values of 3.36, 3.34 and 3.31 eV were obtained for corresponding laser fluence of 1, 1.7 and 2.7 J cm{sup -2}, respectively. Compared with the reported undoped ZnO band gap value of 3.37 eV, it is conjectured that the observed low band gap values obtained in this study may be attributable to tungsten incorporation in the films as well as the increase in laser fluence. The high transparency makes the films useful as optical windows while the high band gap values support the idea that the films could be good candidates for optoelectronic applications.

  8. Antibacterial Properties of Titanate Nano fiber Thin Films Formed on a Titanium Plate

    International Nuclear Information System (INIS)

    Yada, M.; Inoue, Y.; Morita, T.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.

    2013-01-01

    A sodium titanate nano fiber thin film and a silver nanoparticle/silver titanate nano fiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nano fiber thin film to ultraviolet rays generated a high antibacterial activity due to photo catalysis and the sodium titanate nano fiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nano fiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nano fiber thin films adhered firmly to titanium. Therefore, these titanate nano fiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.

  9. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  10. An Investigation of Structural and Electrical Properties of Nano Crystalline SnO2:Cu Thin Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    J. Podder

    2011-11-01

    Full Text Available Pure tin oxide (SnO2 and Cu doped SnO2 thin films have been deposited onto glass substrates by a simple spray pyrolysis technique under atmospheric pressure at temperature 350 °C. The doping concentration of Cu was varied from 1 to 8 wt. % while all other deposition parameters such as spray rate, carrier air gas pressure, deposition time, and distance between spray nozzle to substrate were kept constant. Surface morphology of the as-deposited thin films has been studied by Scanning Electron Microscopy (SEM. The SEM micrograph of the films shows uniform deposition. The structural properties of the as-deposited and annealed thin films have been studied by XRD and the electrical characterization was performed by Van-der Pauw method. The as-deposited films are found polycrystalline in nature with tetragonal crystal structure. Average grain sizes of pure and Cu doped SnO2 thin film have been obtained in the range of 7.2445 Å to 6.0699 Å, which indicates the nanometric size of SnO2 grains developed in the film. The resistivity of SnO2 films was found to decrease initially from 4.5095×10−4 Ωm to 1.1395× 10−4 Ωm for concentration of Cu up to 4 % but it was increased further with increasing of Cu concentrations. The experimental results depict the suitability of this material for using as transparent and conducting window materials in solar cells and gas sensors.

  11. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  12. Dynamic studies of nano-confined polymer thin films

    Science.gov (United States)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  13. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  14. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  15. Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Dapeng; Zhang, Shuo; Jiang, Shiwei; He, Jinjin; Jiang, Kai

    2015-01-01

    Graphical abstract: TiO 2 hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO 2 hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell

  16. Anatase TiO{sub 2} hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng, E-mail: dpengwu@126.com [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Henan Province for Green Motive Power and Key Materials, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Shuo; Jiang, Shiwei; He, Jinjin [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Jiang, Kai [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Henan Province for Green Motive Power and Key Materials, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan 453007 (China)

    2015-03-05

    Graphical abstract: TiO{sub 2} hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO{sub 2} hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell.

  17. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  18. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  19. A comparative study of thermal annealing effects under various atmospheres on nano-structured CdS thin films prepared by CBD

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingjun; Li, Jianmin; Chen, Guilin; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn

    2013-10-05

    Highlights: •Smooth and uniform CdS thin films were deposited successfully by CBD method. •The influence of CdCl{sub 2}-assisted annealing under various atmospheres of CdS films has been investigated. •We gave a more detailed research on annealing temperature after identified the most optimal annealing method. •High quality CdS films were obtained with air–CdCl{sub 2}-assisted treatments at 400 °C for 0.5 h. •GIXRD was used as a new analysis method of CdS in this paper. -- Abstract: Cadmium sulfide (CdS) nanofilms have been deposited on the glass substrate using the chemical bath technique. The effects of CdCl{sub 2}-assisted annealing under different atmosphere (vacuum, Ar and air) on the structural, morphological and optical properties of CdS nanofilms have been studied. After identifying the optimal annealing atmosphere, we also investigated the CdS thin film annealed at different annealing temperature (300, 400 and 500 °C). Films have been characterized by GI-XRD analysis, scanning electron microscopy, and UV–Vis–NIR spectrophotometer. The as-deposited CdS films have been found to be nanocrystalline in nature with a mixture of two crystallographic phases: a hexagonal phase and a cubic phase. After annealed in air with a CdCl{sub 2} coating layer at 400 °C, the films showed pure hexagonal phase, indicating the phase transition of CdS. It was found that the treatment in air with a CdCl{sub 2} coating layer increased the crystallinity and the mean grain size of CdS film, which are advantageous to the application in solar cells as a window layer material.

  20. Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of FexSx nano thin films deposited by SILAR technique

    International Nuclear Information System (INIS)

    Manikandan, K.; Mani, P.; Surendra Dilip, C.; Valli, S.; Fermi Hilbert Inbaraj, P.; Joseph Prince, J.

    2014-01-01

    Iron sulfide thin films (Fe x S x ) (x = 0.05 M, 0.10 M, 0.15 M, 0.20 M and 0.25 M) were deposited by SILAR method from equimolar and equivolume aqueous solutions of ferrous nitrate and sodium sulfide with the addition of complexing agent TEA. The structural, morphological and optical characteristics of the films were derived from X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–vis spectral techniques. The mixed characteristics (crystalline and amorphous) of the deposited films and the increasing crystalline qualities with the concentrations were understood from the XRD analysis. The grain sizes and roughness of the films were decreases with the increasing concentration and also at the higher concentration films are shown by the same images presence of hexagonal like crystallite structure. The influence of complexing agent TEA on the surface roughness and morphological properties are confirmed by the atomic force microscope (AFM) results. The effect of increasing substrate concentration on the absorption and transmission measurements and its impact on the optical band-gap energy were enumerated from the UV–vis analysis.

  1. Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of Fe{sub x}S{sub x} nano thin films deposited by SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K., E-mail: 1984manikandan@gmail.com [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Mani, P. [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Surendra Dilip, C. [Department of Chemistry, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Valli, S. [Department of Physics, M.I.E.T. Arts and Science College, Tiruchirappalli 620 007, Tamilnadu (India); Fermi Hilbert Inbaraj, P.; Joseph Prince, J. [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-01-01

    Iron sulfide thin films (Fe{sub x}S{sub x}) (x = 0.05 M, 0.10 M, 0.15 M, 0.20 M and 0.25 M) were deposited by SILAR method from equimolar and equivolume aqueous solutions of ferrous nitrate and sodium sulfide with the addition of complexing agent TEA. The structural, morphological and optical characteristics of the films were derived from X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–vis spectral techniques. The mixed characteristics (crystalline and amorphous) of the deposited films and the increasing crystalline qualities with the concentrations were understood from the XRD analysis. The grain sizes and roughness of the films were decreases with the increasing concentration and also at the higher concentration films are shown by the same images presence of hexagonal like crystallite structure. The influence of complexing agent TEA on the surface roughness and morphological properties are confirmed by the atomic force microscope (AFM) results. The effect of increasing substrate concentration on the absorption and transmission measurements and its impact on the optical band-gap energy were enumerated from the UV–vis analysis.

  2. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  3. Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Esfandiar, Ali [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-09-01

    Graded chiral zig-zag shaped nano-sculptured silver thin films (GCZSSTF) were produced in two stages using oblique deposition technique together with rotation of substrate about its surface normal while a shadowing block was also fixed at Center of the substrate holder. Chrystallographic and morphological structure of these films were obtained using X-ray diffraction (XRD) and atomic force microscopy (AFM). Spectrophotometry was used to obtain their optical behavior while their application in both hydrophobicity and gas sensing was also investigated. XRD results showed a dominant (1 1 1) orientation growth on the zig arm of the structure while by addition of the second arm (zag) the crystallographical growth orientation changed to (2 2 0). The anisotropic nano-structure of these films was also distinguished through (1 - R) spectra. A common peak at about 350 nm related to the TM mode of plasmon resonances and a broad shoulder at about 420 nm for the s-polarized light and at 620 nm for the p-polarized light corresponding to the LM mode of plasmon resonances are observed. These peaks are directly related to the nano-columns topography. The film system used here proved to act as a physical method for producing layer-by-layer structure for obtaining enhanced hydrophobic surfaces rather than the usual chemical methods reported in the literature. In addition, the GCZSSTF also acted as good as reported results for nano-tubes when applied as cathode in the field ionization gas sensing setup.

  4. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  5. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  6. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  7. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  8. Structural stability of nano-sized clusters

    NARCIS (Netherlands)

    De Hosson, JTM; Palasantzas, G; Vystavel, T; Koch, S; Ovidko,; Pande, CS; Krishnamoorti, R; Lavernia, E; Skandan, G

    2004-01-01

    This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during

  9. Si/ZnO NANO STRUCTURED HETEROJUNCTIONS BY APCVD METHOD

    Directory of Open Access Journals (Sweden)

    M. Maleki

    2015-12-01

    Full Text Available In this paper, polycrystalline pure zinc oxide nano structured thin films were deposited on two kinds of single crystal and polycrystalline of p and n type Si in three different substrate temperatures of 300, 400 and 500◦C by low cost APCVD method. Structural, electrical and optical properties of these thin films were characterized by X ray diffraction, two point probe method and UV visible spectrophotometer respectively. IV measurements of these heterojunctions showed that turn on voltage and series resistance will increase with increasing substrate temperature in polycrystalline Si, while in single crystal Si, turn on voltage will decrease. Although they are acceptable diodes, their efficiency as a heterojunction solar cell are so low

  10. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  11. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures.

    Science.gov (United States)

    Liu, Lingyun; Li, Wenchen; Liu, Qingsheng

    2014-01-01

    Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.

  12. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  13. Effect of structural in-depth heterogeneities on electrical properties of Pb(Zr0.52Ti0.48) O3 thin films as revealed by nano-beam X-ray diffraction

    Science.gov (United States)

    Vaxelaire, N.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Alvarez-Murga, M.; Vaughan, G. B. M.; Defay, E.; Gergaud, P.

    2016-09-01

    A direct quantification of a structural in-depth composition in the lead zirconate titanate Pb(Zr,Ti)O3 thin films of morphotropic composition has been conducted using the newly available X-ray nano-pencil beam (i.e., beam size of 100 nm × 1 μm) diffraction approach. We tested two samples with different Zr/Ti chemical gradients. Here, we demonstrate the presence of a significant microstructural gradient between the rhombohedral and tetragonal phases through PbZrxTi1-xO3 (PZT) films with a 100 nm in-depth resolution. The phase gradient extends over around 350 nm, and it is repeated through the PZT film three times, which corresponds to the number of thermal annealings. Moreover, this microstructural gradient is in agreement with the Zr/Ti chemical gradient observed by the secondary ion mass spectroscopy (SIMS). Indeed, the quantity of tetragonal phases rises in the Ti-rich zones as revealed by SIMS, and the quantity of rhombohedral phases rises in the Zr-rich zones. We also demonstrated a huge difference in the in-depth phase variation between the two tested samples. The gradient free sample still contains 4.7% of phase variation through the film and the amplified gradient contains 9.6% of phase variation through the film. Knowing that the gradient free sample shows better electric and piezoelectric coefficients, one can draw a correlation between the chemical composition, crystallographic homogeneity, and electro-mechanical properties of the film. The more close the film is to the morphotropic composition and the more it is crystallographically homogeneous, the higher the piezoelectric coefficients of the PZT are. Finally, the adequate knowledge of phase variation and its relation to the fabrication technique are crucial for the enhancement of the PZT electro-mechanical properties. Our methodology and findings open up new perspectives in establishing a relevant quantitative feedback to reach an ultimate electro-mechanical coupling in the sol-gel PZT thin films.

  14. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  15. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  16. Subtle Raman signals from nano-diamond and β-SiC thin films

    International Nuclear Information System (INIS)

    Kuntumalla, Mohan Kumar; Ojha, Harish; Srikanth, Vadali Venkata Satya Siva

    2013-01-01

    Micro Raman scattering experiments are carried out in pursuit of subtle but discernable signals from nano-diamond and β-SiC thin films. The thin films are synthesized using microwave plasma assisted chemical vapor deposition technique. Raman scattering experiments in conjunction with scanning electron microscopy and x-ray diffraction were carried out to extract microstructure and phase information of the above mentioned thin films. Certain subtle Raman signals have been identified in this work. In the case of nanodiamond thin films, Raman bands at ∼ 485 and ∼ 1220 cm −1 are identified. These bands have been assigned to the nanodiamond present in nanodiamond thin films. In the case of nano β-SiC thin films, optical phonons are identified using surface enhanced Raman scattering. - Highlights: ► Subtle Raman signals from nano-diamond and β-silicon carbide related thin films. ► Raman bands at ∼ 485 and ∼ 1220 cm −1 from nanodiamond thin films are identified. ► Longitudinal optical phonon from nano β-silicon carbide thin films is identified

  17. Different Structures of PVA Nano fibrous Membrane for Sound Absorption Application

    International Nuclear Information System (INIS)

    Mohrova, J.; Kalinova, K.

    2012-01-01

    The thin nano fibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nano fibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA) was used as a polymer because of its good water solubility. It is possible to influence the structure of nano fibrous layer during the production process thanks to this property of polyvinyl alcohol.

  18. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  19. Nano imprint lithography of textures for light trapping in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Notta, J.B.; Pex, P.P.A.C. [ECN-Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands); Schipper, W.; Wilde, R. [Nanoptics GmbH, Innungsstrasse 5, 21244 Buchholz (Germany)

    2012-09-15

    Nano Imprint Lithography (NIL) is a versatile and commercially viable technology for fabrication of structures for light trapping in solar cells. We demonstrate the applicability of NIL in thin film silicon solar cells in substrate configuration, where NIL is used to fabricate a textured rear contact of the solar cells. We applied random structures, based on the natural texture of SnO:F grown by APCVD, and designed 2D periodic structures and show that for single junction {mu}c-Si cells these textured rear contacts lead to an increase of Jsc of more than 40 % in comparison to cells with flat rear contacts. Cells on optimized periodic textures showed higher fill factors which can be attributed to reduced microcrack formation, leading to less shunting in comparison to cells on random textures.

  20. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    Science.gov (United States)

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  2. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    Science.gov (United States)

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  3. Manufacture of Nano Structures in Polymer Material

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Pedersen, H.C.; Staun, Jacob

    2003-01-01

    The incorporation of micro and nano technology into the products of the future is an area of increasing interest. The ideas for new products based on this technology often take their starting point in specific scientific fields whereas the subsequent design and product development not necessarily...... is based on a systematic approach including manufacturing processes and production system capabilities. The process chain associated with micro and nano injection moulding usually comprises silicon or photoresist mastering, electroforming and polymer processing. Additionally, if the produced polymer...... components are to be used in a microsystem, subsequent handling and assembly is necessary. The present paper describes the process chain related to the manufacture of optical gratings with nanometer-sized structures. The problems of each process step and the challenges of establishing a coherent production...

  4. Characterization of nano structured metallic materials

    International Nuclear Information System (INIS)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C.

    1997-01-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C 3 N 3 ) 2 (NH) 3 ] n doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  5. Engineering Nano-Structured Multiferroic Thin Films

    Science.gov (United States)

    Cheung, Pui Lam

    Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for ALD CFO growth. The increased filling of CFO decreased the mechanical flexibility of the composite for electric field induced strain, hence the converse ME coupling was mitigated. The highest converse ME coefficient of 1.2 10-5 Oe-cm/mV was achieved with a 33% pore filling of CFO, in compare to 1 x 10-5 Oe-cm/mV from mesoporous CFO filled with 3 nm of PZT in literature (Chien 2016). Highly directional 1D-1D PZT-core CFO-shell composite in AAO demonstrated the magnetic shape anisotropy could be modulated. The CFO shell thickness allowed the tuning of magnetic easy axis and saturation magnetizations; whereas the PZT volume allowed the optimization of electric field induced strain of the composite. Enhanced converse ME coupling of 1.3 x 10-4 Oe-cm/mV was realized by 5 nm CFO shell on 30 nm of PZT core. In summary, the work has demonstrated nanostructuring of multiferroic composite is an effective pathway to engineer converse ME coupling through optimizations of magnetic shape anisotropy and interfacial strain transfer.

  6. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    Currently, the interest in nano technology research has been grown rapidly. With the latest technology, it is possible to arrange atoms into structures that are only a few nanometers in size. Dimension for nano structure is between 0.1 and 100nm where the actual size of 1nm is equal to 10-9 m or just about a few atoms thick. In other word, a nano structure is an object which it size is about four atom diameters or 1/50000 of a human hair. Due to the connecting of a patterned silicon substrate with biomolecules and the small size and large surface-to-volume ratio, it opens much new possibility for assembling nano structures.The ultimate goal is to fabricate devices that have every atom in the right place. Such technology would give the opportunity to minimize the size of a device and to reduce the material, energy and time necessary to perform its task. Potential applications include electrical circuits, mechanical devices and medical instruments. There are two most important nano structures that are extensively studied and researched in various organizations which are nano wire and nano gap. Nano wires is a new class of nano structure that have attracted attention and great research interest in the last few years because of their potential applications in nano technology such as nano electronic, nano mechanical and biomedical engineering. Fabrication of Nano wires is one of the great challenges today. Conventional lithography methods are not capable to produce Nano wires and even with advance nano lithography sizes below 100 nm may not easily be achieved. Nano wire can be produced in two approaches, which are top down and bottom-up method. Very small nano wires which can be produced by using top-down nano fabrication methods are Scanning Electron Microscope (SEM) based Electron Beam Lithography (EBL) method, and Spacer Patterning Lithography (SPL) method. The top-down nano fabrication method based on EBL was the design of the Nano wires Pattern Design (NPD). The

  7. Advanced vectorial simulation of VCSELs with nano structures invited paper

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    The single-mode properties and design issues of three vertical-cavity surface-emitting laser (VCSEL) structures incorporating nano structures are rigorously investigated. Nano structuring enables to deliver selective pumping or loss to the fundamental mode as well as stabilizing the output...... polarization state. Comparison of three vectorial simulation methods reveals that the modal expansion method is suitable for treating the nano structured VCSEL designs....

  8. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    Science.gov (United States)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  9. Cost-Effective Fabrication of Inner-Porous Micro/Nano Carbon Structures.

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Tang, Zirong; Xi, Shuang

    2018-03-01

    This paper reports the fabrication of a new micro/nano carbon architecture array which owns the characteristics of inner-porous, desired conductivity and large effective surface area. The micro/nano inner-porous carbon structures were fabricated for the first time, with ordinary and cost-effective processes, including photolithography, oxygen plasma etching and pyrolysis. Firstly, micro/nano hierarchical photoresist structures array was generated through photolithography and oxygen plasma etching processes. By introducing a critical thin-film spin-coating step, and followed with carefully pyrolyzing process, the micro/nano photoresist structures were converted into innerporous carbon architectures with good electric connection which connected the carbon structures array together. Probably the inner-porous property can be attributed to the shrinkage difference between positive thin film and negative photoresist structures during pyrolyzing process. It is demonstrated that the simple method is effective to fabricate inner-porous carbon structures with good electric connection and the carbon structures can be used as electrochemical electrodes directly and without the addition of other pyrolysis or film coating processes. The electrochemical property of the carbon structures has been explored by cyclic voltammetric measurement. Compared with solid carbon microstructures array, the cyclic voltammetry curve of inner-porous carbon structures shows greatly enhanced current and improved charge-storage capability, indicating great potential in micro energy storage devices and bio-devices.

  10. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  11. Exposure of tungsten nano-structure to TEXTOR edge plasma

    International Nuclear Information System (INIS)

    Ueda, Y.; Miyata, K.; Ohtsuka, Y.; Lee, H.T.; Fukumoto, M.; Brezinsek, S.; Coenen, J.W.; Kreter, A.; Litnovsky, A.; Philipps, V.; Schweer, B.; Sergienko, G.; Hirai, T.; Taguchi, A.; Torikai, Y.; Sugiyama, K.; Tanabe, T.; Kajita, S.; Ohno, N.

    2011-01-01

    W nano-structures (fuzz), produced in the linear high plasma device, NAGDIS, were exposed to TEXTOR edge plasmas (ohmic He/D mixed plasma and pure D plasma) to study formation, erosion and C deposition on W fuzz in tokamak plasmas for the first time. Fuzz layers were either completely eroded or covered by C deposit. There was no clear indication of W fuzz growth under the present conditions. There was no significant difference of C deposition between 'thick' fuzz (500-600 nm in thickness) and 'thin' fuzz (300-400 nm) in the He/D plasma. On the W fuzz surface, C deposition was enhanced probably due to reduction of effective sputtering yield and effective reflection coefficient of carbon ions, similar to roughness effects. Formation and erosion of W fuzz in tokamak devices and role of impurities are discussed.

  12. Superhydrophilicity of TiO2 nano thin films

    International Nuclear Information System (INIS)

    Mohammadizadeh, M.R.; Ashkarran, A.A.

    2007-01-01

    Full text: Among the several oxide semiconductors, titanium dioxide has a more helpful role in our environmental purification due to its photocatalytic activity, photo-induced superhydrophilicity, and as a result of them non-toxicity, self cleaning, and antifogging effects. After the discovery of superhydrophilicity of titanium dioxide in 1997, several researches have been performed due to its nature and useful applications. The superhydrophilicity property of the surface allows water to spread completely across the surface rather than remains as droplets, thus making the surface antifog and easy-to-clean. The distinction of photo-induced catalytic and hydrophilicity properties of TiO 2 thin films has been accepted although, the origin of hydrophilicity property has not been recognized completely yet. TiO 2 thin films on soda lime glass were prepared by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550 C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166 nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O∼0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV/Vis. spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450 C calcination temperature, where the film is converted to a superhydrophilic surface after 10 minutes under 2mW/cm 2 UV irradiation. TiO 2 thin film on Si(111), Si(100), and quartz substrates needs less time to be converted to

  13. Synthesis of nano structures for use as toxic gas adsorbents

    International Nuclear Information System (INIS)

    Velazquez P, S.; Pacheco S, J.; Estrada M, N.; Vasquez N, C.; Garcia R, M.; Garduno A, M.; Torres R, C.; Garcia G, J.; Pacheco P, M.; Valdivia B, R.; Ramos F, F.; Cruz A, A.; Duran G, M.; Hidalgo P, M.

    2008-01-01

    The work described here is the study of adsorption of nitrogen oxides by carbon nano structures and its implementation in a plasma reactor used to treat toxic gases. By placing a bed of carbon nano structures to the plasma reactor outlet obtained and increase in the efficiency of degradation. (Author)

  14. Compression and Injection Moulding of Nano-Structured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik Koblitz

    2006-01-01

    In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding.......In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding....

  15. Nano-Impact (Fatigue Characterization of As-Deposited Amorphous Nitinol Thin Film

    Directory of Open Access Journals (Sweden)

    Rehan Ahmed

    2012-08-01

    Full Text Available This paper presents nano-impact (low cycle fatigue behavior of as-deposited amorphous nitinol (TiNi thin film deposited on Si wafer. The nitinol film was 3.5 µm thick and was deposited by the sputtering process. Nano-impact tests were conducted to comprehend the localized fatigue performance and failure modes of thin film using a calibrated nano-indenter NanoTest™, equipped with standard diamond Berkovich and conical indenter in the load range of 0.5 mN to 100 mN. Each nano-impact test was conducted for a total of 1000 fatigue cycles. Depth sensing approach was adapted to understand the mechanisms of film failure. Based on the depth-time data and surface observations of films using atomic force microscope, it is concluded that the shape of the indenter test probe is critical in inducing the localized indentation stress and film failure. The measurement technique proposed in this paper can be used to optimize the design of nitinol thin films.

  16. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  17. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  18. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Keywords. Porous silicon; passivation; palladium; oxidation; XPS. Abstract. Nano porous silicon (PS) was formed on -type monocrystalline silicon of 2–5 cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its ...

  19. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  20. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying

  1. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  2. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors

    International Nuclear Information System (INIS)

    Zhao Xiaofeng; Wen Dianzhong; Zhuang Cuicui; Cao Jingya; Wang Zhiqiang

    2013-01-01

    A magnetic field sensor based on nano-polysilicon thin films transistors (TFTs) with Hall probes is proposed. The magnetic field sensors are fabricated on 〈100〉 orientation high resistivity (ρ > 500 Ω·cm) silicon substrates by using CMOS technology, which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers. The experimental results show that when V DS = 5.0 V, the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length—width ratios of 160 μm/80 μm, 320 μm/80 μm and 480 μm/80 μm are 78 mV/T, 55 mV/T and 34 mV/T, respectively. Under the same conditions, the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers. (semiconductor technology)

  3. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  4. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  5. Rapid nano impact printing of silk biopolymer thin films

    Science.gov (United States)

    White, Robert D.; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J.; Kaplan, David L.; Omenetto, Fiorenzo G.

    2011-11-01

    In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100-200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.

  6. Rapid nano impact printing of silk biopolymer thin films

    International Nuclear Information System (INIS)

    White, Robert D; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J; Kaplan, David L; Omenetto, Fiorenzo G

    2011-01-01

    In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100–200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.

  7. Electrospinning for nano- to mesoscale photonic structures

    Science.gov (United States)

    Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.

    2017-08-01

    The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this

  8. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  9. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  10. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  11. Platinum nano-cluster thin film formed on glassy carbon and the application for methanol oxidation

    International Nuclear Information System (INIS)

    Chang, Gang; Oyama, Munetaka; Hirao, Kazuyuki

    2007-01-01

    As an interesting platinum nanostructured material, a Pt nano-cluster film (PtNCF) attached on glassy carbon (GC) is reported. Through the reduction of PtCl 4 2- by ascorbic acid in the presence of GC substrate, a Pt thin continuous film composed of small nano-clusters which had a further agglomerated nanostructure of small grains could be attached on the GC surface. It was found that the electrocatalytic ability of PtNCF for the methanol oxidation was apparently higher than those of the Pt nano-clusters dispersedly attached on GC or indium in oxides. In addition, the electrocatalytic performance of PtNCF per Pt amount was superior to that of Pt black on GC. These results indicate that, in spite of the continuous nanostructures, nano-grains of PtNCF worked effectively for the catalytic electrolysis. The present PtNCF can be regarded as an interesting thin film material, which can be easily prepared by one-step chemical reduction

  12. Thickness and roughness measurements of nano thin films by interference

    Directory of Open Access Journals (Sweden)

    A Sabzalipour

    2011-06-01

    Full Text Available In the standard optical interference fringes approach, by measuring shift of the interference fringes due to step edge of thin film on substrate, thickness of the layer has already been measured. In order to improve the measurement precision of this popular method, the interference fringes intensity curve was extracted and analyzed before and after the step preparation. By this method, one can measure a few nanometers films thickness. In addition, using the interference fringes intensity curve and its fluctuations, the roughness of surface is measured within a few nanometers accuracy. Comparison of our results with some direct methods of thickness and roughness measurements, i.e. using surface profilemeter and atomic force microscopy confirms the accuracy of the suggested improvements.

  13. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  14. Nano-crystalline Ag–PbTe thermoelectric thin films by a multi-target PLD system

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, E., E-mail: emilia.cappelli@ism.cnr.it [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Bellucci, A. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Dip. Fisica, Un. Roma Sapienza, Piazzale Aldo Moro 2, 00185 Rome (Italy); Medici, L. [CNR-IMAA, Tito Scalo, 85050 Potenza (Italy); Mezzi, A.; Kaciulis, S. [CNR-ISMN, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Fumagalli, F.; Di Fonzo, F. [Center Nano Science Technology @Polimi, I.I.T., Via Pascoli 70/3, 20133 Milano (Italy); Trucchi, D.M. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy)

    2015-05-01

    Highlights: • Thermoelectric PbTe thin films, with increasing Ag percentage, were deposited by PLD. • Almost stoichiometric PbTe (Ag doped) films were grown, as verified by XPS analysis. • GI-XRD established the formation of cubic PbTe, with nano-metric structure (∼35 nm). • Surface resistivity shows an increase in conductivity, with increasing Ag doping. • From Seebeck values and XPS depth analysis, 10% Ag seems to be the solubility limit. - Abstract: It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical–chemical and electronic properties was evaluated in the range 300–575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30–35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  15. Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Chou Chau, Yuan-Fong, E-mail: a0920146302@gmail.com, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam); Chiang, Chien-Ying [National Taipei University of Technology, Department of Electro-Optical Engineering (China); Voo, Nyuk Yoong; Muhammad Idris, Nur Syafi’ie; Chai, Siew Ung [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam)

    2016-04-15

    The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.

  16. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  17. Outlook for NanoInside Theme "3D nano-structuring and metrology"

    NARCIS (Netherlands)

    Kruit, P.; Kroon, M.G.M. de; Maas, D.J.; Baumer, S.M.B.; Spruit, W.E.T.

    2017-01-01

    Het vakgebied van 3D nano-structurering en metrologie ontwikkelt zich razendsnel, zowel in Nederland als in de rest van de wereld. Het niveau van de Nederlandse betrokken onderzoekers, kennisinstituten en bedrijven is van wereldklasse. Veel Nederlandse academische groepen, kennisinstituten en

  18. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  19. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  20. Mechanical properties of ultra-thin HfO2 films studied by nano scratches tests

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Yong-Qing; Chang, Chia-Wei; Yao, Chih-Kai; Liao, Jiunn-Der

    2013-01-01

    10-nm-thick atomic layer deposited HfO 2 films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi x O y induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi x O y with increasing annealing temperatures. The existence of HfSi x O y broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi x O y induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO 2 films were assessed by nano-scratch and indentation. ► Scratch depth of HfO 2 films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO 2 films increased with the increase of annealing temperatures

  1. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    Science.gov (United States)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  2. Design, Simulation and Characteristics Research of the Interface Circuit based on nano-polysilicon thin films pressure sensor

    Science.gov (United States)

    Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang

    2018-03-01

    This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.

  3. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    Science.gov (United States)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  4. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  5. Tolerance Verification of Micro and Nano Structures on Polycarbonate Substrates

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2010-01-01

    Micro and nano structures are an increasing challenge in terms of tolerance verification and process quality control: smaller dimensions led to a smaller tolerance zone to be evaluated. This paper focuses on the verification of CD, DVD and HD-DVD nanoscale features. CD tolerance features are defi......Micro and nano structures are an increasing challenge in terms of tolerance verification and process quality control: smaller dimensions led to a smaller tolerance zone to be evaluated. This paper focuses on the verification of CD, DVD and HD-DVD nanoscale features. CD tolerance features...

  6. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    International Nuclear Information System (INIS)

    Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa

    2014-01-01

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized

  7. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jinhua; Wang, Wei, E-mail: wwei99@jlu.edu.cn; Ying, Jun; Xie, Wenfa [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  8. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  9. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  10. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  11. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  12. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  13. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  14. Investigation of the correlation between dielectric function, thickness and morphology of nano-granular ZnO very thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gilliot, Mickaël, E-mail: mickael.gilliot@univ-reims.fr [Laboratoire d' Ingénierie et Sciences des Matériaux, Université de Reims Champagne-Ardenne (France); Hadjadj, Aomar [Laboratoire d' Ingénierie et Sciences des Matériaux, Université de Reims Champagne-Ardenne (France); Martin, Jérôme [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Université de Technologie de Troyes (France)

    2015-12-31

    Thin nano-granular ZnO layers were prepared using a sol–gel synthesis and spin-coating deposition process with a thickness ranging between 20 and 120 nm. The complex dielectric function (ϵ) of the ZnO film was determined from spectroscopic ellipsometry measurements. Up to a critical thickness close to 60 nm, the magnitude of both the real and the imaginary parts of ϵ rapidly increases and then slowly tends to values closer to the bulk ZnO material. This trend suggests a drastic change in the film porosity at both sides of this critical thickness, due to the pre-heating and post-crystallization processes, as confirmed by additional characterization of the structure and the morphology of the ZnO films. - Highlights: • c-Axis oriented ZnO thin films were grown with different morphological states. • The morphology and structures are controlled by controlling the thickness. • The optical properties are correlated to morphological evolution. • Two growth behaviors and property evolutions are identified around a critical thickness.

  15. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Science.gov (United States)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  16. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Samuel M.; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Noh, Hyunwoo [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Cha, Jennifer N. [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2015-02-23

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  17. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    International Nuclear Information System (INIS)

    Goodman, Samuel M.; Singh, Vivek; Noh, Hyunwoo; Cha, Jennifer N.; Nagpal, Prashant

    2015-01-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers

  18. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  19. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  20. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  1. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  2. Incorporation of self-organised gold nano crystals in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films: Modification of superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Westerhausen, Markus; Koch, Stefanie; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany); Treiber, Sebastian [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2012-07-01

    Using pulsed laser deposition we are able to fabricate and examine Yttrium-Barium-Copper-Oxide (YBCO) thin films of high quality. A particular point of interest thereby is the influence of a pre-deposited gold layer with a well-defined film thickness. During the growth of the YBCO thin film the intermediate gold layer self assembles into crystalline nano particles, which modify the growth conditions and hence the physical properties of the growing YBCO. We report on the modification of structural and superconducting properties of our YBCO thin films (such as rocking curve widths, critical temperature T{sub c} and critical current density j{sub c}) comparing conventional to Au added YBCO. The temperature dependence of the critical current density thereby was determined using transport measurements as well as magneto-optical measurements. Furthermore investigations of the flux noise of our gold modified YBCO films are presented.

  3. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  4. Nano-Engineered Structural Joints, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A versatile class of high-performance structural joints is proposed where massive interatomic bonds over the large surface areas of nanostructured surfaces...

  5. Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraja, K.K. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Pramodini, S. [Department of Physics, School of Engineering and Technology, Jain University, Jakkasandra Post, Bengaluru 5621112, Karnataka (India); Poornesh, P., E-mail: poorneshp@gmail.com [Nonlinear Optics Research Laboratory, Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, Karnataka (India); Telenkov, M.P. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Kityk, I.V. [Electrical Engineering Department, Czestochowa University Technology, Czestochowa (Poland)

    2017-05-01

    We report the improved third-order nonlinear optical properties of polyaniline and poly (o-toluidine) with different doping concentrations of multi walled carbon nano tube (MWCNTs) composite thin films investigated using z-scan technique and continuous wave He–Ne laser at 633 nm wavelength was used as source of excitation. Thin films were prepared by spin coating technique on glass substrate. The structural properties of the composite films were analysed by X-ray diffraction studies and the characteristic peaks corresponding to MWCNTs and polymers have been observed. The surface morphology of the deposited films was analysed using scanning electron microscopy and it confirms that the polymer in the composites has been coated on the MWCNTs homogeneously. The z-scan results reveal that the films exhibit reverse saturable absorption and self-defocusing nonlinearity. The third-order nonlinear optical susceptibility χ{sup (3)} is found to be of the order of 10{sup −3} esu. Also, optical power limiting and clamping experiment was performed. The clamping values increases with increase in concentration and the lowest clamping observed for composite films are 1 mW and 0.7 mW.

  6. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  7. Elastic nano-structure of diamond-like carbon (DLC)

    International Nuclear Information System (INIS)

    Ogiso, Hisato; Yoshida, Mikiko; Nakano, Shizuka; Yasui, Haruyuki; Awazu, Kaoru

    2006-01-01

    This research discusses the elastic nano-structure of diamond-like carbon (DLC) films. Two DLC film samples deposited by plasma based ion implantation (PBII) were prepared. The plasma generated by microwave (MW) was applied to one sample and the plasma by radio frequency (RF) to the other sample. The samples were evaluated for the elastic property image with nanometer resolution using scanning probe microscopy (SPM). The film surface deposited by RF-PBII was very flat and homogeneous in elastic property. In contrast, the film surface by MW-PBII was more uneven than that by RF-PBII and both the locally hard and the locally soft regions were found at the film surface. The size of the structure in elastic property is several tens nanometer. We conclude that the film probably contains nano-scale diamond phase

  8. Elastic nano-structure of diamond-like carbon (DLC)

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, Hisato [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Yoshida, Mikiko [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Nakano, Shizuka [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Yasui, Haruyuki [Industrial Research Institute of Ishikawa (IRII), Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-0233 (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa (IRII), Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-0233 (Japan)

    2006-01-15

    This research discusses the elastic nano-structure of diamond-like carbon (DLC) films. Two DLC film samples deposited by plasma based ion implantation (PBII) were prepared. The plasma generated by microwave (MW) was applied to one sample and the plasma by radio frequency (RF) to the other sample. The samples were evaluated for the elastic property image with nanometer resolution using scanning probe microscopy (SPM). The film surface deposited by RF-PBII was very flat and homogeneous in elastic property. In contrast, the film surface by MW-PBII was more uneven than that by RF-PBII and both the locally hard and the locally soft regions were found at the film surface. The size of the structure in elastic property is several tens nanometer. We conclude that the film probably contains nano-scale diamond phase.

  9. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  10. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  11. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  12. Nano Structured Devices for Energy Generation

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej

    ?uorescence polarimetry and X-ray diffractometry (XRD). Layer thicknesses of inverted α-6T / C60 bilayer organic solar cells fabricated at room temperature were optimized to obtain the model device for the performance enhancement studies. By variation of the substrate temperature during deposition of α-6T, the structures...

  13. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  14. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  15. Nano-crystallization in ZnO-doped In{sub 2}O{sub 3} thin films via excimer laser annealing for thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mami N., E-mail: f-mami@ms.naist.jp; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu [Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T. [Delft University of Technology, Feldmannweg 17, P.O. Box 5053, 2600 GB Delft (Netherlands); Kawashima, Emi; Tomai, Shigekazu; Yano, Koki [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, Chiba, 299-0293 (Japan)

    2016-06-15

    In a previous work, we reported the high field effect mobility of ZnO-doped In{sub 2}O{sub 3} (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  16. Nano-crystallization in ZnO-doped In_2O_3 thin films via excimer laser annealing for thin-film transistors

    International Nuclear Information System (INIS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu; Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T.; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki

    2016-01-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In_2O_3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  17. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  18. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  19. Synthesis of Carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH 4 with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  20. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7O3 for multi-bit storage application

    Directory of Open Access Journals (Sweden)

    Lu Qian

    2011-01-01

    Full Text Available Abstract In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7O3 (PZT] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data.

  1. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  2. The effect of micro nano multi-scale structures on the surface wettability

    International Nuclear Information System (INIS)

    Lee, Sang Min; Jung, Im Deok; Ko, Jong Soo

    2008-01-01

    Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: square-pillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by Deep Reactive Ion Etching (DRIE) and Reactive Ion Etching (RIE) processes, respectively. And Plasma Polymerized FluoroCarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nano-protrusions was 6.37 .deg. higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle

  3. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  4. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  5. Synthesis of carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of carbon neocarcinostatin (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, one has seen the necessity to generate new synthesis processes of these materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither impurities. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arc discharge, in a gas mixture He-CH 4 with 34% at.Ni/10.32%at.Y like catalyst; to a frequency of 42 k Hz and low power (300 W). This method benefits the agglomeration of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the type of obtained NEC and by X-ray diffraction analysis and Raman spectroscopy to determine the purity of the samples. The NFC are relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of the plasma using the Swan band to determine the temperature. (Author)

  6. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  7. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S; Ridge, Claron J.; Rö tzer, Marian David; Zwaschka, Gregor; Braun, Thomas; D'Elia, Valerio; Basset, Jean-Marie; Schweinberger, Florian Frank; Gü nther, Sebastian; Heiz, Ueli

    2015-01-01

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly

  8. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  9. Self-organized nano-structuring of CoO islands on Fe(001)

    Science.gov (United States)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  10. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  11. Thin film structures and phase stability

    International Nuclear Information System (INIS)

    Clemens, B.M.; Johnson, W.L.

    1990-01-01

    This was a two day symposium, with invited and contributed papers as well as an evening poster session. The first day concentrated on solid state reactions with invited talks by Lindsay Greer from the University of Cambridge, King Tu from IBM Yorktown Heights, and Carl Thompson from MIT. Professor Greer observed that the diffusion of Zr is 10 6 times slower than that of Ni in amorphous NiZr, confirming that Ni is the mobile species in solid state amorphization. King Tu explained the formation of metastable phases in this film diffusion couples by the concept of maximum rate of free energy change. Carl Thompson discussed the formation of amorphous phases in metal silicon systems, and discussed a two stage nucleation and growth process. The contributed papers also generated discussion on topics such as phase segregation, amorphous silicide formation, room temperature oxidation of silicon, and nucleation during ion beam irradiation. There was a lively poster session on Monday evening with papers on a wide variety of topics covering the general area of thin film science. The second day had sessions Epitaxy and Multilayer Structure I and II, with the morning focussing on epitaxial and heteroepitaxial growth of thin films. Robin Farrow of IBM Almaden led off with an invited talk where he reported on some remarkable success he and his co-workers have had in growing single crystal epitaxial thin films and superlattices of silver, iron, cobalt and platinum on GaAs. This was followed by several talks on epitaxial growth and characterization. The afternoon focused on interfaces and structure of multilayered materials. A session on possible stress origins of the supermodulus effect was highlighted by lively interaction from the audience. Most of the papers presented at the symposium are presented in this book

  12. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  13. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  14. Investigation of properties of modified oxides structured by nano technology

    International Nuclear Information System (INIS)

    Kurina, I.S.; Serebrennikova, O.V.; Rumyantsev, V.N.; Dvoryashin, A.M.

    2009-01-01

    Research results on the PuO 2 +MgO fuel composition with CeO 2 as a PuO 2 simulator are presented. The water nano technology for the production of oxide ceramic materials, developed in IPPE, was used for fabrication of powders and modified pellets. This technology includes obtaining precipitate, consisting of particles of different sizes as well as of nanoparticles, which is further calcined, pressed and sintered. It results in modifying structure of the sintered pellets. Modified pellets have anomalously high thermal conductivity measured by the axial heat flux method [ru

  15. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  16. Impact effects in thin-walled structures

    International Nuclear Information System (INIS)

    Zukas, J.A.; Gaskill, B.

    1996-01-01

    A key parameter in the design of protective structures is the critical impact velocity, also known as the ballistic limit. This is the velocity below which a striker will fail to penetrate a barrier or some protective device. For strikers with regular shapes, such as cylinders (long and short), spheres and cones, analytical and empirical formulations for the determination of a ballistic limit exist at impact velocities ranging from 250 m/s to 6 km/s or higher. For non-standard shapes, two- and three-dimensional wave propagation codes (hydrocodes) can be valuable adjuncts to experiments in ballistic limit determinations. This is illustrated with the help of the ZeuS code in determining the ballistic limit of a short, tubular projectile striking a thin aluminum barrier and contrasting it to the value of the ballistic limit of a spherical projectile of equal mass against the same target. Several interesting features of the debris cloud generated by a tubular projectile striking a Whipple shield at hypervelocity are also pointed out. The paper concludes with a consideration of hydrodynamic ram effects in fluid-filled thin-walled structures. Where possible, comparisons are made of computed results with experimental data

  17. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  18. Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria

    Directory of Open Access Journals (Sweden)

    J. F. Bozeman

    2011-01-01

    Full Text Available Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.

  19. Structure-­mediated nano-­biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    2015-01-01

    The synergy between photonics, nanotechnology and biotechnology is spawning the emerging fields of nano-biotechnology and nano-biophotonics. Photonic innovations already hurdle the diffraction barrier for imaging with nanoscopic resolutions. However, scientific hypothesis testing demands tools...

  20. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  1. Preparation of biomimetic nano-structured films with multi-scale roughness

    Science.gov (United States)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  2. Preparation of biomimetic nano-structured films with multi-scale roughness

    International Nuclear Information System (INIS)

    Shelemin, A; Nikitin, D; Choukourov, A; Kylián, O; Kousal, J; Khalakhan, I; Melnichuk, I; Slavínská, D; Biederman, H

    2016-01-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45–240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery. (paper)

  3. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  4. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; Villa S, G.; Rosales D, J. [Tecnologico de Estudios Superiores de Jocotitlan, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico); Vigueras S, E.; Hernandez L, S. [Universidad Autonoma del Estado de Mexico, Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Acuna, P. [Universidad Autonoma del Estado de Mexico, Programa de Doctorado en Ciencia de Materiales, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Argueta V, A.; Colin B, N., E-mail: lorr810813@gmail.com [Tecnologico de Estudios Superiores de Jocotitlan, Programa de Ingenieria Mecatronica, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico)

    2017-11-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  5. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    International Nuclear Information System (INIS)

    Lopez, R.; Villa S, G.; Rosales D, J.; Vigueras S, E.; Hernandez L, S.; Acuna, P.; Argueta V, A.; Colin B, N.

    2017-01-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  6. Nano structured materials studied by coherent X-ray diffraction

    International Nuclear Information System (INIS)

    Gulden, Johannes

    2013-03-01

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  7. Nano structured materials studied by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, Johannes

    2013-03-15

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  8. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Mostafa; Ziaie, Farhood; Hajiloo, Nahid [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School

    2016-12-15

    The goal of this study is to compare the thermoluminescence properties of nano and micro structure hydroxyapatite. Nano structure hydroxyapatite was synthesized via hydrolysis method, while the micro structure one was from Merck Company. X-ray diffraction and fourier transform infrared spectroscopy were used to determine the crystal structure and chemical composition of the hydroxyapatite samples. Particles sizes of each sample were estimated using Scherer equation and transmission electron microscopy system. Thermoluminescence properties of the samples were investigated under gamma irradiation. The glow curves of micro and nano structure samples show a peak at 150 C and 200 C, respectively. Thermoluminescence responses of both the samples were linear in the range of 25 - 1 000 Gy where, nano structure sample show a greater slope and stronger linearity in comparison to the micro sample. The results show that the thermoluminescence response of micro sample faded rapidly in comparison to the nano sample due to the existence of the peak at higher temperature.

  9. The morphology and structure of PVD ZrN-Cu thin films

    International Nuclear Information System (INIS)

    Audronis, M; Jimenez, O; Leyland, A; Matthews, A

    2009-01-01

    ZrN-Cu thin films containing variable amounts of copper, namely 8, 33 and 58 at%, were produced by reactive pulsed unbalanced magnetron sputtering. Coatings were found to possess hardness values of 22.5 GPa, 9.5 GPa and 3.7 GPa, respectively. The morphology of coatings was investigated by field emission gun scanning electron microscopy and the structure (microstructure and nanostructure) was investigated by conventional (bright-field and dark-field imaging) and high-resolution transmission electron microscopy. Complementary x-ray diffraction experiments were also performed. ZrN coatings containing 8 at% of copper were found to possess a nano-columnar structure composed of ZrN columnar grains, the diameter of which was approximately 15-35 nm. The majority of the copper content was apparently dissolved within the ZrN grains, rather than existing as a separate phase. Coatings of the two other compositions were found to be composed of a mixture of mostly equiaxed ZrN and Cu nano-crystalline grains, the diameters of which were in the approximate range 5-25 nm. None of the coatings investigated in this study were found to possess the so-called 'nanocomposite' structure, which is often envisaged as crystalline nano-grains surrounded by a thin amorphous intergranular phase. Instead, coatings were found to be either single-phase ZrN (with Cu in substitutional solid solution for Zr) or a mixture of ZrN and Cu nano-grains.

  10. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  11. π -Plasmon model for carbon nano structures: Application to porphyrin

    International Nuclear Information System (INIS)

    Ha, Dao Thu; Anh, Chu Thuy; Nga, Do Thi; Thanh, Le Minh; Van, Tran Thi Thanh; Viet, Nguyen Ai

    2016-01-01

    In traditional concept, the optical properties of semiconductors and semimetals near their fundamental optical band gaps are attributed to single excitations (such electron-hole pairs, excitons...). In our earlier article, we proposed the collective mechanism of π -plasmons for optical properties of low dimensional carbon nano structures. A simple way to calculate the peak positions of UV-vis absorption spectra was pointed out and gave a good agreement with experimental data. In this work we analyze different schemas to calculate the UV-vis absorption peaks. A new parameter k which characterizes the dependence of schema on geometry and number of carbon sites is defined. As an example, the case of porphyrin was investigated. (paper)

  12. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    Science.gov (United States)

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  13. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  14. Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties

    International Nuclear Information System (INIS)

    Kim, Hwa-Jung; Choi, Seong-Ho; Park, Hae-Jun

    2012-01-01

    In this study, nano-silver (nano-Ag) complexes showing different properties have been synthesized as follows. Polypyrrolidone (PVP)-stabilized silver colloids (NAg), nano-Ag bound to silica (SiO 2 ) (NSS), and nano-Ag bound to a complex of SiO 2 and polyaniline (PANI) (NSSPAI) were prepared via γ-irradiation at room temperature. NAg and NSS used PVP as a colloidal stabilizer, while NSSPAI did not use PVP as a colloidal stabilizer. Interesting bonding properties occurred in the nano-Ag complex and anticipated structural changes were clearly shown through a surface analysis of x-ray photoelectron spectroscopy (XPS). The morphologies by field emission-scanning electron microscopy (FE-SEM) analysis showed that nano-Ag complexes have various particle sizes ranging from 10 to 30 nm. NSS (average, 10 nm) and NSSPAI (average, 30 nm) showed a uniformly spherical shape and size, while NAg did not. From the reflection peaks in the x-ray diffraction (XRD) patterns, surface crystallinity of the nano-Ag complexes was indicated to be in the same degree as that of NSSPAI>NSS>NAg. Also, in the contact angle (CA) determination, surface hydrophobicity of NSSPAI was stronger than those of NSS and NAg, relatively. The different nano-Ag complexes prepared by γ-irradiation can be applicable in various industry fields due to the increase in specific property. - Highlights: ► Nano-Ag complexes showing different properties have been synthesized via γ-irradiation. ► Nano-Ag colloid (NAg), nano-Ag bound to SiO 2 (NSS), nano-Ag bound to SiO 2 and PANI complex (NSSPAI). ► Nano-Ag complexes were the same based on Ag metal. ► Results clearly showed fascinating/different physical properties. ► Different nano-Ag complexes can be applicable in various industry fields.

  15. Mechanical properties of ultra-thin HfO{sub 2} films studied by nano scratches tests

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wei-En; Chang, Yong-Qing [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321, Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Chang, Chia-Wei; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-02-01

    10-nm-thick atomic layer deposited HfO{sub 2} films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi{sub x}O{sub y} induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi{sub x}O{sub y} with increasing annealing temperatures. The existence of HfSi{sub x}O{sub y} broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi{sub x}O{sub y} induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO{sub 2} films were assessed by nano-scratch and indentation. ► Scratch depth of HfO{sub 2} films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO{sub 2} films increased with the increase of annealing temperatures.

  16. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  17. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Łuka, Grzegorz; Włodarski, Maksymilian

    2016-01-01

    Highlights: • Al nano-concave arrays with different interpore distance (D c ) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al 2 O 3 spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D c and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D c ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D c ) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al 2 O 3 spacer was placed between the textured Al and the ZnO films (the Al/Al 2 O 3 -ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D c = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ (0,1) SPP resonance mode. In the Al/Al 2 O 3 -ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ (0,1) plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ (0,1) SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al 2 O 3 -ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further enhancement of the SP-modulated UV emission from ZnO thin films.

  18. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    Energy Technology Data Exchange (ETDEWEB)

    Norek, Małgorzata, E-mail: mnorek@wat.edu.pl [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Łuka, Grzegorz [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Włodarski, Maksymilian [Institute of Optoelectronics, Military University of Technology, Str. Kaliskiego 2, 00-908 Warszawa (Poland)

    2016-10-30

    Highlights: • Al nano-concave arrays with different interpore distance (D{sub c}) were prepared. • PL of ZnO thin films deposited directly on the Al nano-concaves were studied. • The effect of 10 nm Al{sub 2}O{sub 3} spacer on PL emission from ZnO thin films was analyzed. • Plasmonic enhancement of the PL emission was dependent on the D{sub c} and the spacer. • The highest 9-fold enhancement was obtained for the Al/ZnO sample with D{sub c} ∼333 nm. - Abstract: Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (D{sub c}) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm − Al{sub 2}O{sub 3} spacer was placed between the textured Al and the ZnO films (the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (D{sub c} = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ{sub (0,1)} SPP resonance mode. In the Al/Al{sub 2}O{sub 3}-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ{sub (0,1)} plasmonic mode. The results obtained in this work indicate that better tuning of the NBE − λ{sub (0,1)} SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al{sub 2}O{sub 3}-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further

  19. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    International Nuclear Information System (INIS)

    Nozaki, Kosuke; Shinonaga, Togo; Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao; Tsukamoto, Masahiro; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface

  20. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Kosuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Shinonaga, Togo [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yamashita, Kimihiro [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Nagai, Akiko, E-mail: nag-bcr@tmd.ac.jp [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan)

    2015-12-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface.

  1. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Biagioni, P [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Rougemaille, N [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Schmid, A K [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lanzara, A [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Duo, L [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy)

    2006-10-25

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.

  2. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    International Nuclear Information System (INIS)

    Brambilla, A.; Biagioni, P.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Duo, L.; Ciccacci, F.; Finazzi, M.

    2006-01-01

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models

  3. Experimental validation of tape springs to be used as thin-walled space structures

    Science.gov (United States)

    Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.

    2018-04-01

    With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.

  4. Investigation and Estimation of Structure of Web from Electro spun Nano fibres

    International Nuclear Information System (INIS)

    Malasauskiene, J.; Milasius, R.

    2013-01-01

    During the electro spinning process the web of nano fibres is manufactured by means of electrostatic forces between two electrodes. The diameters of nano fibres usually differ and they depend on various parameters. The different fineness of fibres influences the structure of the web and herewith the end-use properties of such kind of nano material. Analysis of nano fibres diameters distribution also shows big differences; even more, the distributions are not spread along the normal distribution. Understanding the influence of electro spinning parameters and the reason why the shapes of distributions are so sophisticated is very important. The goal of this paper is to analyse the distribution of diameter and to propose the new criterion for nano fibres diameter comparison and web of nano fibres estimation. In this paper the influence of covering time of support material on structure of PA6.6 nano fibre web has been investigated. It was estimated that this parameter does not have a significant influence on the average diameter of nano fibres, and only the structure of web has been influenced by the changes in covering time. According to the results provided the phenomena of nano fibres sticking on the support material at the time of electro spinning can be proved and explained.

  5. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  6. Structural Design of a Compact in-Plane Nano-Grating Accelerometer

    International Nuclear Information System (INIS)

    Yao Bao-Yin; Zhou Zhen; Feng Li-Shuang; Wang Wen-Pu; Wang Xiao

    2012-01-01

    A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers

  7. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  8. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaozhu, E-mail: Lixiaozhu1019@21cn.com [Department of Physics, Shaoguan University, Shaoguan, Guangdong 512005 (China) and Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan, Hubei 430072 (China); Wang Yongqian [Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences), Wuhan, Hubei 430074 (China)

    2011-05-12

    Highlights: > ZnO nano-needles were synthesized by thermal oxidation. > Their surfaces were coated with Ag by pulse electro-deposition technique. > The uncoated and coated ZnO nano-needles were characterized. > The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. > The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 {mu}m. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  9. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    International Nuclear Information System (INIS)

    Li Xiaozhu; Wang Yongqian

    2011-01-01

    Highlights: → ZnO nano-needles were synthesized by thermal oxidation. → Their surfaces were coated with Ag by pulse electro-deposition technique. → The uncoated and coated ZnO nano-needles were characterized. → The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. → The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 μm. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  10. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  11. Self-organized nano-structuring of CoO islands on Fe(001)

    International Nuclear Information System (INIS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    Highlights: • CoO grown on the Co(001)-p(1 × 1)O surface of a 5 ML thick Co layer on Fe(001). • The growth process does not induce Fe cation migration and/or oxidation. • A misfit dislocation network develops in the very early stages of CoO growth. • Such a network acts as a template for a three-dimensional CoO nanostructuration. • The dimensions of CoO wedding-cake square mounds scale linearly with thickness. - Abstract: The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  12. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  13. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  14. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  15. Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-07-01

    Full Text Available of Chemistry, University of the Free State (Qwaqwa Campus), Phuthaditjhaba, South Africa 3 Center for Advanced Materials, Qatar University, Doha, Qatar Abstract The aim of this study was to develop a high flux three-tier composite membrane composed of a... of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres T.C. Mokhena1,2, A.S. Luyt3* 1 CSIR Materials Science and Manufacturing, Polymers and Composites, Port Elizabeth, South Africa. 2 Department...

  16. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  17. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  18. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  19. Thin Capitalization Rules and Multinational Firm Capital Structure

    NARCIS (Netherlands)

    Blouin, J.; Huizinga, H.P.; Laeven, L.; Nicodeme, G.

    2014-01-01

    Abstract: This paper examines the impact of thin capitalization rules that limit the tax deductibility of interest on the capital structure of the foreign affiliates of US multinationals. We construct a new data set on thin capitalization rules in 54 countries for the period 1982-2004. Using

  20. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  1. Chemically synthesized PbS Nano particulate thin films for a rapid NO2 gas sensor

    Directory of Open Access Journals (Sweden)

    Burungale Vishal V.

    2016-03-01

    Full Text Available Rapid NO2 gas sensor has been developed based on PbS nanoparticulate thin films synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR method at different precursor concentrations. The structural and morphological properties were investigated by means of X-ray diffraction and field emission scanning electron microscope. NO2 gas sensing properties of PbS thin films deposited at different concentrations were tested. PbS film with 0.25 M precursor concentration showed the highest sensitivity. In order to optimize the operating temperature, the sensitivity of the sensor to 50 ppm NO2 gas was measured at different operating temperatures, from 50 to 200 °C. The gas sensitivity increased with an increase in operating temperature and achieved the maximum value at 150 °C, followed by a decrease in sensitivity with further increase of the operating temperature. The sensitivity was about 35 % for 50 ppm NO2 at 150 °C with rapid response time of 6 s. T90 and T10 recovery time was 97 s at this gas concentration.

  2. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    Science.gov (United States)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  3. Structural and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal Powders

    International Nuclear Information System (INIS)

    Hassan, N.K.; Hashim, M.R.

    2013-01-01

    High quality ZnO nano structures have been fabricated at room temperature by a simple vacuum thermal evaporator from metallic Zn powders (99.999 % purity) on a silicon (100) substrate. The Zn thin films were then transferred into a thermal tube furnace for oxidation at 700 degree Celsius for different time durations. Time was found to be a critical factor in the synthesis. This was followed by characterization of their morphological, structural and optical properties. The morphology of the grown ZnO nano structures exhibited several large grains, which increased gradually with increasing oxidation time. The crystallinity of the grown nano structures was investigated using X-ray diffraction, revealing that the synthesized ZnO was in hexagonal wurtzite phase. The photoluminescence (PL) spectra of the fabricated ZnO nano structures showed high intensity peak in the UV region due to near-band-edge (NBE) emission in which the structures oxidized for 30 min showing highest intensity. (author)

  4. Structural and optical studies of nano-structure silica gel doped with different rare earth elements, prepared by two different sol -gel techniques

    International Nuclear Information System (INIS)

    Battisha, I.K.; El Beyally, A.; Seliman, S.I.; El Nahrawi, A.S.

    2005-01-01

    Structural and optical characteristics of pure silica gel (silica-xerogel, SiO 2 ) and doped with different concentrations ranging from 1 up to 6% of some rare earth (REEs) ions such as, praseodymium Pr +3 ,and Europium Eu +3 , Erbium Er +3 and Holmium Ho +3 , ions, in the form of thin film and monolith materials were prepared by sol - gel technique, Using tetra-ethoxysilane as precursor materials, which are of particular interest for sol-gel integrated optics applications. Some structural and optical features of sol-gel derived monolith and thin films are analyzed and compared, namely the structure of nano-particle monolith and thin film silica-gel samples, based on X-ray diffraction (XRD). The types of structural information obtainable are compared in detail. It is show that the XRD spectra of a-cristobalite are obtained for the two type materials and even by doping with the four REEs ions. Optical measurements of monolith and thin films were also studied and compared, the normal transmission and specular reflection were measured. The refractive index were calculated and discussed

  5. Effect of Annealing on the Structural and Optical Properties of Nano Fiber ZnO Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2011-11-01

    Full Text Available Nano fiber ZnO films have been deposited on to glass substrate at 200 °C by a simple spray pyrolysis technique under atmospheric pressure. The effect of annealing temperature on the structural and optical properties of the as grown films has been studied by Scanning Electron Microscopy (SEM attached with an EDX, powder X-ray diffraction and UV visible spectroscopy. The atomic weight % of Zinc and Oxygen were found to be 49.22 % and 49.62 % respectively. The SEM micrographs show nano fiber structure and uniform deposition on the substrate. Average grain size of ZnO thin film was found in the range of 21 to 27 nm. The lattice constant a and c of ZnO thin film are determined at different annealing temperatures and values are found slightly larger than those of JCPDS data and lower for the sample annealed at 600 °C. The lattice parameters a and c decrease with increasing temperature. It reveals that the samples are poly-crystalline and having with low densities. Band gap energy of ZnO was found in the range of 3.33 to 3.17 eV and decreases with the increase of the annealing temperature.

  6. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  7. Highly ordered FEPT and FePd magnetic nano-structures: Correlated structural and magnetic studies

    International Nuclear Information System (INIS)

    Lukaszew, Rosa Alejandra; Cebollada, Alfonso; Clavero, Cesar; Garcia-Martin, Jose Miguel

    2006-01-01

    The micro-structure of epitaxial FePt and FePd films grown on MgO (0 0 1) substrates is correlated to their magnetic behavior. The FePd films exhibit high chemical ordering and perpendicular magnetic anisotropy. On the other hand FePt films exhibit low chemical ordering, with nano-grains oriented in two orthogonal directions, forcing the magnetization to remain in the plane of the films

  8. Reduction reactions applied for synthesizing different nano-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Brocchi, Eduardo de; Correia de Siqueira, Rogério Navarro [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Motta, Marcelo Senna [Basck Ltd. (United Kingdom); Moura, Francisco José, E-mail: moura@puc-rio.br [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Solórzano-Naranjo, Ivan Guillermo [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil)

    2013-06-15

    Different materials have been synthesized by alternative routes: nitrates thermal decomposition to prepare oxide or co-formed oxides and reduction by hydrogen or graphite to obtain mixed oxides, composites or alloys. These chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support its feasibility. In addition, selective reduction reactions have been applied to successfully produce metal/ceramic composites, and alloys. Structural characterization has been carried out by X-ray Diffraction and, more extensively, Transmission Electron Microscopy operating in conventional diffraction contrast (CTEM) and high-resolution mode (HRTEM), indicated the possibility of obtaining oxide and alloy crystals of sizes ranging between 20 and 40 nm. - Highlights: • The viability in obtaining Ni–Co, Cu–Al, Mn–Al co-formed nano oxides was evaluated. • Partial and complete H{sub 2} reduction were used to produce alloy, composite and Spinel. • XRD, TEM and HREM techniques were used to characterize the obtained nanostructures.

  9. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    Science.gov (United States)

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  10. Mechanics of evolving thin film structures

    Science.gov (United States)

    Liang, Jim

    In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two

  11. Fabrication of 3D nano-structures using reverse imprint lithography

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  12. Fabrication of 3D nano-structures using reverse imprint lithography

    International Nuclear Information System (INIS)

    Han, Kang-Soo; Cho, Joong-Yeon; Lee, Heon; Hong, Sung-Hoon; Kim, Kang-In; Choi, Kyung-woo

    2013-01-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED. (paper)

  13. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries

    Science.gov (United States)

    Cao, Zhiguang; Chen, Xiaoqiao; Xing, Lidang; Liao, Youhao; Xu, Mengqing; Li, Xiaoping; Liu, Xiang; Li, Weishan

    2018-03-01

    A structurally hierarchical MnO2/TiO2 composite (Nano-MnO2@TiO2) is fabricated by calcining MnCO3 microspheres and coating a thin layer of TiO2 through the heat decomposition of tetrabutyl titanate, and evaluated as anode of gravimetrically and volumetrically high energy density lithium ion battery. The characterizations from FESEM, TEM, HRTEM and XRD, indicate that the resulting Nano-MnO2@TiO2 takes a spherical morphology with a core of about 2 μm in diameter, consisting of compact MnO2 nanoparticles, and a shell of 60 nm thick, consisting of smaller TiO2 nanoparticles. The charge/discharge tests demonstrate that Nano-MnO2@TiO2 exhibits excellent performance as anode of lithium ion battery, delivering a capacity of 938 mAh g-1 at 300 mA g-1 after 200 cycles, compared to the 103 mAh g-1 of the uncoated sample. The microsphere consisting of compact nanoparticles provides Nano-MnO2@TiO2 with high specific gravity. The dimensionally and structurally stable TiO2 maintains the integrity of MnO2 microspheres and facilitates lithium insertion/extraction. This unique structure yields the excellent cyclic stability and rate capability of Nano-MnO2@TiO2.

  14. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  15. Effect of Precursor Concentration on Structural Optical and Electrical Properties of NiO Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Rafia Barir

    2017-01-01

    Full Text Available Undoped nickel oxide (NiO thin films were deposited on 500°C heated glass substrates using spray pyrolysis method at (0.015–0.1 M range of precursor. The latter was obtained by decomposition of nickel nitrate hexahydrate in double distilled water. Effect of precursor concentration on structural, optical, and electrical properties of NiO thin films was investigated. X-ray diffraction (XRD shows the formation of NiO under cubic structure with single diffraction peak along (111 plane at 2θ=37.24°. When precursor concentration reaches 0.1 M, an increment in NiO crystallite size over 37.04 nm was obtained indicating the product nano structure. SEM images reveal that beyond 0.04 M as precursor concentration the substrate becomes completely covered with NiO and thin films exhibit formation of nano agglomerations at the top of the sample surface. Ni-O bonds vibrations modes in the product of films were confirmed by FT-IR analysis. Transparency of the films ranged from 57 to 88% and band gap energy of the films decreases from 3.68 to 3.60 eV with increasing precursor concentration. Electrical properties of the elaborated NiO thin films were correlated to the precursor concentration.

  16. Synthesis and photophysical properties of pyrene-functionalized nano-SiO{sub 2} hybrids in solutions and doped-PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Jie; He, Wen-Li; Yu, Hong-Yu [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Huang, Hong-Xiang [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chen, Meng [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2017-01-15

    Luminescent pyrene-functionalized nano-SiO{sub 2} (nano-SiO{sub 2}Pyr) hybrids were synthesized and characterized using thermogravimetry, infrared, UV–vis absorption and, X-ray photoelectron spectroscopy, as well as field emission transmission electron microscopy (FETEM). The organic substituents immobilized on the nano-SiO{sub 2}Pyr hybrids accounted for approximately 10% of the total weight. Polyethylene glycol 200 (PEG200) was found to be the most suitable solvent to suspend the nano-SiO{sub 2}Pyr hybrids compared to other commonly used organic solvents. FETEM images indicated an average SiO{sub 2} nanoparticle diameter of approximately 12 nm and a 1- to 2-nm thick organic species functionalization layer. Several emission peaks were recorded at wavelengths of 380–580 nm and were designated as emissions arising from either the monomer or excimer of the pyrene substituents. Excimer formation was concentration and solvent polarity dependent, with higher concentrations and a stronger solvent polarity benefiting excimer formation. Further, nano-SiO{sub 2}Pyr hybrids were doped in poly(methyl methacrylate) (PMMA) thin films; fluorescence spectra indicated that the excimer could be formed almost exclusively from neighboring nano-SiO{sub 2}Pyr hybrids. Time-resolved fluorescence decays revealed that the emission lifetimes of nano-SiO{sub 2}Pyr monomers and excimers were approximately 190 ns and 65–100 ns in the PEG200 solution, respectively, which was shortened to 0.45 ns to tens of ns in doped PMMA thin films, depending on the nano-hybrid concentration. Thus, the present study not only provides a method to prepare luminescent nano-materials but also a route to investigate excimer formation in solutions and thin films. - Highlights: • Luminescent pyrene-functionalized nano-SiO{sub 2}Pyr hybrids were prepared. • A 1- to 2- nm thick organic functionalization layer on nano-SiO{sub 2} was observed. • Formation of pyrene excimer was concentration and solvent

  17. Some Fundamental Aspects of Mechanics of Nano composite Materials and Structural Members

    International Nuclear Information System (INIS)

    Guz, A.N.; Rushchitsky, J.J.

    2013-01-01

    This paper is devoted to formulation and analysis of fundamental aspects of mechanics of nano composite materials and structural members. These aspects most likely do not exhaust all of the possible fundamental characteristics of mechanics of nano composite materials and structural members, but, nevertheless, they permit to form the skeleton of direction of mechanics in hand. The proposed nine aspects are described and commented briefly.

  18. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  19. Tailoring electronic structure of polyazomethines thin films

    OpenAIRE

    J. Weszka; B. Hajduk; M. Domański; M. Chwastek; J. Jurusik; B. Jarząbek; H. Bednarski; P. Jarka

    2010-01-01

    Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD) can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic ...

  20. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  1. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide

    Science.gov (United States)

    Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin

    2018-04-01

    Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.

  2. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  3. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    Science.gov (United States)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  4. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  5. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  6. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

    International Nuclear Information System (INIS)

    Mendes, Manuel J.; Mateus, Tiago; Lyubchyk, Andriy; Águas, Hugo; Ferreira, Isabel; Fortunato, Elvira; Martins, Rodrigo; Morawiec, Seweryn; Priolo, Francesco; Crupi, Isodiana

    2015-01-01

    The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells’ front surface formed from the deposition of material over the spherically shaped colloids. (paper)

  7. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  8. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    OpenAIRE

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the experiments in UHV At the surface of freshly cleaved samples, we have observed sodium nano-precipitates with shapes, which depend on the irradiation dose and the volume fraction of the radiolytic Na...

  9. Successive ion layer adsorption and reaction (SILAR) technique synthesis of Al(III)-8-hydroxy-5-nitrosoquinolate nano-sized thin films: characterization and factors optimization.

    Science.gov (United States)

    Haggag, Sawsan M S; Farag, A A M; Abdel Refea, M

    2013-02-01

    Nano Al(III)-8-hydroxy-5-nitrosoquinolate [Al(III)-(HNOQ)(3)] thin films were synthesized by the rapid, direct, simple and efficient successive ion layer adsorption and reaction (SILAR) technique. Thin film formation optimized factors were evaluated. Stoichiometry and structure were confirmed by elemental analysis and FT-IR. The particle size (27-71 nm) was determined using scanning electron microscope (SEM). Thermal stability and thermal parameters were determined by thermal gravimetric analysis (TGA). Optical properties were investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence. Refractive index, n, and absorption index, k, were determined. Spectral behavior of the absorption coefficient in the intrinsic absorption region revealed a direct allowed transition with 2.45 eV band gap. The current-voltage (I-V) characteristics of [Al(III)-(HNOQ)(3)]/p-Si heterojunction was measured at room temperature. The forward and reverse I-V characteristics were analyzed. The calculated zero-bias barrier height (Φ(b)) and ideality factor (n) showed strong bias dependence. Energy distribution of interface states (N(ss)) was obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

    Directory of Open Access Journals (Sweden)

    M. Jafar-Tafreshi

    2012-12-01

    Full Text Available Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO33.9H2O and ammonium sulfate ((NH42SO4. The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were characterized by both X- ray diffraction and FTIR measurements. These two analyses determined the temperature at which the aluminum sulfate is converted to γ-alumina nano particles. The specific surface area and pore size distribution for  γ-alumina nano particles were determined by BET measurement. TEM measurement confirmed the size of the particles obtained by XRD and BET analyses.

  11. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  12. Bright-field Nanoscopy: Visualizing Nano-structures with Localized Optical Contrast Using a Conventional Microscope.

    Science.gov (United States)

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M

    2016-04-26

    Most methods for optical visualization beyond the diffraction limit rely on fluorescence emission by molecular tags. Here, we report a method for visualization of nanostructures down to a few nanometers using a conventional bright-field microscope without requiring additional molecular tags such as fluorophores. The technique, Bright-field Nanoscopy, is based on the strong thickness dependent color of ultra-thin germanium on an optically thick gold film. We demonstrate the visualization of grain boundaries in chemical vapour deposited single layer graphene and the detection of single 40 nm Ag nanoparticles. We estimate a size detection limit of about 2 nm using this technique. In addition to visualizing nano-structures, this technique can be used to probe fluid phenomena at the nanoscale, such as transport through 2D membranes. We estimated the water transport rate through a 1 nm thick polymer film using this technique, as an illustration. Further, the technique can also be extended to study the transport of specific ions in the solution. It is anticipated that this technique will find use in applications ranging from single-nanoparticles resolved sensing to studying nanoscale fluid-solid interface phenomena.

  13. Impact of Atomic Layer Deposition to NanoPhotonic Structures and Devices: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan eSaleem

    2014-10-01

    Full Text Available We review the significance of optical thin films by Atomic Layer Deposition (ALD method to fabricate nanophotonic devices and structures. ALD is a versatile technique to deposit functional coatings on reactive surfaces with conformal growth of compound materials, precise thickness control capable of angstrom resolution and coverage of high aspect ratio nanostructures using wide range of materials. ALD has explored great potential in the emerging fields of photonics, plasmonics, nano-biotechnology, and microelectronics. ALD technique uses sequential reactive chemical reactions to saturate a surface with a monolayer by pulsing of a first precursor (metal alkoxides or covalent halides, followed by reaction with second precursor molecules such as water to form the desired compound coatings. The targeted thickness of the desired compound material is controlled by the number of ALD cycles of precursor molecules that ensures the self limiting nature of reactions. The conformal growth and filling of TiO2 and Al2O3 optical material on nanostructures and their resulting optical properties have been described. The low temperature ALD-growth on various replicated sub-wavelength polymeric gratings is discussed.

  14. Thermal stability of nano structured fly ash synthesized by high ...

    African Journals Online (AJOL)

    user

    Casting, as a liquid phase process, is capable of producing products with ... materials, including stiffness, strength and wear resistance and reduce the density. .... been destroyed; and in this 10h milling stage the fly ash is in cold welding ..... 2004, Nanostructures and Nano materials- Synthesis, properties and Applications, ...

  15. Synthesis of tungsten oxide nano structures by laser pyrolysis

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2008-01-01

    Full Text Available Since the proposal to synthesise materials by laser assisted pyrolysis in the 1970s, and its practical realisation in 1982, a number of researchers have used this method in obtaining nano-powders from liquid droplets. This study revisits...

  16. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  17. Mechanical characterization of biocompatible thin film materials by scanning along micro-machined cantilevers for micro-/nano-system

    International Nuclear Information System (INIS)

    He, J.H.; Luo, J.K.; Le, H.R.; Moore, D.F.

    2006-01-01

    Mechanical characterization is vital for the design of micro-/nano-electro-mechanical system (MEMS/NEMS). This paper describes a new characterization method to extract the mechanical properties of the thin film materials, which is simple, inexpensive and applicable to a wide range of materials including biocompatible ones described in this paper. The beams of the material under tests, are patterned by laser micro-machining and released by alkaline etch. A surface profilometer is used to scan along micro-machined cantilevers and produce a bending profile, from which the Young's modulus can be extracted. Biocompatible SiN x , SiC and nanocrystal diamond cantilevers have been fabricated and their Young's modulus has been evaluated as 154 ± 12, 360 ± 50 and 504 ± 50 GPa, respectively, which is consistent with those measured by nano-indentation. Residual stress gradient has also been extracted by surface profilometer, which is comparable with the results inferred from ZYGO interferometer measurements. This method can be extended to atomic force microscopy stylus or nanometer-stylus profilometer for Bio-NEMS mechanical characterization

  18. LDPE/HDPE/Clay Nano composites: Effects of Compatibilizer on the Structure and Dielectric Response

    International Nuclear Information System (INIS)

    David, Z.E.; Ngo, A.D.

    2013-01-01

    PE/clay nano composites were prepared by mixing a commercially available premixed polyethylene/O-MMT master batch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nano clay and compatibilizer on the structure and dielectric response of PE/clay nano composites has been investigated. The microstructure of PE/clay nano composites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nano composite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nano composite with the PE-MA compatibilizer was better dispersed. In the nano composite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate f m ax of Maxwell-Wagner-Sillars was found and discussed.

  19. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  20. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  1. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  2. Pinning in high performance MgB{sub 2} thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Prikhna, Tatiana, E-mail: prikhna@mail.ru [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Shapovalov, Andrey [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Eisterer, Michael [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Shaternik, Vladimir [G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36 Academician Vernadsky blvd., Kiev, 03680 (Ukraine); Goldacker, Wilfried [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein (Germany); Weber, Harald W. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Boutko, Viktor [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Grechnev, Gennadiy [B. Verkin Institute for Low Temperature Physics of the National Academy of Sciences of Ukraine, 47, Prospekt Nauky, Kharkiv 61103 (Ukraine); Gusev, Alexandr [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Kovylaev, Valeriy; Shaternik, Anton [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine)

    2017-02-15

    Highlights: • Pinning in MgB{sub 2} depends on the Mg-B-O nano-scaled inhomogeneities. • Finer oxygen-enriched inhomogeneities is the reason of the higher J{sub c} in MgB{sub 2} thin films as compared to bulk. • The results of DOS calculations for MgB{sub 2-x}O{sub x} compounds demonstrate that they have metal-like behavior. • Ordered oxygen distribution in MgB{sub 2} (in pairs or zigzags) reduces binding energy. - Abstract: The comparison of nano-crystalline MgB{sub 2} oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, J{sub c}, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB{sub 2} bulks with high J{sub c} in low (∼10{sup 6} A/cm{sup 2} in 0-1 T at 10 K) and medium magnetic fields contain MgB{sub 0.6-0.8}O{sub 0.8-0.9} nano-inclusions, where δT{sub c} or a combined δT{sub c} (dominant) / δ{sub l} pinning mechanism prevails, while in bulk MgB{sub 2} with high J{sub c} in high magnetic fields (B{sub irr}(18.5 K) = 15 T, B{sub c2}(0 K) = 42.1 T) MgB{sub 1.2-2.7}O{sub 1.8-2.5} nano-layers are present and δ{sub l} pinning prevails. The structure of oxygen-containing films with high J{sub c} in low and high magnetic fields (J{sub c} (0 T) = 1.8 × 10{sup 7} A/cm{sup 2} and J{sub c} (5 T) = 2 × 10{sup 6} A/cm{sup 2} at 10 K) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δ{sub l} pinning is realized. The results of DOS calculations in MgB{sub 2-x}O{sub x} cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, E{sub b}, does not increase sufficiently as compared with that for MgB{sub 2}, while when oxygen atoms form zigzag chains the calculated E{sub b} is even lower (E{sub b} = −1.15712 Ry).

  3. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  4. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  5. Growth temperature dependence of flux pinning properties in ErBa2Cu3Oy thin films with nano-rods

    International Nuclear Information System (INIS)

    Haruta, M.; Sueyoshi, T.; Fujiyoshi, T.; Mukaida, M.; Kai, H.; Matsumoto, K.; Mele, P.; Maeda, T.; Horii, S.

    2011-01-01

    Nano-rods were introduced into ErBa 2 Cu 3 O y thin films to improve J c . Pinning properties depended on the growth temperature of the films. Morphology of nano-rods was affected by the growth temperature. The growth temperature is important to achieve high in-field J c 's. Irreversibility lines and distributions of local critical current density (J cl ) based on the percolation transition model were affected by the growth temperature (T s ) in 3.5 wt.%-BaNb 2 O 6 -doped ErBa 2 Cu 3 O y thin films. The vortex-Bose-glass-like state appeared by the introduction of nano-rods, and this vortex state was affected by T s . The shape and width of the J cl distribution strongly depended on T s . These results are probably caused by variations of the density and the growth direction for nano-rods reflecting T s . The growth temperature is an important factor to achieve higher critical current properties under magnetic fields for coated conductors of rare-earth-based cuprates with nano-rods.

  6. Structural and mechanical properties of ZrSiN thin films prepared by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Freitas, F.G.R.; Conceicao, A.G.S.; Vitoria, E.R.; Carvalho, R.G.; Tentardini, E.K.; Hübler, R.; Soares, G.

    2014-01-01

    Zirconium silicon nitride (ZrSiN) thin films were deposited by reactive magnetron sputtering in order to verify the silicon influence on coating morphology and mechanical properties. The Si/(Zr+Si) ratio was adjusted between 0 to 14.5% just modifying the power applied on the silicon target. Only peaks associated to ZrN crystalline structure were observed in XRD analysis, since Si_3N_4 phase was amorphous. All samples have (111) preferred orientation, but there is a peak intensity reduction and a broadening increase for the sample with the highest Si/(Zr+Si) ratio (14.5%), demonstrating a considerable loss of crystallinity or grain size reduction (about 8 nm calculated by Scherrer). It was also observed that the texture coefficient for (200) increases with silicon addition. Chemical composition and thickness of the coatings were determined by RBS analysis. No significant changes in nano hardness with increasing Si content were found. The thin film morphology observed by SEM presents columnar and non columnar characteristics. The set of results suggests that Si addition is restricting the columnar growth of ZrN thin films. This conclusion is justified by the fact that Si contributes to increase the ZrN grains nucleation during the sputtering process. (author)

  7. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  8. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  9. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    -condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for

  10. Key Techniques on Preparing High Aspect Ratio Micro and Nano Structures

    DEFF Research Database (Denmark)

    Jian, Zhao; Lianhe, Dong; Xiaoli, Zhu

    2016-01-01

    effectively. The mechanism of action between NaCl and HSQ was analyzed. The collapse and adhesion of resist structure due to the effect of gas-liquid interfacial capillary surface tension were suppressed by the CO2 supercritical drying method. Large-area dense nano-structures with the aspect ratio of 12...

  11. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  12. Formation of Lanthanum Hydroxide nano structures: Effect of NaOH and KOH solvents

    International Nuclear Information System (INIS)

    Mazloumi, M.; Zanganeh, S.; Kajbafvala, A.; Shayegh, M. R.; Sadrnezhaad, S. K.

    2008-01-01

    Lanthanum hydroxide (La(OH) 3 ) nano structures, including elliptical nanoparticles, octahedral rods and irregular nanoparticles were prepared chemically in NaOH and KOH solutions with 10 M concentration. The obtained powders were characterized with x-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential thermal analysis. Crystallinities, morphologies and thermal behavior of the obtained nano structure powders were investigated under the influence of above mentioned solvents. The effect of chemical's temperature was also determined in one of the solvents (i.e. NaOH). The formation of growth in nano structure mechanism under the influence of alkali solutions (i.e., KOH and NaOH) have been discussed considerably in this paper

  13. Preparation of disk-like particles with micro/nano hierarchical structures.

    Science.gov (United States)

    Meng, Zhen; Yang, Wenbo; Chen, Pengpeng; Wang, Weina; Jia, Xudong; Xi, Kai

    2013-10-15

    A facile, reproductive method has been successfully developed to produce disk-like microparticles self-assembled from monodispersed hybrid silica nanoparticles under certain circumstance. The disk-like microparticles with micro/nano hierarchical structures could be obtained in large amount under a mild condition and further used to biomimetic design of the superhydrophobic surface of lotus leaf. After traditional surface modification with dodecyltrichlorosiliane, the static contact angle of water on the surface with micro/nano hierarchical structure could reach 168.8°. The method of surface modification could be further simplified by click reaction with the introduction of thiol groups under mild condition. The present strategy for constructing the surface with micro/nano hierarchical structures offers the advantage of simple and large area fabrication, which enables a variety of superhydrophobic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  15. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  16. Magnetic properties of electroplated nano/microgranular NiFe thin films for rf application

    NARCIS (Netherlands)

    Zhuang, Y.; Vroubel, M.; Rejaei, B.; Burghartz, J.N.; Attenborough, K.

    2005-01-01

    A granular NiFe thin film with large in-plane magnetic anisotropy and high ferromagnetic-resonance frequency developed for radio-frequency integrated circuit (IC) applications is presented. During the deposition, three-dimensional (3D) growth occurs, yielding NiFe grains (? ? 1.0??m). Nanonuclei (?

  17. Development and characterization of nano structured hard coatings for high performance tools by using PVD technique

    International Nuclear Information System (INIS)

    Irfan, M.; Alam, S.; Hassan, Z.; Iftikhar, F.; Khadim, S.

    2006-01-01

    No doubt hard coatings nave major applications in high performance cutting tools in order to improve tribological and mechanical properties of these tools since last years. The actual top development in this regard is the development of PVD based AlTiN coatings and their supplementation with nano. layers. In present these nano coatings are replaced by nano composites along with an additional development of Multilayer Nano structured coatings. This PVD based nano structured coating development optimized by process parameters, crystalline structure and deposition in multilayer. These coating are definitely produced by combination of ARC and Sputtering with filtration of arc droplets. It is studied that the properties like oxidation resistance, wear resistance and resistance against chemical reaction may be obtained by alloying additions of different elements. This paper presents different development stages and Process parameters for- producing high performance Nanostructure coatings and including adhesion test by using Kalomax system for determination of adhesion strength of these coatings and coating thickness measurements by using image analyzer system. Results and conclusions are showing the optimum values for better coatings for different applications. (author)

  18. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  19. Arbitrarily thin metamaterial structure for perfect absorption and giant magnification

    DEFF Research Database (Denmark)

    Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger

    2011-01-01

    In our common understanding, for strong absorption or amplification in a slab structure, the desire of reducing the slab thickness seems contradictory to the condition of small loss or gain. In this paper, this common understanding is challenged. It is shown that an arbitrarily thin metamaterial ...

  20. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  1. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    Science.gov (United States)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  2. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: A photoluminescence study on representative σ-conjugated polymers

    International Nuclear Information System (INIS)

    Urbánek, Pavel; Kuřitka, Ivo

    2015-01-01

    We present a fundamental experimental study based on the fluorescence investigation of thin σ-conjugated polymer films, where the dependence of optoelectrical properties and UV degradation on film thickness ranging from nano- to microscale was studied. Such extensive and detailed study was performed for the first time and observed spectral shifts in emission and excitation spectra and UV degradation retardation point towards the conclusions that there exists a threshold thickness where the material degradation behavior, electron delocalization and structure suddenly change. The development of well aligned polymeric chain structure between the nano- and micrometer thickness (on the mesoscale) was shown responsible for the manifested phenomena. The material thicker than critical 500 nm has extremely small Stokes' shift, maximum extended σ-delocalization along the silicon polymer backbone and exhibits remarkable UV degradation slowdown and self-recovery ability. On the contrary, the electronic properties of thin films below 80 nm resemble those of random coils in solutions. The films of moderate thickness show relatively steep transition between these two modes of structural ordering and resulting properties. Altogether, we consider this complex phenomenon as a consequence of the mesoscale effect, which is an only recently introduced concept in polymer thin films. - Highlights: • Photoluminescence was used as a tool for structural investigation of polysilanes. • Primary study of strong dependence of thin polymer film structure on mesoscale. • A mesoscale effect observed for the first time on sigma conjugated polymers. • Conjugation length is dramatically extended in thicker films than in nanoscale. • Self-recovery effect was shown to be dependent on the mesoscale as well.

  3. Role of motive forces for the spin torque transfer for nano-structures

    Science.gov (United States)

    Barnes, Stewart

    2009-03-01

    Despite an announced imminent commercial realization of spin transfer random access memory (SPRAM) the current theory evolved from that of Slonczewski [1,2] does not conserve energy. Barnes and Maekawa [3] have shown, in order correct this defect, forces which originate from the spin rather than the charge of an electron must be accounted for, this leading to the concept of spin-motive-forces (smf) which must appear in Faraday's law and which significantly modifies the theory for spin-valves and domain wall devices [4]. A multi-channel theory in which these smf's redirect the spin currents will be described. In nano-structures it is now well known that the Kondo effect is reflected by conductance peaks. In essence, the spin degrees of freedom are used to enhance conduction. In a system with nano-magnets and a Coulomb blockade [5] the similar spin channels can be the only means of effective conduction. This results in a smf which lasts for minutes and an enormous magneto-resistance [5]. This implies the possibility of ``single electron memory'' in which the magnetic state is switched by a single electron. [4pt] [1] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers J. Magn. Magn. Mater. 159, L1 (1996). [0pt] [2] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [3] S. E. Barnes and S. Maekawa, Generalization of Faraday's Law to Include Nonconservative Spin Forces Phys. Rev. Lett. 98, 246601 (2007); S. E. Barnes and S. Maekawa, Currents induced by domain wall motion in thin ferromagnetic wires. arXiv:cond-mat/ 0410021v1 (2004). [0pt] [4] S. E., Barnes, Spin motive forces, measurement, and spin-valves. J. Magn. Magn. Mat. 310, 2035-2037 (2007); S. E. Barnes, J. Ieda. J and S. Maekawa, Magnetic memory and current amplification devices using moving domain walls. Appl. Phys. Lett. 89, 122507 (2006). [0pt] [5] Pham-Nam Hai, Byung-Ho Yu

  4. Induction Heating System Applied to Injection Moulding of Micro and Nano Structures

    DEFF Research Database (Denmark)

    Menotti, Stefano

    The present Ph.D. thesis contains a study concerning induction heating system applied to injection moulding of micro and nano structures. The overall process chain was considered and investigated during the project including part design, simulation, conventional and non-conventional tooling...... part. In fact one of the main problems in micro injection moulding is the premature freezing of the polymer flow inside the cavity and often is not possible to obtain a full replica of the nano/micro structures embed on the surfaces. Some other defects that can be avoided with the use of an additional...

  5. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    Science.gov (United States)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  6. Effect of bath temperature on structure, morphology and thermoelectric properties of CoSb{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Suchitra, E-mail: suchitrayadav87@gmail.com; Pandya, Dinesh K.; Chaudhary, Sujeet [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-23

    CoSb{sub 3} thin films are deposited on conducting glass substrates (FTO) by electrodeposition at different bath temperatures (60°C, 70°C and 80°C) and the resulting influence of the bath temperature on the structure, morphology and electrical properties of films is investigated. X-ray diffraction confirms the formation of CoSb{sub 3} phase in the films. Scanning electron microscopy reveals that different morphologies ranging from branched nano-flakes to nano-needles evolve as bath temperature increases. It is concluded that a growth temperature of 80°C is suitable for producing CoSb{sub 3} films with such properties that show potential feasibility for thermoelectric applications.

  7. Optical constants and structural properties of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, Dmitry I.; Arsenin, Aleksey V.; Stebunov, Yury V.

    2017-01-01

    We report a comprehensive experimental study of optical and electrical properties of thin polycrystalline gold films in a wide range of film thicknesses (from 20 to 200 nm). Our experimental results are supported by theoretical calculations based on the measured morphology of the fabricated gold...... rules for thin-film plasmonic and nanophotonic devices....... films. We demonstrate that the dielectric function of the metal is determined by its structural morphology. Although the fabrication process can be absolutely the same for different films, the dielectric function can strongly depend on the film thickness. Our studies show that the imaginary part...

  8. Thin NbN film structures on SOI for SNSPD

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, Konstantin; Kurz, Stephan; Henrich, Dagmar; Hofherr, Matthias; Siegel, Michael [IMS, KIT, Karlsruhe (Germany); Semenov, Alexei; Huebers, Heinz-Wilhelm [DLR, Berlin (Germany)

    2012-07-01

    Superconducting Nanowire Single-Photon Detectors (SNSPD) made from ultra-thin NbN films on sapphire demonstrate almost 100% intrinsic detection efficiency (DE). However the system DE values is less than 10% mostly limited by a very low absorptance of NbN films thinner than 5 nm. Integration of SNSPD in Si photonic circuit is a promising way to overcome this problem. We present results on optimization of technology of thin NbN film nanostructures on SOI (Silicon on Insulator) substrate used in Si photonics technology. Superconducting and normal state properties of these structures important for SNSPD development are presented and discussed.

  9. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  10. Water-mediated electrochemical nano-writing on thin ceria films

    International Nuclear Information System (INIS)

    Yang, Nan; Doria, Sandra; Tebano, Antonello; Licoccia, Silvia; Balestrino, Giuseppe; Kumar, Amit; Arruda, Thomas M; Jesse, Stephen; Ivanov, Ilia N; Baddorf, Arthur P; Strelcov, Evgheni; Kalinin, Sergei V; Jang, Jae Hyuck; Borisevich, Albina Y

    2014-01-01

    Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO 2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing. (paper)

  11. Crystal structure of red lead titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L.A.; Peng, J.L.; Jiang, B. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Li, X. [Jilin Univ., Changchun, JL (China). Dept of Chemistry

    1998-09-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate 7 refs., 1 tab., 4 figs.

  12. Crystal structure of red lead titanate thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, J.L.; Jiang, B.; Li, X.

    1998-01-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate

  13. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  14. Synthesis, optical properties and growth mechanism of MnO nano structures

    Science.gov (United States)

    Pandey, B. K.; Shahi, A. K.; Gopal, R.

    2013-10-01

    Manganese oxide (MnO) colloidal nanoparticles have been successfully synthesized by pulse laser ablation in double distilled water. Nd: YAG laser with focused output operating at different pulse energies (20, 30, 40, 50 mJ/pulse) was used for ablation. Synthesized MnO nano crystal phase and structure were confirmed by X-ray diffraction and SAED pattern. Optical properties of as synthesized MnO nano colloidal solution were studied by UV-vis absorption spectroscopy. Optical particle size and band gap of as synthesized MnO colloidal nanoparticles were calculated. Particle shape and size were determined by TEM/SEM image. It is observed that MnO nano colloidal particles assembled to make different structures after aging in the liquid media. Aspect ratio has been calculated from SEM picture. MnO nanoparticles show weak antiferromagnetic behavior at room temperature as measured by VSM. A typical mechanism has been proposed for the formation of different nanostructures.

  15. Nano-structured micropatterns by combination of block copolymer self-assembly and UV photolithography

    International Nuclear Information System (INIS)

    Gorzolnik, B; Mela, P; Moeller, M

    2006-01-01

    A procedure for the fabrication of nano-structured micropatterns by direct UV photo-patterning of a monolayer of a self-assembled block copolymer/transition metal hybrid structure is described. The method exploits the selective photochemical modification of a self-assembled monolayer of hexagonally ordered block copolymer micelles loaded with a metal precursor salt. Solvent development of the monolayer after irradiation results in the desired pattern of micelles on the surface. Subsequent plasma treatment of the pattern leaves ordered metal nanodots. The presented technique is a simple and low-cost combination of 'top-down' and 'bottom-up' approaches that allows decoration of large areas with periodic and aperiodic patterns of nano-objects, with good control over two different length scales: nano- and micrometres

  16. Hydrogen irradiation on TiO{sub 2} nano-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Heidari, Sh.; Mohammadizadeh, M.R. [University of Tehran, Superconductivity Research Laboratory (SRL), Department of Physics, Tehran (Iran, Islamic Republic of); Mahjour-Shafiei, M. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Larijani, M.M.; Malek, M. [Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2015-10-15

    Titanium dioxide thin films were coated on soda-lime glass substrates using spray pyrolysis method with a thickness of 152 ± 10 nm. The films were irradiated with hydrogen ions at room temperature at various beam energies and fluences. Optimized incident beam energy and beam fluence were obtained to improve photocatalytic and hydrophilicity properties of TiO{sub 2} thin films by narrowing the band gap. Samples were characterized by scanning electron microscopy to study the surface morphology and by UV-Vis absorption spectroscopy to measure the band gap. The optical band gap of H-doped anatase TiO{sub 2} thin films irradiated with hydrogen beam with energies of 2 and 4 keV and a fluence of 10{sup 15} ions/cm{sup 2} was narrowed from 3.34 eV (before irradiation) to 3.04 and 2.92 eV (after irradiation), respectively. The irradiated sample with energy of 4 keV with a fluence of 10{sup 15} ions/cm{sup 2} has the best improvement. This is attributed to the contraction of the band gap and to the increase in surface active site. Furthermore, it was observed that photocatalytic and hydrophilicity properties of this sample were improved, as well. (orig.)

  17. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites.

    Science.gov (United States)

    Lee, Shie-Heng; Teng, Chih-Chun; Ma, Chen-Chi M; Wang, Ikai

    2011-12-01

    This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  19. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  20. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  1. Structural and electrical properties of CZTS thin films by electrodeposition

    Science.gov (United States)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  2. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  3. Formation of carbon nano- and micro-structures on C+1 irradiated copper surfaces

    International Nuclear Information System (INIS)

    Ahmad, Shoaib

    2013-01-01

    A series of experiments has identified mechanisms of carbon nano- and micro-structure formation at room temperature, without catalyst and in the environment of immiscible metallic surroundings. The structures include threaded nano fibres, graphitic sheets and carbon onions. Copper as substrate was used due to its immiscibility with carbon. Energetic carbon ions (C + 1 ) of 0.2–2.0 MeV irradiated Cu targets. Cu substrates, apertures and 3 mm dia TEM Cu grids were implanted with the carbon. We observed wide range of μm-size structures formed on Cu grids and along the edges of the irradiated apertures. These are shown to be threaded nano fibers (TNF) of few μm thicknesses with lengths varying from 10 to 3000 μm. Secondary electron microscopy (SEM) identifies the μm-size structures while Confocal microscopy was used to learn about the mechanisms by which C + 1 irradiated Cu provides the growth environment. Huge carbon onions of diameters ranging from hundreds of nm to μm were observed in the as-grown and annealed samples. Transformations of the nanostructures were observed under prolonged electron irradiations of SEM and TEM. A mechanism for the formation of carbon nano- and micro-structures is proposed.

  4. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  5. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    The methods to manufacture micro- or nano- structures on surfaces have been an area of intense investigation. Demands are shown for technologies for surface structuring on real 3D parts in many fields. However, most technologies for the fabrication of micro-structured functional surfaces are still...... limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold......, in this way micro holes (Ø4 μm) was obtained. The second approach is to produce the cavity part using anodizing process chain, and in this way sub-micro structures can be obtained all over the cavity surface. The third approach is to machine the surface inside the cavity directly by femtosecond laser combined...

  6. Strengthening of the RAFMS RUSFER-EK181 through nano structuring surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, A.; Melnikova, E.A. [Tomsk State Univ., lnstitute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Leontieva-Smirnova, M.V. [A.A. Bochvar Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Surface nano-structuring increases yield point and strength of the reduced activation ferritic-martensitic steel (RAFMS ) RUSREF - EK181. Ultrasonic impact treatment was used to produce a nano-structure within the surface layers of the specimens. Using scanning tunnelling microscope reveals a new mechanism of mesoscale-level plastic deformation of nano-structured surface layers of the RAFMS RUSREF - EK181 as doubled spirals of localised-plastic deformation meso-bands. A linear dependence of their sizes on thickness of strengthened layer was obtained. The effect of localised deformation meso-bands on macro-mechanical properties of a material was demonstrated. A certain combination of thermal and mechanical treatment as well as optimum proportion of nano-structured surface layer thickness to thickness of a whole specimen are necessary to achieve maximum strength values. Tests performed at high temperatures in the range from 20 to 700 deg. C shows efficiency of the surface hardening of the RAFMS RUSREF - EK181. The effect of nano-structured surface layer on the character of plastic deformation and mechanical properties of the RAFMS RUSREF - EK181 was considered in the framework of a multilevel model in which loss of shear stability and generation of structural defects occur self-consistently at various scale levels such as nano-, micro-, meso-, and macro-Chessboard like distribution of stresses and misfit deformations was theoretical and experimentally shown to appear at the 'nano-structured surface layer - bulk of material' interface. Zones of compressive normal stresses alternates with zones of tensile normal stresses as on a chessboard. Plastic shear can generate only within local zones of tensile normal stresses. Critical meso-volume of non-equilibrium states required for local structure-phase transformation can be formed within these zones. Whereas within the zones of compressive normal stresses acting from both

  7. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  8. Structural, Magnetic, and Transport Properties of Polymer-Nano ferrite Composites

    International Nuclear Information System (INIS)

    Imam, N.G.G.

    2013-01-01

    In this work, a series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 nano composite samples were prepared using citrate auto combustion and the samples were classified into three groups.In first group: A series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 ; 0.0≤ x ≤ 1.0 were prepared by double sintering technique and citrate auto combustion method in comparison study due to different characterization analysis. The comparison reveals that from X-ray diffraction; all the samples from the two methods formed in single phase in both; cubic spinel structure NiZnFe 2 O 4 (NZF) ferrite and perovskite tetragonal structure BaTiO 3 (BTO).In group two, in another compassion, multiferroic hybrid nano composites based on different polymers as a matrix for the prepared magnetoelectric biferroic nano composite system 0.5 BaTiO 3 / 0.5Ni 0.5 Zn 0.5 Fe 2 O 4 that has been prepared by citrate auto combustion method. Four different polymers namely poly aniline (PANI), polyvinyl acetate (PVAc), Polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG), with fixed ration (1:1) with respect to the dispersed magnetoelectric nano composite.In group three, the nano composites materials with formula (1-y) [0.5 BaTiO 3 / 0.5 Ni 0.5 Zn 0.5 Fe 2 O 4 ] / (y) (PEG); 0.0 ≤y ≤+ 1.0, have been prepared at room temperature by weight mixing and cold pressing. Physical properties of nano composite materials consisting different ratios of polyethylene glycol were investigated. With the variation of y content, typical magnetic hysteresis loops of nano composites have been observed in the nano composites at room temperature. When PEG content increase, the saturation magnetization decrease. Meanwhile, the coercive force tends to stable. Additionally, the dielectric constant (ε ' ) and dielectric loss factor (ε '' ) of nano composites materials shift toward higher frequency. The value of (ε ' ) decreased with increasing frequency, which indicates that the major contribution

  9. Micro/Nano-Structured Flexible Foils for Anti-Counterfeiting Purposes

    DEFF Research Database (Denmark)

    Okulova, Nastasia

    2016-01-01

    has been demonstrated. The focus of this study lies on the reproduction of the previous results for nano- or micro-structures and implementation of this technology for mass production of such patterned foils for the use in packaging. An interesting application is production of holograms with build...

  10. Micro-structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited using LAAM

    Science.gov (United States)

    Bi, G.; Sun, C. N.; Nai, M. L.; Wei, J.

    In this paper, deposition of Ni-base Inconel 625 mixed with nano-TiC powders using laser aided additive manufacturing (LAAM) was studied. Micro-structure and mechanical properties were intensively investigated. The results showed that nano-size TiC distributed uniformly throughout the Ni- matrix. Inconel 625 can be reinforced by the strengthened grain boundaries with nano-size TiC. Improved micro-hardness and tensile properties were observed.

  11. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  12. Structural Analysis of Molten NaNO3 by Molecular Dynamics Simulation

    Science.gov (United States)

    Tahara, Shuta; Toyama, Hiroshi; Shimakura, Hironori; Fukami, Takanori

    2017-08-01

    MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O- ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 - plannar ionic molecules has also been investigated.

  13. Low-temperature photoluminescence of CuSe2 nano-objects in selenium thin films

    Directory of Open Access Journals (Sweden)

    Martina Gilić

    2017-06-01

    Full Text Available Thin films of CuSe2 nanoparticles embedded in selenium matrix were prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by photoluminescence spectroscopy (T=20-300K and UV-VIS spectroscopy (T = 300K. Surface morphology was investigated by scanning electron microscopy. The band gap for direct transition in CuSe2 was found to be in the range of 2.72-2.75 eV and that for indirect transition is in the range of 1.71-1.75 eV determined by UV-VIS spectroscopy. On the other hand, selenium exhibits direct band gap in the range of 2.33-2.36 eV. All estimated band gaps slightly decrease with the increase of the film thickness. Photoluminescence spectra of the thin films clearly show emission bands at about 1.63 and 2.32 eV at room temperature, with no shift observed with decreasing temperature. A model was proposed for explaining such anomaly.

  14. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    Science.gov (United States)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  15. Electrochemical construction of micro–nano spongelike structure on titanium substrate for enhancing corrosion resistance and bioactivity

    International Nuclear Information System (INIS)

    Jiang, Pinliang; Lin, Longxiang; Zhang, Fan; Dong, Xiang; Ren, Lei; Lin, Changjian

    2013-01-01

    Highlights: • A hierarchical micro–nano spongelike TiO 2 layer was constructed on Ti substrate. • The micro–nano TiO 2 surface presented good corrosion resistance. • Excellent biomineration ability was observed on such micro–nano TiO 2 layer. • Superior MG63 cell viability was discerned on the micro–nano structured surface. -- Abstract: Surface structures of medical implants generally play a crucial role in tissue growth and healing while implanted into a living body. The surface design and modification of implants can effectively promote its biocompatibility and integration ability. In this study, a hierarchically superhydrophilic structure on titanium surface with a nano-spongelike titania layer on the micro-roughened titanium surface was constructed through dual acid etching and electrochemical treatments. It is shown that the structure of micro/nano-spongelike TiO 2 provides not only better corrosion resistance and less oxygen vacancies, but also much higher ability of biomineralization after immersion in simulated body fluid (SBF) for 14 days. It is evident, by the cell culture for the different samples, that the micro–nano spongelike structured surface on Ti significantly promotes human osteoblast-like MG63 cell attachment and proliferation. All evaluations of electrochemical behavior and biological responses in this study indicate that the micro/nano-spongelike structure on Ti surface is of excellent chemical stability, bioactivity as well as biocompatibility for biomedical implant applications

  16. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, Peter; MacDowell, Alastair; Schaible, Eirc; Wenk, H.R.; Macdowell, Alastair A.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper.

  17. Characterizing the nano and micro structure of concrete to improve its durability

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools will be shown on this paper.

  18. Characterizing the nano and micro structure of concrete to improve its durability

    KAUST Repository

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2009-01-01

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper. © 2009 Elsevier Ltd. All rights reserved.

  19. Preparation and characterization of CBN ternary compounds with nano-structure

    International Nuclear Information System (INIS)

    Xiong, Y.H.; Yang, S.; Xiong, C.S.; Pi, H.L.; Zhang, J.; Ren, Z.M.; Mai, Y.T.; Xu, W.; Dai, G.H.; Song, S.J.; Xiong, J.; Zhang, L.; Xia, Z.C.; Yuan, S.L.

    2006-01-01

    CBN ternary compounds with nano-structure have been prepared directly by a mechanical alloying technique at room temperature. The characteristic and formation mechanism of CBN are discussed. The nano-sheets and nano-layered rods of CBN are observed according to the morphology of scanning electron microscopy. It is substantiated that the microstructure of CBN was closely related to the ball milling time and the ball milling condition according to the results of X-ray diffraction of CBN with different ball milling time. After ball milling for 60 and 90 h, some new diffraction peaks are observed, which implies that some unknown microstructure and phase separation are induced in the reactive ball milling of CBN. The results of XRD are in accordance with that of X-ray photoelectron spectroscopy of CBN before ball milling and after ball milling for 90 h

  20. Characterizing the nano and micro structure of concrete to improve its durability

    KAUST Repository

    Monteiro, P.J.M.

    2009-09-01

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper. © 2009 Elsevier Ltd. All rights reserved.

  1. TiO2/ CNT hetero-structure with variable electron beam diameter suitable for nano lithography

    International Nuclear Information System (INIS)

    Barati, F.; Abdi, Y.; Arzi, E.

    2012-01-01

    We report fabrication of a novel TiO 2 /carbon nano tube based field emission device suitable for nano lithography and fabrication of transistor. The growth of carbon nano tubes is performed on silicon substrates using plasma-enhanced chemical vapor deposition method. The vertically grown carbon nano tubes are encapsulated by TiO 2 using an atmospheric pressure chemical vapor deposition system. Field emission from the carbon nano tubes is realized by mechanical polishing of the prepared nano structure. The possibility of the application of such nano structures as a lithography tool with variable electron beam diameter was investigated. The obtained results show that spot size of less than 30 nm can be obtained by applying a proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of this nano structure for the fabrication of field emission based field effect transistor. By applying a voltage between the gate and the cathode electrode, the emission current from carbon nano tubes shows a significant drop, indicating proper control of gate on the emission current.

  2. Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-01-01

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function. PMID:24736845

  3. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression.

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-04-15

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.

  4. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  5. Nano Indentation Inspection of the Mechanical Properties of Gold Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Armen Verdyan

    2007-10-01

    Full Text Available The morphology and the local mechanical properties of gold nitride thin films were studied by atomic force microscope (AFM. Gold nitride films were deposited for the first time on silicon substrate without any buffer layer at room temperature by reactive pulsed laser ablation deposition (RPLD. The films were fabricated on (100 Si wafers by RPLD technique in which KrF excimer laser was used to ablate a gold target in N2 atmosphere (0.1 GPa-100 Pa and ambient temperature. Scanning electron microscopy (SEM and atomic force microscopy inspections showed that the films were flat plane with rms roughness in the range of 35.1 nm-3.6 nm, depending on the deposition pressure. Rutherford backscattering spectrometry (RBS and energy dispersion spectroscopy (EDS used to detect the nitrogen concentration in the films, have revealed a composition close to Au3N. The film

  6. Effects of array arrangements in nano-patterned thin film media

    International Nuclear Information System (INIS)

    El-Hilo, M.

    2010-01-01

    In this work, the effect of different arrays arrangements on the magnetic behaviour of patterned thin film media is simulated. The modeled films consist of 80x80 cobalt grains of uniform diameter (20 nm) distributed into two different array arrangement: hexagonal (triangular) or square arrays. In addition to that, for each array arrangement, two cases of anisotropy orientations, random and textured films are considered. For both array arrangements and media orientations, hysteresis loops at different array separation (d) were simulated. Predictions show that for closely packed films, the shearing effects on the magnetization loop are much larger for the square array arrangement than the hexagonal one. According to these predictions, the bit switching field distribution in interacting 2D systems is much narrower for the hexagonal array arrangement. This result could be very important for high-density magnetic recording where a narrow bit switching field distribution is required.

  7. Pattern interpolation in thin films of lamellar, symmetric copolymers on nano-patterned substrates

    Science.gov (United States)

    Detcheverry, Francois; Nagpal, Umang; Liu, Guoliang; Nealey, Paul; de Pablo, Juan

    2009-03-01

    A molecular model of block copolymer systems is used to conduct a systematic study of the morphologies that arise when thin films of symmetric, lamellar forming block copolymer materials are deposited on nanopatterned surfaces. Over 500 distinct cases are considered. It is found that, in general, three distinct morphologies can arise depending on the strength of the substrate-polymer interactions, the film thickness, and the period of the substrate pattern. The relative stability of those morphologies is determined by direct calculation of the free energy differences. The dynamic propensity of those morphologies to emerge is examined by careful analysis of simulated trajectories. The results of this systematic study are used to interpret recent experimental data for films of polystyrene-PMMA copolymers on chemically nanopatterned surfaces.

  8. Eu"2"+ doped TiO_2 nano structures synthesized by HYSYCVD for thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Perez A, J. A.; Leal C, A. L.; Melendrez A, R.; Barboza F, M.

    2016-10-01

    Titania (TiO_2) has attracted interest owing his potential applications as dosimetry material given his excellent optical, electrical and thermal properties and the ability to shape his structure make TiO_2 suitable for research and dosimetry applications. In this work, a systematic study to know the magnitude of processing parameters influence on thermoluminescent properties of undoped (TiO_2) and doped (TiO_2:Eu"2"+) nano materials obtained by hybrid precursor systems chemical vapor deposition (HYSYCVD) technique is presented. Synthesis of one dimension nano structures of TiO_2:Eu"2"+ was carried out using K_2TiF_6 and EuCl_2 as dopant at 0.5, 1, 2.5 and 5 wt %. The nano structures samples were irradiated with β-ray in a doses range of 0.083-3000 Gy. All thermoluminescence (Tl) glow curves showed 3 broad Tl peaks around 373, 473 and 573 K, and a dosimetric linear behavior from 0.083 to 300 Gy. The Tl has a good reproducibility, with deviations of around 5%, making these TiO_2:Eu"2"+ nano materials suitable for dosimetric applications. (Author)

  9. Chemical vapor deposition of Si/SiC nano-multilayer thin films

    International Nuclear Information System (INIS)

    Weber, A.; Remfort, R.; Woehrl, N.; Assenmacher, W.; Schulz, S.

    2015-01-01

    Stoichiometric SiC films were deposited with the commercially available single source precursor Et_3SiH by classical thermal chemical vapor deposition (CVD) as well as plasma-enhanced CVD at low temperatures in the absence of any other reactive gases. Temperature-variable deposition studies revealed that polycrystalline films containing different SiC polytypes with a Si to carbon ratio of close to 1:1 are formed at 1000 °C in thermal CVD process and below 100 °C in the plasma-enhanced CVD process. The plasma enhanced CVD process enables the reduction of residual stress in the deposited films and offers the deposition on temperature sensitive substrates in the future. In both deposition processes the film thickness can be controlled by variation of the process parameters such as the substrate temperature and the deposition time. The resulting material films were characterized with respect to their chemical composition and their crystallinity using scanning electron microscope, energy dispersive X-ray spectroscopy (XRD), atomic force microscopy, X-ray diffraction, grazing incidence X-ray diffraction, secondary ion mass spectrometry and Raman spectroscopy. Finally, Si/SiC multilayers of up to 10 individual layers of equal thickness (about 450 nm) were deposited at 1000 °C using Et_3SiH and SiH_4. The resulting multilayers features amorphous SiC films alternating with Si films, which feature larger crystals up to 300 nm size as measured by transmission electron microscopy as well as by XRD. XRD features three distinct peaks for Si(111), Si(220) and Si(311). - Highlights: • Stoichiometric silicon carbide films were deposited from a single source precursor. • Thermal as well as plasma-enhanced chemical vapor deposition was used. • Films morphology, crystallinity and chemical composition were characterized. • Silicon/silicon carbide multilayers of up to 10 individual nano-layers were deposited.

  10. Neutron diffraction studies of thin film multilayer structures

    International Nuclear Information System (INIS)

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs

  11. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    Science.gov (United States)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  12. Gamma Radiation Dosimetry Using Tellurium Dioxide Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2002-08-01

    Full Text Available Thin films of Tellurium dioxide (TeO2 were investigated for γ-radiation dosimetry purposes. Samples were fabricated using thin film vapour deposition technique. Thin films of TeO2 were exposed to a 60Co γ-radiation source at a dose rate of 6 Gy/min at room temperature. Absorption spectra for TeO2 films were recorded and the values of the optical band gap and energies of the localized states for as-deposited and γ-irradiated samples were calculated. It was found that the optical band gap values were decreased as the radiation dose was increased. Samples with electrical contacts having a planar structure showed a linear increase in current values with the increase in radiation dose up to a certain dose level. The observed changes in both the optical and the electrical properties suggest that TeO2 thin film may be considered as an effective material for room temperature real time γ-radiation dosimetry.

  13. Thermodynamic and structural properties of ball-milled mixtures composed of nano-structural graphite and alkali(-earth) metal hydride

    International Nuclear Information System (INIS)

    Miyaoka, Hiroki; Ichikawa, Takayuki; Fujii, Hironobu

    2007-01-01

    Hydrogen desorption properties of mechanically milled materials composed of nano-structural hydrogenated-graphite (C nano H x ) and alkali(-earth) metal hydride (MH; M = Na, Mg and Ca) were investigated from the thermodynamic and structural points of view. The hydrogen desorption temperature for all the C nano H x and MH composites was obviously lower than that of the corresponding each hydride. In addition, the desorption of hydrocarbons from C nano H x was significantly suppressed by making composite of C nano H x with MH, even though C nano H x itself thermally desorbs a considerably large amount of hydrocarbons. These results indicate that an interaction exists between C nano H x and MH, and hydrogen in both the phases is destabilized by a close contact between polar C-H groups in C nano H x and the MH solid phase. Moreover, a new type of chemical bonding between the nano-structural carbon (C nano ) and the Li, Ca, or Mg metal atoms may be formed after hydrogen desorption. Thus, the above metal-C-H system would be recognized as a new family of H-storage materials

  14. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  15. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    Science.gov (United States)

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  16. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  17. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  18. Graphene/Gold Nano composites-Based Thin Films as an Enhanced Sensing Platform for Voltammetric Detection of Cr(VI) Ions

    International Nuclear Information System (INIS)

    Santhosh, Ch.; Saranya, M.; Ramachandran, R.; Felix, S.; Velmurugan, V.; Grace, A.N.

    2014-01-01

    A highly sensitive and selective Cr(VI) sensor with graphene-based nano composites film as an enhanced sensing platform is reported. The detection of chromium species is a challenging task because of the different possible oxidation states in which the element can occur. The sensing film was developed by homogeneously distributing Au nanoparticles (AuNPs) onto the two-dimensional (2D) graphene nano sheet matrix by electrochemical method. Such nano structured composite film platforms combine the advantages of AuNPs and graph ene nano sheets because of the synergistic effect between them. This effect greatly facilitates the electron-transfer processes and the sensing behavior for Cr(VI) detection, leading to a remarkably improved sensitivity and selectivity. The interference from other heavy metal ions is studied in detail. Such sensing elements are very promising for practical environmental monitoring applications.

  19. Improving electronic structure methods to predict nano-optoelectronics and nano-catalyst functions.

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ida Marie B.; Marzari, Nicola (Massachusetts Institute of Technology); Shelnutt, John Allen; Kulik, Heather J. (Massachusetts Institute of Technology); Medforth, Craig John (University of New Mexico, Albuquerque, NM); Leung, Kevin

    2009-10-01

    This report focuses on quantum chemistry and ab initio molecular dynamics (AIMD) calculations applied to elucidate the mechanism of the multi-step, 2-electron, electrochemical reduction of the green house gas molecule carbon dioxide (CO{sub 2}) to carbon monoxide (CO) in aqueous media. When combined with H{sub 2} gas to form synthesis ('syn') gas, CO becomes a key precursor to methane, methanol, and other useful hydrocarbon products. To elucidate the mechanism of this reaction, we apply computational electrochemistry which is a fledgling, important area of basic science critical to energy storage. This report highlights several approaches, including the calculation of redox potentials, the explicit depiction of liquid water environments using AIMD, and free energy methods. While costly, these pioneering calculations reveal the key role of hydration- and protonation-stabilization of reaction intermediates, and may inform the design of CO{sub 2}-capture materials as well as its electrochemical reduction. In the course of this work, we have also dealt with the challenges of identifying and applying electronic structure methods which are sufficiently accurate to deal with transition metal ion complex-based catalyst. Such electronic structure methods are also pertinent to the accurate modeling of actinide materials and therefore to nuclear energy research. Our multi-pronged effort towards achieving this titular goal of the LDRD is discussed.

  20. Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films

    Science.gov (United States)

    Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir

    Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.

  1. Friction-induced nano-structural evolution of graphene as a lubrication additive

    Science.gov (United States)

    Zhao, Jun; Mao, Junyuan; Li, Yingru; He, Yongyong; Luo, Jianbin

    2018-03-01

    Graphene has attracted enormous attention in the field of lubrication based on its excellent physical and chemical properties. Although many studies have obtained thermally or chemically- exfoliated graphene and investigated their wide and important application, few studies have reported their physical nano-structural evolution under friction. In this study, we investigated the lubrication properties of graphene additives with different layer numbers and interlayer spacing by exfoliating. The additives with a higher degrees of exfoliation changed to ordering under friction, and had better lubrication properties, while that with a lower degrees exhibited obvious structural defects and high friction. Therefore, the original degrees of exfoliation plays a key role in the structural evolution of graphene and superior lubrication can be achieved through the physical nano-structure changing to ordering, even graphitization. Furthermore, the ordered tribofilm on the frictional interfaces was parallel to the sliding direction, meaning the highly exfoliated graphene indeed reaching slippage between its layers, which wasn't experimentally discovered in previous studies. This work provides a new understanding of the relationship between friction-induced nano-structural evolution and lubrication properties of graphene as a lubrication additive, and has great potential for the structural design of graphene as a lubrication additive.

  2. Structural and Magnetic Properties of Type-M Barium Ferrite - Thermoplastic Natural Rubber Nano composites

    International Nuclear Information System (INIS)

    Nurhidayaty Mokhtar

    2012-01-01

    Structural and magnetic properties of type-M barium ferrite (BaFe 12 O 19 ) nanoparticles (∼ 20 nm) embedded in non-magnetic thermoplastic natural rubber (TPNR) matrices were investigated. The TPNR matrices were prepared from high density polyethylene (HDPE) and natural rubber (NR) in the weight ratios of 80:20 and 60:40, respectively, with 10 wt % of NR in the form of liquid natural rubber (LNR) which act as a comparabilities. BaFe 12 O 19 - filled nano composites with 2 - 12 wt % BaFe 12 O 19 ferrite were prepared using a melt- blending technique. Magnetic hysteresis was measured using a vibrating sample magnetometer (VSM) in a maximum field of 10 kOe at room temperature (25 degree Celsius). The saturation magnetisation (MS), remanence (MR) and coercivity (Hc) were derived from the hysteresis loops. The results show that the structural and magnetic properties of nano composites depend on both the ferrite content and the composition of the natural rubber or plastic in the nano composites. All the nano composites exhibit an exchange bias-like phenomenon resulting from the exchange coupling of spins at the interface between the core ferrimagnetic region and the disordered surface region of the nanoparticles. (author)

  3. Characterization of nano-powder grown ultra-thin film p-CuO/n-Si hetero-junctions by employing vapour-liquid-solid method for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, Jenifar; Das, Anindita [Centre for Research in Nanoscience and Nanotechnology (CRNN), Kolkata 700098 (India); Das, Avishek [Department of Electronic Science, University of Calcutta, Kolkata 700009 (India); Saha, Nayan Ranjan [Department of Polymer Science and Technology, University of Calcutta, Kolkata 700009 (India); Karmakar, Anupam [Department of Electronic Science, University of Calcutta, Kolkata 700009 (India); Chattopadhyay, Sanatan, E-mail: scelc@caluniv.ac.in [Department of Electronic Science, University of Calcutta, Kolkata 700009 (India)

    2016-08-01

    In this work, the CuO nano-powder has been synthesized by employing chemical bath deposition technique for its subsequent use to grow ultrathin film (20 nm) of p-CuO on n-Si substrate for the fabrication of p-CuO/n-Si hetero-junction diodes. The thin CuO film has been grown by employing vapour-liquid-solid method. The crystalline structure and chemical phase of the film are characterized by employing field-emission scanning electron microscopy and X-ray diffraction studies. Chemical stoichiometry of the film has been confirmed by using energy dispersive X-ray spectroscopy. The potential for photovoltaic applications of such films is investigated by measuring the junction current-voltage characteristics and by extracting the relevant parameters such as open circuit photo-generated voltage, short circuit current density, fill-factor and energy conversion efficiency. - Highlights: • Synthesis of CuO nano-powder by CBD method • Growth of ultra-thin film of CuO by employing VLS method for the first time • Physical and electrical characterization of such films for photovoltaic applications • Estimation of energy conversion efficiency of the p-CuO/n-Si p-n junction solar cell.

  4. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  5. The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Zhong Luo

    2016-01-01

    Full Text Available For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine accurate distorted scaling laws of typical thin walled structures, three principles are proposed and theoretically proved by combining the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five orders’ accurate distorted scaling laws of thin walled annular plates are presented and numerically validated. Finally, the effectiveness of the similitude design method is validated by experimental annular plates.

  6. Superficial characterization and nano structural of nano multilayers Cr/Cr N obtained by UBM with different unbalance grades

    International Nuclear Information System (INIS)

    Piratoba, U.; Arenas A, J.; Olaya, J. J.

    2013-01-01

    Coatings of 25 bilayers of Cr/Cr N, with total thickness between 1.32 and 1.67 microns, were deposited by reactive sputtering on silicon and H13 steel, in argon and argon with nitrogen atmospheres. A power of 160 watts, flows of argon and nitrogen of 9 and 3 sc cm respectively, and an axial unbalanced magnetron, whose coefficient of geometrical unbalance K G was varied between 0.85 and 1.37. Of these coatings, micrographs of surface and cross section scanning electron microscopy were obtained, was make a micro structural characterization with X-ray diffraction, a nano structural characterization by transmission electron microscopy, and surface characterization by atomic force microscopy in tapping mode: analysis showed uniform surface coating with globular and pyramidal formations, which contain some granular inclusions and microscopic craters. With the increase in the unbalance of the magnetic field, the grain size, the roughness and the speed of the coatings growth were increased. (Author)

  7. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  8. Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability.

    Science.gov (United States)

    Zhang, Liang; Zhang, Xiaoyan; Dai, Zhen; Wu, Junjie; Zhao, Ning; Xu, Jian

    2010-05-01

    A micro-nano hierarchically structured nylon 6,6 surface was easily fabricated by phase separation. Nylon 6,6 plate was swelled by formic acid and then immersed in a coagulate bath to precipitate. Micro particles with nano protrusions were generated and linked together covering over the surface. After dried up, the as-formed surface showed superhydrophilic ability. Inspired by lotus only employing 2-tier structure and ordinary plant wax to maintain superhydrophobicity, paraffin wax, a low surface energy material, was used to modify the hierarchically structured nylon 6,6 surface. The resultant surface had water contact angle (CA) of 155.2+/-1.3 degrees and a low sliding angle. The whole process was carried on under ambient condition and only need a few minutes. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    Science.gov (United States)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  10. Distortional Mechanics of Thin-Walled Structural Elements

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim

    In several industries such as civil, mechanical, and aerospace, thin-walled structures are often used due to the high strength and effective use of the materials. Because of the increased consumption there has been increasing focus on optimizing and more detailed calculations. However, finely...... number of degrees of freedom. This means that the classical Vlasov thin-walled beam theory for open and closed cross sections is generalized as part of a semi-discretization process by including distortional displacement fields. A novel finite-element-based displacement approach is used in combination...... by discretization of the cross section are now solved analytically and the formulation is valid without special attention and approximation also for closed single or multi-cell cross sections. Furthermore, the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional...

  11. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  12. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  13. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    International Nuclear Information System (INIS)

    Yu Binyu; Guo Qiuquan; Yang Jun; Leung, Kar Man; Lau, Woon Ming

    2011-01-01

    TiO 2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO 2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO 2 and Ag-TiO 2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO 2 and TiO 2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO 2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag 0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm -2 and in the dark respectively. The synthesized Ag-TiO 2 thin films showed enhanced bactericidal activities compared to the neat TiO 2 nanofilm both in the dark and under UV illumination.

  14. Synthesis of Ag-TiO{sub 2} composite nano thin film for antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Yu Binyu; Guo Qiuquan; Yang Jun [Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, N6A 5B9 (Canada); Leung, Kar Man [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada); Lau, Woon Ming [Surface Science Western, University of Western Ontario, London, ON, N6A 5B9 (Canada)

    2011-03-18

    TiO{sub 2} photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO{sub 2} nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO{sub 2} and Ag-TiO{sub 2} composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO{sub 2} and TiO{sub 2} films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO{sub 2} matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag{sup 0} state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm{sup -2} and in the dark respectively. The synthesized Ag-TiO{sub 2} thin films showed enhanced bactericidal activities compared to the neat TiO{sub 2} nanofilm both in the dark and under UV illumination.

  15. Experimental study of ultra-thin films mechanical integrity by combined nanoindentation and nano-acoustic emission

    Science.gov (United States)

    Zhang, Zihou

    Advancement of interconnect technology has imposed significant challenge on interface characterization and reliability for blurred interfaces between layers. There is a need for material properties and these miniaturized length scales and assessment of reliability; including the intrinsic film fracture toughness and the interfacial fracture toughness. The nano-meter range of film thicknesses currently employed, impose significant challenges on evaluating these physical quantities and thereby impose significant challenge on the design cycle. In this study we attempted to use a combined nano-indentation and nano-acoustic emission to qualitatively and quantitatively characterize the failure modes in ultra-thin blanket films on Si substrates or stakes of different characteristics. We have performed and analyzed an exhaustive group of testes that cove many diverge combination of film-substrate combination, provided by both Intel and IBM. When the force-indentation depth curve shows excursion, a direct measure of the total energy release rate is estimated. The collected acoustic emission signal is then used to partition the total energy into two segments, one associated with the cohesive fracture toughness of the film and the other is for the adhesive fracture toughness of the interface. The acoustic emission signal is analyzed in both the time and frequency domain to achieve such energy division. In particular, the signal time domain analysis for signal skewness, time of arrival and total energy content are employed with the proper signal to noise ratio. In the frequency domain, an expansive group of acoustic emission signals are utilized to construct the details of the power spectral density. A bank of band-pass filters are designed to sort the individual signals to those associated with adhesive interlayer cracking, cohesive channel cracking, or other system induced noise. The attenuation time and the energy content within each spectral frequency were the key elements

  16. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  17. Direct writing of large-area micro/nano-structural arrays on single crystalline germanium substrates using femtosecond lasers

    Science.gov (United States)

    Li, Lin; Wang, Jun

    2017-06-01

    A direct writing technique for fabricating micro/nano-structural arrays without using a multi-scanning process, multi-beam interference, or any assisted microlens arrays is reported. Various sub-wavelength micro/nano-structural arrays have been directly written on single crystalline germanium substrate surfaces using femtosecond laser pulses. The evolution of the multiscale surface morphology from periodic micro/nano-structures to V-shaped microgrooves has been achieved, and the relationship between array characteristics and laser polarization directions has been discussed. The self-organization model agrees well with the experimental results in this study.

  18. Design and Preparation of a Micro-Pyramid Structured Thin Film for Broadband Infrared Antireflection

    Directory of Open Access Journals (Sweden)

    Shaobo Ge

    2018-05-01

    Full Text Available A micro-pyramid structured thin film with a broad-band infrared antireflection property is designed and fabricated by using the single-point diamond turning (SPDT technique and combined with nano-imprint lithography (NIL. A structure with dimensions of 10 μm pitch and 5 μm height is transferred from the copper mold to the silicon nitride optical film by using NIL and proportional inductively-coupled plasma (ICP etching. Reflectance of the micro-optical surface is reduced below 1.0% over the infrared spectral range (800–2500 nm. A finite-difference-time-domain (FDTD analysis indicates that this micro-structure can localize photons and enhance the absorption inside the micro-pyramid at long wavelengths. As described above, the micro-pyramid array has been integrated in an optical film successfully. Distinguishing from the traditional micro-optical components, considering the effect of refraction and diffraction, it is a valuable and flexible method to take account of the interference effect of optical film.

  19. Crystal structure and thin film morphology of BBL ladder polymer

    Energy Technology Data Exchange (ETDEWEB)

    Song, H H [Department of Macromolecular Science, Han Nam University, Taejon (Korea, Republic of); Fratini, A V [Department of Chemistry, University of Dayton, Dayton, OH (United States); Chabinyc, M [Department of Chemistry, University of Dayton, Dayton, OH (United States); Price, G E [University of Dayton Research, Dayton, OH (United States); Agrawal, A K [Systran Corporation, Dayton, OH (United States); Wang, C S [University of Dayton Research, Dayton, OH (United States); Burkette, J [University of Dayton Research, Dayton, OH (United States); Dudis, D S [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States); Arnold, F E [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States)

    1995-03-01

    Crystal structure and morphology of poly[7-oxo-7H-benz(d,e)imidazo(4`,5`:5,6)-benzimidazo(2,1-a)isoquinoline-3,4:10,11-tetrayl-10-carbonyl] (BBL) ladder-like polymer were studied. The polymer forms a two-dimensional lattice of nematic liquid crystalline structure. An orthorhombic unit cell with cell parameters of a=7.87 b=3.37 c=11.97A was determined from the fiber diffraction pattern. In thin films, the rigid chains spontaneously form a layered structure across the film thickness, but in a very unusual manner, i.e. the very large molecular plane is standing perpendicularly to the film surface plane. The results are identical to our recent results of poly(p-phenylene benzobisthiazole) (PBT) film [7]. The polymer, however, lost its anisotropic order upon extrusion into a film and resulted in a fiber-like structure. (orig.)

  20. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    Science.gov (United States)

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  1. The structural and optical characterizations of tetraphenylporphyrin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.M., E-mail: m_makhlof@hotmail.com [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Denglawey, A. [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Physics Department, Faculty of Science, South Valley University, Qena 83523 (Egypt); Zeyada, H.M. [Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Cairo (Egypt)

    2014-03-15

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films.

  2. The structural and optical characterizations of tetraphenylporphyrin thin films

    International Nuclear Information System (INIS)

    Makhlouf, M.M.; El-Denglawey, A.; Zeyada, H.M.; El-Nahass, M.M.

    2014-01-01

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films

  3. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  4. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  5. Nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruo-Ping [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2013-02-01

    We have demonstrated nano-structured Cu(In,Al)Se{sub 2} (CIAS) near-infrared (NIR) photodetectors (PDs). The CIAS NIR PDs were fabricated on ZnO nanowires (NWs)/ZnO/Mo/ITO (indium tin oxide) glass substrate. CIAS film acted as a sensing layer and sparse ZnSe NWs, which were converted from ZnO NWs after selenization process, were embedded in the CIAS film to improve the amplification performance of the NIR PDs. X-ray diffraction patterns show that the CIAS film is a single phased polycrystalline film. Scanning electron microscopy was used to examine the morphology of the CIAS film and the growth of NWs. Two detection schemes, plain Al–CIAS–Al metal–semiconductor–metal structure and vertical structure with CIAS/ZnSe NWs annular p–n junctions, were studied. The nano-structured NIR PDs demonstrate two orders of magnitude for the annular p–n junction and one order of magnitude for the MSM structure in photocurrent amplification. The responsivities of the PDs using both sensing structures have the same cut-off frequency near 790 nm. - Highlights: ► We demonstrate nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors. ► Photodetectors were fabricated on ZnO nanowires/ZnO/Mo/ITO glass substrate. ► Two detection schemes studied: a plain MSM structure and a vertical structure. ► Photocurrent amplification for the vertical structure is two orders of magnitude. ► Photocurrent amplification for the MSM structure is one order of magnitude.

  6. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  7. Nano-ZnO Doping Induced Changes in Structure, Mechanical and Optical Properties of PVA Films

    International Nuclear Information System (INIS)

    Abdel-Galil, A.; BalboulM, R.; Ali, H.E.

    2015-01-01

    Zinc oxide ( ZnO ) nanoparticles ( NPs) were synthesized using t he co-precipitation method. Transmission electron microscope (TEM) was used to confirm the nanoparticle size of the ZnO powder sample. ZnO NPs (with different ratios) were dispersed into polyvinyl alcohol (PVA) matrix to get ZnO/PVA nano composites using the blending method. The structure of Pva polymer and ZnO/PVA nano composites was identified by X - ray diffraction (XRD). Thermogravimetric analysis (TGA) of PVA and ZnO/PVA nano composites has been carried out before and after γ- irradiation with different doses . The TGA , DTG thermo grams and the degradation activation energy have been studied. The results indicated the enhancement in thermal stability of PVA polymer as an effect of ZnO NPs. Irradiation doses lead to a change in the degradation activation energy as a result of the degradation and cross- linking processes of the PVA polymer. Moreover, the mechanical performance of PVA polymer has been improved by adding ZnO NPs and by γ- irradiation. The optical band gap of the PVA film was investigated with different ratios of ZnO NPs. The band gap de creased with increasing the ZnO NPs ratio. The effect of γ-irradiation, with different doses on the optical band gap of ZnO/PVA nano composites also has been studied

  8. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    Science.gov (United States)

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  9. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires

    Directory of Open Access Journals (Sweden)

    Yeonho Jeong

    2017-07-01

    Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using nanowires replicated from AAO, and surface treatment. A polymer resin was coated between Polyethylene terephthalate (PET and the AAO filter, roller pressed, and UV-cured. After the removal of aluminum by using NaOH solution, the nanowires aggregated to form a micropattern. The resulting structure was subjected to various surface treatments to investigate the surface behavior and wettability. As opposed to reported data, UV-ozone treatment can enhance surface hydrophobicity because the UV energy affects the nanowire surface, thus altering the shape of the aggregated nanowires. The hydrophobicity of the surface could be further improved by octadecyltrichlorosilane (OTS coating immediately after UV-ozone treatment. We thus demonstrated that the nano-micro hybrid structure could be formed in the middle of nanowire replication, and then, the shape and surface characteristics could be controlled by surface treatment.

  10. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  11. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    International Nuclear Information System (INIS)

    Rofouie, P.; Rey, A. D.; Pasini, D.

    2015-01-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices

  12. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Ding Ding

    2018-04-01

    Full Text Available Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs, a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM, X-ray diffraction (XRD as well as transmission electron microscopy (TEM. The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  13. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    Energy Technology Data Exchange (ETDEWEB)

    Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2 (Canada); Pasini, D. [Department of Mechanical Engineering, McGill University, 817 Sherbrook West, Montreal, Quebec H3A 0C3 (Canada)

    2015-09-21

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  14. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    Science.gov (United States)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of

  15. Formation of nano-sized pinholes array in thin Ni film on MgO(100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chuan; Naramoto, Hiroshi; Xu Yonghua; Kitazawa, Sin-iti; Narumi, Kazumasa; Sakai, Seiji

    2003-10-22

    We have grown thin Ni films with various thicknesses on polished MgO(100) single crystal substrates in an e-gun evaporation system. The morphology of the as-deposited films was characterized with atomic force microscopy. Pinholes with average diameter of 5-10 nm are found in the film with thickness from 1 to 15 nm, and pinholes array was observed in the film 10 nm thick. The origin of such structure formation is discussed in terms of the elastic strain energy.

  16. Geometric shape control of thin film ferroelectrics and resulting structures

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  17. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  18. The nano-structured battery plays extra time; La batterie nanostructuree joue les prolongations

    Energy Technology Data Exchange (ETDEWEB)

    Deroin, Ph.

    2005-06-01

    The Bell Labs of Lucent Technologies and the laboratories of mPhase company (Connecticut, USA) have developed a new architecture of battery cell based on nano-structured material which should lead to a 15 to 20 years lifetime without any significant discharge. In this structure, the electrolyte (zinc and ammonium chlorides) and the electrodes (Zn, MnO{sub 2}) are not in contact as long as the battery is not activated. A fluorocarbon hydrophobic coating (the 'nano-metric grass') ensures the separation between electrolyte and electrodes. This hydrophobic effect can be instantaneously cancelled by an electric pulse which provokes an electro-wetting effect allowing the migration of the electrolyte towards the electrodes. Short paper. (J.S.)

  19. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  20. Removal of Cadmium from Aqueous Solution by Nano Structured γ-Alumina

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Zavar Mousavi

    2012-01-01

    Full Text Available In this study the use of nano structured γ-alumina as a new and convince adsorbent for removal of cadmium ions from aqueous solution was investigated. The equilibrium adsorption level was determined as a function of the solution pH, temperature, contact time, initial adsorbate concentration and adsorbent doses. Adsorption isotherms of Cd(II on adsorbents were determined and correlated with common isotherm equations such as Langmuir, Freundlich and Tempkin models. The isotherm data fitted well to the Langmuir isotherm. The maximum adsorption capacity for Cd(II on nano structured γ-alumina was 76.92 mg g-1. The adsorption kinetics was investigated and the best fit was achieved by a second-order equation. The thermodynamic parameters such as free energy (ΔG0, enthalpy (ΔH0 and entropy changes (ΔS0 for the adsorption of Cd(II were computed to predict the nature of adsorption process.

  1. Rectifying Behavior of Aligned ZnO Nano rods on Mg0.3Zn0.7O Thin Film Template

    International Nuclear Information System (INIS)

    Salina Muhamad; Suriani Abu Bakar; Mohamad Hafiz Mamat; Rafidah Ahmad; Mohamad Rusop

    2011-01-01

    Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nano rods grown on Mg 0.3 Zn 0.7 O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crystallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nano rods was discussed in further details. (author)

  2. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    Science.gov (United States)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  3. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  4. MFM observation of spin structures in nano-magnetic-dot arrays fabricated by damascene technique

    International Nuclear Information System (INIS)

    Sato, K.; Yamamoto, T.; Tezuka, T.; Ishibashi, T.; Morishita, Y.; Koukitu, A.; Machida, K.; Yamaoka, T.

    2006-01-01

    Regularly aligned arrays of magnetic nano dots buried in silicon wafers have been fabricated using damascene technique with the help of electron beam lithography. Arrays of square, rectangular, cross-shaped and Y-shaped structures of submicron size have been obtained. Spin distributions have been observed by means of magnetic force microscopy and analyzed by a micromagnetic simulation with Landau-Lifshitz-Gilbert equations. Importance of magnetostatic interactions working between adjacent dots has been elucidated

  5. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    OpenAIRE

    Ding Ding; Youtao Xie; Kai Li; Liping Huang; Xuebin Zheng

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were co...

  6. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  7. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego

    2015-01-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  8. Supercooling and cold energy storage characteristics of nano-media in ball-packed porous structures

    Directory of Open Access Journals (Sweden)

    Zhao Qunzhi

    2015-04-01

    Full Text Available The presented experiments aimed to study the supercooling and cold-energy storage characteristics of nanofluids and water-based nano-media in ball-packed porous structures (BPS. Titanium dioxide nanoparticles (TiO2 NPs measuring 20nm and 80nm were used as additives and sodium dodecyl benzene sulphonate (SDBS was used as anionic surfactant. The experiments used different concentrations of nanofluid, distilled with BPS of different spherical diameter and different concentrations of nano-media, and were conducted 20 times. Experimental results of supercooling were analysed by statistical methods. Results show that the average and peak supercooling degrees of nanofluids and nano-media in BPS are lower than those of distilled water. For the distilled water in BPS, the supercooling degree decreases on the whole with the decrease of the ball diameter. With the same spherical diameter (8mm of BPS, the supercooling degree of TiO2 NPs measuring 20nm is lower than the supercooling degree of distilled water in BPS. Step-cooling experiments of different concentrations of nanofluids and nano-media in BPS were also conducted. Results showed that phase transition time is reduced because of the presence of TiO2 NPs. The BPS substrate and the NPs enhance the heat transfer. Distilled water with a porous solid base and nanoparticles means the amount of cold-energy storage increases and the supercooling degree and the total time are greatly reduced. The phase transition time of distilled water is about 3.5 times that of nano-media in BPS.

  9. Density functional theory for field emission from carbon nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhibing, E-mail: stslzb@mail.sysu.edu.cn

    2015-12-15

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. - Highlights: • Applications of DFT to electron field emission of nano-structures are reviewed. • Fundamental concepts of field emission are re-visited with emphasis on the many-body effects. • New insights to field emission of nano-structures are obtained by multi-scale DFT calculations. • It is shown that the exchange–correlation effect on the emission barrier is significant. • Spontaneous symmetry breaking in field emission of CNT has been predicted.

  10. Fabrication of micro- and nano-structured materials using mask-less processes

    International Nuclear Information System (INIS)

    Roy, Sudipta

    2007-01-01

    Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid-liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The

  11. Synthesis of silicon nanowires and novel nano-dendrite structures

    International Nuclear Information System (INIS)

    Sinha, Saion; Gao Bo; Zhou, Otto

    2004-01-01

    We report a study on the effects of various parameters on the synthesis of silicon nanowires (5--50 nm in diameter) by pulsed laser ablation. A novel silicon nanodendrite structure is observed by changing some of the growth parameters abruptly. This growth mechanism is explained by a qualitative model. These nanodendrites show a promise of being used as a template in fabricating nanocircuits. Thermal quantum confinement effects were also observed on the silicon nanowires and have been reported

  12. Electrochemical synthesis of photosensitive nano-nest like CdSe{sub 0.6}Te{sub 0.4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Surendra K., E-mail: surendrashinde.phy@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S (India); Thombare, Jagannath V. [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S (India); Dubal, Deepak P. [Department of Electrochemistry, Technische Universität Chemnitz Institut für Chemie, Straße der Nationen 62, D-09111 Chemnitz (Germany); Fulari, Vijay J., E-mail: vijayfulari@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S (India)

    2013-10-01

    Polycrystalline CdSe{sub 0.6}Te{sub 0.4} thin films were deposited on stainless steel and ITO coated glass (ITO) substrates by using simple and inexpensive electrodeposition method. CdSe{sub 0.6} Te{sub 0.4} films are characterized by different characterization techniques such as X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and contact angle measurement. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. FE-SEM studies reveal that the entire substrate surface is covered with CdSe{sub 0.6} Te{sub 0.4} nano-nest. Formation of CdSe{sub 0.6}Te{sub 0.4} compound was confirmed from the FTIR studies. Optical absorption study shows the presence of direct transition and a considerable band gap, E{sub g} = 1.7 eV. Surface wettability with solid–liquid interface showed hydrophilic nature with water contact angle 57° (<90°). Further photovoltaic activity of CdSe{sub 0.6}Te{sub 0.4} films were studied by forming the photoelectrochemical cell having CdSe{sub 0.6}Te{sub 0.4}/1 M (Na{sub 2}S + S + NaOH)/C cell configuration. The efficiency and fill factor of these PEC cells are found to be 0.64% and 0.49 respectively.

  13. Deposition of very thin uniform indium sulfide layers over metallic nano-rods by the Spray-Ion Layer Gas Reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Genduso, G. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Inguanta, R.; Sunseri, C.; Piazza, S. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Kelch, C.; Sáez-Araoz, R. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Zykov, A. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); present address: Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15,12489 Berlin (Germany); Fischer, Ch.-H., E-mail: fischer@helmholtz-berlin.de [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); second affiliation: Free University Berlin, Chemistry Institute, Takustr. 3, D-14195 Berlin (Germany)

    2013-12-02

    Very thin and uniform layers of indium sulfide were deposited on nickel nano-rods using the sequential and cyclical Spray-ILGAR® (Ion Layer Gas Reaction) technique. Substrates were fabricated by electrodeposition of Ni within the pores of polycarbonate membranes and subsequent chemical dissolution of the template. With respect to the depositions on flat substrates, experimental conditions were modified and optimized for the present geometry. Our results show that nano-rods up to a length of 10 μm were covered uniformly along their full length and with an almost constant film growth rate, thus allowing a good control of the coating thickness; the effect of the deposition temperature was also investigated. However, for high numbers of process steps, i.e. thickness, the films became uneven and crusty, especially at higher temperature, mainly owing to the simultaneous side reaction of the metallic Ni forming nickel sulfide at the surface of the rods. However, such a problem occurs only in the case of reactive nano-rod materials, such as less noble metals. It could be strongly reduced by doubling the spray step duration and thereby sealing the metallic surface before the process step of the sulfurization. Thus, quite smooth, about 100 nm thick coatings could be obtained. - Highlights: • Ni nano-rod substrates were grown within polycarbonate membranes. • We can coat nano-rods uniformly by the Ion Layer Gas Reaction method. • As a model we deposited up to about 100 nm In{sub 2}S{sub 3} on Ni nanorods (250 nm × 10 μm). • Element mapping at insulated rods showed homogenous coating over the full length. • Parameter optimization reduced effectively the Ni sulfide formation.

  14. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    Science.gov (United States)

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  16. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2018-06-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  17. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  18. Determination of standard molar enthalpies of formation of SrMoO4 micro/nano structures

    International Nuclear Information System (INIS)

    Guo, Yunxiao; Fan, Gaochao; Huang, Zaiyin; Sun, Jilong; Wang, Lude; Wang, Tenghui; Chen, Jie

    2012-01-01

    Graphical abstract: Schematic illustration of thermochemical cycle between the nano and bulk reaction systems. Highlights: ► A thermochemical cycle was designed. ► Relationship of standard molar enthalpies of formation between micro/nano and bulk SrMoO 4 was gained. ► Microcalorimetry was used as a supplementary technology. ► Standard molar enthalpies of formation of the synthesized micro/nano SrMoO 4 were obtained. ► This novel approach can be used to other micro/nano materials. - Abstract: SrMoO 4 micro/nano structures were prepared by a simple reverse microemulsion method and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM). In order to associate standard molar enthalpies of formation of nano SrMoO 4 with bulk SrMoO 4 , the relationship of them was obtained through designing a thermochemical cycle according to thermodynamic potential function method. Combined with microcalorimetry, the standard molar enthalpies of formation of the synthesized micro/nano SrMoO 4 at 298.15 K were gained in this paper. And the variation of standard molar enthalpies of formation of micro/nano SrMoO 4 with different morphologies and sizes was discussed.

  19. 3D printing of nano- and micro-structures

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  20. Nano-structured carbon materials for improved biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Razumiene, J., E-mail: julija.razumiene@bchi.vu.lt [Institute of Biochemistry, Vilnius University, Mokslininku 12, Vilnius 08662 (Lithuania); Sakinyte, I. [Institute of Biochemistry, Vilnius University, Mokslininku 12, Vilnius 08662 (Lithuania); Barkauskas, J. [Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius 03225 (Lithuania); Baronas, R. [Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius 03225 (Lithuania)

    2015-04-15

    Graphical abstract: - Highlights: • Novel protocols of graphite oxidation were used for successful synthesis of GOPs. • Newly synthesized GOPs were applicable for electrode design in reagentless bioelectrocatalytic systems operating on direct electron transfer. • We show that bioelectrocatalytic processes strongly depend on functionalities, morphology and structural features of GOPs. - Abstract: A set of oxidized graphite samples have been newly synthesized using different protocols. Atomic force microscopy, Raman spectroscopy, thermal gravimetric analysis and Brunauer–Emmett–Teller analysis revealed the changes in structure and functionalities of obtained graphite oxidation products (GOPs) compared to pristine graphite. The substances have been tested as electrode materials applicable for bioelectrocatalytic systems using pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). The application of GOPs allowed achieving the direct electron transfer (DET) from active site of PQQ-GDH to the electrode surface. Needless of additional electron transfer (ET) mediating compounds highly improved features of the biosensors. The efficiency of the biosensors has been evaluated for all types of biosensors varied from 32 μA/cm{sup 2} to 64 μA/cm{sup 2} using as electrode materials GOP1 and thermally reduced graphite oxide (TRGO), respectively. TRGO containing function groups (according TGA, ∼6% of the weight loss) and smallest particles (average diameter was ∼11 nm and the average height was ∼0.5 nm) exhibited the higher efficiency for ET acceleration in the biosensor acting on principle of DET.

  1. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  2. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  3. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada); Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada)

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  4. Visualization of the internal structure of Didymosphenia geminata frustules using nano X-ray tomography.

    Science.gov (United States)

    Zgłobicka, Izabela; Li, Qiong; Gluch, Jürgen; Płocińska, Magdalena; Noga, Teresa; Dobosz, Romuald; Szoszkiewicz, Robert; Witkowski, Andrzej; Zschech, Ehrenfried; Kurzydłowski, Krzysztof J

    2017-08-22

    For the first time, the three-dimensional (3D) internal structure of naturally produced Didymosphenia geminata frustules were nondestructively visualized at sub-100 nm resolution. The well-optimized hierarchical structures of these natural organisms provide insight that is needed to design novel, environmentally friendly functional materials. Diatoms, which are widely distributed in freshwater, seawater and wet soils, are well known for their intricate, siliceous cell walls called 'frustules'. Each type of diatom has a specific morphology with various pores, ribs, minute spines, marginal ridges and elevations. In this paper, the visualization is performed using nondestructive nano X-ray computed tomography (nano-XCT). Arbitrary cross-sections through the frustules, which can be extracted from the nano-XCT 3D data set for each direction, are validated via the destructive focused ion beam (FIB) cross-sectioning of regions of interest (ROIs) and subsequent observation by scanning electron microscopy (SEM). These 3D data are essential for understanding the functionality and potential applications of diatom cells.

  5. Initial postbuckling analysis of elastoplastic thin-shear structures

    Science.gov (United States)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  6. Structure and magnetization of Co4N thin film

    Science.gov (United States)

    Pandey, Nidhi; Gupta, Mukul; Gupta, Rachana; Rajput, Parasmani; Stahn, Jochen

    2018-02-01

    In this work, we studied the local structure and the magnetization of Co4N thin films deposited by a reactive dc magnetron sputtering process. The interstitial incorporation of N atoms in a fcc Co lattice is expected to expand the structure. This expansion yields interesting magnetic properties e.g. a larger magnetic moment (than Co) and a very high value of spin polarization ratio in Co4N . By optimizing the growth conditions, we prepared Co4N film having lattice parameter close to its theoretically predicted value. The N concentration was measured using secondary ion mass spectroscopy. Detailed magnetization measurements using bulk magnetization method and polarized neutron reflectivity confirm that the magnetic moment of Co in Co4N is higher than that of Co.

  7. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Lisha [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Inter University Accelerator Center, New Delhi 110067 (India); Joy, P.A. [National Chemical Laboratory, Pune (India); Vijaykumar, B. Varma; Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Anantharaman, M.R., E-mail: mraiyer@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India)

    2017-04-01

    Highlights: • Zinc ferrite films exhibited room temperature ferrimagnetic property. • On ion irradiation amorphisation of films were observed. • The surface morphology undergoes changes with ion irradiation. • The saturation magnetisation decreases on ion irradiation. - Abstract: Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  8. Nano-structuring of solid surface by extreme ultraviolet Ar8+ laser

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Štraus, Jaroslav; Schmidt, Jiří; Frolov, Oleksandr; Prukner, Václav; Shukurov, A.; Holý, V.; Sobota, Jaroslav; Fořt, Tomáš

    2012-01-01

    Roč. 30, č. 1 (2012), s. 57-63 ISSN 0263-0346. [International Conference on the Frontiers of Plasma Physics and Technology/5./. Singapore , 18.04.2011-22.04.2011] R&D Projects: GA MŠk LA08024; GA MŠk(CZ) LC528; GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20430508 Institutional support: RVO:68081731 ; RVO:61389021 Keywords : Ablation by EUV radiation * application of Ar8+ laser * nano-patterning by EUV radiation * , nano-structuring by EUV radiation Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UPT-D) Impact factor: 2.016, year: 2012

  9. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  10. Modifying the Electronic Properties of Nano-Structures Using Strain

    International Nuclear Information System (INIS)

    Lamba, V K; Engles, D

    2012-01-01

    We used density-functional theory based Non equilibrium green function simulations to study the effects of strain and quantum confinement on the electronic properties of Germanium and Silicon NWs along the [110] direction, such as the energy gap and the effective masses of the electron and hole. The diameters of the NWs being studied in a range of 3-20 Å. On basis of our calculation we conclude that the Ge [110] NWs possess a direct band gap, while Si [110] NWs possess indirect band gap at nanoscale. The band gap is almost a linear function of strain when the diameter of Ge NWs D 15 Å; and for Si it is linear in behaviour. On doping silicon wire we found that the bandgap shows parabolic behaviour for change in strain. We also concluded that the band gap and the effective masses of charge carries (i.e. electron and hole) changes by applying the strain to the NWs. Our results suggested that strain can be used to tune the band structures of NWs, which may help in de sign of future nanoelectronic devices.

  11. Nano-Protrusive Gold Nanoparticle-Hybridized Polymer Thin Film as a Sensitive, Multipatternable, and Antifouling Biosensor Platform.

    Science.gov (United States)

    Lee, Jeong-Hoon; Park, Byung-Soo; Ghang, Hyun-Gu; Song, Hyunjoon; Yang, Sung Yun

    2018-04-25

    Hybrid films consisting of anisotropic octahedral gold nanoparticles (AuNPs) and polymers had their surfaces functionalized and were immobilized on surface plasmon resonance (SPR) sensors for biomolecule detection. Specifically, carboxylated octahedral AuNPs (C-Oh-AuNPs) and poly(allylamine hydrochloride) (PAH) were assembled as ultrathin films by using a layer-by-layer process. The ionic strength generated from the functional groups of C-Oh-AuNP and PAH influenced the composition, its surface morphology, and the reactivity of the film toward further chemical reactions such as the synthesis of spherical AuNPs (S-AuNPs). We were thus able to control the size and the structure of the C-Oh-AuNP and S-AuNPs converted to nano-raspberry-shaped particles. This hierarchical AuNP hybrid film exhibits much more sensitive and stable detection of biomolecules than regular flat chip systems, and this result may be due to the SPR of the AuNP at its surface being able to markedly enhance the local optical field of the chip. The micropatterning of the hybrid coating was also studied by using a soft lithographic patterning method. We, in particular, worked on creating multiplex patterns having different combinations of shapes and fluorescent colors. We expect our hybrid coating system with multicode biomolecular arrays to be used as a powerful platform for biosensor applications.

  12. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  13. Characterization of nano structured metallic materials; Caracterizacion de materiales metalicos nanoestructurados

    Energy Technology Data Exchange (ETDEWEB)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C{sub 3}N{sub 3}){sub 2} (NH){sub 3}]{sub n} doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  14. Characterization of Ge Nano structures Embedded Inside Porous Silicon for Photonics Application

    International Nuclear Information System (INIS)

    Rahim, A.F.A.; Hashim, M.R.; Rahim, A.F.A.; Ali, N.K.

    2011-01-01

    In this work we prepared germanium nano structures by means of filling the material inside porous silicon (PS) using conventional and cost effective technique, thermal evaporator. The PS acts as patterned substrate. It was prepared by anodization of silicon wafer in ethanoic hydrofluoric acid (HF). A Ge layer was then deposited onto the PS by thermal evaporation. This was followed by deposition of Si layer by thermal evaporation and anneal at 650 degree Celsius for 30 min. The process was completed by Ni metal deposition using thermal evaporator followed by metal annealing of 400 degree Celsius for 10 min to form metal semiconductor metal (MSM) photodetector. Structural analysis of the samples was performed using energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectroscopy (RS). EDX spectrum suggests the presence of Ge inside the pores structure. Raman spectrum showed that good crystalline structure of Ge can be produced inside silicon pores with a phase with the diamond structure by (111), (220) and (400) reflections. Finally current-voltage (I-V) measurement of the MSM photodetector was carried out and showed lower dark currents compared to that of Si control device. Interestingly the device showed enhanced current gain compared to Si device which can be associated with the presence of Ge nano structures in the porous silicon. (author)

  15. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2014-09-01

    Full Text Available An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor’s output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  16. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  17. Structure-phase composition and nano hardness of chrome-fullerite-chrome films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2015-01-01

    By methods of atomic force microscopy, X-ray diffraction and nano indentation the research of change of structure phase composition and nano hardness of the chrome - fullerite - chrome films, subjected to implantation by B + ions (E = 80 keV, F = 5*10 17 ions/cm 2 ) are submitted. It is established, that as a result of Boron ion implantation of the chrome - fullerite - chrome films, chrome and fullerite inter fusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with increased nano hardness. (authors)

  18. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  19. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    Science.gov (United States)

    Aggarwal, Ankur

    developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.

  20. Thermal Properties, Structure and Morphology of Graphene Reinforced Polyethylene Terephthalate/ Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Inuwa, I.M.; Hassan, A.; Shamsudin, S.A.

    2014-01-01

    In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nano platelets (GNP) were investigated. A blend of PET/ PP (70/ 30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nano composites increased as a function of the GNP concentration. More than 80 % increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix. It is explained that the GNP nano fillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers. (author)

  1. Effects of confinement in meso-porous silica and carbon nano-structures

    International Nuclear Information System (INIS)

    Leon, V.

    2006-07-01

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  2. Kidney stone nano-structure - Is there an opportunity for nanomedicine development?

    Science.gov (United States)

    Vordos, N; Giannakopoulos, S; Gkika, D A; Nolan, J W; Kalaitzis, Ch; Bandekas, D V; Kontogoulidou, C; Mitropoulos, A Ch; Touloupidis, S

    2017-06-01

    Kidney stone analysis techniques are well-established in the field of materials characterization and provide information for the chemical composition and structure of a sample. Nanomedicine, on the other hand, is a field with an increasing rate of scientific research, a big budget and increasingly developing market. The key scientific question is if there is a possibility for the development of a nanomedicine to treat kidney stones. The main calculi characterization techniques such as X-ray Diffraction and Fourier Transform Infrared Spectroscopy can provide information about the composition of a kidney stone but not for its nanostructure. On the other hand, Small Angle X-ray Scattering and Nitrogen Porosimetry can show the nanostructural parameters of the calculi. The combination of the previously described parameters can be used for the development of nano-drugs for the treatment of urolithiasis, while no such nano-drugs exist yet. In this study, we focus on the most well-known techniques for kidney stone analysis, the urolithiasis management and the search for possible nanomedicine for the treatment of kidney stone disease. We combine the results from five different analysis techniques in order to represent a three dimensional model and we propose a hypothetical nano-drug with gold nanoparticles. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  4. Structural and optical properties of furfurylidenemalononitrile thin films

    Science.gov (United States)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  5. Structural, morphological, wettability and thermal resistance properties of hydro-oleophobic thin films prepared by a wet chemical process

    International Nuclear Information System (INIS)

    Phani, A.R.

    2006-01-01

    The structural properties of fluorine containing polymer compounds make them highly attractive materials for hydro-oleophobic applications. However, most of these exhibit low surface energy and poor adhesion on the substrates. In the present investigation, crack free, smooth and uniform thin films of poly[4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole] -co-tetrafluoroethylene (TFD-co-TFE) with good adhesion have been deposited by wet chemical spin-coating technique on polished AISI 440C steel substrates. The as-deposited films (xerogel films) have been subjected to annealing for 1 h at different temperatures ranging from 100 to 500 deg. C in an argon atmosphere. The size growth of the nano-hemispheres increased from 8 nm for xerogel film to 28 nm for film annealed at 400 deg. C. It was found that as the annealing temperature increased from 100 to 400 deg. C, nano-hemisphere-like structures were formed, which in turn have shown increase in the water contact angle from 122 deg. to 147 deg. and oil (peanut) contact angle from 85 deg. to 96 deg. No change in the water contact angle (122 deg.) has been observed when the films deposited at room temperature were heated in air from 30 to 80 deg. C as well as exposed to steam for 8 days for 8 h/day indicating thermal stability of the film

  6. Atomic structure and thermal stability of interfaces between metallic glass and embedding nano-crystallites revealed by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.Z.; Yang, G.Q.; Xu, B.; Qi, C.; Kong, L.T., E-mail: konglt@sjtu.edu.cn; Li, J.F.

    2015-10-25

    Molecular dynamics simulations were performed to investigate the atomic structure and thermal stability of interfaces formed between amorphous Cu{sub 50}Zr{sub 50} matrix and embedding B2 CuZr nano-crystallites. The interfaces are found to be rather abrupt, and their widths show negligible dependence on the nano-crystallite size. Local atomic configuration in the interfacial region is dominated by geometry characterized by Voronoi polyhedra <0,5,2,6> and <0,4,4,6>, and the contents of these polyhedra also exhibit apparent size dependence, which in turn results in an increasing trend in the interfacial energy against the nano-crystallite size. Annealing of the interface models at elevated temperatures will also enrich these characterizing polyhedra. While when the temperature is as high as the glass transition temperature of the matrix, growth of the nano-crystallites will be appreciable. The growth activation energy also shows size dependence, which is lower for larger nano-crystallites, suggesting that large nano-crystallites are prone to grow upon thermal disturbance. - Highlights: • Special clusters characterizing the local geometry are abundant in the interfaces. • Their content varies with the size of the embedding nano-crystallite. • In turn, size dependences in interfacial thermodynamics and kinetics are observed.

  7. An effective medium model versus a network model for nano-structured solar cells

    International Nuclear Information System (INIS)

    Minnaert, B.; Grasso, C.; Burgelman, M.

    2006-01-01

    In this paper, two methods are compared to model the I-V curves of nano-structured solar cells. These cells consist of an interpenetrating network of an n-type transparent semiconductor oxide (e.g. TiO 2 ) and a p-type semiconductor absorber (e.g. CdTe, CuInS 2 ), deposited on TCO covered glass. The methods are also applicable when a dye and an electrolyte replace the p-semiconductor, and even to organic bulk heterojunction cells. A network model (NM) with resistors and diodes has been published by us before. Another method which has been proposed in the literature is an effective medium model (EMM). In this model, the whole p-n nano-structure is represented by one single effective semiconductor layer, which then is fed into a standard solar cell device simulator, e.g. SCAPS. In this work, it is shown that the NM and the EMM can describe the same physical structure, when they are set up properly. As an illustration, some problems are described both by EMM and NM, and the results are compared. The EMM in this work confirms the results obtained earlier with a simplified NM (constant R n , R p ): when illuminating the n-side, the structure is tolerant to R n but not to R p ; the interpenetrating geometry is disadvantageous for V oc . (authors)

  8. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Science.gov (United States)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  9. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  10. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  11. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    Elahi, M. Yousef; Mousavi, M.F.; Ghasemi, S.

    2008-01-01

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH - . Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  12. Small angle neutron and x-ray scattering studies of self-assembled nano structured materials

    International Nuclear Information System (INIS)

    Choi, Sung Min

    2009-01-01

    Full text: Small angle neutron and x-ray scattering are very powerful techniques to investigate nano structured materials. In this presentation, examples of nano structured materials investigated by neutron and x-ray scattering will be presented. Part I: The unique anisotropic physical properties of columnar discotic liquid crystals (DLCs) have attracted considerable interest for their potential applications as electronic devices. For many practical applications, however, it is crucial to obtain uniaxially oriented and highly ordered columnar superstructures of DLC molecules covering macroscopic area. Here, we present a simple and straight-forward approach to fabricate uniaxially oriented and highly ordered columnar superstructures of cobalt octa(n-decylthio) porphyrazine (CoS 1 0), a discotic supra-molecule, in bulk and on substrates [1] over a macroscopic length scale, utilizing an applied magnetic field and the interaction of CoS 1 0 with an OTS-functionalized substrate. The details of the oriented and ordered columnar nano-structures are investigated by SANS and GISAXS. Part II: Self-assembly of one-dimensional (1D) nanoparticles with metallic or semiconducting properties into highly ordered superstructures using various interactions has been of great interest as a route towards materials with new functionalities. Here, we report a new phase diagram of negatively charged 1D nanoparticle (cROD) and cationic liposome (CL) complexes in water which exhibit three different highly ordered phases [2]. Small angle neutron and x-ray scattering measurements show that the cROD-CL complexes exhibit three different highly ordered phases, intercalated lamellar, doubly intercalated lamellar and centered rectangular phases, depending on particle curvature and electrostatic interactions. The new phase diagram can be used to understand and design new highly ordered self-assemblies of 1D nanoparticles in soft matter which provide new functionalities. (author)

  13. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

    for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...... The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...

  14. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    International Nuclear Information System (INIS)

    Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu

    2012-01-01

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  15. Effect of annealing on structural, optical and electrical properties of SILAR synthesized CuO thin film

    Science.gov (United States)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-05-01

    Nano crystalline CuO thin films were synthesize on glass substrate using SILAR technique. The structural, optical and electrical properties of the films were carried out for as deposited as well as for films post annealed in the temperature range 300 - 500° C. The X-ray diffraction pattern shows all the films are polycrystalline in nature with monoclinic phase. The crystallite size increase and lattice strain decreases with increase of annealing temperature indicating high quality of the films for annealed films. The value of band gap decreases with increases of annealing temperature of the film. The effect of annealing temperature on ionic conductivity and activation energy to electrical conduction process are discussed.

  16. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  17. Handbook of damage mechanics nano to macro scale for materials and structures

    CERN Document Server

    2015-01-01

    This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.

  18. Nano- and micro-structured assemblies for encapsulation of food ingredients.

    Science.gov (United States)

    Augustin, Mary Ann; Hemar, Yacine

    2009-04-01

    This tutorial review provides an overview of the science of food materials and encapsulation techniques that underpin the development of delivery vehicles for functional food components, nutrients and bioactives. Examples of how the choice of materials, formulation and process affect the structure of micro- and nano-encapsulated ingredients and the release of the core are provided. The review is of relevance to chemists, material scientists, food scientists, engineers and nutritionists who are interested in addressing delivery challenges in the food and health industries.

  19. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  20. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  1. Effect of microscopic structure on deformation in nano-sized copper and Cu/Si interfacial cracking

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp; Nakano, Takuya; Kitamura, Takayuki

    2013-03-01

    The purpose of this work is to examine the effect of microscopic structure on the mechanical properties of nano-sized components (nano-components). We developed a bending specimen with a substructure that can be observed by means of a transmission electron microscope (TEM). We examined the plastic behavior of a Cu bi-crystal and the Cu/Si interfacial cracking in a nano-component. TEM images indicated that an initial plastic deformation takes place near the interface edge (the junction between the Cu/Si interface and the surface) in the Cu film with a high critical resolved shear stress (400–420 MPa). The deformation developed preferentially in a single grain. Interfacial cracking took place at the intersection between the grain boundary and the Cu/Si interface, where a high stress concentration existed due to deformation mismatch. These results indicate that the characteristic mechanical behavior of a nano-component is governed by the microscopic stress field, which takes into account the crystallographic structure. - Highlights: ► A nano-component specimen including a bi-crystal copper layer was prepared. ► A loading test with in-situ transmission electron microscopy was conducted. ► The plastic and cracking behaviors were governed by microscopic stress. ► Stress defined under continuum assumption was still present in nano-components.

  2. Imaging of current distributions in superconducting thin film structures

    International Nuclear Information System (INIS)

    Doenitz, D.

    2006-01-01

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices

  3. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    International Nuclear Information System (INIS)

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  4. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    International Nuclear Information System (INIS)

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Di-substituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillary P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillary layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6 % on glass and 3.3 % on plastic were reached without annealing. (author)

  5. Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1995-01-01

    We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity

  6. Rupture of thin liquid films on structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  7. Growth and structure of Co/Au magnetic thin films

    International Nuclear Information System (INIS)

    Marsot, N.

    1999-01-01

    We have studied the growth and the crystallographic structure of magnetic ultra thin cobalt/gold films (Co/Au), in order to investigate the correlations between their magnetic and structural properties. Room temperature (R.T.) Co growth on Au (111) proceeds in three stages. Up to 2 Co monolayers (ML), a bilayer island growth mode is observed. Between 2 and 5 ML, coalescence of the islands occurs, covering the substrate surface and a Co/Au mixing is observed resulting from the de-construction of the Herringbone reconstruction. Finally, beyond 5 ML, the CoAu mixing is buried and the Co growth continues in a 3-D growth. Annealing studies at 600 K on this system show a smoothing effect of the Co film, and at the same time, segregation of Au atoms. The quality of the Co/Au interface (sharpness) is not enhanced by the annealing. The local order was studied by SEXAFS and the long range order by GIXRD showing that the Co film has a hexagonal close packed structure, with an easy magnetization axis perpendicular to the surface. From a local order point of view, the Co grows with an incoherent epitaxy and keeps its own bulk parameters. The GIXRD analysis shows a residual strain in the Co film of 4%. The difference observed between the local order analysis and the long range order results is explained in terms of the low dimensions of the diffracting domains. The evolution of film strains, as a function of the Co coverage, shows a marked deviation from the elastic strain theory. Modification of the strain field in the Co film as a function of the Au coverage is studied by GIXRD analysis. The Au growth study, at R.T., shows no evidence of a Au/Co mixing in the case of the Au/Co interface. The Au overlayer adopts a twinned face centred cubic structure on the rough Co film surface. (author)

  8. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  9. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  10. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves

    Science.gov (United States)

    Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A.

    2006-03-01

    When rain falls on lotus leaves water beads up with a high contact angle. The water drops promptly roll off the leaves, collecting dirt along the way. This self-cleaning ability or lotus effect has, in recent years, stimulated much research effort worldwide for a variety of applications ranging from self-cleaning window glasses, paints, and fabrics to low friction surfaces. What are the mechanisms giving rise to the lotus effect? Although chemical composition and surface structure are believed important, a systematic experimental investigation of their effects is still lacking. By altering the surface structure of the leaves while keeping their chemical composition approximately the same, we report in this study the influence of micro- and nano-scale structures on the wetting behaviour of lotus leaves. The findings of this work may help design self-cleaning surfaces and improve our understanding of wetting mechanisms.

  11. Superficial characterization and nano structural of nano multilayers Cr/Cr N obtained by UBM with different unbalance grades; Caracterizacion superficial y nano estructural de nano multicapas Cr/CrN obtenidas por UBM con diferentes grados de desbalance

    Energy Technology Data Exchange (ETDEWEB)

    Piratoba, U. [Universidad Nacional de Colombia, Departamento de Fisica, Carrera 45 No. 26-85, Edificio Uriel Gutierrez, Bogota D. C. (Colombia); Arenas A, J. [UNAM, Instituto de Fisica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Olaya, J. J., E-mail: ulisesp3@hotmail.com [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Carrera 30 No. 45-03, Edificio 453, Bogota D. C. (Colombia)

    2013-10-01

    Coatings of 25 bilayers of Cr/Cr N, with total thickness between 1.32 and 1.67 microns, were deposited by reactive sputtering on silicon and H13 steel, in argon and argon with nitrogen atmospheres. A power of 160 watts, flows of argon and nitrogen of 9 and 3 sc cm respectively, and an axial unbalanced magnetron, whose coefficient of geometrical unbalance K{sub G} was varied between 0.85 and 1.37. Of these coatings, micrographs of surface and cross section scanning electron microscopy were obtained, was make a micro structural characterization with X-ray diffraction, a nano structural characterization by transmission electron microscopy, and surface characterization by atomic force microscopy in tapping mode: analysis showed uniform surface coating with globular and pyramidal formations, which contain some granular inclusions and microscopic craters. With the increase in the unbalance of the magnetic field, the grain size, the roughness and the speed of the coatings growth were increased. (Author)

  12. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C 6 0 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  13. Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks

    International Nuclear Information System (INIS)

    Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei; Bruegger, Juergen; Villanueva, Guillermo

    2009-01-01

    Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of a silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.

  14. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  15. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  16. A novel approach to nano topology via neutrosophic sets

    OpenAIRE

    M. Lellis Thivagar; Saeid Jafari; V. Sutha Devi; V. Antonysamy

    2018-01-01

    The main objective of this study is to introduce a new hybrid intelligent structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic nano topology can also be deduced from the neutrosophic nano topology. Based on the neutrosophic nano approximations we have classified neutrosophic nano topology. Some properties like neutrosophic nano interior and neutrosophic nano closure are derived.

  17. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    Science.gov (United States)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  18. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    International Nuclear Information System (INIS)

    Bayer, I.S.; Steele, A.; Martorana, P.J.; Loth, E.

    2010-01-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155 o and low contact angle hysteresis ( o ). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  19. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  20. NanoPSE: Nanoscience Problem Solving Environment for atomistic electronic structure of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Jones, Wesley B; Bester, Gabriel; Canning, Andrew; Franceschetti, Alberto; Graf, Peter A; Kim, Kwiseon; Langou, Julien; Wang Linwang; Dongarra, Jack; Zunger, Alex

    2005-01-01

    Researchers at the National Renewable Energy Laboratory and their collaborators have developed over the past ∼10 years a set of algorithms for an atomistic description of the electronic structure of nanostructures, based on plane-wave pseudopotentials and configurationinteraction. The present contribution describes the first step in assembling these various codes into a single, portable, integrated set of software packages. This package is part of an ongoing research project in the development stage. Components of NanoPSE include codes for atomistic nanostructure generation and passivation, valence force field model for atomic relaxation, code for potential field generation, empirical pseudopotential method solver, strained linear combination of bulk bands method solver, configuration interaction solver for excited states, selection of linear algebra methods, and several inverse band structure solvers. Although not available for general distribution at this time as it is being developed and tested, the design goal of the NanoPSE software is to provide a software context for collaboration. The software package is enabled by fcdev, an integrated collection of best practice GNU software for open source development and distribution augmented to better support FORTRAN

  1. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  2. Gaussian process based intelligent sampling for measuring nano-structure surfaces

    Science.gov (United States)

    Sun, L. J.; Ren, M. J.; Yin, Y. H.

    2016-09-01

    Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.

  3. New active control nano-system to use in composites structure

    International Nuclear Information System (INIS)

    Arche, M R

    2012-01-01

    The present abstract, is a brief description about our project (NEDEA). We considered this project as very important, because it reunites in his development, several basic technologies: electronics, communications, software and new materials, all very interesting in the European industry. The project is developed in the CSIC (Spanish Researcher Center). We are involved. Across the project, in the development of nano-sensors, specialized in detecting defects, difficulties or problems in structures of composed materials. These materials are being used, and in the future more, in applications where a high degree of security is necessary. Some fields in the system usage are Aeronautical and military applications whit a necessary high security degree. The development proposed, is based in nano-sensors and active devices. They are installed into the material structure. The information from sensors is transmitted by optical fibers, to a radio transmitter, equally installed into the material. An external receptor picks up those data and transmits them to an external device. This external device presents/displays all the information across an interface GUI, in real time, to the supervisor. He can see than is happening in the material, in real time. Alarms can be programmed, by the supervisor. Is possible a tracking for the problem. All the devices and software are in develop in our laboratories. We think that this development will be used by the industry of materials, and that gradually, it will have other applications in the transport area (like new vehicles, wagons of train and metro, etc.).

  4. Morphological, structural and optical properties of ZnO thin solid films formed by nanoleafs or micron/submicron cauliflowers

    International Nuclear Information System (INIS)

    Angulo-Rocha, Jorge; Velarde-Escobar, Oscar; Yee-Rendón, Cristo; Atondo-Rubio, Gelacio; Millan-Almaraz, Roberto; Camarillo-García, Enrique

    2017-01-01

    Thin films of ZnO formed by nano and microstructures with hexagonal crystal phase were successfully synthesized by using pyrolysis technique. At first glance the films resulted divided in 7 zones that were morphologically analyzed and showed the presence of three types of particles: nano-leafs, single microparticles, and particles formed by the addition of microparticles, “clusters”. The largest and therefore the main zone was formed by nanoleafs. Studies on morphology, structure and optical properties of these nanoleafs were obtained and correlated too. The knowledge acquired from these studies allowed the synthesis of nanostructured films entirely formed by nanoleafs with a width of 25 nm and a length 200 nm long regardless of the roughness of the substrate. Energy gap of 3.26 eV was invariant to changes in synthesis parameters. The studies on optical properties of nanoleafs and micro-cauliflower give an energy diagram that account for the location of the energy states introduced by native crystalline defects into the energy band gap and their radiative electronic transitions.

  5. Morphological, structural and optical properties of ZnO thin solid films formed by nanoleafs or micron/submicron cauliflowers

    Energy Technology Data Exchange (ETDEWEB)

    Angulo-Rocha, Jorge [Laboratorio de Síntesis de Materiales-Facultad de Ciencias Físico-Matemáticas – Universidad Autónoma de Sinaloa, Ciudad Universitaria S/N, CP. 80000, Culiacán, Sinaloa, México (Mexico); Velarde-Escobar, Oscar; Yee-Rendón, Cristo; Atondo-Rubio, Gelacio [Laboratorio de Óptica-Facultad de Ciencias Físico-Matemáticas – Universidad Autónoma de Sinaloa, Ciudad Universitaria S/N, CP. 80000, Culiacán, Sinaloa, México (Mexico); Millan-Almaraz, Roberto [Facultad de Ciencias Físico-Matemáticas – Universidad Autónoma de Sinaloa, Ciudad Universitaria S/N, CP. 80000, Culiacán, Sinaloa, México (Mexico); Camarillo-García, Enrique [Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, Álvaro Obregón 01000, DF, México (Mexico); and others

    2017-05-15

    Thin films of ZnO formed by nano and microstructures with hexagonal crystal phase were successfully synthesized by using pyrolysis technique. At first glance the films resulted divided in 7 zones that were morphologically analyzed and showed the presence of three types of particles: nano-leafs, single microparticles, and particles formed by the addition of microparticles, “clusters”. The largest and therefore the main zone was formed by nanoleafs. Studies on morphology, structure and optical properties of these nanoleafs were obtained and correlated too. The knowledge acquired from these studies allowed the synthesis of nanostructured films entirely formed by nanoleafs with a width of 25 nm and a length 200 nm long regardless of the roughness of the substrate. Energy gap of 3.26 eV was invariant to changes in synthesis parameters. The studies on optical properties of nanoleafs and micro-cauliflower give an energy diagram that account for the location of the energy states introduced by native crystalline defects into the energy band gap and their radiative electronic transitions.

  6. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    Science.gov (United States)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  7. Synthesis of nano-sized MgO particle and thin film from diethanolamine-stabilized magnesium-methoxide

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, J.-K.; Young Kim, J.; Hong, Kug Sun

    2003-01-01

    The effects of diethanolamine (DEA) addition on the crystallization behavior of magnesium methoxide and the stabilization behavior of the Mg-alkoxide were investigated using differential scanning calorimetry, thermogravimetry, X-ray powder diffraction, transmission electron microscopy, and X-ray photoemission spectroscopy. 20 mol% DEA additions to magnesium methoxide showed enhanced stability such that a time-dependent change in the sol was not observed in air. Moreover, the DEA addition enhanced the crystallization process. Crystalline MgO in the 20 mol% of DEA-added magnesium methoxide powder was observed at 300 deg. C for samples processed in O 2 and a high degree of crystallinity was observed at 400 deg. C when processed in O 2 . The enhanced crystallization of Mg-methoxide with added DEA in O 2 is discussed in terms of structural relaxation and heat generation during the ignition of an organic species of DEA. Using a DEA added sol, a MgO thin film with a high degree of crystallinity was prepared at 400 deg. C in O 2

  8. Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Shakil Khan

    2015-08-01

    Full Text Available DC reactive magnetron sputtering technique has been used for the preparation of AlN thin films. The deposition temperature and the flow ratio of N2/Ar were varied and subsequent dependency of the films crystallites orientation/texture has been addressed. In general, deposited films were found hexagonal polycrystalline with a (002 preferred orientation. The X-ray diffraction (XRD data revealed that the film crystallinity improves, with the increase of substrate temperature from 300 °C to 500 °C. The dropped in full width half maximum (FWHM of the XRD rocking curve value further confirmed it. However, increasing substrate temperature above 500 °C or reducing the nitrogen condition (from 60 to 30% in the environment induced the growth of crystallites with (102 and (103 orientations. The rise of rocking curve FWHM for the corresponding conditions depicted that the films texture quality deteriorated. A further confirmation of the variation in film texture/orentation with the growth conditions has been obtained from the variation in FWHM values of a dominant E1 (TO mode in the Fourier transform infrared (FTIR spectra and the E2 (high mode in Raman spectra. We have correlated the columnar structure in AFM surface analyses with the (002 or c-axis orientation as well. Spectroscopic ellipsometry of the samples have shown a higher refractive index at 500 °C growth temperature.

  9. Femtosecond laser surface structuring of molybdenum thin films

    CSIR Research Space (South Africa)

    Kotsedi, L

    2015-10-01

    Full Text Available , 20133 Milano, Italy e Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy f Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano, Italy...

  10. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  11. Development of a Quartz Crystal Microbalance Sensor Modified by Nano-Structured Polyaniline for Detecting the Plasticizer in Gaseous State

    Directory of Open Access Journals (Sweden)

    Hui XU

    2014-01-01

    Full Text Available A quartz crystal microbalance (QCM modified by a film of nano-structured polyaniline (nano-PANI is developed as a gas sensor for detecting the presence of the plasticizer, such as dibutyl phthalate (DBP in the ambient. Nano-PANI is prepared using a non-template method and the films are deposited using physical coating method. Scanning electron microscopy is used to characterize the nano-PANI film. The sensor response towards DBP is tested in a sealed gas chamber. The QCM resonant frequency shift is measured due to the absorption of DBP with different concentration ranging from 0.04 to 1.2 ppm. The experiment results show that the variation of the frequency is a linear function of DBP concentration and the sensitivity up to 54 Hz/ppm could be achieved by using the researched nano-PANI on QCM. To investigate the selectivity, the potential interfering analytes such as acetone, ethanol, acetaldehyde and formaldehyde are tested. And the mechanism hypothesis of the nano-PANI sensitive to the plasticizer is analyzed.

  12. Osteoblast Adhesion on Cathodic Arc Plasma Deposited Nano-Multilayered TiCrAlSiN Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu [University of Ulsan, Ulsan (Korea, Republic of); Pham, Vuong Hung [Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2014-03-15

    Adhesion of osteoblast cells to TiCrAlSiN thin films was evaluated in vitro. Ti and TiCrAlSiN thin films were deposited on glass substrates by cathodic arc deposition. Surface roughness and chemistry of the TiCrAlSiN thin films was characterized by AFM and EPMA, respectively. Ti and TiCrAlSiN thin films and glass coverslips were cultured with human osteoblast cells (hFOB 1.19). The cell cytoskeleton was analyzed by observing the organization of actin stress fibers and microtubules. Cell proliferation was investigated by MTT assay and visualization. Focal contact adhesion was studied by observing the vinculin density. The results indicated that the TiCrAlSiN coating significantly influenced the actin cytoskeleton and microtubule organization. Human osteoblasts hFOB attached and proliferated better on TiCrAlSiN thin films with more focal contact adhesions than on Ti thin films or glass surfaces. These results suggest that TiCrAlSiN thin films can be an implantable material where the maximum cell adhesion is required.

  13. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  14. HREELS to identify electronic structures of organic thin films.

    Science.gov (United States)

    Oeter, D; Ziegler, C; Göpel, W

    1995-10-01

    The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.

  15. A study on hydrogen storage through adsorption in nano-structured carbons

    International Nuclear Information System (INIS)

    Langohr, D.

    2004-10-01

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  16. Nano-Structures for Optics and Photonics: Optical Strategies for Enhancing

    CERN Document Server

    Collins, John; Silvestri, Luciano

    2015-01-01

    The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume.  The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biolo...

  17. Enhanced J c property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process

    International Nuclear Information System (INIS)

    Jiang, C.H.; Nakane, T.; Hatakeyama, H.; Kumakura, H.

    2005-01-01

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB 2 /Fe wires from MgH 2 and B powders. The pores and cracks resulted from the MgH 2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and J c property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in J c within this study. The reproducibility of our new process on the J c improvement in MgB 2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately

  18. Femtosecond Snapshots of quantum mechanics at work in plasmonic nano-structures

    Science.gov (United States)

    Carbone, Fabrizio

    Ultrafast Transmission Electron Microscopy enabled a new technique (Photon-Induced Near Field Electron Microscopy, PINEM), capable of controlling electromagnetic fields confined on the surface of nanostructures and image their properties with nm-resolution in direct space and fs resolution in time. In this presentation, we will show some recent results where the standing wave formed by the plasmonic field confined on the surface of one silver nano-wire was imaged together with its energy exchange with the imaging electrons. In these results, both the interference and the quantization of the plasmonic near field could be imaged simultaneously, revealing both a quantum and a classical aspect of the electromagnetic field in one snapshot. The implications of these results will be discussed, and we will also present new ideas and methodologies to go beyond such an experiment and image the interaction between single electrons and single plasmons. We will also show that shaping the electron density in a thin film via light pulses is possible by taking advantage of the plasmon-plasmon interference and the ability of light polarization to control the excitation of different plasmonic field geometries in ad hoc designed nanostructures. Movies of the propagation of plasmons will also be presented, providing insights into their speed, propagation losses and the effect of confinment. This work was supported by an ERC Grant USED.

  19. Categorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Naoki Hashizume

    Full Text Available A potentially useful means of predicting the pulmonary risk posed by new forms of nano-structured titanium dioxide (nano-TiO2 is to use the associations between the physicochemical properties and pulmonary toxicity of characterized forms of TiO2. In the present study, we conducted intratracheal administration studies in rats to clarify the associations between the physicochemical characteristics of seven characterized forms of TiO2 and their acute or subacute pulmonary inflammatory toxicity. Examination of the associations between the physicochemical characteristics of the TiO2 and the pulmonary inflammatory responses they induced revealed (1 that differences in the crystallinity or shape of the TiO2 particles were not associated with the acute pulmonary inflammatory response; (2 that particle size was associated with the acute pulmonary inflammatory response; and (3 that TiO2 particles coated with Al(OH3 induced a greater pulmonary inflammatory response than did non-coated particles. We separated the seven TiO2 into two groups: a group containing the six TiO2 with no surface coating and a group containing the one TiO2 with a surface coating. Intratracheal administration to rats of TiO2 from the first group (i.e., non-coated TiO2 induced only acute pulmonary inflammatory responses, and within this group, the acute pulmonary inflammatory response was equivalent when the particle size was the sa