WorldWideScience

Sample records for nano metallic-particle synthesis

  1. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  2. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  3. Synthesis of nanosized metal particles from an aerosol

    Srećko R. Stopić

    2013-10-01

    Full Text Available The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials.  Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of  nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.

  4. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.

    Lu, Yu; Du, Guangqing; Chen, Feng; Yang, Qing; Bian, Hao; Yong, Jiale; Hou, Xun

    2016-09-26

    In this paper, the tunable optical trapping dependence on wavelength of incident beam is theoretically investigated based on numerical simulations. The Monte Carlo method is taken into account for exploring the trapping characteristics such as average deviation and number distribution histogram of nanoparticles. It is revealed that both the width and the depth of potential well for trapping particles can be flexibly adjusted by tuning the wavelength of the incident beam. In addition, incident wavelengths for the deepest potential well and for the strongest stiffness at bottom are separated. These phenomena are explained as the strong plasmon coupling between tweezers and metallic nanoparticles. In addition, required trapping fluence and particles' distributions show distinctive properties through carefully modifying the incident wavelengths from 1280 nm to 1300 nm. Trapping with lowest laser fluence can be realized with 1280 nm laser and trapping with highest precision can be realized with 1300 nm laser. This work will provide theoretical support for advancing the manipulation of metallic particles and related applications such as single-molecule fluorescence and surface enhanced Raman spectroscopy.

  5. Tailoring the synthesis of supported Pd catalysts towards desired structure and size of metal particles.

    Suresh, Gatla; Radnik, Jörg; Kalevaru, Venkata Narayana; Pohl, Marga-Martina; Schneider, Matthias; Lücke, Bernhard; Martin, Andreas; Madaan, Neetika; Brückner, Angelika

    2010-05-14

    In a systematic study, the influence of different preparation parameters on phase composition and size of metal crystallites and particles in Pd-Cu/TiO(2) and Pd-Sb/TiO(2) catalyst materials has been explored. Temperature and atmosphere of thermal pretreatment (pure He or 10% H(2)/He), nature of metal precursors (chlorides, nitrates or acetates) as well as of ammonium additives (ammonium sulfate, nitrate, carbonate) and urea were varied with the aim of tailoring the synthesis procedure for the preferential formation of metal particles with similar size and structure as observed recently in active catalysts after long-term equilibration under catalytic reaction conditions in acetoxylation of toluene to benzylacetate. Among the metal precursors and additives, the chloride metal precursors and (NH(4))(2)SO(4) were most suitable. Upon thermal pretreatment of Pd-Sb or Pd-Cu precursors, chloroamine complexes of Pd and Cu are formed, which decompose above 220 degrees C to metallic phases independent of the atmosphere. In He, metallic Pd particles were formed with both the co-components. In H(2)/He flow, Pd-Cu precursors were converted to core-shell particles with a Cu shell and a Pd core, while Sb(1)Pd(1) and Sb(7)Pd(20) alloy phases were formed in the presence of Sb. Metal crystallites of about 40 nm agglomerate to particles of up to 150 nm in He and to even larger size in H(2)/He.

  6. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  7. Synthesis, Characterization and Application of Nano Lepidocrocite ...

    NICO

    Degradation of halogenated organic compounds using nanoparticles is one of the innovative ... way as the synthesis of nano zero-valent iron by using sodium .... +. −. 2и High. 2и Low. FWHM. Crystallite. /counts. /counts. /degree. /degree.

  8. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  9. Nano materials Synthesis, Applications, and Toxicity 2012

    Nadagouda, M.N.; Lytle, D.A.; Speth, Th.F.; Dionysiou, D.D.; Mukhopadhyay, Sh.M.

    2013-01-01

    Nano technology presents new opportunities to create better materials and products. Nano materials find wide applications in catalysis, energy production, medicine, environmental remediation, automotive industry, and other sectors of our society. Nano material-containing products are already available globally and include automotive parts, defense application, drug delivery devices, coatings, computers, clothing, cosmetics, sports equipment, and medical devices. This special issue includes emerging advances in the field, with a special emphasis given to nano material synthesis and applications. There is an increasing interest in identifying magnetically separable catalysts for the degradation of wastewater. In this issue, A. Perumal et al. report an investigation of temperature-dependent magnetic properties and photo catalytic activity of CoFe 2 O 4 -Fe 3 O 4 magnetic nano composites (MNCs) synthesized by hydrothermal processes. These MNCs have saturation magnetization of 90 emu/g and coercivity (HC) of 530 Oe. The photo catalytic activity of the MNCs has been examined on the reduction of methyl orange (MO), a colored compound used in dyeing and printing textiles. The MNCs act as an excellent photo catalyst on the degradation of organic contaminants and degrade 93% of MO in 5 hours of UV irradiation. The photo catalytic activity of MNCs is attributed to remarkably high band gap energy and small particle size. Also, the MNCs with reproducible photo catalytic activity are easily separated from water media by applying an external magnetic field and they act as a promising catalyst for the remediation of textile wastewater. Microwaves can play an important role in orchestrating nano materials for a wide range of technological applications

  10. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  11. Microwave assisted synthesis of hydroxyapatite nano strips

    Ruban Kumar, A.; Kalainathan, S.; Saral, A.M. [School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India)

    2010-07-15

    Synthesis of hydroxyapatite (HAP) nano strips was carried out by chemical precipitation method followed by microwave irradiation. The microwave assisted reactions proceed at fast rates. It is found that the presence of the complex reagent EDTA plays an important role in the morphological changes of nanostructure hydroxyapatite. EDTA acts as a hexadentate unit by wrapping itself around the Ca{sup 2+} metal ion with, four oxygen and two nitrogen atoms and forms several five member chelate rings. The relative specific surface energies associated with the facets of the crystal determines the shape of the crystal. Scanning electron microscopy revealed the presence of hydroxyapatite nano strips with the range 50-100 nm in EDTA influenced HAP powders. Fourier transform-infrared spectroscopy (FT-IR) result combined with the X-ray diffraction (XRD) indicates the presence of amorphous hydroxyapatite (HAP) in the as-prepared material. X-ray patterns collected on the powder after heat-treatment at 1100 C for 2 h in air exhibits single phase of HAP. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Synthesis and Characterization of Nano Scale YBCO

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  13. Radiation synthesis of the nano-scale materials

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  14. Radiation synthesis of the nano-scale materials

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  15. Controlled synthesis of thorium and uranium oxide nano-crystals

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  16. Synthesis and Oxidation of Silver Nano-particles

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  17. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  18. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  19. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  20. Synthesis and applications of nano-structured iron oxides/hydroxides

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  1. Synthesis, characterization, and photo-physical properties of nano-crystallites of CdyZn1-yS semiconductors

    Cizeron, Joel

    1996-01-01

    This research thesis reports the study of the synthesis of particles of semiconductor with a hybrid composition (Cd y Zn 1-y S) in an inverse micellar system. This system is made of nano-scopic water droplets suspended in oil by Brownian movement. Inverse micelles of AOT/water/alkane have been successfully used in laboratory to synthesize semiconductor particles (CdS, Ag 2 S, AgI, PbS) and metallic particles (Ag, Cu, Co) with a diameter of few nanometers. The objective has been to demonstrate the feasibility of synthesises of solid solution with a composition controlled by colloidal techniques. It was then possible to identify new information on the mechanism which governs the size of semiconductor particles. Optical properties of these particles were then studied. These nano-particles exhibit a displacement of their exciton towards high energies; it is the so-called size quantum effect. This effect has been analysed for the particles and their fluorescence [fr

  2. Synthesis of carbon nano structures by plasma discharge

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of carbon neocarcinostatin (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, one has seen the necessity to generate new synthesis processes of these materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither impurities. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arc discharge, in a gas mixture He-CH 4 with 34% at.Ni/10.32%at.Y like catalyst; to a frequency of 42 k Hz and low power (300 W). This method benefits the agglomeration of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the type of obtained NEC and by X-ray diffraction analysis and Raman spectroscopy to determine the purity of the samples. The NFC are relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of the plasma using the Swan band to determine the temperature. (Author)

  3. Synthesis of Nano-Particles in Flames

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...

  4. Synthesis of Carbon nano structures by plasma discharge

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH 4 with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  5. Synthesis and characterization of nano silver ferrite composite

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  6. Green chemistry synthesis of nano-cuprous oxide.

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  7. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  8. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  9. Nano Materials

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  10. Synthesis of Carbon Nano tubes: A Revolution in Material Science for the Twenty-First Century

    Allaf, Abd. W.

    2003-01-01

    The aim of this work is to explain the preparation procedures of single walled carbon nano tubes using arc discharge technique. The optimum conditions of carbon nano tubes synthesis are given. It should be pointed out that this sort of materials would be the twenty-first century materials

  11. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  12. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  13. The 'Invisible' Metal Particles in Catalysis

    Koningsberger, D.C.; Diaz-Moreno, S.; Muñoz-Paez, A.

    1997-01-01

    An easy, reliable and straightforward method to determine the sizes of small metal particles in supported metal catalyst which are invisible for most techniques (chemisorption, XRD, HRTEM) is presented. The technique we consider more appropriate is EXAFS, because it detects metal metal bonds even

  14. A plasmonic spanner for metal particle manipulation

    Zhang, Y.; Shi, W.; Shen, Z.; Man, Z.; Min, C.; Shen, J.; Zhu, S.; Urbach, H.P.; Yuan, X.

    2015-01-01

    Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and

  15. 2D and 3D organisation of nano-particles: synthesis and specific properties

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  16. Synthesis and characterization of carbon nano fibers for its application in the adsorption of toxic gases

    Juanico L, J.A.

    2004-01-01

    The production of carbon nano fibers (CNF's) by diverse techniques as the electric arc, laser ablation, or chemical deposition in vapor phase, among other, they have been so far used from final of the 90's. However, the synthesis method by discharge Glow arc of alternating current and high frequency developed by Pacheco and collaborators, is a once alternative for its obtaining. In the plasma Application Laboratory (LAP) of the National Institute of Nuclear Research (INlN) it was designed and manufactured a reactor of alternating current and high frequency that produces a Glow arc able to synthesize carbon nano fibers. Its were carried out nano fibers synthesis with different catalysts to different proportions and with distinct conditions of vacuum pressure and methane flow until obtaining the best nano fibers samples and for it, this nano structures were characterized by Scanning and Transmission Electron Microscopy, X-ray Diffraction, Raman spectrometry and EDS spectrometry. Once found the optimal conditions for the nano fibers production its were contaminated with NO 2 toxic gas and it was determined if they present adsorption, for it was used the thermal gravimetric analysis technique. This work is divided in three parts, in the first one, conformed by the chapters 1, at the 3, they are considered the foundations of the carbon nano fibers, their history, their characteristics, growth mechanisms, synthesis techniques, the thermal gravimetric analysis principles and the adsorption properties of the nano fibers. In the second part, consistent of the chapters 4 and 5, the methodology of synthesis and characterization of the nano fibers is provided. Finally, in third part its were carried out the activation energy calculation, the adsorption of the CNF's is analyzed and the conclusions are carried out. The present study evaluates the adsorption of environmental gas pollutants as the nitrogen oxides on carbon nano fibers at environmental or near conditions. Also

  17. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  18. Nano materials for Renewable Energy Storage: Synthesis, Characterization, and Applications

    Rather, S.U.; Zacharia, R.; Stephan, A.M.; Petrov, L.A.; Nair, J.R.

    2015-01-01

    Nano technology and nano scale materials have been part of human history and in use since centuries. Staining of glass windows hundreds of years ago is one of the examples where people created beautiful works without knowing that they are using nano processing. The beginning of modern era of nano technology dates back to the talk of the Nobel laureate Professor Richard Feynman in There plenty of room at the bottom. Professor Feynman hypothesized that in near future scientists would be able to control and modulate individual molecules and atoms. After a decade, Professor Norio Taniguchi introduced the magical word nano technology. However, in 1981, the introduction of scanning tunnelling microscope enabled the scientists to see the materials in nano scale that propagated the new age of nano technology.

  19. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  20. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  1. Laser Pulse Heating of Spherical Metal Particles

    Michael I. Tribelsky

    2011-12-01

    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  2. Review on the Synthesis and Applications of Nano materials

    Liu, X.; Tang, Y.; Liang, B.; Zhong, Z.

    2013-01-01

    Recently, Fe 3 O 4 nano materials have attracted tremendous attention because of their favorable electric and magnetic properties. Fe 3 O 4 nano structures with various morphologies have been successfully synthesized and have been used in many fields such as lithium-ion batteries (LIBs), wastewater treatment, and magnetic resonance imaging (MRI) contrast agents. In this paper, we provide an in-depth discussion of recent development of Fe 3 O 4 nano materials, including their effective synthetic methods and potential applications.

  3. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  4. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  5. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-01-01

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot

  6. Synthesis of nano-carbon (nanotubes, nanofibres, graphene ...

    Administrator

    – .... PEO composites. In other carbon nano materials such as graphite nano- fibres (GNFs) .... decides the catalyst shape according to which the mor- phology of the .... Castro M, Lu J, Bruzaud S, Kumar B and Feller J 2009 Carbon. 47 1930.

  7. Synthesis of nano-textured biocompatible scaffolds from chicken eggshells

    Asghar, Waseem; Ilyas, Azhar; Sankaran, Jeyantt; Wan Yuan; Iqbal, Samir M; Kim, Young-Tae

    2012-01-01

    Cell adhesion, morphology and growth are influenced by surface topography at nano and micrometer scales. Nano-textured surfaces are prepared using photolithography, plasma etching and long polymer chemical etching which are cost prohibitive and require specialized equipment. This article demonstrates a simple approach to synthesize nano-textured scaffolds from chicken eggshells. Varieties of pattern are made on the eggshells like micro-needle forests and nanopores, giving very uniform nano-textures to the surfaces. The surfaces are characterized for chemical composition and crystal phase. The novel patterns are transferred to PDMS surfaces and the nano-textured PDMS surfaces are used to study the effect of texturing on human fibroblast cell growth and attachment. The effects of surface topographies, along with laminin coating on cell cultures, are also studied. We find an exciting phenomenon that the initial seeding density of the fibroblast cells affects the influence of the nano-texturing on cell growth. These nano-textured surfaces give 16 times more fibroblast growth when compared to flat PDMS surfaces. The novel nano-textured patterns also double the laminin adsorption on PDMS. (paper)

  8. Synthesis of nano structures for use as toxic gas adsorbents

    Velazquez P, S.; Pacheco S, J.; Estrada M, N.; Vasquez N, C.; Garcia R, M.; Garduno A, M.; Torres R, C.; Garcia G, J.; Pacheco P, M.; Valdivia B, R.; Ramos F, F.; Cruz A, A.; Duran G, M.; Hidalgo P, M.

    2008-01-01

    The work described here is the study of adsorption of nitrogen oxides by carbon nano structures and its implementation in a plasma reactor used to treat toxic gases. By placing a bed of carbon nano structures to the plasma reactor outlet obtained and increase in the efficiency of degradation. (Author)

  9. On the selection of optimized carbon nano tube synthesis method using analytic hierarchy process

    Besharati, M. K.; Afaghi Khatibi, A.; Akbari, M.

    2008-01-01

    Evidence from the early and late industrializes shows that technology, as the commercial application of scientific knowledge, has been a major driver of industrial and economic development. International technology transfer is now being recognized as having played an important role in the development of the most successful late industrializes of the second half of the twentieth Century. Our society stands to be significantly influenced by carbon nano tubes, shaped by nano tube applications in every aspect, just as silicon-based technology still shapes society today. Nano tubes can be formed in various structures using several different processing methods. In this paper, the synthesis methods used to produce nano tubes in industrial or laboratory scales are discussed and a comparison is made. A technical feasibility study is conducted by using the multi criteria decision-making model, namely Analytic Hierarchy Process. The article ends with a discussion of selecting the best method of Technology Transferring of Carbon Nano tubes to Iran

  10. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  11. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  12. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  13. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  14. Synthesis and characterization of nano silicon and titanium nitride ...

    The characterization techniques indicated ... Scalable synthesis; microwave plasma; chemical synthesis; nanoparticles. 1. Introduction ... used but very few methods are available to produce silicon and titanium ... current (A). (m3/h). 1. Si. 2.1.

  15. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  16. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    Mostafa, R.S.S.

    2012-01-01

    we prepared a series of CdS/PVA and Ag/PVA nano composites via facile and novel synthetic steps. Our synthetic route is simpler; it does not need expensive oxidizing agents, surfactants, templates and complicated apparatus. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the CdS/PVA and Ag/PVA nano composites processing and analysis. CdS and Ag nanoparticles with different particle sizes were prepared via chemical method and gamma irradiation method. Several techniques were used to detect the structural changes of the nano composites due to interaction between CdS or Ag ions and PVA. These are: UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrophotometer, and thermogravimetric analysis. Chapter 4 includes the obtained results and their discussions: Ultraviolet/Visible spectroscopy (UV/VIS) investigated that the as-prepared nano composites have improved optical properties. Such incremented optical properties were attributed to the nano scale dispersion (nm). The improvement in the optical properties is considered to be dependent on, Cd 2+ :S 2- molar ratio, Ag concentration, Pva content and irradiation dose. The calculated band gap energies for CdS/PVA nano composites are higher than that of bulk of CdS indicating the strong quantum confinement. The increases in band gap energy have been attributed to the crystalline size dependent properties. Transmission electron microscope images illustrated that the nano structured CdS/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity at either lower concentration of CdCl 2 and/or irradiation dose. Nano rod structure of CdS accompanied

  17. Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis

    Manoj B. Gawande

    2013-10-01

    Full Text Available Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and it is possible to recover >95% of catalysts, which is again recyclable for subsequent use. Water is the ideal medium to perform the chemical reactions with magnetically recyclable nano-catalysts, as this combination adds tremendous value to the overall benign reaction process development. In this review, we highlight recent developments inthe use of water and magnetically recyclable nano-catalysts (W-MRNs for a variety of organic reactions namely hydrogenation, condensation, oxidation, and Suzuki–Miyaura cross-coupling reactions, among others.

  18. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing

    Rosa, Massimo; Gooden, P. N.; Butterworth, S.

    2017-01-01

    Water dispersions of nanometric yttria stabilized zirconia (YSZ) particles synthesized by Continuous Hydrothermal Synthesis are transferred into nano-inks for thin film deposition. YSZ nanoparticles are synthesized in supercritical conditions resulting in highly dispersed crystals of 10 nm in size...

  19. Synthesis of new nano Schiff base complexes: X-ray crystallography ...

    This study presents synthesis and characterization of new nano uranyl Schiff base complexes. Electrochemistry of these complexes showed a quasireversible redox reaction without any successive reactions. Furthermore, X-ray crystallography exhibited that beside the coordination of tetradentate Schiff base, one solvent ...

  20. Synthesis of tungsten oxide nano structures by laser pyrolysis

    Mwakikunga, BW

    2008-01-01

    Full Text Available Since the proposal to synthesise materials by laser assisted pyrolysis in the 1970s, and its practical realisation in 1982, a number of researchers have used this method in obtaining nano-powders from liquid droplets. This study revisits...

  1. Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.

    Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J

    2014-03-01

    In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.

  2. Scalable synthesis and energy applications of defect engineeered nano materials

    Karakaya, Mehmet

    capable of efficiently absorbing non-polar solvents and separating oil-in-water emulsions. Furthermore, BAGs exhibit resilience to impact by recovering more than 70% of the deformation. The energy dissipated by BAGs at 80% compressive strain is in the order of 500 kJm-3, which is nearly 50 times more than the energy dissipated by commercial foams with similar densities. In the forth chapter, we demonstrate the synthesis of high-surface area, polymer-modified carbon nanotube (or helically coiled carbon nanotube (HCNT)) "paper" electrodes for high-power, high-energy density supercapacitors using simple fabrication methods. The use of conductive, high surface area carbon nanomaterials allows for the utilization of low-cost, non-conductive polymers containing reversible redox groups with higher charge capacity, such as sulfonated lignin. Compared to electrodes containing only helically coiled carbon nanotubes (80 Fg-1), paper electrodes fabricated with redox polymers show an increase in electrode capacitance to over 600 Fg -1 along with an increase in charge capacity from 20 mA hrg -1 to 80 mA hrg-1. Chapter Five presents a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (~700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. In the sixth chapter, we have indicated a methodology for both increasing and decreasing the electrochemical capacitance of Few Layer Graphene based nano-graphites through a combination of argon and hydrogen-based plasma processing. In addition to the utility for charge storage, our work contributes to understanding and controlling the charge storage characteristics. In the final chapter, we have investigated a nitrogen

  3. Engineering high power induction plasma unit at BARC for mass synthesis of refractory nano-ceramics

    Ghorui, S.; Sahasrabudhe, S.N.; Dhamale, G.; Das, A.K.

    2013-01-01

    Atmospheric pressure RF thermal plasma sources are gaining increasing importance for production of high purity novel nano-materials in different high-end technological applications. Inherent electrode-less features of the discharge together with the large volume and high energy density of the produced plasma ensures contamination free process environment and mass production ability. Reported herewith is the development of an indigenous induction plasma system for mass synthesis of nanopowders of refractory ceramic materials. The system has been tested for continuous synthesis of Al 2 O 3 nano-powder at a rate of more than 600 gm per hour and checked for its viability for bulk production of nano-particles of other refractory ceramics like Yttrium oxide and Neodymium Oxide. From collected evidences, the process of formation of the nano-particles is identified as the evaporation and subsequent homogeneous nucleation. Major features observed for alumina are complete conversion into highly spherical nano-sized particles, small particle sizes, very narrow size distribution, highly crystallite nature and mixed phases depending on the zone of collection. For alumina, the particles are found to exhibit a uni-modal distribution with peak near 15 nm

  4. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  5. Preliminary Study of Fermented Tapioca for Synthesis of Carbon Nano tubes

    Nurulhuda Ismail; Ying, P.Y.

    2011-01-01

    Carbon nano tubes had been produced by various precursor such as gas (methane, carbon dioxide), oil (camphor oil, olive oil, and cooking oil) and alcohol. Different methods used for carbon nano tubes synthesis like arc discharge method, laser ablation method and chemical vapour deposition method. In this experiment, thermal chemical vapour deposition method was selected for carbon nano tubes synthesis. Starting material of fermented tapioca was used as carbon source for the process. Argon gas flow were controlled at around 10-15 bubbles per minute and deposition time around 20 to 30 minute. Others parameters such as temperature of furnace 1 and 2, amount of inoculum and catalyst have been studied. The asThermogravimetri (TGA) was used to determine the volatile temperature of the mixing catalyst and fermented tapioca extract. The grown carbon nano tubes morphology was characterized through Raman spectroscopy, scanning and Field Emission Scanning Electron Microscopy (FESEM) techniques. The surface morphology and uniformity of carbon nano tubes are reliant to parameters used. (author)

  6. Synthesis Under 'Greener' Conditions: Role of Sustainable Nano-Catalysts

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  7. Synthesis of nano-carbon (nanotubes, nanofibres, graphene ...

    In the present study, we report the synthesis of carbon nanotubes (CNTs) using a new natural precursor: castor oil. The CNTs were synthesized by spray pyrolysis of castor oil–ferrocene solution at 850°C under an Ar atmosphere. We also report the synthesis of carbon nitrogen (C–N) nanotubes using castor ...

  8. Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique

    Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.

  9. Rapid Synthesis and Characterization of Nano sodalite Synthesized using Rice Husk Ash

    Siti Haslina Ahmad Rusmili; Zainab Ramli

    2012-01-01

    Rice husk ash (RHA) which contains more than 90 percent silica is proven to be an active silica source in zeolite synthesis. In this study, nano sodalite has been successfully synthesized hydrothermally at 60 degree Celsius using RHA as silica source in alkaline medium at various crystallization times. Commercial fumed silica was used as comparison for the silica source. Analysis by XRD has shown that pure nano sodalite was formed in 3 hours and stable up to more than 24 hours when using RHA as silica source. On the other hand, fumed silica produced pure nano sodalite only at 4 hours while a mixture of zeolites was observed outside this time range. FESEM shows a worm-like morphology of nano sodalite in the size range of 50-100 nm while FTIR shows the formation of aluminosilicates bonds. Analysis on the dissolved silica in the gel reaction mixture demonstrates the decreasing mass of silica after prolong time of crystallization which indicates the consumption of the dissolved silica in crystal growth of nano sodalite. This study shows that RHA is a better silica source in stabilizing the nano sodalite phase in oxide gel reaction mixture as compared to fumed silica. (author)

  10. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  11. SYNTHESIS OF NEW NANO SCHIFF BASE COMPLEXES: X-RAY ...

    analyses were recorded on Perkin-Elmer Pyris Diamond model. ... measurements were made on a STOE IPDS 2T diffractometer with graphite monochromated ..... It was confirmed that by changing the solvent of the synthesis or.

  12. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  13. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  14. Nano-rings with a handle – Synthesis of substituted cycloparaphenylenes

    Anne-Florence Tran-Van

    2014-08-01

    Full Text Available The research of cycloparaphenylenes (CPPs, the smallest armchair carbon nanotube, has been a quest for the past decades which experienced a revival in 2008 when the first synthesis was achieved. Since then CPPs with various ring sizes have been realized. The incorporation of substituents and the synthesis of CPPs with building blocks different from phenyl rings bear challenges of their own. Such structures, however, are highly interesting, as they allow for an incorporation of CPPs as defined nano-objects for other applications. Therefore, this review provides a status report about the current efforts in synthesizing CPPs beyond the parent unsubstituted oligo-phenylene structure.

  15. Solvent-Free Synthesis of Aryl Iodide Using Nano SiO2/HIO4 as a Reusable Acid Catalyst

    A. Bamoniri

    2014-07-01

    Full Text Available An efficient and environmentally benign   method for the synthesis of aryl iodides have been developed by diazotization of aromatic amines with NaNO2 and nanosilica periodic acid (nano-SPIA as a green catalyst via grinding followed by a sandmeyer iodination by KI under solvent-free conditions at room temperature. The ensuing aryl diazonium salts supported on nano-SPIA were sufficiently stable to be kept at room temperature in the dry state. This method is a novel, efficient, eco-friendly route for solvent-free synthesis of aryl iodides.

  16. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Ramos-Brito, F., E-mail: fro_brito@yahoo.com.m [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Alejo-Armenta, C. [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Coyoacan 04510, DF (Mexico); Camarillo, E.; Hernandez A, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico); Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, AP 14-740, 07000, DF (Mexico); Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico)

    2011-05-15

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 {mu}m, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: {yields} Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. {yields} Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. {yields} The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  17. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Ramos-Brito, F.; Alejo-Armenta, C.; Garcia-Hipolito, M.; Camarillo, E.; Hernandez A, J.; Falcony, C.; Murrieta S, H.

    2011-01-01

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 μm, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: → Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. → Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. → The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  18. Synthesis of nano γ-alumina by the solvothermal technique

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2006-01-01

    The paper describes work done on synthesis of γ-alumina by using the solvo thermal technique. Synthesis of γ-alumina involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, a x-ray diffraction (XRD) technique was used to identify γ-alumina and the other forms of alumina. After establishing the optimum conditions for the production of a single-phase γ-alumina, characteristic study on the product was performed. An important parameter in establishing nanosized powders is their crystallite size and analysis of the γ-alumina shows that it is a nanosized powder with a size of 28 nm. Other properties analysed include morphology, surface area and particle size. (Author)

  19. Synthesis of silicon nanowires and novel nano-dendrite structures

    Sinha, Saion; Gao Bo; Zhou, Otto

    2004-01-01

    We report a study on the effects of various parameters on the synthesis of silicon nanowires (5--50 nm in diameter) by pulsed laser ablation. A novel silicon nanodendrite structure is observed by changing some of the growth parameters abruptly. This growth mechanism is explained by a qualitative model. These nanodendrites show a promise of being used as a template in fabricating nanocircuits. Thermal quantum confinement effects were also observed on the silicon nanowires and have been reported

  20. Bioinspired thymine functionalized polymeric systems: from synthesis to nano applications

    Kaur, Gagan Deep

    2017-01-01

    Nature is an abundant source of elegant examples of synthesis of materials, and as in many other areas of science, polymer chemists have been drawing on bioinspiration to create sophisticated functional materials. Thymine, one of the nucleic bases in DNA, is well known for its ability to form relatively strong hydrogen bonds as well as its propensity to undergo reversible photo-dimerization upon UV exposure. The focus of this thesis is to develop a bioinspired thymine functionalized polymeric...

  1. Synthesis of Nano Hydroxyapatite: Application in Drug Delivery of Sulfasalazine

    D. Moslemi

    2015-10-01

    Full Text Available In this work we synthesized Nano hydroxyapatite (HAp  by Sol-gel method, Then we functionalized hydroxyapatite nanoparticle by use of  3-Aminopropyl trimethoxysilane (APTMS , to improve the loading and control release of sulfasalazine drug bonded to APTMS. The drug release patterns from Sulfasalazine loaded HAp nanoparticles at pH value 8 For 6h, Sulfasalazine loaded functionalized HAp nanoparticles (Sulfasalazine loaded HAp-APTMS at pH value 8 as in the intestine for 48h. Moreover, the functionalized HAp showed relatively slower release rate of sulfasalazine compare with non functionalized HAp. because the strong ionic interaction between NH2 group in sulfasalazine in HAp-APTMS. On other side, the functionalized HAp loaded more drug than pure HAp. The synthesized nanoparticles and functionalized HAp characterized by Scanning Electron Microscopy (SEM, X-ray Diffraction (XRD, Fourier transform infrared (FT-IR and  UV/Vis analysis techniques. Then the obtained material was studied in the simulated body fluid (SBF to this investigated storage and release properties.

  2. Synthesis of Nano Crystalline Gamma Alumina from Waste Cans

    Nada Sadoon Ahmedzeki

    2018-03-01

    Full Text Available In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5, sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55% and weights of aluminum cans (2, 4, 6, 8 and 10 g. The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS; and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD, N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF and atomic force microscopy (AFM. Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.

  3. FACILE SYNTHESIS OF 1-NAPHTHOL AZO DYES WITH NANO ...

    Preferred Customer

    a highly efficient and one pot synthesis of azo dyes based on 1-naphthol under ... known and were identified by comparison of their physical and spectroscopic data with those of ... δ: 16.15 (s, 1H), 8.41 (d, J = 7.6 Hz, 1 H), 8.33 (d, J = 8.8 Hz, 2H), 7.8 (d, .... 86. 81. 77. 70. 65. N2. + IO4. -. O2N. 2d. 96. 93. 90. 85. 79. 73. 69.

  4. Nano

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  5. Role of cellulose functionality in bio-inspired synthesis of nano bioactive glass.

    Gupta, Nidhi; Santhiya, Deenan

    2017-06-01

    In search of abundant cheaper natural polymer for bio-inspired bioactive glass nanoparticles synthesis, cellulose and its derivatives have been considered as a template. Different templates explored in the present studies are pure cellulose, methyl cellulose and amine grafted cellulose. To the best of our knowledge, for the first time of the considered templates, pure cellulose and amine grafted cellulose results in in situ nano particulate composite formation while interestingly methyl cellulose proves to be an excellent sacrificial template for the synthesis of uniform bioglass nanoparticles of diameter in the range of 55nm. Further, viscoelastic measurements were carried out using dynamic mechanical analyzer. Herein, an attempt has been made to establish structure-mechanical relationship based on the templates. Moreover, in vitro bioactivity is also observed to be affected by the nature of the template molecule used for the synthesis of bioactive glass. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis and characterization of a-site doped LaTiO3 nano perovskites

    Bradha, M.; Ashok, Anuradha

    2013-01-01

    Nano-sized lanthanum titanate perovskites (La (1-x) A x TiO 3 ) (A= Ba, Sr, Ca) were prepared by sol-gel method and calcined at 800℃. The synthesised perovskites were characterized by Thermogravimetry/ Differential thermal analysis (TGA/DTA), X-ray diffraction (XRD) and High Resolution Transmission Electron Microscopy (HRTEM) etc. LaTiO 3 is a perovskite having prominent interest for a variety of applications such as dielectric, insulators, charge-transport properties etc. It is a defect perovskite, with transport properties varying from insulating to metallic based on oxygen stoichiometry. In a quest to observe the effect of the nano size on its properties, lanthanum titanate (LaTiO 3 ) nano perovskites with different dopants on the A-site were prepared by using sol-gel method. In the present work we discuss the synthesis and structural analysis of (La 0.8 A 0.2 TiO 3 ). Phase purity and structural analysis of the calcined samples were performed by powder X-ray diffraction (XRD, with CuKα radiation). In addition to this, morphology and crystal structure was examined by Transmission Electron Microscopy (TEM) using a JEOL JEM 2100 HRTEM. HRTEM studies indicate that the nano perovskites are of size around 20 nm. Ring pattern in SAED also confirms that the perovskite is polycrystalline/nanocrystalline. More detailed study on high resolution images and crystal structure shed light on the reason for the properties exhibited by this perovskites

  7. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite

    Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad; Razali, Ili Rabihah [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia,81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor DarulTa’zim (Malaysia)

    2013-06-01

    Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present in the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO{sub 4}{sup 2−}) into hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6−x}(SO{sub 4}){sub x}(OH){sub 2−x}) lattice via ion exchange process with phosphate group. Concentration of SO{sub 4}{sup 2−} ions was varied between X = 0.05–0.5, using (Ca (NO{sub 3}){sub 2}·4H{sub 2}O), ((NH{sub 4}){sub 2}HPO{sub 4}) and (Na{sub 2}SO{sub 4}) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO{sub 4}{sup 2−} ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure.

  8. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite

    Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad; Razali, Ili Rabihah; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat

    2013-01-01

    Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present in the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO 4 2− ) into hydroxyapatite (Ca 10 (PO 4 ) 6−x (SO 4 ) x (OH) 2−x ) lattice via ion exchange process with phosphate group. Concentration of SO 4 2− ions was varied between X = 0.05–0.5, using (Ca (NO 3 ) 2 ·4H 2 O), ((NH 4 ) 2 HPO 4 ) and (Na 2 SO 4 ) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO 4 2− ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure

  9. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mass synthesis of yttrium oxide nano-powders using radio frequency (RF) plasma

    Ghorui, S.; Sahasrabudhe, S.N.; Chakravarthy, Y.; Nagaraj, A.; Das, A.K.; Dhamale, G.

    2014-01-01

    Mass synthesis of nano-phase Yttrium Oxide (Y 2 O 3 ) from commercially available coarse grain powder is reported. Nano-sized high purity Y 2 O 3 is an important and critical constituent of ceramics like YAG (Yttrium aluminum garnet: Y 3 Al 5 O 12 ) for laser applications. The system is characterized in terms of its thermal and electrical behavior. Boltzmann plot technique is used to measure axial variation of temperature of the generated plasma. The synthesized particles are characterized in terms of XRD, SEM, TEM and BET analyses for qualification of the developed system. Major features observed are efficient conversion into nanometer-sized highly spherical particles, narrow size distribution, highly crystallite nature and highly pure phases. The particle distribution (from TEM) peaks within 20-30 nm. Average particle sizes determined from different methods like XRD, TEM and BET are very close to each other and point toward particle sizes within 20 to 30 nm

  11. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  12. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  13. Synthesis of Carbon Nano tubes Using Anadara Granosa Shells as Catalyst Support

    Mohd Zobir Hussein; Mohd Zobir Hussein; Salwani Asyikin Zakarya; Siti Halimah Sarijo

    2011-01-01

    The synthesis of carbon nano tubes (CNTs) by chemical vapor deposition (CVD) method using natural calcite prepared from Anadara granosa shells (CS), as metal catalyst support was studied. Hexane and iron were used as carbon precursor and catalyst, respectively. The as synthesised CNTs was characterized using XRD, TEM and FESEM. From the XRD patterns the CNTs peak can be seen more incisive after purification process and from the FESEM micrographs the CNTs can be seen as a bunch of rope-like structures. (author)

  14. Nano-ilmenite FeTiO3 : synthesis and characterization

    Raghavender, A. T.; Hoa Hong, Nguyen; Lee, Kyu Joon; Jung, Myung-Hwa; Skoko, Z.; Vasilevskiy, Mikhail; Cerqueira, M. F.; Samantilleke, A. P.

    2013-01-01

    In general, ilmenite FeTiO3 is synthesized by solid-state reaction at very high pressure and high temperature. Synthesis of FeTiO3 is not an easy task as the Fe2+ ions are not stable. Therefore, it is really challenging to prepare this material. In this work nano-ilmenite FeTiO3 was synthesized by the sol-gel method. Structural, optical and magnetic characterizations were performed. The bandgap of FeTiO3 was determined to be 2.8 eV showing FeTiO3 as suitable wide bandgap material for technolo...

  15. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  16. Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nano tubes and Their Applications

    Motshekga, S.C.; Pillai, S.K.; Ray, S.S.; Motshekga, S.C.; Ray, S.S.; Jalama, K.; Krause, Rui.W.M.

    2012-01-01

    The study of coating carbon nano tubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nano tubes in various applications, it is necessary to attach functional groups or other nano structures to their surface. The combination of the distinctive properties of carbon nano tubes and metal/oxides is expected to be applied in field emission displays, nano electronic devices, novel catalysts, and polymer or ceramic reinforcement. The synthesis of these composites is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors. These techniques based on thermal heating can be time consuming and often lack control of particle size and morphology. Hence, there is interest in microwave technology recently, where using microwaves represents an alternative way of power input into chemical reactions through dielectric heating. This paper covers the synthesis and applications of carbon-nano tube-coated metal/oxides nanoparticles prepared by a microwave-assisted method. The reviewed studies show that the microwave-assisted synthesis of the composites allows processes to be completed within a shorter reaction time with uniform and well-dispersed nanoparticle formation.

  17. Rod-Shaped Magnetite Nano/Microparticles Synthesis at Ambient Temperature

    Balaprasad Ankamwar

    2013-01-01

    Full Text Available Here, we reported room temperature synthesis of Fe3O4 rod-shaped nano/microparticles by chemical reduction method from FeCl3 precursor and NaBH4 as the reducing agent in the presence of the pyrrole as a capping agent. The magnetic Fe3O4 particles were characterized by several methods, such as SEM, XRD, FTIR, and TGA. The average aspect ratio of Fe3O4 rod-shaped particles was ~2.8. These particles were redispersed in deionised water to form a colloidal solution and showed magnetic properties. This economical synthesis route is scalable, and Fe3O4 particles can be exploited for various applications such as MRI contrast enhancement, biodiseperations, Ni-Fe batteries, and as a catalyst.

  18. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  19. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique

    Jadalannagari, Sushma; More, Sandeep; Kowshik, Meenal; Ramanan, Sutapa Roy

    2011-01-01

    Hydroxyapatite (HAp) nano-rods were successfully synthesized by a modified sol-gel method using a solution of CaCl 2 .2H 2 O in water, along with a solution of H 3 PO 4 in triethylamine and NH 4 OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The sol obtained was dried in an oven for 2 days at 100 deg. C after being dialyzed for 12 h. Pellets were made from the crystalline powders and immersed in simulated body fluid (SBF) to check its biocompatibility after 15, 45 and 180 days of immersion. The HAp powders and pellets were characterized by X-Ray Diffraction crystallography (XRD), Fourier transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The HAp nano-rods had an average diameter of 25 nm and length 110-120 nm. Immersion of the HAp pellets in SBF led to the formation of a highly porous interconnecting HAp layer on the surface. The porosity increased with increase in immersion time. Highlights: → Low temperature synthesis of hydroxyapatite nanorods using Ca and P sources and triethylamine. → The synthesis time was only 0.5 hours. → Crystalline material was obtained after drying at 100oC only in air. → SBF studies showed the HAP bodies to be biocompatible.

  20. Eu3+ doped yttrium oxide nano-luminophores from laser synthesis

    Ivanov, M.G.; Kynast, U.; Leznina, M.

    2016-01-01

    Nano-sized Y 2 O 3 :Eu phosphors were obtained from laser synthesis at a production rate of 25 g/h, the initial product consisting of purely monoclinic material, of primary particle sizes of 20–30 nm as could be shown by powder X-ray diffraction, TEM and BET. Despite a large amount of surface adsorbed water and O–H groups, and peculiarly, nitrous oxide species, as shown by mass spectrometer coupled thermoanalysis/thermogravimetry and FTIR, the luminescence efficiency still amounted to approximately 19% relative to bulk Y 2 O 3 :Eu. On thermal conversion at 900 °C, the transformation to cubic Y 2 O 3 :Eu, now yielding particles of approximately 60 nm appeared to be complete and had an efficiency of about 68%, however, an efficiency of 93%, approaching that of bulk Y 2 O 3 :Eu, was obtained on annealing at 1200 °C. Significantly, a rapid re-formation of carbonates takes place on the calcined samples also. - Highlights: • Nano-sized Y 2 O 3 :Eu phosphors were obtained from laser synthesis. • Luminescence efficiency of monoclinic phase 20 nm nanoparticles was about 19% relative to bulk Y 2 O 3 :Eu. • Purely cubic phase 92 nm particles demonstrated efficiency of 93% of bulk Y 2 O 3 :Eu.

  1. Radiation induced synthesis of conducting polymers and their metal nano-composites

    Cui, Zhenpeng

    2017-01-01

    The aim of the present work is to demonstrate the versatility of the gamma (γ)-rays based radiolytic method and to extend our methodology to the synthesis of various conducting polymers (CPs) in water in different experimental conditions. Poly(3,4-ethylenedioxy-thiophene) (PEDOT) and poly-pyrrole (PPy) conjugated polymers were successfully prepared and characterized in solution and after deposition by complementary spectroscopic and microscopic techniques. Also their thermal stability and their electrical conductivity were studied and compared with those of CPs prepared by conventional methods. The influence of the nature of radiation-induced oxidizing radicals, of the ionic strength, of the medium, of the pH, of the presence of surfactant-based soft templates on the growth mechanism, on the efficiency of polymerization, on the morphology of the obtained CPs as well as on their absorption and conducting properties was checked. Also, the radiolytic method was extend to the synthesis of CPs/noble metal nano-composites. Different preparation methodologies were developed based on two-step method and one-pot method, by using oxidation route or reduction route. Our new radiolytic strategy described and extended in this manuscript opens the way for the preparation of different kinds of CPs and CPs nano-composites not only in aqueous solutions but also in various environments foreshadowing many promising applications.. (author)

  2. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  3. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  4. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  5. SiO2@FeSO4 nano composite: A recoverable nano-catalyst for eco-friendly synthesis oximes of carbonyl compounds

    Mostafa Karimkoshteh

    2016-01-01

    Full Text Available Various aldoximes and ketoximes synthesis of corresponding aldehydes and ketones in the presence of SiO2@FeSO4 nano composite as recoverable nano catalyst and NH2OH·HCl. The SiO2@FeSO4 nano composite system was carried out between 10 to 15 min in oil bath (70-80 °C under solvent-free condition in excellent yields in addition this protocol can be used for industrial scales. This method offers some advantages in term of clean reaction conditions, easy work-up procedure, short reaction time, applied to convert α-diketones to α-diketoximes (as longer than other carbonyl compounds, α,β-unsaturated aldehydes and ketones to corresponding oximes and suppression of any side product. So we think that NH2OH•HCl/SiO2@FeSO4 nano composite system could be considered a new and useful addition to the present methodologies in this area. Structure of products and nano composite elucidation was carried out by 1H NMR, 13C NMR, FT-IR, scanning electron microscopy (SEM.

  6. Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method

    Uma Sangari, N., E-mail: umasangariselvakumar@gmail.com [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India); Chitra Devi, S. [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India)

    2013-01-15

    A microwave assisted chemical precipitation method has been employed for the synthesis of nano zinc oxide rods by reacting zinc nitrate and potassium hydroxide. The amount of potassium hydroxide was adjusted for three different pHs to achieve ZnO nano rods with varying aspect ratio. The mechanism of growth of nano rods is explained briefly. The average crystallite size of the as synthesized samples was analyzed by means of powder XRD pattern and estimated to vary from 25.6 nm to 43.1 nm. The existence of rods was confirmed using scanning electron microscopy (SEM). The samples were also analyzed using FT-IR. The optical properties of the samples were also studied by means of UV-visible spectra and Room Temperature Photo Luminescence studies. The band gap of the samples was determined from the DRS spectrum. A strong near band emission peaks due to surface defects are observed in the PL spectrum. - Graphical abstract: At the solution pH of 11 and 9, tetrapod-like and flower-like ZnO nano rods were formed along with separated rods respectively due to the formation of activated nuclei of different sizes. Highlights: Black-Right-Pointing-Pointer Increase in alkalinity of the precursor solution results in longer rods. Black-Right-Pointing-Pointer Beyond a saturation limit, the excess of added OH{sup -} ions inhibited the growth of rods. Black-Right-Pointing-Pointer Keeping all parameters the same, the alkalinity can only modify the aspect ratio of the rods and not their morphology.

  7. In situ growth of metal particles on 3D urchin-like WO3 nanostructures.

    Xi, Guangcheng; Ye, Jinhua; Ma, Qiang; Su, Ning; Bai, Hua; Wang, Chao

    2012-04-18

    Metal/semiconductor hybrid materials of various sizes and morphologies have many applications in areas such as catalysis and sensing. Various organic agents are necessary to stabilize metal nanoparticles during synthesis, which leads to a layer of organic compounds present at the interfaces between the metal particles and the semiconductor supports. Generally, high-temperature oxidative treatment is used to remove the organics, which can extensively change the size and morphology of the particles, in turn altering their activity. Here we report a facile method for direct growth of noble-metal particles on WO(3) through an in situ redox reaction between weakly reductive WO(2.72) and oxidative metal salts in aqueous solution. This synthetic strategy has the advantages that it takes place in one step and requires no foreign reducing agents, stabilizing agents, or pretreatment of the precursors, making it a practical method for the controlled synthesis of metal/semiconductor hybrid nanomaterials. This synthetic method may open up a new way to develop metal-nanoparticle-loaded semiconductor composites. © 2012 American Chemical Society

  8. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  9. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    Sunardi; Ashadi; Budi Rahardjo, Sentot; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M - 0.005 M aqueous of FeSO4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV-visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001-0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm.

  10. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    Sunardi; Ashadi; Rahardjo, Sentot Budi; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M – 0.005 M aqueous of FeSO 4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV–visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001–0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe 2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm. (paper)

  11. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  12. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  13. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  14. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Di-substituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillary P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillary layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6 % on glass and 3.3 % on plastic were reached without annealing. (author)

  15. Synthesis and characterization of polypropylene/graphite nano composite preparation for in situ polymerization

    Montagna, L.S.; Fim, F. de C.; Galland, G.B.

    2010-01-01

    This paper presents the synthesis of polypropylene/graphite nanocomposites through in situ polymerization, using the metallocene catalyst C 20 H 16 Cl 2 Zr (dichloro(rac-ethylenebis(indenyl))zircon(IV)). The graphite nanosheets in nano dimensions were added to the polymer matrix in percentages of 0.6;1.0;4.2;4.8 and 6.0% (w/w). The TEM images indicated that the thickness of graphite nanosheets ranged from 4 to 60 nm and by means of XRD analysis it was observed that the physical and chemical treatment did not destroyed the graphite layers. The presence of nanosheets did not decrease the catalytic activity of the nanocomposites. TEM images and XRD analysis of nanocomposites showed a good dispersion of the graphite nanosheets in the polypropylene matrix. (author)

  16. Synthesis of Nickel and Nickel Hydroxide Nano powders by Simplified Chemical Reduction

    Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.

    2014-01-01

    Nickel nano powders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at ph ∼ 12.5. Sonication of the solutions created a temperature of 54-65 °C to activate the reduction reaction of nickel nanoparticles. The solution ph affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (ph ∼10) of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  17. Synthesis of alumina nano-sheets via supercritical fluid technology with high uranyl adsorptive capacity

    Jing Yu; Jun Wang; Zhanshuang Li; Qi Liu; Milin Zhang; Hongbin Bai; Caishan Jiao; Jun Wang; Lianhe Liu

    2012-01-01

    Supercritical carbon dioxide is beneficial to the synthesis of superior ultrafine and uniform materials due to its high chemical stability, low viscosity, high diffusivity, and 'zero' surface tension. γ-Alumina nano-sheets were obtained by a simple hydrothermal route in the presence of supercritical carbon dioxide. XRD, FTIR, SEM, TEM and nitrogen sorption isotherm were employed to characterize the samples. Alumina as-prepared has a high specific surface area of up to 200 ± 6 m 2 g -1 , which presents a high adsorption capacity (4.66 ± 0.02 mg g -1 ) for uranyl ions from aqueous solution. Furthermore, the adsorption process was found to be endothermic and spontaneous in nature. (authors)

  18. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synthesis and characterization of CaCO3 (calcite) nano particles from cockle shells (Anadara granosa Linn) by precipitation method

    Widyastuti, Sri; Intan Ayu Kusuma, P.

    2017-06-01

    Calcium supplements can reduce the risk of osteoporosis, but they are not automatically absorbed in the gastrointestinal tract. Nanotechnology is presumed to have a capacity in resolving this problem. The preparation and characterization of calcium carbonate nano particle to improve the solubility was performed. Calcium carbonate nano particles were synthesized using precipitation method from cockle shells (Anadara granosa Linn). Samples of the cockle shells were dried in an oven at temperature of 50°C for 7 (seven) days and subsequently they were crushed and blended into fine powder that was sieved through 125-μm sieve. The synthesis of calcium carbonate nanocrystals was done by extracting using hydro chloride acid and various concentrations of sodium hydroxide were used to precipitate the calcium carbonate nano particles. The size of the nano particles was determined by SEM, XRD data, and Fourier transform infrared spectroscopy (FT-IR). The results of XRD indicated that the overall crystalline structure and phase purity of the typical calcite phase CaCO3 particles were approximately 300 nm in size. The method to find potential applications in industry to yield the large scale synthesis of aragonite nano particles by a low cost but abundant natural resource such as cockle shells is required.

  20. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  1. Spot Ignition of Natural Fuels by Hot Metal Particles

    Urban, James Linwood

    2017-01-01

    The spot ignition of combustible material by hot metal particles is an important pathway by which wildland and urban spot fires and smolders are started. Upon impact with a fuel, such as dry grass, duff, or saw dust, these particles can initiate spot fires by direct flaming or smoldering which can transition to a flame. These particles can be produced by processes such as welding, powerline interactions, fragments from bullet impacts, abrasive cutting, and pyrotechnics. There is little publi...

  2. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    Saoud, Khaled [Virginia Commonwealth University-Qatar, Doha (Qatar); Alsoubaihi, Rola [Virginia Commonwealth University, Richmond, VA (United States); Bensalah, Nasr [Qatar University, Doha (Qatar); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman); Bertino, Massimo [Virginia Commonwealth University, Richmond, VA (United States); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman)

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  3. Combustion synthesis of CaSc2O4:Ce3+ nano-phosphors in a closed system

    Peng Wenfang; Zou Shaoyu; Liu Guanxi; Xiao Quanlan; Zhang Rui; Xie Lijuan; Cao Liwei; Meng Jianxin; Liu Yingliang

    2011-01-01

    Highlights: → CaSc 2 O 4 :Ce 3+ nano-phosphors can be prepared by a single-step combustion method. → The ignition temperature is the lowest in the combustion synthesis of Ce 3+ /Eu 2+ doped phosphors. → The as-prepared nano-phosphors give a uniform particle size in the range of 15-20 nm and have highly dispersity and fluorescence intensity. → It is a convenient method for preparation of monodispersed oxide nano-phosphors, especially those being sensitive to air at high temperature. - Abstract: The CaSc 2 O 4 :Ce 3+ nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 deg. C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc 2 O 4 :Ce 3+ nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 deg. C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 deg. C. The CaSc 2 O 4 :Ce 3+ nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc 2 O 4 :Ce 3+ nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce 4+ ions can be ruled out. The present highly dispersed CaSc 2 O 4 :Ce 3+ nano-phosphors with efficient fluorescence are promising in the field of biological labeling, and the present low temperature combustion method is facile and convenient and can

  4. Sol-gel synthesis and characterisation of nano-scale hydroxyapatite

    Bilton, M; Brown, A P; Milne, S J

    2010-01-01

    Hydroxyapatite (HAp) forms the main mineral component of bone and teeth. This naturally occurring HAp is in the form of nano-metre sized crystallites of Ca 10 (PO 4 ) 6 (OH) 2 that contain a number of cation and anion impurities, for example CO 3 2- , F - , Na + , Mg 2+ and Sr 2+ . Synthetic nano-sized HAp particles exhibit favourable biocompatibility and bioactivity and in order to better match the composition to natural HAp there is great interest in producing a range of chemically modified powders. In this study, two HAp powders have been synthesised via a water-based low-temperature sol-gel method and a third, commercial powder from Sigma-Aldrich have been analysed. Subsequent powder calcination has been carried out within the temperature range of 500-700 0 C and the products characterised by bulk chemical analysis, X-ray diffraction and electron microscopy. Energy dispersive X-ray spectroscopy (EDX) in the TEM has been used to assess the composition of individual HAp particles. In order to do this accurately it is first necessary to account for the sensitivity of the HAp structure and composition to irradiation by the high energy electron beam of the TEM. This was done by monitoring the estimated Ca/P ratio derived from TEM-EDX of stoichiometric HAp under increasing levels of electron fluence. A fluence threshold (at a given beam energy) was established below which the measured Ca/P ratio can be considered to be stable. Subsequent elemental analysis at or below this threshold has enabled the variation in composition between particles both within and between synthesis batches to be accurately assessed. Compositional variability between particles is also evident, even in the commercial powder, but is far greater in the powders prepared by the sol-gel method.

  5. Study on the Synthesis and Characterization of Nano Silver Loaded ZSM-5 Zeolite for Bacterial Elimination.

    Nam, Le Thi Hoai; Vinh, Tran Quang; Loan, Nguyen Thi Thanh; Nhiem, Nguyen Thi; Trang, Nguyen Thi Thu; Tan, Nguyen Minh; Radnik, Jörg

    2015-09-01

    The synthesis of nano silver coated ZSM-5 zeolite (Ag/ZSM-5) by ion exchange method combined with anaerobic thermal treatment and its bacterial elimination performance were studied. The various Ag content of different samples was analysed by atomic absorption spectroscopy method. The Ag/ZSM-5 sample with 0.251 wt% Ag (denoted as ZAg3) was characterized by using atomic absorption spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and pulsed CO chemisorption methods. The results showed that silver nanoparticles with a small nano-size of 2-3 nm were formed and distributed on the surface of ZSM-5 zeolite with a dispersion value of 59%. The samples denoted as ZAg1, ZAg2, ZAg3, ZAg4 correspond to a Ag content of 0.064; 0.128; 0.251; 0.253 wt% Ag. In the evaluation series, after 10 min of contact time between bacterial and Ag/ZSM-5, over 99% of E.coli (initial concentration was 10(6) cfu/ml) could be eliminated by Ag/ZSM-5 with the Ag content of at least 0.251 wt% (ZAg3). In addition, over 99% of Coliform (initial concentration was 10(5) cfu/ml) could be eliminated by Ag/ZSM-5 with Ag content of at least 0.128 wt% (ZAg2). In a further evaluation series varying the contact time, ZAg3 sample could eliminate over 99% and 100% of Ecoli after 10 min and 60 min, respectively (initial concentrations of both E.coli and Coliform were 10(5) cfu/ml). In addition, it could eliminate 100% of Coliform in only 10 min of contact time.

  6. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    Goix, Sylvaine [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Lévêque, Thibaut [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Xiong, Tian-Tian [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Schreck, Eva [Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); and others

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.

  7. Synthesis of Uranium-di-Oxide nano-particles by pulsed laser ablation in ethanol and their characterisation

    Kumar, Aniruddha; Prasad, Manisha; Shail, Shailini

    2015-01-01

    The importance of actinide based nano-structures is well known in the area of biology, nuclear medicine, and nuclear industry. Pulsed laser ablation in liquid is recognised as an attractive technique for production of nano-structures of different metals and metal oxides with high purity. In this paper, we report synthesis of uranium-di-oxide nano particles by pulsed laser ablation in ethanol. The second harmonic emission of an electro- optically Q-switched nano-second Nd-YAG laser was used as the coherent source here. The structural and optical properties of the fabricated Uranium-di-oxide nano- particles were investigated by XRD, SEM, TEM, EDX and UV- Vis-NIR spectrophotometry. The mean size of the particles was found to be dependent on the laser ablation parameters. XRD and TEM analysis confirmed the phase of the synthesised material as pure crystalline Uranium-di- oxide with Face Centred Cubic structure. UV- Vis- NIR absorption spectra of the colloidal solution show high absorption in the UV regime. (author)

  8. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  9. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  10. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    Dhand, Vivek; Prasad, J. Sarada; Rao, M. Venkateswara; Bharadwaj, S.; Anjaneyulu, Y.; Jain, Pawan Kumar

    2013-01-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30–40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp 2 hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. - Highlights: ►Flame synthesized carbon nano onions with 30–40 nm diameters. ►LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. ►Carbon nano onion production rate is 5 g/hr and with 70% purity.

  11. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  12. Synthesis and bio-evaluation of nano-hydroxyapatite trapped by 153Sm

    Bing Wenzeng; Luo Shunzhong; Wen Guanghua; Jiang Shubin; Xiong Xiaoling; Liu Guoping

    2006-03-01

    After nanoHA was synthesized, 153 Sm-EDTMP-nanoHA and 153 Sm-citrate-nanoHA were prepared and proved stable in vitro. ECT images of New Zealand rabbits injected with 153 Sm-EDTMP-nanoHA had better contrast, skeletal figure visible, liver and spleen clear. The images of 153 Sm-citrate-nanoHA showed a similar results but kidney invisible, which meant 153 Sm-citrate-nanoHA showed a similar results but kidney invisible, which meant 153 Sm-citrate-nanoHA was mainly excreted through liver and gall. 153 Sm-EDTMP-nanoHA's half effective inhibition concentrations to SMMC-7721 and MCF-7 cells were 1.98 g/L and 0.075 g/L respectively and 153 Sm-citrate-nanoHA's were 1.89 g/L and 0.094 g/L proportionally. 153 Sm-EDTMP-nanoHA and 153 Sm-citrate-nanoHA were worthy of a further research because their half effective inhibition concentrations were much lower than ones of the single nanoHA. (authors)

  13. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite.

    Kate, Kunal H; Damkale, Shubhangi R; Khanna, P K; Jain, G H

    2011-09-01

    Thermal polymerization of pyrrole was performed using silver nitrate as source of silver ions followed by its conversion to Polypyrrole (PPy)/Ag nano-comoposites without using any external oxidizing agent or solvent. The formation of PPy was monitored by UV-Visible absorption spectroscopy showing a band at approximately 464 nm. XRD measurement confirmed characteristic peaks for face centered cubic (fcc) silver and presence of PPy at 2 theta of approximately 23 degrees suggesting the formation of PPy/Ag nanocomposite. Transmission electron microscopy (TEM) images showed non-aggregated spherical Ag nano-particles of about 5-10 nm. PPy/Ag thick film acts as a NH3 sensor at 100 degrees C, a H2S sensor at 250 degrees C and CO2 sensor at 350 degrees C. The thick films showed capability to recognize various gases at different operating temperature.

  14. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions

    Ghosh, Samir Kumar; Roy, Sujit Kumar; Kundu, Biswanath; Datta, Someswar; Basu, Debabrata

    2011-01-01

    Calcium hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 (HAp) was synthesized by combustion in the aqueous system containing calcium nitrate-diammonium hydrogen orthophosphate with urea and glycine as fuels. These ceramics are important materials for biomedical applications. Thermo-gravimetric and differential thermal analysis were employed to understand the nature of synthesis process during combustion. Effects of different process parameters namely, nature of fuel (urea and glycine), fuel to oxidizer ratio (0.6-4.0) and initial furnace temperature (300-700 o C) on the combustion behavior as well as physical properties of as-formed powders were investigated. A series of combustion reactions were carried out to optimize the reaction parameters for synthesis of nano-sized HAp powders. The combustion temperature (T f ) for the oxidant and fuels were calculated to be 896 deg. C and 1035 deg. C for the stoichiometric system of urea and glycine respectively. The stoichiometric glycine-calcium nitrate produced higher flame temperature (both calculated and measured) and powder with lower specific surface area (8.75 m 2 /g) compared to the stoichiometric urea-calcium nitrate system (10.50 m 2 /g). Fuel excess combustion in both glycine and urea produced powders with higher surface area. Nanocrystalline HAp powder could be synthesized in situ with a large span of fuel to oxidizer ratio (φ) in case of urea system (0.8 < φ < 4) and (0.6 < φ < 1.5) for the glycine system. Calcium hydroxyapatite particles having diameters ranging between 20 nm and 120 nm could be successfully synthesized through optimized process variable.

  15. Synthesis of potassium tungsten oxide nano/microwires by heat treatment of tungsten foils

    Ghasempour, F. [Department of Plasma Physics Research Center, Islamic Azad University Science and Research Branch, P.O. Box 1477893855 Tehran (Iran, Islamic Republic of); Azimirad, R., E-mail: azimirad@yahoo.com [Malek-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rashidzadeh, M. [Catalysis Research and Technology Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran 1485733111 (Iran, Islamic Republic of)

    2013-02-01

    A simple method for synthesis of K{sub 2}W{sub 6}O{sub 19} nano/microwires with potassium hydroxide as catalyst on a tungsten foil via a unique two-step heating process has been reported. At first step, the temperature was raised to 390 °C at a ramping rate of 30 °C min{sup −1} and kept at this point for half an hour. In the second step, the temperature was then raised to 400, 600 or 800 °C at the same rate and maintained for 2 h. The synthesized samples were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). Scanning electron microscopy images show that the best temperature for growth of nanowires with 50 to 90 nm widths and several ten micrometers length over the entire sample surface is 600 °C. The XRD data shows that most of nanowires comprised (002) orientation with K{sub 2}W{sub 6}O{sub 19} structure. According to XPS results, the increasing annealing temperature increases W{sup 6+} state on the surface. The photocatalytic degradation of methylene blue over the sample annealed at 600 °C exhibited the grown nanowires that have the best photocatalytic activity. In addition, a vapor–liquid–solid mechanism was proposed for describing the growth process of nanowires. - Highlights: ► A simple method for synthesis of K{sub 2}W{sub 6}O{sub 19} nanowires with KOH as catalyst ► 600 °C is the best temperature for growth of nanowires with 50–90 nm width. ► The best value of 0.0922 min{sup −1} was obtained for the photodecomposition rate.

  16. Continuous flow synthesis and cleaning of nano layered double hydroxides and the potential of the route to adjust round or platelet nanoparticle morphology

    Flegler, A.; Schneider, M.; Prieschl, J.; Stevens, R.; Vinnay, T.; Mandel, K.

    2016-01-01

    Here, we report a continuous flow synthesis of nano LDH, comprising a continuous precipitation process using static mixers and followed by an immediate cleaning process via a semi-continuous centrifuge to obtain the final product in one-go. Via this synthesis setup, it is possible to independently

  17. Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications

    Dillon, A.C.; Mahan, A.H.; Deshpande, R.; Alleman, J.L.; Blackburn, J.L.; Parillia, P.A.; Heben, M.J.; Engtrakul, C.; Gilbert, K.E.H.; Jones, K.M.; To, R.; Lee, S-H.; Lehman, J.H.

    2006-01-01

    Hot-wire chemical vapor deposition (HWCVD) has been demonstrated as a simple economically scalable technique for the synthesis of a variety of nano-materials in an environmentally friendly manner. For example we have employed HWCVD for the continuous production of both carbon single- and multi-wall nanotubes (SWNTs and MWNTs). Unanticipated hydrogen storage on HWCVD-generated MWNTs has led insight into the adsorption mechanism of hydrogen on metal/carbon composites at near ambient temperatures that could be useful for developing a vehicular hydrogen storage system. Recent efforts have been focused on growing MWNT arrays on thin nickel films with a simple HWCVD process. New data suggests that these MWNT arrays could replace the gold black coatings currently used in pyroelectric detectors to accurately measure laser power. Finally, we have very recently employed HWCVD for the production of crystalline molybdenum and tungsten oxide nanotubes and nanorods. These metal oxide nanorods and nanotubes could have applications in catalysis, batteries and electrochromic windows or as gas sensors. A summary of the techniques for growing these novel materials and their various potential applications is provided

  18. Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials.

    Song, Xiaoxian; Zhang, Zuolun; Zhang, Shoufeng; Wei, Jinbei; Ye, Kaiqi; Liu, Yu; Marder, Todd B; Wang, Yue

    2017-08-03

    Noncovalent synthesis of one-dimensional (1D) organic nano-/micro-materials with controllable geometric shapes or morphologies and special luminescent and electronic properties is one of the greatest challenges in modern chemistry and material science. Control of noncovalent interactions is fundamental for realizing desired 1D structures and crucial for understanding the functions of these interactions. Here, a series of thiophene-fused phenazines composed of a halogen-substituted π-conjugated plate and a pair of flexible side chains is presented, which displays halogen-dependent 1D self-assemblies. Luminescent 1D twisted wires, straight rods, and zigzag wires, respectively, can be generated in sequence when the halogen atoms are varied from the lightest F to the heaviest I. It was demonstrated that halogen-dependent anisotropic noncovalent interactions and mirror-symmetrical crystallization dominated the 1D-assembly behaviors of this class of molecules. The methodology developed in this study provides a potential strategy for constructing 1D organic materials with unique optoelectronic functions.

  19. Synthesis of Vertically Aligned ZnO Nano rods on Various Substrates

    Hassan, J.J.; Hassan, Z.; Abu Hassan, H.; Mahdi, M.A.

    2011-01-01

    We successfully synthesized vertically aligned ZnO nano rods on Si, GaN, Sic, Al 2 O 3 , ITO, and quartz substrates using microwave assisted chemical bath deposition (MA-CBD) method. All these types of substrates were seeded with PVA-ZnO nano composites layer prior to the nano rods growth. The effect of substrate type on the morphology of the ZnO nano rods was studied. The diameter of grown ZnO nano rods ranged from 50 nm to 200 nm. Structural quality and morphology of ZnO nano rods were determined by x-ray diffraction and scanning electron microscopy, which revealed hexagonal wurtzite structures perpendicular to the substrate along the z-axis in the direction of (002). Photoluminescence measurements of grown ZnO nano rods on all substrates exhibited high UV peak intensity. Raman scattering studies were conducted to estimate the lattice vibration modes. (author)

  20. Synthesis of Carbon nano structures by plasma discharge; Sintesis de nanoestructuras de carbono por descarga de plasmaa

    Jimenez L, M L

    2007-07-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH{sub 4} with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  1. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon; Sintesis y caracterizacion estructural de nanotubos coaxiales intercalados de disulfuro de molibdeno con carbono

    Reza San German, C M

    2005-07-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS{sub 2}, enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS{sub 2} + C nano tubes were synthesized by propylene pyrolysis inside MoS{sub 2} nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS{sub 2} layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS{sub 2} inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS{sub 2} layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS{sub 2} layers. Our results open up the possibility of using MoS{sub 2} nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  2. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon; Sintesis y caracterizacion estructural de nanotubos coaxiales intercalados de disulfuro de molibdeno con carbono

    Reza San German, C.M

    2005-07-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS{sub 2}, enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS{sub 2} + C nano tubes were synthesized by propylene pyrolysis inside MoS{sub 2} nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS{sub 2} layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS{sub 2} inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS{sub 2} layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS{sub 2} layers. Our results open up the possibility of using MoS{sub 2} nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  3. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  4. Nano polyamidoamine-G7 dendrimer synthesis and assessment the antibacterial effect in vitro

    Mitra Gholami

    2016-04-01

    Full Text Available Background: Nano scale dendrimers are macromolecules synthetic which frequently used in medical and health field. Because traditional antibiotics inevitably induce bacterial resistance, which is responsible for many treatment failures, there is an urgent need to develop novel antibiotic drugs. This study was aimed to examine Synthesis and the antibacterial effect of NanoPolyamidoamine-G7 (NPAMAM-G7 dendrimer on Escherichia Coli, Proteus Mirabilis, Salmonella Typhi, Bacillus Subtilis and Staphylococcus Aureus. Methods: In this experimental study that has been conducted in June 2015 in the Laboratory of Microbiology, Iran University of Medical Science, NPAMAM-G7 dendrimers was synthesized by Tomalia’s divergent growth approach. The antibacterial effects of NPAMAM-G7 dendrimer were studied by disc diffusion and micro-dilution method. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC against gram-positive and gram-negative bacteria were determined according to Clinical and Laboratory Standards Institute (CLSI guideline. Standard discs were prepared using different concentrations of dendrimer on Mueller-Hinton agar plates. Results: Zone of inhibition in concentration 25 μg/ml of NPAMAM-G7 dendrimers for Escherichia Coli, Proteus Mirabilis, Salmonella Typhi, Bacillus Subtilis and Staphylococcus Aureus were 26, 38, 36, 22 and 25 mm, respectively. Regarding the zone of inhibition in gram negative bacteria with gram positive ones was P= 0.16 and was not significant difference. The MIC for Salmonella Typhi was 0.025, for Proteus Mirabilis, Bacillus Subtilis, Staphylococcus Aureus and Escherichia Coli was 0.25 μg/ml. The MBC for Salmonella Typhi was 25μg/ml, for Proteus Mirabilis and Bacillus Subtilis was 50 μg/ml and for Escherichia Coli and Staphylococcus Aureus was 100 μg/ml. The least of sensitivity against NPAMAM-G7 related to Escherichia Coli and Staphylococcus Aureus and the most of sensitivity related to

  5. Facile synthesis of 1-naphthol azo dyes with nano SiO2/HIO4 under solvent-free conditions

    A.R. Pourali

    2013-09-01

    Full Text Available Nano-silica supported periodic acid (nano-SPIA has been utilized as a heterogeneous reagent for a highly efficient and one pot synthesis of azo dyes based on 1-naphthol under solvent-free conditions at room temperature. This method has some advantages, the reaction workup is very easy and the catalyst can be easily separated from the reaction mixture and one-pot procedure. The related products have been obtained in good to excellent yields, high purity and short reaction times. The structures of the products have been characterized by several techniques using UV-Vis, FT-IR, 1H NMR, 13C NMR and mass spectra.DOI: http://dx.doi.org/10.4314/bcse.v27i3.13

  6. Small metal particles and the ideal Fermi gas

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  7. Refractory metal particles in refractory inclusions in the Allende meteorite

    Fuchs, L.H.; Blander, M.

    1980-01-01

    An examination of refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite indicates a complex variety of compositions and large departures from equilibrium. These particles appear to have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe and Ni), phase segregations into different alloy phases (fcc, bcc, hcp and perhaps ordered phases) and the formation of metastable condensates appears to have been involved in the modification of these materials to their present state. Only a small fraction of our observations cannot be reconciled with this picture because of a lack of knowledge of some of the phase equilibria which might have bee involved

  8. Nanostructured films of metal particles obtained by laser ablation

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  9. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  10. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries

    Schmuelling, Guido; Meyer, Hinrich-Wilhelm; Placke, Tobias; Winter, Martin; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen

    2014-01-01

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnO x and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry. (paper)

  11. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  12. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis

    Yan, Ting; Guo, Xiaode; Zhang, Xiang; Wang, Zhixiang; Shi, Jinqiu

    2016-01-01

    Highlights: • The nano α-Al 2 O 3 with good dispersion was prepared by two-step hydrolysis. • α-Al 2 O 3 powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al 2 O 3 transformed to α-Al 2 O 3 directly. • This article indicated that the addictive of α-Al 2 O 3 seed could improve the phase transformation rate of γ-Al 2 O 3 to α-Al 2 O 3 . • In this article, the pure α-Al 2 O 3 could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powder has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.

  13. Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

    M. A. Moghri Moazzen

    2012-09-01

    Full Text Available ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. The particle  size  and structure of the products have been confirmed by XRD. The FT-IR study  confirms  the  presence  of  functional  groups.  Also,  the morphology  and  size  distribution  of  ZnO  nanoparticles  was analyzed by TEM images. The optical properties were investigated by UV–Visible  spectroscopy. The XRD  results  show  that  the  size of  the prepared nanoparticles  is  in  the  range  of 20–40 nm, which this value  is  in good agreement with  the TEM  results. The FT-IR spectrum clearly indicates the formation of an interfacial chemical bond between Zn and O. Also  the UV absorption depends on  the particles  size  and morphology,  so  the  optical properties  enhances with  decreasing  nanoparticles  size.  Moreover  the  direct precipitation technique is a feasible method for production of ZnO nanopowders.

  14. Synthesis of LiFePO4/Graphene Nano composite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries

    Ma, X.; Chen, G.; Liu, Q.; Zeng, G.; Wu, T.

    2014-01-01

    LiFePO 4 /graphene nano composite was successfully synthesized by rheological phase method and its electrochemical properties as the cathode materials for lithium ion batteries were measured. As the iron source in the synthesis, FeOOH nano rods anchored on graphene were first synthesized. The FeOOH nano rods precursors and the final LiFePO 4 /graphene nano composite products were characterized by XRD, SEM, and TEM. While the FeOOH precursors were nano rods with 5-10 nm in diameter and 10-50 nm in length, the LiFePO 4 were nanoparticles with 20-100 nm in size. Compared with the electrochemical properties of LiFePO 4 particles without graphene nano sheets, it is clear that the graphene nano sheets can improve the performances of LiFePO 4 as the cathode material for lithium ion batteries. The as-synthesized LiFePO 4 /graphene nano composite showed high capacities and good cyclabilities. When measured at room temperature and at the rate of 0.1 C (1 C = 170 mA g -1 ), the composite showed a discharge capacity of 156 mA h g -1 in the first cycle and a capacity retention of 96% after 15 cycles. The improved performances of the composite are believed to be the result of the three-dimensional conducting network formed by the flexible and planar graphene nano sheets.

  15. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    Dhand, Vivek, E-mail: vivekdhand2012@gmail.com [Centre for Knowledge Management of Nanoscience and Technology, 12-5-32/8, Vijayapuri Colony, Tarnaka, Secunderabad-500 017, A.P (India); Prasad, J. Sarada; Rao, M. Venkateswara [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085 (India); Bharadwaj, S. [Department of Physics, CVR College of Engineering and Osmania University, Hyderabad 501510, A.P (India); Anjaneyulu, Y. [TLGVRC, Jackson State University, JSU Box 18739, Jackson, MS 39217-0939 (United States); Jain, Pawan Kumar [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad 500005, Andhra Pradesh (India)

    2013-03-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30-40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp{sup 2} hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Flame synthesized carbon nano onions with 30-40 nm diameters. Black-Right-Pointing-Pointer LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. Black-Right-Pointing-Pointer Carbon nano onion production rate is 5 g/hr and with 70% purity.

  16. Scalable shape- and size-controlled synthesis of metal nano-alloys

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  17. Synthesis and Characterization of Salicylate-zinc Layered Hydroxide Nano hybrid for Antiinflammatory Active Delivery

    Mohd Zobir Hussein; Mohd Zobir Hussein; Munirah Ramli; Khatijah Yusoff

    2011-01-01

    The emergence of nano technology has prompted much advancement in various areas of research that includes cellular delivery systems, particularly those dealing with delivery of compounds with therapeutic effects. This study aimed at investigating the use of a layered nano material for formation of a new organic-inorganic nano hybrid material. In this work, a compound of zinc layered hydroxide (ZLH) used as a host for a guest, anti-inflammatory agent salicylate (SA) was synthesized. Through simple, direct reaction of SA solution at various concentrations with commercial zinc oxide, SA was found to be intercalated between the ZLH inorganic layers. Powder x-ray diffraction (PXRD) patterns revealed that the basal spacing of the nano hybrid is around 16.14 Angstrom. Further characterizations also confirmed that SA was successfully intercalated into the interlayers of the nano hybrid. Results generated from this work provide information beneficial for development of a new delivery system for therapeutic compounds consisting of antiinflammatory agents. (author)

  18. Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO

    Maryam Zirak

    2017-05-01

    Full Text Available Synthesis of pyrano-chromenes and pyrano-pyrans was developed by three-component reactions of kojic acid and aromatic aldehydes with dimethone and malononitrile, catalyzed with nano-Bi2O3-ZnO and nano-ZnO, respectively. Reactions proceeded smoothly and the corresponding heterocyclic products were obtained in good to high yields. Nano ZnO and nano Bi2O3-ZnO were prepared by sol-gel method and characterized by X-ray diffraction (XRD, energy-dispersive X-ray analysis (EDX, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Supporting Bi3+ on ZnO nanoparticles as Bi2O3, is the main novelty of this work. The simple reaction procedure, easy separation of products, low catalyst loading, reusability of the catalyst are some advantageous of this protocol.

  19. Application of various types of alumina and nano--alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: comparative study

    A. Teimouri

    2014-09-01

    Full Text Available An efficient and green protocol for the synthesis of α-aminonitrile derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanide has been developed using natural alumina, alumina sulfuric acid (ASA, nano-g-alumina, nano-g-alumina sulfuric acid (nano-g-ASA under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency. DOI: http://dx.doi.org/10.4314/bcse.v28i3.13

  20. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  1. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  2. Deposition of toxic metal particles on rough nanofiltration membranes

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa [Tshwane University of Technology, Pretoria (South Africa); Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van [KU Leuven, Heverlee (Belgium)

    2014-08-15

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m{sup 2}/h to 14 L/m{sup 2}/h and 11 L/ m{sup 2}/h to 6 L/m{sup 2}/h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm.

  3. Deposition of toxic metal particles on rough nanofiltration membranes

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa; Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van

    2014-01-01

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m 2 /h to 14 L/m 2 /h and 11 L/ m 2 /h to 6 L/m 2 /h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm

  4. Synthesis of Poly aniline-Montmorillonite Nano composites Using H2O2 as the Oxidant

    Binitha, N.; Binitha, N.; Suraja, V.; Zahira Yaakob; Sugunan, S.

    2011-01-01

    Poly aniline montmorillonite nano composite was prepared using H 2 O 2 as the oxidant. The catalytic environment of montmorillonite favours polymerization. Intercalation and composite formation was proven from various techniques such as XRD, FTIR, DRS and thermal analysis. XRD patterns give the dimension of the intercalated PANI, from the shift of 2θ values, which is in the nano range. FTIR showed that PANI composite formation occurred without affecting the basic clay layer structure. Thus the successful development of an alternative cheap route for poly aniline-montmorillonite nano composite was well established. (author)

  5. Synthesis and Physical Characterization of Carbon Nano tubes Coated by Conducting Poly pyrrole

    Talib, A.B.Z.A.; Wan Mahmood Mat Yunus; Kasar Behzad; Nayereh Soltani

    2011-01-01

    This study describes the preparation of poly pyrrole multi walled carbon nano tube (PPy/ MWNT) composites by in situ chemical oxidative polymerization. Various ratios of functionalized MWNTs are dispersed in the water, and PPy are then synthesized via in-situ chemical oxidative polymerization on the surface of the carbon nano tubes. The morphology of the resulting complex nano tubes (MWNT-PPY) was characterized by scanning electron microscopy (SEM). The conductivity of each composite showed a maximum in the temperature scale of 120- 160 degree Celsius and then decreased dramatically with the increase of temperature. (author)

  6. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Kong M.

    2017-06-01

    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  7. Synthesis and thermal characterization of CdS nano crystals in previously formed template of maleic anhydride-octene 1-vinyl butyl terpolymer

    Akbarov, O.H; Mammadova, R.E; Malikov, E.Y.

    2008-01-01

    Full text: Nano crystals have dimensions in the range 10100 nm. Crystals in this size range possess unique properties, which enable scientists to manufacture materials and devices capable of performing unimaginable tasks. For that reason synthesis of this semiconductor nano crystals is expedient. Many useful methods have been used for preparing sulphide semiconductor nano crystals, such as colloidal chemistry method, sol-gel method, inverse micelle method, in situ synthesis and assemble on polymer template. The most significant method is in situ synthesis and assemble of sulphide semiconductor nano crystals on polymer. Compared with other methods, the stability of nanoparticles is improved by the protection and confinement of the copolymer. Because of confinement and protection effects of template environmental risk is prevented in this method. On the base of this principles in situ synthesis of CdS nano crystals in maleic anhydride-octene 1-vinyl butyl terpolymer was realized in this scientific work. First of all in specific condition maleic anhydride, octene 1, and vinyl butyl ether were polymerized to form a terpolymer as the result of radical ter polymerization. In second step CdS nano crystals were synthesized in N,N-dimethylformamide solution of maleic anhydride-octene 1-vinyl butyl terpolymer through the reaction of thiourea with cadmium chloride. In this process CdCI 2 x 2.5H 2 O was dissolved in N,N-dimethylformamide solution of previously formed terpolymer and was heated in 90 0 C temperature for 4 hours with vigorous stirring. Then desired amount of thiourea in N,N-dimethylformamide was quickly injected into the reaction flask using a syringe. The reaction continued for another 1 hour, and a yellow clear solution was obtained, which indicated the formation of CdS nano crystals

  8. Statistical optimization of synthesis procedure and characterization of europium (III) molybdate nano-plates

    Pourmortazavi, Seied Mahdi [Malek Ashtar University of Technology, Faculty of Material and Manufacturing Technologies, P. O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi [Imam Hossein University, Nano Science Center, Tehran (Iran, Islamic Republic of); Fazli, Yousef [Islamic Azad University, Department of Chemistry, Faculty of Science, Arak Branch, Arak (Iran, Islamic Republic of); Mohammad-Zadeh, Mohammad [Sabzevar University of Medical Sciences, Department of Physiology and Pharmacology, School of Medicine, Sabzevar (Iran, Islamic Republic of)

    2015-06-15

    Europium (III) molybdate nano-plates were synthesized in this work via chemical precipitation route involving adding of europium (III) ion solution to the aqueous solution of molybdate reagent. Effects of some reaction variables such as concentrations of europium and molybdate ions, flow rate of europium reagent, and reactor temperature on the diameter of the synthesized europium (III) molybdate nano-plates were experimentally investigated by orthogonal array design. The results showed that the size of europium (III) molybdate nano-plates can be optimized by adjusting the concentrations of europium (III) and molybdate ions, as well as the reactional temperature. Europium (III) molybdate nano-plates prepared under the optimum conditions were characterized by X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. (orig.)

  9. DFT study of gases adsorption on sharp tip nano-catalysts surface for green fertilizer synthesis

    Yahya, Noorhana; Irfan, Muhammad; Shafie, Afza; Soleimani, Hassan; Alqasem, Bilal; Rehman, Zia Ur; Qureshi, Saima

    2016-11-01

    The energy minimization and spin modifications of sorbates with sorbents in magnetic induction method (MIM) play a vital role in yield of fertilizer. Hence, in this article the focus of study is the interaction of sorbates/reactants (H2, N2 and CO2) in term of average total adsorption energies, average isosteric heats of adsorption energies, magnetic moments, band gaps energies and spin modifications over identical cone tips nanocatalyst (sorbents) of Fe2O3, Fe3O4 (magnetic), CuO and Al2O3 (non-magnetic) for green nano-fertilizer synthesis. Study of adsorption energy, band structures and density of states of reactants with sorbents are purely classical and quantum mechanical based concepts that are vividly illustrated and supported by ADSORPTION LOCATOR and Cambridge Seriel Total Energy Package (CASTEP) modules following classical and first principle DFT simulation study respectively. Maximum values of total average energies, total average adsorption energies and average adsorption energies of H2, N2 and CO2 molecules are reported as -14.688 kcal/mol, -13.444 kcal/mol, -3.130 kcal/mol, - kcal/mol and -6.348 kcal/mol over Al2O3 cone tips respectively and minimum over magnetic cone tips. Whereas, the maximum and average minimum values of average isosteric heats of adsorption energies of H2, N2 and CO2 molecules are figured out to be 3.081 kcal/mol, 4.842 kcal/mol and 6.848 kcal/mol, 0.988 kcal/mol, 1.554 kcal/mol and 2.236 kcal/mol over aluminum oxide and Fe3O4 cone tips respectively. In addition to the adsorption of reactants over identical cone sorbents the maximum and minimum values of net spin, electrons and number of bands for magnetite and aluminum oxide cone structures are attributed to 82 and zero, 260 and 196, 206 and 118 for Fe3O4 and Al2O3 cones respectively. Maximum and least observed values of band gap energies are figured out to be 0.188 eV and 0.018 eV with Al2O3 and Fe3O4 cone structures respectively. Ultimately, with the adsorption of reactants an

  10. Nano-Ticl 4 .SiO 2 : a Versatile and Efficient Catalyst for Synthesis of ...

    Nano-TiCl4.SiO2 has been found to be an extremely efficient catalyst for the preparation of 3,4-dihydropyrimidinones/thiones via three-component reactions of an aldehyde, β-ketoester or β-diketone and urea or thiourea under mild conditions. Nano-TiCl4.SiO2 as a solid Lewis acid has been synthesized by reaction of ...

  11. SQUID sensor application for small metallic particle detection

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  12. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

    Sato, Katsutoshi; Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-Ichiro; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr 2 O 3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr 2 O 3 . Furthermore, CO 2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH 3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  13. Synthesis of porous silicon nano-wires and the emission of red luminescence

    Congli, Sun; Hao, Hu; Huanhuan, Feng; Jingjing, Xu; Yu, Chen; Yong, Jin; Zhifeng, Jiao; Xiaosong, Sun

    2013-01-01

    This very paper is focusing on the characterization of porous silicon nano-wires prepared via a two-step route, the electroless chemical etching and the following post-treatment of HF/HNO 3 solution. Hence, scanning electron microscopy, transmission electron microscopy and confocal fluorescence microscopy are employed for this purpose. From the results of experiments, one can find that the as-prepared silicon nano-wire is of smooth surface and that no visible photo-luminescence emission could be seen. However, the porous structure can be found in the silicon nano-wire treated with HF/HNO 3 solution, and the clear photo-luminescence emission of 630 nm can be recorded with a confocal fluorescence microscope. The transmission electron microscopy test tells that the porous silicon nano-wire is made up of a porous crystalline silicon nano-core and a rough coating of silicon oxide. Besides, based on the post-HF- and -H 2 O 2 - treatments, the emission mechanism of the red luminescence has been discussed and could be attributed to the quantum confinement/luminescence center model which could be simply concluded as that the electron–hole pairs are mainly excited inside the porous silicon nano-core and then tunneling out and recombining at the silicon oxide coating.

  14. Synthesis of porous silicon nano-wires and the emission of red luminescence

    Congli, Sun [School of Materials Science and Engineering, Sichuan University (China); Hao, Hu [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan (China); Huanhuan, Feng; Jingjing, Xu; Yu, Chen; Yong, Jin; Zhifeng, Jiao [School of Materials Science and Engineering, Sichuan University (China); Xiaosong, Sun, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University (China)

    2013-10-01

    This very paper is focusing on the characterization of porous silicon nano-wires prepared via a two-step route, the electroless chemical etching and the following post-treatment of HF/HNO{sub 3} solution. Hence, scanning electron microscopy, transmission electron microscopy and confocal fluorescence microscopy are employed for this purpose. From the results of experiments, one can find that the as-prepared silicon nano-wire is of smooth surface and that no visible photo-luminescence emission could be seen. However, the porous structure can be found in the silicon nano-wire treated with HF/HNO{sub 3} solution, and the clear photo-luminescence emission of 630 nm can be recorded with a confocal fluorescence microscope. The transmission electron microscopy test tells that the porous silicon nano-wire is made up of a porous crystalline silicon nano-core and a rough coating of silicon oxide. Besides, based on the post-HF- and -H{sub 2}O{sub 2}- treatments, the emission mechanism of the red luminescence has been discussed and could be attributed to the quantum confinement/luminescence center model which could be simply concluded as that the electron–hole pairs are mainly excited inside the porous silicon nano-core and then tunneling out and recombining at the silicon oxide coating.

  15. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb{sup 2+} from aqueous solutions

    Fernando, M. Shanika [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, Rohini M. de, E-mail: rohini@chem.cmb.ac.lk [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, K.M. Nalin de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama (Sri Lanka)

    2015-10-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb{sup 2+} ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb{sup 2+} ions at room temperature at different pH levels. The adsorption data for Pb{sup 2+} ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g{sup −1}. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g{sup −1}. Leaching of Ca{sup 2+} ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca{sup 2+} was high in neat HAp than C-HAp. The leaching of Ca{sup 2+} by neat HAp and C

  16. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions

    Fernando, M. Shanika; Silva, Rohini M. de; Silva, K.M. Nalin de

    2015-01-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb 2+ ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb 2+ ions at room temperature at different pH levels. The adsorption data for Pb 2+ ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g −1 . For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g −1 . Leaching of Ca 2+ ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca 2+ was high in neat HAp than C-HAp. The leaching of Ca 2+ by neat HAp and C-HAp during adsorption of Pb 2+ ions were also

  17. Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor

    Jamil, Saba; Janjua, Muhammad Ramzan Saeed Ashraf; Ahmad, Tauqeer; Mehmood, Tahir; Li, Songnan; Jing, Xiaoyan

    2014-01-01

    Zinc oxide nano rods and micro hollow spheres are successfully fabricated by adopting a simple solvo-thermal approach without employing any surfactant/template by keeping heating time as variable. The prepared products are characterized by using different instruments such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In order to investigate the morphological dependence on the reaction time, analogous experiments with various reaction times are carried out. Depending upon heating time, different morphological forms have been identified such as hollow microsphere (4 μm to 5 μm) and nano rods with an average diameter of approximately 100 nm. The fabricated materials are also tested for ethanol gas sensor applications and zinc oxide hollow microsphere proven to be an efficient gas sensing materials. Nitrogen adsorption–desorption measurement was performed to understand better performance of zinc oxide micro hollow spheres as effective ethanol gas sensing material. - Graphical abstract: Graphical abstract is represented by zinc oxide sphere (prepared by simple solvothermal approach), its XRD pattern(characterization) and finally its application in gas sensing. - Highlights: • Zinc oxide spheres were prepared by using solvothermal method. • Detailed description of the morphology of microspheres assembled by nano rods. • Formation mechanism of zinc oxide spheres assembled by nano rods. • Zinc oxide spheres and nano rods displayed very good gas sensing ability

  18. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  19. Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nano-powders

    Leconte, Y.; Maskrot, H.; Combemale, L.; Herlin-Boime, N.; Reynaud, C.

    2007-01-01

    Refractory carbide nano-structured ceramics appear to be promising materials for high temperature applications requiring hard materials such as nuclear energy industry. Such carbide materials are usually obtained with micrometric sizes from the high temperature carbo-reduction of an oxide phase in a raw mixture of C black and titania or zirconia. TiC and ZrC nano-powders were produced from an intimate mixture of oxide nano-grains with free C synthesized by laser pyrolysis from the decomposition of a liquid precursor. The temperature and the duration of the thermal treatment leading to the carburization were decreased, allowing the preservation of the nano-scaled size of the starting grains. A solution of titanium iso-prop-oxide was laser-pyrolyzed with ethylene as sensitizer in order to synthesize Ti/C/O powders. These powders were composed of crystalline TiO 2 nano-grains mixed with C. Annealing under argon enabled the formation of TiC through the carburization of TiO 2 by free C. The final TiC mean grain size was about 80 nm. Zr/O/C powders were prepared from a solution of zirconium butoxide and were composed of ZrO 2 crystalline nano-grains and free C. The same thermal treatment as for TiC, but at higher temperature, showed the formation of crystalline ZrC with a final mean grain size of about 40 nm. These two liquid routes of nano-particles synthesis are also compared to the very efficient gaseous route of SiC nano-powders synthesis from a mixture of silane and acetylene. (authors)

  20. Synthesis, optical properties and growth mechanism of MnO nano structures

    Pandey, B. K.; Shahi, A. K.; Gopal, R.

    2013-10-01

    Manganese oxide (MnO) colloidal nanoparticles have been successfully synthesized by pulse laser ablation in double distilled water. Nd: YAG laser with focused output operating at different pulse energies (20, 30, 40, 50 mJ/pulse) was used for ablation. Synthesized MnO nano crystal phase and structure were confirmed by X-ray diffraction and SAED pattern. Optical properties of as synthesized MnO nano colloidal solution were studied by UV-vis absorption spectroscopy. Optical particle size and band gap of as synthesized MnO colloidal nanoparticles were calculated. Particle shape and size were determined by TEM/SEM image. It is observed that MnO nano colloidal particles assembled to make different structures after aging in the liquid media. Aspect ratio has been calculated from SEM picture. MnO nanoparticles show weak antiferromagnetic behavior at room temperature as measured by VSM. A typical mechanism has been proposed for the formation of different nanostructures.

  1. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Mousa, Sahar, E-mail: dollyriri@yahoo.com [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt); King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh (Saudi Arabia); Hanna, Adly [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt)

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  2. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Mousa, Sahar; Hanna, Adly

    2013-01-01

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  3. Hydrothermal synthesis of novel Mn(3)O(4) nano-octahedrons with enhanced supercapacitors performances.

    Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong

    2010-10-01

    Uniform and single-crystalline Mn(3)O(4) nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ∼160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a "dissolution-recrystallization" which is followed by an "Ostwald ripening" mechanism. The Mn(3)O(4) nano-octahedrons exhibited an enhanced specific capacitance of 322 F g(-1) compared with the truncated octahedrons with specific capacitances of 244 F g(-1), making them a promising electrode material for supercapacitors.

  4. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  5. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances

    Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong

    2010-10-01

    Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g

  6. Synthesis and characterization of chemically ordered FePt magnetic nano-particles

    Srinivasa Rao, K. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Balaji, T., E-mail: theerthambalaji@yahoo.co [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Lingappa, Y. [Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Reddy, M.R.P.; Kumar, Arbind; Prakash, T.L. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India)

    2010-08-15

    Monodispersed FePt alloy magnetic nano-particles are prepared by reduction of platinum acetyl acetonate and iron acetyl acetonate salts together in the presence of oleic acid and oleyl amine stabilizers by polyol process. The particle size of FePt is in the range of 2-3 nm confirmed by transmission electron microscopy (TEM). As-synthesized FePt nano-particles are chemically disordered with face centre cubic (fcc) structure where as after vacuum annealing these particles changed to face centre tetragonal (fct) ordered structure confirmed by the X-ray diffraction technique. Magnetic coercivity of 5.247 KOe was observed for fct structure.

  7. Reticulated vitreous carbon doped with nano silver metallic particles for antimicrobial inhibitory application

    Oliveira, Ana Paula Silva; Oishi, Silvia; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro, E-mail: silvadeoliveira.ana@gmail.com [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Ito, Cristiane Yoga; Goncalves, Emerson Sarmento [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The development of composites for biocides application has attracted considerable attention in several research fields. Silver nanoparticles is a very know antimicrobial material.Manufacturing composite materials with high surface area and biocides characteristics is challenge. In this work was studied the morphological and structural characterization of silver nanoparticles dispersed in a structure of carbon Reticulated Vitreous (CVR), treated at different temperatures, resulting in a nanocomposite.The silver impregnation technique in carbon materials is not a simple work due to its chemical stability. The objective in this study was to evaluate the deposition of silver nanoparticles on the CVR as a composite material for microorganisms inhibition or eliminate. The characterization of the material will be carried out using the Raman spectroscopy, spectroscopy Photoelectron Excited by X-rays, diffraction X-ray-EDS.Through the results it was concluded that the CRV treated at 1300 ° C showed the highest concentration of silver on its structure. These results potentiate the deposition of silver nanoparticles on CRV structures and disorganized with large concentration of active sites to anchor silver particles. In addition, the average size of the deposited particles decreases due to heat treatment. (author)

  8. Reticulated vitreous carbon doped with nano silver metallic particles for antimicrobial inhibitory application

    Oliveira, Ana Paula Silva; Oishi, Silvia; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Ito, Cristiane Yoga; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: The development of composites for biocides application has attracted considerable attention in several research fields. Silver nanoparticles is a very know antimicrobial material.Manufacturing composite materials with high surface area and biocides characteristics is challenge. In this work was studied the morphological and structural characterization of silver nanoparticles dispersed in a structure of carbon Reticulated Vitreous (CVR), treated at different temperatures, resulting in a nanocomposite.The silver impregnation technique in carbon materials is not a simple work due to its chemical stability. The objective in this study was to evaluate the deposition of silver nanoparticles on the CVR as a composite material for microorganisms inhibition or eliminate. The characterization of the material will be carried out using the Raman spectroscopy, spectroscopy Photoelectron Excited by X-rays, diffraction X-ray-EDS.Through the results it was concluded that the CRV treated at 1300 ° C showed the highest concentration of silver on its structure. These results potentiate the deposition of silver nanoparticles on CRV structures and disorganized with large concentration of active sites to anchor silver particles. In addition, the average size of the deposited particles decreases due to heat treatment. (author)

  9. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  10. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  11. Nano copper ferrite: A reusable catalyst for the synthesis of β, γ ...

    aCatalyst recovered by membrane filtration and washed with diethyl ether and then by distilled water. bYields compared to isolated products. From table 3, it is noticed that in some reactions the catalyst needs co-catalysts/additives. Some reac- tions need the acidic/basic workup to get the product. But here in this nano sized ...

  12. Hydrothermal synthesis of NiFe2O4 nano-particles: structural ...

    2. Experimental. In order to synthesize NiFe2O4 nano-particles, Ni(NO3)2· ... Nickel and iron nitrates are dissolved in distilled ... are in good agreement with standard JCPDS: 86-2267. The ... in order to evaluate micro-strain (ε) and crystallite size (D) using the ..... Impedance spectroscopic studies are useful for investigating.

  13. Synthesis, structure and photocatalytic activity of nano TiO2 and ...

    salicylic acid over combustion-synthesized nano TiO2 under UV and solar exposure has been carried out. Under identical conditions of UV exposure, the initial degra- dation rate of phenol with combustion-synthesized TiO2 is two times higher than the initial degradation rate of phenol with Degussa P25, the commercial ...

  14. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    Sen, Sabyasachi; Gogurla, Narendar; Banerji, Pallab; Guha, Prasanta K.; Pramanik, Panchanan

    2015-01-01

    Graphical abstract: - Highlights: • β-FeSi 2 nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi 2 . • HRTEM and FESEM images indicate the β-FeSi 2 average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi 2 is p-type with hole density of 4.38 × 10 18 cm −3 and mobility 8.9 cm 2 /V s. - Abstract: Nano-particles of β-FeSi 2 have been synthesized by chemical reduction of a glassy phase of [Fe 2 O 3 , 4SiO 2 ] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi 2 semiconducting phase. The average crystallite size of β-FeSi 2 is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi 2 phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi 2 nano-particles is p-type with hole concentration of 4.38 × 10 18 cm −3 and average hole mobility of 8.9 cm 2 /V s at 300 K

  15. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2011-07-01

    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl{sub 2}.6H{sub 2}O, SeCl{sub 4} and hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  16. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures

    Raj, C. Justin; Varma, K.B.R. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Joshi, R.K. [Special Center for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2011-11-15

    We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A two-dimensional nodal model with turbulent effects for the synthesis of Si nano-particles by inductively coupled thermal plasmas

    Colombo, V; Ghedini, E; Gherardi, M; Sanibondi, P; Shigeta, M

    2012-01-01

    Nano-particle synthesis by means of inductively coupled plasma torches is a material process of large technological interest. Numerous parameters are involved in the optimization of this process; hence the development of numerical models for the prediction of thermal and magneto-fluid dynamics fields, precursor powder trajectories and thermal history, as well as nano-particle formation and growth, is necessary for the up-scaling of these devices from laboratory batch production to an industrial continuous process. In this work, a two-dimensional (2D) discrete-type model (nodal model) for the analysis of nano-powder nucleation and growth is presented, taking into account convection, diffusion and turbulent effects on particle formation. Discrete-type models feature high precision and reveal a great deal of information useful for clarifying the nano-particle formation process. Using Si as the precursor material, 2D simulations of a nano-particle synthesis RF plasma apparatus with a reaction chamber are carried out. Good agreement is found when comparing results obtained with this model with those coming from a well-established nucleation-coupled moment method. Moreover, the extended amount of obtainable information that characterizes the nodal model is underlined. (paper)

  18. Green Synthesis of Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety o...

  19. Greener Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  20. Green Synthesis of Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts- HESTEC

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety o...

  1. Eco-friendly Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  2. Synthesis and characterization of (zinc-layered hydroxide-hippurate) nano hybrid by direct reaction of zinc oxide under aqueous environment

    Mohd Zobir Hussein; Samer Hasan Al Ali; Zulkarnain Zainal

    2011-01-01

    A new method for synthesis of hippurate nano hybrid has been developed. In this method, zinc oxide was added directly into aqueous solution of hippurate anions (A - ). The resulting hippurate nano hybrid (HAN) is composed of the organic moieties sandwiched between zinc layered hydroxide (ZLH) inorganic interlayers. HAN synthesized using 0.2 M hippuric acid showed the best crystallinity compared to other samples synthesized in this work. X-ray powder diffraction shows the basal spacing of the HAN was 21.3 Angstrom indicating that the monolayer of A - was arranged vertically to the ZLH interlayers. (author)

  3. Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis

    Polshettiwar, Vivek; Varma, Rajender S.

    2010-01-01

    Postsynthetic Surface modification of magnetic nanoparticles by glutathione imparts desirable chemical functionality and enables the generation of catalytic sites on the surfaces of ensuing organocatalysts. In this article, we discuss the developments, unique activity, and high selectivity of nano-organocatalysts for microwave-assisted Paal-Knorr reaction, aza-Michael addition, and pyrazole synthesis. Their insoluble character Coupled with paramagnetic nature enables easy separation of these nano-catalysts from the reaction mixture using external magnet, which eliminates the requirement of catalyst filtration. Published by Elsevier Ltd.

  4. Synthesis of nano-sized PbSe from octeno-1,2,3-selenadiazole

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Viswanath, A.K.; Patil, K.R.

    2007-01-01

    Reaction between trioctylphosphine selenide (TOPSe), generated from an organo-selenium compound, i.e. octeno-1,2,3-selenadiazole in tri-octylphosphine (TOP), and lead acetate has resulted formation of PbSe nano-crystals (cubes). TOPSe generated from the current method is first of its kind approach and is a novel concept. Characteristic absorption bands between 1.8-2.1 μm in near infra-red spectrum (NIR) are observed from sonicated PbSe crystals. X-ray diffraction (XRD) pattern revealed rock-salt crystal structure of PbSe with crystallite size of less than 10 nm. Observations made by scanning electron microscopy (SEM) revealed well-defined particles of the cubical crystals. XPS analysis showed that nano-crystals of PbSe were prone to air-oxidation due to 'not-so-efficient' capping

  5. Synthesis of nano-Au doped SiO2 aerogels by seeding method

    Ren Hongbo; Wan Xiaobo; Zhang Lin; Du Aiming; Xiu Peng

    2006-01-01

    A new approach to synthesize gold nano cluster doped aerogel on the basis of surface-catalyzed reduction of metal ions was described. Au nano particles were formed in a silica aerogel matrix by hydroxylamine seeding method of reducing gold ions on the silica colloidal surface. Subsequently, the pH value of system was adjusted to about 7-8, the gel formed within 2 h. After aging for 2 d, the gels were washed in aceton, and then dried supercritically (from CO 2 ) to yield aerogels. The reduction process was attributed to hydroxylamine-induced surface catalysis. Au clusters in the aerogel monoliths were characterized with optical adsorption, transmission electron microscopy. These techniques have shown the cluster size and weight content in the aerogels. Brunauer-emmett-teller surface area measurements show that the specific surface area of silica aerogels and doped aerogels are higher than 800 m 2 /g. (authors)

  6. Synthesis of nano grade hollow silica sphere via a soft template method.

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  7. Passion fruit-like nano-architectures: a general synthesis route

    Cassano, D.; David, J.; Luin, S.; Voliani, V.

    2017-03-01

    Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell.

  8. Facile synthesis and photoluminescence spectroscopy of 3D-triangular GaN nano prism islands.

    Kumar, Mukesh; Pasha, S K; Shibin Krishna, T C; Singh, Avanish Pratap; Kumar, Pawan; Gupta, Bipin Kumar; Gupta, Govind

    2014-08-21

    We report a strategy for fabrication of 3D triangular GaN nano prism islands (TGNPI) grown on Ga/Si(553) substrate at low temperature by N2(+) ions implantation using a sputtering gun technique. The annealing of Ga/Si(553) (600 °C) followed by nitridation (2 keV) shows the formation of high quality GaN TGNPI cross-section. TGNPI morphology has been confirmed by atomic force microscopy. Furthermore, these nano prism islands exhibit prominent ultra-violet luminescence peaking at 366 nm upon 325 nm excitation wavelength along with a low intensity yellow luminescence broad peak at 545 nm which characterizes low defects density TGNPI. Furthermore, the time-resolved spectroscopy of luminescent TGNPI in nanoseconds holds promise for its futuristic application in next generation UV-based sensors as well as many portable optoelectronic devices.

  9. Order-disorder phase transitions in Au-Cu nanocubes: from nano-thermodynamics to synthesis.

    Mendoza-Cruz, R; Bazán-Diaz, L; Velázquez-Salazar, J J; Samaniego-Benitez, J E; Ascencio-Aguirre, F M; Herrera-Becerra, R; José-Yacamán, M; Guisbiers, G

    2017-07-13

    Catalysts have been widely used in industries and can be optimized by tuning the composition and chemical ordering of the elements involved in the nano-alloy. Among bi-metallic alloys, the Au-Cu system is of particular interest because it exhibits ordered phases at low temperatures. Nevertheless, the temperature at which these ordered structures are formed is totally unknown at the nanoscale. Consequently, to speed up the development of these catalysts, this paper theoretically predicts the structural phase transitions between ordered and disordered phases for the Au-Cu system by using nano-thermodynamics. Following the predictions, the suggested annealing temperatures have been carefully chosen and consequently, Au-Cu ordered nanocubes have been successfully synthesized through a solventless protocol. The results are fully supported by electron microscopy observations.

  10. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties.

    Montazer, M; Keshvari, A; Kahali, P

    2016-12-10

    This paper is mainly focused on introducing cotton fabric with hydrogel and antimicrobial properties using Tragacanth gum as a natural polymer with hydrogel properties, silver nitrate as silver precursor, citric acid as a cross-linking agent and sodium hypophosphite as catalyst. The water absorption behavior of the treated fabrics was investigated with moisture regain, water retention, drying time of wetted fabric at room condition and vertical wicking tests. Antibacterial properties of the samples were evaluated against Escherichia coli and Staphylococcous aureus. The SEM pictures confirmed formation of nano silver and hydrogel layer on the fabric surface and XRD performed the crystal and particle size of the nano silver. The chemical structure of the fabric samples was identified with FTIR spectra. The central composite design (CCD) was used for statistical modelling, evaluated effective parameters and created optimum conditions. The treated cotton fabrics showed good water absorption properties along with reasonable antibacterial effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The synthesis, characterization and theoretical study of nano tetrabuthylammonium trichloroiodoaluminate (III

    shahriar Ghammamy

    2012-10-01

    Full Text Available There is provided a nano aluminate complex that has a quaternary ammonium cation. This nano system has an equal molar ratio of Al to N that has been prepared by reaction of an organic salt R+X- such as [(CH34NBr], and a Lewis acid such as AlCl3, compounds. The synthesized compound was characterized by IR, Mass, X-Ray diffraction measurements. In addition, the structure of synthesized compound was optimized at the theoretical level of the Moller-Plesser perturbations of the second order (MP2, with LanL2DZ basis set and molecular specifications such as band length and angle were extracted using Gaussian 98 program. Theoretical data show good agreement with the experimental result.

  12. Polymer-layered silicate nano composite by UV-radiation curing: an original synthesis

    Keller, L.; Decker, C.; Zahouily, K.; Miehe-Brendle, J.; Le Meins, J.M.

    2004-01-01

    Full text.Because of the many hopes which they raise, the nano composite materials are the subject of an increasing number of scientific publications. Indeed, the intimate association of a polymer matrix and silicate nano-platelets leads to the formation of materials having mechanical and barriers properties improved (fire, gas, humidity...). A literature survey shows that these materials are generally produced by a thermal polymerization, which presents two major disadvantages: the use of organic solvents and a great consumption of energy. To overcome such limitations, photo initiated polymerization was chosen to synthesize nano composite materials. By this technology, called UV radiation curing, a solvent-free resin is transformed within seconds into a solid polymer upon exposure to UV-radiation at ambient temperature. The principal objective of this study was to develop photopolymerizable systems with clay particles having a layer structure (phyllosilicates). The clay mineral was made organophilic by treatment with an alkylammonium salt to allow the acrylate resin to penetrate into the expanded galleries. A morphological characterization of the materials obtained was carried out by X-rays diffraction and electronic microscopy transmission. The polymerization of the various resins under the UV exposure was followed in situ by using the real-time infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR). The results obtained show that the presence of the organo clay does not modify much the polymerization kinetics. The nano composite material thus obtained is transparent, insoluble in the organic solvents and presents improved mechanical properties, compared to the neat resin and the micro composite, for a load factor ranging between 2 and 5%wt. The addition of nanoparticles also makes it possible to reduce efficiently the brightness of coatings UV and finally confers to this material barriers properties higher than that of the photo crosslinked

  13. Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

    Mohamadreza Etminanfar; Jafar Khalil-Allafi; Kiyumars Jalili

    2017-01-01

    In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone)–poly(ethylene glycol) bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and SEM. The data revealed that the hydroxyapatite coating is composed of one-dimensional nano sized fl...

  14. Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles

    Song Zuwei; Ma Junfeng; Sun Huyuan; Sun Yong; Fang Jingrui; Liu Zhengsen; Gao Chang; Liu Ye; Zhao Jingang

    2009-01-01

    CoWO 4 nano-particles were successfully synthesized at a low temperature of 270 deg. C by a molten salt method, and effects of such processing parameters as holding time and salt quantity on the crystallization and development of CoWO 4 crystallites were initially studied. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL), respectively. Experimental results showed that the well-crystallized CoWO 4 nano-particles with ca. 45 nm in diameter could be obtained at 270 deg. C for a holding time of 8 h with 6:1 mass ratio of the salt to CoWO 4 precursor, and XRD analysis evidenced that the as-prepared sample was a pure monoclinic phase of CoWO 4 with wolframite structure. Their PL spectra revealed that the CoWO 4 nano-particles displayed a very strong PL peak at 453 nm with the excitation wavelength of 230 nm, and PL properties of CoWO 4 crystallites relied on their crystalline state, especially on their particle size.

  15. Synthesis and characterization of CdO nano particles by the sol-gel method

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  16. Synthesis and characterization of cadmium hydroxide nano-nest by chemical route

    Salunkhe, R.R.; Patil, U.M.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    A facile chemical route based on room temperature chemical bath deposition (CBD) was developed to deposit the Cd(OH) 2 nano-nest. The growth mechanism follows two-stage crystallization with initial growth of nucleation centers, followed by subsequent anisotropic growth. The nano-nest morphological evolution of Cd(OH) 2 on different substrates has been carried out. These films have been characterized by the techniques; such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), optical absorption, contact angle measurement and thermoelectric power (TEP) measurements. The X-ray diffraction study revealed that the as deposited film consists of cadmium hydroxide (Cd(OH) 2 ) phase. The nano-nest consisted of wires with nearly uniform in dimensions, with diameter around 30 nm and length of few microns. As-deposited Cd(OH) 2 film used in this study showed water contact angle of 66 o . The optical bandgap was found to be 3.2 eV, with n-type electrical conductivity as confirmed from thermo-emf measurements.

  17. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Christensen, Axel Norlund; Jensen, Torben R.; Bahl, Christian R.H.; DiMasi, Elaine

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2 O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2 O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition. - Graphical abstract: Nano size crystals of goethite, α-FeOOH formed from amorphous iron(III) hydroxide after 23 years, and transforms faster to α-Fe 2 O 3 upon heating

  18. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  19. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines

    Tiruvenkadam, N.; Thyla, P.R.; Senthilkumar, M.; Bharathiraja, M.; Murugesan, A.

    2015-01-01

    Highlights: • Nano hybrid composite cylinder liner (NL) was developed to replace cast iron liner. • NL improved engine performance, combustion and reduced emissions except NO x . • Teardown analysis provides the suitability of NL for diesel engine. • The developed aluminum NL saved 43.75% of weight than cast iron cylinder liner. - Abstract: This work aims to replace the conventional cast iron cylinder liner (CL) in diesel engine by introducing lightweight aluminum (Al) 6061 nano hybrid composite cylinder liner (NL) by analyzing the performance, combustion, and emission characteristics of an engine. NL was fabricated by bottom pouring stir casting technique with nano- and micro-reinforcement materials. Experimental results proved that the use of NL increased brake thermal efficiency, in-cylinder pressure, heat release rate, and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with CL. However, oxides of nitrogen slightly increased with the use of the new liner. No differences in wear or other issues were noted during the engine teardown after 1 year of operation and 2000 h of running. Thus, NL has been recommended to replace the CL to save the energy and to reap environmental benefits

  20. Synthesis of supported metallic nano-particles and their use in air depollution

    Barrault, J.; Valange, S.; Tatibouet, J.M.; Thollon, St.; Herlin-Boime, N.; Giraud, S.; Ruiz, J.Ch.; Bergaya, B.; Joulin, J.P.; Delbianco, N.; Gabelica, Z.; Daturi, M.

    2009-01-01

    The main objectives of the 'NACACOMO' Consortium ('Nano-materials: Catalysts for the Conversion of organic Molecules. Uses in fine chemicals and environment protection ') consisted in generating novel catalysts composed of nanoparticles of metals (Pt, Pd, Ag...) and/or oxides (TiO 2 ...) stabilized and well distributed over the surface of a support (foams, ceramics), by monitoring both the particle size and the 'coating' process itself, using new technologies: CVD, plasma-spray, laser pyrolysis, supercritical preparation, which were compared to conventional soft chemistry recipes. The most accurate characterization of particle morphology, local structure, texture, spatial arrangement but also of their reactivity, were achieved by privileging the utilization of various in situ methods. Details on formation mechanisms of a solid nano-particle at the atomic level (nucleation, growth and particle (re)distribution over the support...) could be obtained in selected cases, with opportunities for scaling up and shaping. The (chemical) nature of the so-obtained nano-materials was monitored for selected catalytic applications involving the development of environmental friendly processes, such as oxidation of VOC, with a priority for aromatics and chlorinated compounds. (authors)

  1. Synthesis and characterization of lithium fluoride nano crystals doped with silver

    Rosario M, B. R.; Ramirez C, G.; Encarnacion E, E. K.; Sosa A, M. A.

    2017-10-01

    Thermoluminescence (Tl) is the emission of light by certain materials to be heated below its incandescence temperature, having previously been exposed to an exciting agent such as ionizing radiation. Lithium fluoride (LiF) is the thermoluminescent material used in the manufacture of Tl-100 dosimeters. What morphological characteristics (size, crystallinity) do the nano crystals of pure lithium fluoride (LiF) have when doped with silver (Ag) by the precipitation method? The objective of this study was to synthesize and characterize the LiF nano crystals doped with silver (Ag) in concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 and 0.2%. The samples were synthesized using as reagents; distilled water, ammonium fluoride (NH 4 F), lithium chloride (LiCl), silver nitrate (AgNO 3 ); and materials such as: 0.1 mg precision balance, spatulas, test piece, magnetic stirrer, beaker, volumetric flask, burette, burette clamp, key and magnetic stirring wand. In the characterization process we used and X-ray diffractometer (XRD) with which we obtained the X-ray diffraction spectrum with well-defined peaks that are characteristic of LiF. Using the Scherrer equation we calculate the sizes of nano crystals. This study demonstrates that is possible to synthesize LiF using new dopant materials. (Author)

  2. Synthesis of Metal Nanoparticles by Bacteria

    Fikriye Alev Akçay

    2018-04-01

    Full Text Available Metal particles reduced to nano size by nanotechnological methods are confronted in many different fields such as biomedical and physicochemical, pharmaceutical, electric-electronic, automotive and food industries. Nanoparticles can be produced using chemical, physical and biological methods, of which chemical processes are in common use. However, physical and chemical methods are not environmentally friendly and economical because they require the use of high temperature, high pressure and toxic chemicals. For this reason, interest in the production of metal nanoparticles by biological methods, also called green technology, an environmentally friendly and sustainable approach, has increased in recent years. With some plant extracts and intracellular and extracellular secretions of microorganisms, some reduction reactions take place and metal nanoparticles are produced. Bacteria have been actively involved in nanotechnology in recent years due to their diversity in nature, their ease of isolation, and ease of nanoparticle synthesis. In this article, production and application of metal nanoparticles by using bacterial methods have been reviewed.

  3. Combustion synthesis of CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors in a closed system

    Peng Wenfang; Zou Shaoyu; Liu Guanxi; Xiao Quanlan; Zhang Rui; Xie Lijuan; Cao Liwei [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Meng Jianxin, E-mail: tmjx@jnu.edu.cn [Institute of Nano-Chemistry, Jinan University, Guangzhou 510632 (China); Liu Yingliang [Institute of Nano-Chemistry, Jinan University, Guangzhou 510632 (China)

    2011-06-09

    Highlights: > CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors can be prepared by a single-step combustion method. > The ignition temperature is the lowest in the combustion synthesis of Ce{sup 3+}/Eu{sup 2+} doped phosphors. > The as-prepared nano-phosphors give a uniform particle size in the range of 15-20 nm and have highly dispersity and fluorescence intensity. > It is a convenient method for preparation of monodispersed oxide nano-phosphors, especially those being sensitive to air at high temperature. - Abstract: The CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 deg. C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 deg. C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 deg. C. The CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce{sup 4+} ions can be ruled out. The present highly dispersed CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors with efficient fluorescence are promising in the field of biological labeling

  4. Synthesis and characterization of nano-hydroxyapatite using Sapindus Mukorossi extract

    Subha, B.; Prasath, P. Varun; Abinaya, R.; Kavitha, R. J.; Ravichandran, K.

    2015-06-01

    Nano-Hydroxyapatite (HAP) powders were successfully synthesised by hydrothermal method using Sapindus Mukorossi extract as an additive. The structural and morphological analyses of thus synthesised powders were carried out using FT-IR, XRD and FESEM/EDX. The FT-IR spectra confirm the presence of phosphate and hydroxyl groups corresponding to HAP. The XRD analysis reveals the formation of HAP phase and found to reduce the crystallite size with addition of Sapindus Mukorossi extract. The morphology changes from sphere to flake shape by the influence of extract.

  5. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Rhee, Chang Kyu [KAERI, Taejon (Korea, Republic of); Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M. [Institute of Electrophysics (Russian Federation)

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully.

  6. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.

    Jeong, Kwang Ho; Lee, Hyeon Jeong; Simpson, Michael F; Jeong, Mun

    2016-05-01

    Graphene/MnO2 nano-composite was electrochemically synthesized for application to an electrode material for electrochemical supercapacitors. The nanosized needle-like MnO2 was obtained by use of a graphene substrate. The prepared composite exhibited an ideal supercapacitive behavior. A capacitance retention of 94% was achieved with a 4 h deposition time (an initial capacitance of 574 mF/cm2 at a scan rate of 20 mV/s) and the retention declined with further deposition time. The results demonstrate enhanced contact between the electrode and electrolyte and improved power density as an electrochemical capacitor.

  7. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Rhee, Chang Kyu; Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M.

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully

  8. Synthesis and characterization of carbon nano fibers for its application in the adsorption of toxic gases; Sintesis y caracterizacion de nanofibras de carbono para su aplicacion en la adsorcion de gases toxicos

    Juanico L, J A

    2004-07-01

    The production of carbon nano fibers (CNF's) by diverse techniques as the electric arc, laser ablation, or chemical deposition in vapor phase, among other, they have been so far used from final of the 90's. However, the synthesis method by discharge Glow arc of alternating current and high frequency developed by Pacheco and collaborators, is a once alternative for its obtaining. In the plasma Application Laboratory (LAP) of the National Institute of Nuclear Research (INlN) it was designed and manufactured a reactor of alternating current and high frequency that produces a Glow arc able to synthesize carbon nano fibers. Its were carried out nano fibers synthesis with different catalysts to different proportions and with distinct conditions of vacuum pressure and methane flow until obtaining the best nano fibers samples and for it, this nano structures were characterized by Scanning and Transmission Electron Microscopy, X-ray Diffraction, Raman spectrometry and EDS spectrometry. Once found the optimal conditions for the nano fibers production its were contaminated with NO{sub 2} toxic gas and it was determined if they present adsorption, for it was used the thermal gravimetric analysis technique. This work is divided in three parts, in the first one, conformed by the chapters 1, at the 3, they are considered the foundations of the carbon nano fibers, their history, their characteristics, growth mechanisms, synthesis techniques, the thermal gravimetric analysis principles and the adsorption properties of the nano fibers. In the second part, consistent of the chapters 4 and 5, the methodology of synthesis and characterization of the nano fibers is provided. Finally, in third part its were carried out the activation energy calculation, the adsorption of the CNF's is analyzed and the conclusions are carried out. The present study evaluates the adsorption of environmental gas pollutants as the nitrogen oxides on carbon nano fibers at environmental or near conditions. Also

  9. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  10. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  11. Synthesis of some Mg/Co-Al type nano hydrotalcites and characterization

    Khadijeh Shekoohi

    2017-01-01

    Full Text Available Hydrotalcites are quite prevalent in nature and their importance is growing more and more because of their very wide range of potential applications and uses. Because hydrotalcite does not exist in significant quantities in nature, coprecipitation methods are the most used for prepartion of hydrotalcite. In this study: Two types of Nano hydrotalcite compounds containing one divalent (Mg-Al and two divalent cation(Co-Mg-Al were synthesized based on aqueous solutions of corresponding nitrates by co-precipitation method. The molar ratio influences structure and performance of hydrotalcite largely. The crystallinity and crystallite size of the hydrotalcite were observed to varying with molar of M2+/M3+ ratio. The structure and morphology of the Nano hydrotalcites were characterized by powder X-ray diffraction, scanning electron microscopy, Fourier-transformed Infrared spectroscopy and thermal gravimetric analysis. The crystallite size of the hydrotalcite was observed to increase when the Mg/Al molar ratio increases and, more significantly, when a second divalent cation (cobalt was added.

  12. Modification of the surface energy in isovalent nano-oxides prepared by chemical synthesis

    Miagava, J.; Gouvea, D.

    2011-01-01

    The phase stability of the nano-oxides depends on the bulk energy but it also depends on the surface energy. The difference of surface energy of the rutile and anatase phases result in a change of phase stability: TiO_2 without additives is stable as anatase when particles have nanometric size and a high specific surface area whereas rutile is stable when particles are larger. But this stability can be modified through the use of additives. Different studies demonstrate that additives segregate on the particle surface modifying the surface energy. In this work (1-X)TiO_2-XSnO_2 powders were synthesized by the polymeric precursor method with concentrations of 0 ≤ X ≤ 1. The specific surface area measurements demonstrate that the modification of the composition change the specific surface areas and it reaches a maximum at X = 0.005. The Raman spectroscopy demonstrates that a modification on the stability of the TiO_2 polymorphs occurs and the phase rutile is stabilized when SnO_2 is added to the nano powders.(author)

  13. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Christensen, Axel Nørlund; Jensen, Torben R.; Bahl, Christian R. H.; DiMasi, Elaine

    2007-04-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co K α radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.

  14. Nano Size Crystals of Geothite, alpha-FeOOH: Synthesis and Thermal Transformation

    Christensen,A.; Jensen, T.; Bahl, C.; DiMasi, E.

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, {alpha}-FeOOH crystallized from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co K{alpha} radiation showed that the only iron containing crystalline phase present in the recovered product was {alpha}-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of {alpha}-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of {alpha}-FeOOH transformed to {alpha}-Fe{sub 2}O{sub 3} in the temperature range 444--584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from {alpha}-Fe{sub 2}O{sub 3} to follow the decrease of intensity from {alpha}-FeOOH in agreement with the topotactic phase transition.

  15. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  16. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-01-01

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient

  17. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-10-01

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient

  18. Synthesis and characterization of iron nano particles for the arsenic removal in water

    Gutierrez M, O. E.

    2011-01-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  19. Ultrarapid Multimode Microwave Synthesis of Nano/Submicron β-SiC

    Min Zhao

    2018-02-01

    Full Text Available This paper presents the design, development and realization of a fast and novel process for the synthesis of 3C silicon carbide (β-SiC nanorods and submicron powder. Using SiO2 (or Si and activated carbon (AC, this process allows β-SiC to be synthesized with almost 100% purity in timeframes of seconds or minutes using multimode microwave rotary tube reactors under open-air conditions. The synthesis temperature used was 1460 ± 50 °C for Si + AC and 1660 ± 50 °C for SiO2 + AC. The shortest β-SiC synthesis time achieved was about 20 s for Si + AC and 100 s for SiO2 + AC. This novel synthesis method allows for scaled-up flow processes in the rapid industrial-scale production of β-SiC, having advantages of time/energy saving and carbon dioxide emission reduction over comparable modern processes.

  20. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].

    Liao, Jian-Guo; Li, Yan-Qun; Duan, Xing-Ze; Liu, Qiong

    2014-11-01

    CO3(2-) doping is an effective method to increase the biological activity of nano-hydroxyapatite (n-HA). In the present study, calcium nitrate and trisodium phosphate were chosen as raw materials, with a certain amount of Na2CO3 as a source of CO-3(2-) ions, to synthesize nano-carbonate hydroxyapatite (n-CHA) slurry by solution precipitation method. The structure and micro-morphology of n-CHA were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR) and Raman spectroscopy (RS). The results revealed that the synthetic n-HA crystals are acicular in nanometer scale and have a crystal size of 20-30 nm in diameter and 60-80 nm in length, which are similar to natural bone apatite. And the crystallinity of n-CHA crystals decreases to the increment of CO3(2-). Samples with more CO3(2) have composition and structure more similar to the bone apatite. The value of lattice parameters a decreases, value of c increases, and c/a value increases with the increase in the amount of CO3(2-), in accordance with crystal cell parameters change rule of type B replacement. In the AB mixed type (substitution OH- and PO4(3-)) CHA, IR characteristic peak of CO3(2-) out-of-plane bending vibration appears at 872 cm(-1), meanwhile, the asymmetry flexible vibration band is split into band at 1 454 cm(-1) and band at 1 420 cm(-1), while weak CO3(2)-peak appears at 1 540 cm(-1). CO3(2-) Raman peak of symmetric stretching vibration appears at 1 122 cm(-1). CO3(2-) B-type (substitution PO4(3-)) peak appeared at 1 071 cm(-1). Through the calculation of integral area ratio of PO4(3-)/ CO3(2-), OH-/CO3(2-), and PO4(3-)/OH-, low quantity CO3(2-) is B-type and high quantity CO3(2-) is A-type (substitution OH-). The results show that the synthesized apatite crystals are AB hybrid substitued nano-carbonate hydroxyapatite, however B-type replacement is the main substitute mode. Due to similarity inthe shape, size, crystal structure

  1. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  2. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  3. Modelling of non-metallic particles motion process in foundry alloys

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  4. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  5. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-01-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO_2–NH_2 shell. Thus, metal particles were easily adsorbed into the SiO_2–NH_2 shell and in-situ reduced by NaBH_4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu_2(OH)_3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu_2(OH)_3Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  6. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    Liu, Ying; Zhang, Kun, E-mail: kun4219@njtech.edu.cn; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO{sub 2}–NH{sub 2} shell. Thus, metal particles were easily adsorbed into the SiO{sub 2}–NH{sub 2} shell and in-situ reduced by NaBH{sub 4} solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu{sub 2}(OH){sub 3}Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu{sub 2}(OH){sub 3}Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  7. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  8. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-01-01

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y 2 O 3 nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO 4 and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO 4 –20%Y 2 O 3 ), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO 4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  9. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  10. Synthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy

    Mohamadreza Etminanfar

    2017-12-01

    Full Text Available In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone–poly(ethylene glycol bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and SEM. The data revealed that the hydroxyapatite coating is composed of one-dimensional nano sized flakes and the polymer coating is uniformly covered the sublayer. Also, High resolution TEM studies on the hydroxyapatite samples revealed that each flake contains nano-crystalline grains with a diameter of about 15 nm. The hydroxyapatite monolayer coating was rapidly covered by calcium phosphate crystals (Ca/P=1.7 after immersion in simulated body fluid confirming the bioactivity of the nanostructured flakes. However, the flakes were weak against applied external forces because of their ultra-fine thickness. Scratch test was applied on hydroxyapatite/polymer coating to evaluate delamination of the coating from substrate. It was shown that, the polymer coating has a great influence on toughening the hydroxyapatite coating. To assess the degradation effect of the polymer layer on hydroxyapatite coating, samples were immersed in phosphate-buffered saline at 37 ᵒC. SEM studies on the samples revealed that the beneath layer of hydroxyapatite appears after 72 h without any visible change in morphology. It seems that, application of a biodegradable polymer film on the nanostructured hydroxyapatite coating is a good way to support the coating during implantation processes

  11. A Review on Synthesis of Nano-TiO2 via Different Methods

    M. Malekshahi Byranvand

    2013-03-01

    Full Text Available Titanium dioxide is one kind of important materials, which has been extensively investigated because of its unique electronic and optical properties. A large number of efforts have been made to synthesize TiO2 materials with different methods. In this review paper, we summarize the synthesis pathways, morphology, as well as crystallization of the nanostructured TiO2. In addition, we also mention several nanostructured TiO2 materials.

  12. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2synthesis of alloy nanoparticles as well as to control, in a scalable manner, the nanomaterial size and surface chemistry.

  13. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is

  14. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens.

    Murphin Kumar, Paskalis Sahaya; MubarakAli, Davoodbasha; Saratale, Rijuta Ganesh; Saratale, Ganesh Dattatraya; Pugazhendhi, Arivalagan; Gopalakrishnan, Kumar; Thajuddin, Nooruddin

    2017-12-01

    Algae could offer a potential source of fine chemicals, pharmaceuticals and biofuels. In this study, a green synthesis of dispersed cuboidal gold nanoparticles (AuNPs) was achieved using red algae, Gelidium amansii reacted with HAuCl 4 . It was found to be 4-7 nm sized cubical nanoparticles with aspect ratio of 1.4 were synthesized using 0.5 mM of HAuCl 4 by HRSEM analysis. The crystalline planes (111), (200), (220), (311) and elemental signal of gold was observed by XRD and EDS respectively. The major constitutes, galactose and 3,6-anhydrogalactose in the alga played a critical role in the synthesis of crystalline AuNPs with cubical dimension. Further, the antibacterial potential of synthesized AuNPs was tested against human pathogens, Escherichia coli and Staphylococcus aureus. The synthesized AuNPs found biocompatible up to 100 ppm and high concentration showed an inhibition against cancer cell. This novel report could be helped to exploration of bioresources to material synthesis for the application of biosensor and biomedical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Synthesis of alkaline-earth metal tungstates in melts of [NaNO3-M(NO3)2]eut-Na2WO4 (M=Ca, Sr, Ba) system

    Shurdumov, G.K.; Shurdumova, Z.V.; Cherkesov, Z.A.; Karmokov, A.M.

    2006-01-01

    Synthesis of alkaline earth metal tungstates in melts of eutectics of NaNO 3 -M(NO 3 ) 2 ] (M=Ca, Sr, Ba) is done. Synthesis is based in exchange reaction of calcium, strontium, and barium nitrates with sodium tungstate [ru

  17. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nano tubes and Their Use as Magnetically Recyclable Catalysts

    He, H.; Gao, C.

    2011-01-01

    We report a facile approach to prepare Fe 3 O 4 /Pt nanoparticles decorated carbon nano tubes (CNTs). The superparamagnetic Fe 3 O 4 nanoparticles with average size of 45 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl 3 . The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe 3 O 4 nanoparticles and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanoparticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe 3 O 4 /Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  18. Synthesis of carbide fuels from nano-structured precursors: impact on carbo-reduction and physico-chemical properties

    Saravia, Alvaro

    2015-01-01

    The classical way classically used for manufacturing carbide fuels consists of carbo-reducing at high temperature (1600 C) and under primary vacuum a mixture of AnO 2 and graphite powders. These conditions are disadvantageous for the synthesis of mixed (U,Pu)C carbides on account of plutonium volatilization. Therefore, one of the main aims of these studies is to decrease the carbo-reduction temperature. The experiments focused mainly on the lowering of the uranium oxide temperature. This result has been obtained with the use of uranium oxide and carbon nano-structured precursors. To achieve this goal colloidal suspensions of uranium oxide have been prepared and stabilized by cellulosic ethers. Cellulosic ethers are both stabiliser for uranium oxide nanoparticles and carbon source for carbo-reduction. It has been shown that these precursors are more efficient for carbo-reduction than the standard precursors: a reduction of 300 C of carbo-reduction temperature has been obtained. The impact of these precursors on carbo-reduction and on physico-chemical properties as well as the structural and microstructural characterizations of the obtained carbides have been carried out. (author) [fr

  19. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    Pavithradevi, S. [Assistant Professor, Department of Physics, Park College of Engineering and Technology, Coimbatore (India); Suriyanarayanan, N., E-mail: madurasuri2210@yahoo.com [Prof & Head, Department of Physics, Government College of Technology, Coimbatore (India); Boobalan, T. [Lecturer, Department of Physics, PSG Polytechnic College, Coimbatore (India)

    2017-03-15

    Nanocrystalline copper ferrite CuFe{sub 2}O{sub 4} is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe{sub 2}O{sub 4} is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe{sub 2}O{sub 4} nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm{sup −1} and 4000 cm{sup −1}. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25–34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field. - Highlights: • Complete removal of hematite phase along with ethylene glycol at 1050 °C. • Large decrease in particle sizes noticed along with ethylene glycol. • Ethylene glycol improves purity of the

  20. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl{sub 2} with controllable dimension and morphology

    Wu, Jianguo [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Physics Department, Northwest University, Xi’an 710069 (China); Wang, Kaige, E-mail: wangkg@nwu.edu.cn [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Zhou, Yukun; Wang, Shuang; Zhang, Chen [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Wang, Guiren [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208 (United States); and others

    2016-12-30

    Highlights: • One kind of large area nano-PAA-ZnCl{sub 2} composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals. • At room temperature, the nano-PAA-ZnCl{sub 2} film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl{sub 2} nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl{sub 2} composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl{sub 2} composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl{sub 2} composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher

  1. Nano-TiO{sub 2} coatings on aluminum surfaces by aerosol flame synthesis

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Commodo, Mario; Minutolo, Patrizia [Istituto di Ricerche sulla Combustione, CNR, Napoli 80125 (Italy); D' Anna, Andrea, E-mail: anddanna@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Squillace, Antonino [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy)

    2016-06-30

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO{sub 2} has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO{sub 2} nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO{sub 2} particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO{sub 2} nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy

  2. Nano-TiO_2 coatings on aluminum surfaces by aerosol flame synthesis

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello; Commodo, Mario; Minutolo, Patrizia; D'Anna, Andrea; Squillace, Antonino

    2016-01-01

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO_2 has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO_2 nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO_2 particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO_2 nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy • Improvement of

  3. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  4. Synthesis of polycaprolactone/nano hydroxyapatite microspheres; Sintese de microesferas de policaprolactona/nanohidroxiapatita

    Sampaio, Greyce Y.H.; Souza, Mairly K. da S.; Melo, Rafaela Q. da C.; Carrodeguas, Raul G.; Fook, Marcus V.L., E-mail: greycesampaio@gmail.com [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil)

    2015-07-01

    Polycaprolactone(PCL)/nano hydroxyapatite(nHA) microspheres are advantageous material for manufacturing tridimensional scaffolds and formulating drug delivery systems for bone regeneration. The work was aimed to study the effect of processing variables on the properties of PCL/nHA microspheres. nHA was produced by precipitation method and was obtained calcium deficient nanoparticles consisted of nanorods (∼47 nm x ∼8 nm), according to the results of XRD, FTIR and TEM. PCL/nHA microspheres was produced by solid-in-oil-in-water emulsion solvent evaporation method. The variables studied were concentration of PCL (5,7.5 and 10 % w/v), nHA addition (17, 23 and 28.5% m/m) and surface treatment of nHA with stearic acid (AE). PCL/nHA microspheres were characterized by XRD, FTIR, SEM and TGA. The best result was obtained with a PCL concentration of 10% (w/v) and 23 % (m/m) of modified nHA. Solid PCL/nHA particles ranging 30-70 μm and containing 14 % of nHA dispersed in the polymer matrix were obtained, with agglomerates of nHA raging 5 -15 μm. These results suggest the promising use of this material in bone regeneration devices. (author)

  5. Nano-Pt/C electrocatalysts: synthesis and activity for alcohol oxidation

    Huong Nguyen, Thi Giang; Anh Pham, Thi Van; Phuong, Thi Xuan; Binh Lam, Thi Xuan; Tran, Van Man; Thoa Nguyen, Thi Phuong

    2013-01-01

    Nano-sized platinum electrocatalysts on a carbon support (Pt/C) have been synthesized by the polyol reduction method under microwave irradiation using ethylene glycol (EG) as the reductant and carbon vulcan XC-72R as the support material. The physical characteristics of the Pt/C materials were analyzed using transmission electron microscopy and Brunauer–Emmet–Teller nitrogen adsorption theory. The glycerol and EG electro-oxidation in alkaline media on the Pt/C catalysts was investigated with cyclic voltammetry and chronoamperometry. The particle size of Pt on carbon was about 3.0 nm. The catalytic activity for the alcohol electro-oxidation of Pt/C materials synthesized in various pH values (7.9–9.5) was found to be significantly higher than that of commercial Pt/C (Aldrich Sigma, 10 wt% Pt/activated carbon). The Pt/C catalyst synthesized in pH 9.5 showed the best electrochemical behavior. At all the synthesized Pt/C electrodes, compared with glycerol, the oxidation rate of EG was about ten times higher. (paper)

  6. Flame synthesis of carbon nano-onions enhanced by acoustic modulation

    Chung, De-Hua; Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hou, Shuhn-Shyurng, E-mail: sshou@mail.ksu.edu.tw [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2010-10-29

    Ethylene jet diffusion flames modulated by acoustic excitation in an atmospheric environment were used to synthesize carbon nano-onions (CNOs) on a catalytic nickel substrate. The formation of CNOs was significantly enhanced by acoustic excitation at frequencies near either the natural flickering frequency or the acoustically resonant frequency. The rate of yield of CNOs was high at 10 and 20 Hz (near the natural flickering frequency) for a sampling position z = 5 mm above the burner exit where the gas temperature was about 450-520 deg. C, or at 10, 20 and 30 Hz for z = 10 mm with the gas temperature ranging from 420 to 500 deg. C. Additionally, for both z = 5 and 10 mm, a quantity of CNOs can be obtained at 60-70 Hz, near the acoustically resonant frequency, where the gas temperature was between 620 and 720 deg. C. Almost no CNOs were produced for the other frequencies due to low temperature or lack of carbon sources. CNOs synthesized at low frequencies had a greater diameter and a higher degree of graphitization than those at high frequencies.

  7. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio

    2004-06-15

    Micro/nano-textured ZnO thick films were synthesized through deposition and pyrolysis of layered hydroxide zinc acetate (LHZA), Zn{sub 5}(OH){sub 8}(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O. LHZA films having a unique, rose-like morphology were initially deposited on conducting glass sheets in a chemical bath composed of methanol and zinc acetate dihydrate at 60 deg. C under neutral conditions. Pyrolysis of the LHZA films resulted in formation of ZnO without destroying the original morphology. Pyrolysis temperatures were found to greatly influence grain sizes and specific surface areas of the ZnO films. Photoelectrochemical performance of the films as ZnO/eosin Y electrodes was investigated in dye-sensitized solar cells using an I{sup -}/I{sub 3}{sup -} redox electrolyte solution. The cell using the ZnO film pyrolyzed at 150 deg. C exhibited overall light to electricity conversion efficiencies of 2.0 and 3.3% under an AM-1.5 illumination at 100 and 10 mW cm{sup -2}, respectively. While microscale pores in the electrodes facilitated mass transfer of fluid electrolytes in the depth direction, nanoscale pores contributed to an increase in the amount of adsorbed dye. The maximum incident photon-to-current conversion efficiency (IPCE) of the electrode reached 84.9% at a wavelength of 530 nm.

  8. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio

    2004-01-01

    Micro/nano-textured ZnO thick films were synthesized through deposition and pyrolysis of layered hydroxide zinc acetate (LHZA), Zn 5 (OH) 8 (CH 3 COO) 2 ·2H 2 O. LHZA films having a unique, rose-like morphology were initially deposited on conducting glass sheets in a chemical bath composed of methanol and zinc acetate dihydrate at 60 deg. C under neutral conditions. Pyrolysis of the LHZA films resulted in formation of ZnO without destroying the original morphology. Pyrolysis temperatures were found to greatly influence grain sizes and specific surface areas of the ZnO films. Photoelectrochemical performance of the films as ZnO/eosin Y electrodes was investigated in dye-sensitized solar cells using an I - /I 3 - redox electrolyte solution. The cell using the ZnO film pyrolyzed at 150 deg. C exhibited overall light to electricity conversion efficiencies of 2.0 and 3.3% under an AM-1.5 illumination at 100 and 10 mW cm -2 , respectively. While microscale pores in the electrodes facilitated mass transfer of fluid electrolytes in the depth direction, nanoscale pores contributed to an increase in the amount of adsorbed dye. The maximum incident photon-to-current conversion efficiency (IPCE) of the electrode reached 84.9% at a wavelength of 530 nm

  9. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  10. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  11. Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering

    Dash, K.; Chaira, D.; Ray, B.C.

    2013-01-01

    Graphical abstract: The evolution of microstructure by varying the particle size of reinforcement in the matrix employing spark plasma sintering has been demonstrated here in Al–Al 2 O 3 system. An emphasis has been laid on varying the reinforcement particle size and evaluating the microstructural morphologies and their implications on mechanical performance of the composites. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size 2 O 3 micro- and nano-composites fabricated by spark plasma sintering. • Better matrix-reinforcement integrity in nanocomposites than microcomposites. • Spark plasma sintering method results in higher density and hardness values. • High density and hardness values of nanocomposites than microcomposites. • High dislocation density in spark plasma sintered Al–Al 2 O 3 composites. - Abstract: In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size 2 O 3 nancomposites respectively. Spark plasma sintering imparts enhanced densification and matrix-reinforcement proximity which have been corroborated with the experimental results

  12. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite

    He, Dan; Xiao, Xiufeng; Liu, Fang; Liu, Rongfang

    2008-11-01

    By Ca(NO 3) 2·4H 2O and (NH 4) 3PO 4·3H 2O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration (≥0.5 wt.%) of ChS as a template.

  13. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite

    He Dan; Xiao Xiufeng; Liu Fang [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China); Liu Rongfang [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China)], E-mail: rfliu@vip.sina.com

    2008-11-15

    By Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (NH{sub 4}){sub 3}PO{sub 4}.3H{sub 2}O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration ({>=}0.5 wt.%) of ChS as a template.

  14. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis.

    Mishra, Abhijeet; Sardar, Meryam

    2015-01-01

    In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis of multifunctional clustered nano-Fe3O4 chitosan nanocomposite for biomedical applications

    Villamin, Maria Emma; Kitamoto, Yoshitaka

    2018-01-01

    Clustered iron oxide nanoparticles covered with chitosan hydrogel (FeOx/Ch NC) have multiple potential functionalities in biomedical applications such as pH-controlled drug release, magnetic hyperthermia, and magnetic non-contact pH sensing. In the present study, the synthesis and characterization of FeOx/Ch NC are demonstrated. Moreover, the heating capability of the nanocomposites is also explored for the potential magnetic hyperthermia application by measuring the temperature curves under different AC frequencies (900 kHz to 2500 kHz). Monodispersed FeOx NPs are first synthesized via thermal decomposition. Then, dried FeOx NPs are combined with chitosan using a homogenizer to form the clustered composites. Synthesized composites are then characterized using XRD, TEM, and FTIR. Temperature curves are measured via a custom-built hyperthermia setup. Results show successful synthesis of clustered Fe3O4-chitosan nanocomposite with XRD peaks corresponding to magnetite (Fe3O4) structure. FTIR results show the presence of functional groups of chitosan (N-H, C-O) and FeOx NPs (Fe-O). These confirms the successful fabrication of FeOx/Ch NC. The temperature curves show maximum temperature changes of about 2°C to 22°C depending on the AC frequency. The heating rate is found to increase with the frequency, which suggests that the resonance frequency is higher than 2500 kHz.

  16. ONE-DIMENSIONAL PLASMONIC NANO-PHOTOCATALYSTS: SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY

    Murph, S.

    2011-08-14

    This study describes a simple two-step approach to coat gold nanorods with a silica/titania shell. Gold nanorods with an aspect ratio of 2.5 (L = 48 {+-} 2 and d = 19 {+-} 1) are synthesized by a silver-seed mediated growth approach according to our previously reported procedure (Hunyadi Murph ACS Symposium Series, Volume 1064, Chapter 8, 2011, 127-163 and reference herein). Gold nanorods are grown on pre-formed gold nano-seeds in the presence of surfactant, cetyltrimethylammonium bromide (CTAB), and a small amount of silver ions. A bifunctional linker molecule which has a thiol group at one end and a silane group at the other is used to derivatize gold nanorods. The silane group is subsequently reacted with both sodium silicate and titanium isopropoxide to a silica/titania shell around the gold nanorods. By fine tuning the reaction conditions, the silica/titania shell thickness can be controlled from {approx}5 to {approx}40nm. The resulting nanomaterials are stable, amenable to scale up and can be isolated without core aggregation or decomposition. These new materials have been characterized by scanning electron microscopy, energy dispersive X-ray analysis, UV-Vis spectroscopy and dynamic light scattering analysis. Photocatalytic activity of Au-silica/titania nanomaterials under visible and UV illumination is measured via degradation of a model dye, methyl orange (MO) under visible and UV illumination. The results indicate a 3 fold improvement in the photocatalytic decomposition rate of MO under visible illumination vs. UV illumination.

  17. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2015-01-01

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml −1 and 0.156–2.500 mg ml −1 , respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml −1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  18. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial.

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2014-12-23

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078-1.250 mg ml(-1) and 0.156-2.500 mg ml(-1), respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml(-1) of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation.

  19. Synthesis, characterization and thermal analysis of urea-formaldehyde/nanoSiO{sub 2} resins

    Roumeli, E. [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, E. [Chimar Hellas S.A., Sofouli 88, 55131 Thessaloniki (Greece); Pavlidou, E.; Vourlias, G. [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Bikiaris, D. [Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K., E-mail: hrisafis@physics.auth.gr [Solid State Physics Dept., School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer UF/nanosilica resins have been produced using the minimum cost method. Black-Right-Pointing-Pointer The new resins had good dispersion and enhanced properties. Black-Right-Pointing-Pointer Nanosilica interacts with polymer chains as was proved by FTIR and DSC. Black-Right-Pointing-Pointer Nanosilica does not affect the resin's thermal stability but enhances its mechanical properties. - Abstract: In the present work urea-formaldehyde resins (UF) containing different amounts of SiO{sub 2} nanoparticles were synthesized and studied in depth. All the hybrids were characterized with Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffractometry (XRD), while the dispersion of nanoparticles was studied with scanning electron microscopy with associated energy dispersive X-ray spectrometer (SEM/EDS). It was found that even though silanol groups of SiO{sub 2} can interact with UF resin and form hydrogen bonds, aggregates of SiO{sub 2} nanoparticles can still be formed in UF resin. Their size increases as SiO{sub 2} content is increased. The curing reactions were examined with differential scanning calorimetry (DSC) and it was revealed that curing temperature of UF resin is slightly affected by the addition of nanoparticles. Furthermore, the activation energy of the curing reactions, for every hybrid, was calculated using the Kissinger's method, which implied the existence of interactions between the nanoparticles and the polymer chain. Thermogravimetric analysis (TGA) revealed that SiO{sub 2} nanoparticles do not have an effect in the thermal stability of the resin. From the application of the prepared UF/SiO{sub 2} resins in wood panels it was found that the mechanical properties of the panels, like the internal bond and the modulus of rapture, are enhanced with increasing nanoSiO{sub 2} concentration.

  20. Synthesis and characterization of metal - metal oxide nano structured electrode materials for electrolysis of water

    Stoevska-Gogovska, Dafinka

    2012-01-01

    The goal in this Ph.D. study was to prepare hypo-hyper r f-electrocatalysts (aimed for water splitting) without or with reduced precious metals load and then to characterize them, i.e. to prove whether the goal was fulfilled. The synthesized electrocatalysts contain metallic (10% wt.) and metal-oxide phase (18% wt.), applied on a carrier (72% wt). The metallic phase was mainly cobalt one, varied from 0%, 50% wt., 80% wt. and 100%, (the rest up to 100% wt. being Ru). Only in one case the metallic phase contained 3 different metals, i.e. Co, Ru and Pt in a proportion of 80% : 10% : 10%, respectively. Metal oxide phase was TiO 2 (as a crystalline anatase) deposited on a carrier of multi walled carbon nano tubes (MWCNTs). MWCNTs were pre-activated in 28% nitric acid and effect of the activation process was studied, as well. As a reference electro catalyst for hydrogen evolution reaction, corresponding catalyst with metallic phase of pure Pt was prepared. The prepared electrocatalysts were structurally characterized by means of a number of contemporary experimental techniques. So, by means of X-ray Diffraction Analysis (XRD) the crystal state of each catalyst’s phase was determined, and the size of crystal grains was estimated. So, for Pt particles it was found that the size changes from 12 nm, in a systems with Pt as the only metal phase, to 3÷4 nm in systems that contain Co (Co:Pt = 1:1 or 4:1). It was determined as well that the anatase particles size in all synthesized catalysts is cca 4 nm. By means of Photoelectron Microscopy (XPS), the bond energy of catalyst’s components was determined, and the extent of interaction was estimated. The components oxidation state was estimated according to their peak amplitude in the XPS spectrum. So, for the carbon the peaks were identified that indicate the existence of double bond (C=C), as well as C-O, C=0 (and/or C-OH), -0-0*0 and (COO) bonds. The shift of the metallic Ru bond energy was attributed to the existence of

  1. Nano technology

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  2. Sonochemical synthesis of bismuth(III) nano coordination compound and direct synthesis of Bi.sub.2./sub.O.sub.3./sub. nanoparticles from a bismuth(III) nano coordination compound precursor

    Roodsari, M.S.; Shaabani, B.; Mirtamizdoust, B.; Dušek, Michal; Fejfarová, Karla

    2015-01-01

    Roč. 25, č. 5 (2015), s. 1226-1232 ISSN 1574-1443 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : nano coordination compound * sonochemical method * intramolecular proton transfer * nano bismuth oxide * isoniazid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.308, year: 2015

  3. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  4. Synthesis and Mechanical Properties Investigation of Nano TiO2/Glass/Epoxy Hybrid Nanocomposite

    Hamid Reza Salehi

    2015-10-01

    Full Text Available Mechanical properties of epoxy and glass/epoxy filled with 0.25, 0.5 and 1 vol% of TiO2 nanoparticles have been studied using tensile and three-point bending tests. For the TiO2/epoxy nanocomposites, the results showed that the strength and stiffness were improved, though the strain at ultimate strength point and breaking strain decreased. Moreover, the hybrid nanocomposites composed of 4 layers of woven E-glass fabric and TiO2/epoxy matrix were fabricated and cut onaxis and 45° off-axis by water jet. The results of tensile and three-point bending tests indicated a remarkable improvement in the strength and stiffness that could not be related to the mechanical improvement of the matrix. The samples containing 1 vol% nano TiO2 were improved relative to samples without the nanoparticles. The tensile strength of the on-axis and off-axis samples containing 1 vol% TiO2 increased by about 25.9% and 17.9%, in the order given, compared to that of the glass/epoxy specimens. In three-point bending test, the strength of the on-axis and off-axis specimens was improved 26% and 23.2%, respectively. In addition, the tensile stiffness of the onaxis and off-axis samples containing 1 vol% TiO2 increased, respectively, by about 14.4% and 17.5% compared to that of the glass/epoxy specimens. Also for the same on-axis and off-axis samples the three-point bending stiffness increased about 19.8% and 14.6%, respectively. The whole investigation on the microstructure of the hybrid nanocomposites illustrated that stronger interfaces between the fiber and TiO2/epoxy matrix were formed and improvement was noticed on mechanical properties of ternary composite compared to those of the fiber/epoxy composites. The analysis of damage zones of hybrid nanocomposites showed that the surface area of the damaged zone declined considerably due to the brittle behavior of TiO2-filled specimens but the area below the stress-strain curve, showing energy absorption during the test

  5. Synthesis, structure, morphology and stoichiometry characterization of cluster and nano magnetite

    Singh, L. Herojit; Pati, S.S. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Guimarães, Edi M. [Institute of Geoscience, University of Brasilia, 70910-900, Brasilia, DF (Brazil); Rodrigues, P.A.M.; Oliveira, Aderbal C. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Garg, V.K., E-mail: vijgarg@gmail.com [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil)

    2016-08-01

    We have studied the stoichiometry of magnetite nanoparticles using three spectroscopic techniques: Mössbauer, photoacoustic and ferromagnetic resonance (FMR). By varying the weight ratio of the Fe precursor to the reducing agent (sodium acetate) and a post-synthesis annealing, we were able to synthesize samples with different amounts of Fe vacancies, from stoichiometric Fe{sub 3}O{sub 4} to γ-Fe{sub 2}O{sub 3}. By synthesizing magnetite in the presence of zeolite we obtained nanoparticles within the 3–10 nm diameter range. The spectroscopic results show that there is a correlation between the amount of Fe vacancies and (i) the optical absorption and (ii) the g-values from the Electron paramagnetic resonance EPR spectra of the nanoparticles. - Highlights: • Magnetite nanoparticles and cluster synthesized. • Photoacoustic spectroscopy is effective in determining the stoichiometry. • Particles with 9 nm size has 0 < δ < 0.14. • Less than 9 nm gives 0.14 < δ < 0.3 and size <3 nm have δ = 0.33 (i.e. γ-Fe{sub 2}O{sub 3}).

  6. Solution Combustion Preparation Of Nano-Al2O3: Synthesis and Characterization

    M. Farahmandjou

    2015-06-01

    Full Text Available The aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. The paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.Aluminum oxide (Al2O3 nanoparticles were synthesized by aluminum nitrate 9-hydrate as precursor and glycine as fuel. The samples were characterized by high resolution transmission electron microscopy (HRTEM, field effect scanning electron microscopy (FESEM, X-ray diffraction (XRD and electron dispersive spectroscopy (EDS. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD technique was used to identify α-alumina. The diameter of sphere-like as-prepared nanoparticles was about 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. Absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.65 ev and the bandgap energy increased with increasing annealing temperature because of reducing the size.

  7. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  8. Synthesis, characterization and liquefied petroleum gas (LPG) sensing properties of WO3 nano-particles

    Singh, Subhash; Majumder, S. B.

    2018-05-01

    Metal oxide sensors, such as ZnO, SnO2, and WO3 etc. have been utilized for several decades for low-costd etection of combustible and toxic gases. In the present work tungsten oxide (WO3) nanoparticles have been prepared by using an economic wet chemical synthesis route. To understand the phase formation behavior of the synthesized powders, X-ray diffraction analysis has been performed. The microstructure evolution of the synthesized powders was characterized by field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The calcined phase pure WO3 nanoparticles are investigated in terms of LPG gas sensing properties. The gas sensing measurements has been done in two different mode of operation (namely static and dynamic measurements). The degree of oxygen deficiency in the WO3 sensor also affected the sensor properties and the optimum oxygen content of WO3 was necessary to get high sensitivity for LPG. The WO3 sensor shows the excellent sensor properties for LPG at the operating temperature of 250°C.

  9. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  10. Synthesis and characterization of Ag@Cu nano/microstructure ordered arrays as SERS-active substrates

    Zhang, Pinhua; Cui, Guangliang; Xiao, Chuanhai; Zhang, Mingzhe; Chen, Li; Shi, Changmin

    2016-06-01

    We fabricated an Ag decorated Cu (Ag@Cu) nano/microstructure ordered array by facile template-free 2D electrodeposition combined with a galvanic reduction method for SERS applications. The Cu nano/microstructure ordered arrays were first synthesized by a 2D electrodeposition method, then Ag nanocubes were decorated on the arrays by galvanic reduction without any capping agent. The pollution-free surface and edge-to-face heterostructure of Ag nanocubes and Cu nano/microstructure arrays provide the powerful field-enhancements for SERS performance. The results verified that the Ag@Cu nano/microstructure ordered arrays have excellent activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10-8 M. Therefore, this facile route provides a useful platform for the fabrication of a SERS substrate based on nano/microstructure ordered arrays.

  11. SYNTHESIS AND CORROSION PROTECTION BEHAVIOR OF EPOXYTiO2-MICACEOUS IRON OXIDE NANO - COMPOSITE COATING ON St-37

    M. R. Khorram

    2016-03-01

    Full Text Available The micro layers micaceous iron oxide and nano-TiO 2 were incorporated into the epoxy resin by mechanical mixing and sonication process. Optical micrographs showed that the number and diameter size of nanoparticle agglomerates were decreased by sonication. The structure and composition of the nanocomposite was determined using transmission electron microscopy which showed the presence of dispersed nano-TiO 2 in the polymer matrix. The anticorrosive properties of the synthesized nano-composites coating were investigated using salt spray, electrochemical impedance spectroscopy and polarization measurement. The EIS results showed that coating resistance increased by addition of micaceous iron oxide micro layers and nano-TiO 2 particles to the epoxy coatings. It was observed that higher corrosion protection of nanocomposite coatings obtained by the addition of 3 %wt micaceous iron oxide and 4%wt nano-TiO 2 into epoxy resin.

  12. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  13. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  14. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Faghihi, K.; Ashouri, M.; Feyzi, A.

    2013-01-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  15. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: k-faghihi@araku.ac.ir [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)

    2013-08-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  16. Synthesis of uniform nano-structured lead oxide by sonochemical method and its application as cathode and anode of lead-acid batteries

    Karami, Hassan; Karimi, Mohammad Ali; Haghdar, Saeed

    2008-01-01

    This paper discusses the results of a research aimed at investigating the synthesis of nano-structured lead oxide through reaction of lead nitrate solution and sodium carbonate solution by the sonochemical method. At the first, lead carbonate was obtained in a synthesized solution and then, after filtration, it was calcinated at the temperature of 320 deg. C so that nano-structured lead oxide can be produced. The effects of different parameters on particle size and morphology of final lead oxide powder were optimized by a 'one at a time' method. The prepared lead oxide powder was characterized by scanning electron microscopy (SEM), transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Under optimum conditions, uniformed and homogeneous nano-structured lead oxide powder with more spongy morphology and particle size of 20-40 nm was obtained. The synthesized lead oxide, as anode and cathode of lead-acid batteries, showed an excellent discharge capacity (140 mA h/g)

  17. Synthesis and characterization of carbon nano fibers for its application in the adsorption of toxic gases; Sintesis y caracterizacion de nanofibras de carbono para su aplicacion en la adsorcion de gases toxicos

    Juanico L, J.A

    2004-07-01

    The production of carbon nano fibers (CNF's) by diverse techniques as the electric arc, laser ablation, or chemical deposition in vapor phase, among other, they have been so far used from final of the 90's. However, the synthesis method by discharge Glow arc of alternating current and high frequency developed by Pacheco and collaborators, is a once alternative for its obtaining. In the plasma Application Laboratory (LAP) of the National Institute of Nuclear Research (INlN) it was designed and manufactured a reactor of alternating current and high frequency that produces a Glow arc able to synthesize carbon nano fibers. Its were carried out nano fibers synthesis with different catalysts to different proportions and with distinct conditions of vacuum pressure and methane flow until obtaining the best nano fibers samples and for it, this nano structures were characterized by Scanning and Transmission Electron Microscopy, X-ray Diffraction, Raman spectrometry and EDS spectrometry. Once found the optimal conditions for the nano fibers production its were contaminated with NO{sub 2} toxic gas and it was determined if they present adsorption, for it was used the thermal gravimetric analysis technique. This work is divided in three parts, in the first one, conformed by the chapters 1, at the 3, they are considered the foundations of the carbon nano fibers, their history, their characteristics, growth mechanisms, synthesis techniques, the thermal gravimetric analysis principles and the adsorption properties of the nano fibers. In the second part, consistent of the chapters 4 and 5, the methodology of synthesis and characterization of the nano fibers is provided. Finally, in third part its were carried out the activation energy calculation, the adsorption of the CNF's is analyzed and the conclusions are carried out. The present study evaluates the adsorption of environmental gas pollutants as the nitrogen oxides on carbon nano fibers at environmental or near

  18. Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3

    Gunda, Rajitha; Madireddy, Buchi Suresh; Dash, Raj Kishora

    2018-02-01

    In the present work, graphite was processed to graphene oxide (GO) using modified Hummer's method by volumetric titration approach, without attaining zero temperature and the addition of toxic chemicals (NaNO2/NaNO3). The complete oxidation of graphite to graphene oxide was obtained by controlled addition (volumetric titration) of KMnO4. The addition of higher KMnO4 resulted in partial oxidation and 2-3 mono-layers with less defects/disordered structure of reduced graphene oxide (RGO) sheets were achieved. Samples were analyzed by XRD, FT-IR, Raman analysis, and TEM analysis. X-ray diffraction displayed the oxidized peak of graphene oxide at 11.9° and reduced graphene oxide at 23.8°. The prolonged stability of the synthesized GO with lower mole ratios of oxidizing agent was confirmed from UV-visible spectroscopy. Based on the results, processed graphene oxide is found to be a candidate material for thermally stable capacitor application.

  19. Synthesis of Barium Titanate (BT) Nano Particles via Hydrothermal Route for the Production of BT-Polymer Nanocomposite

    Habib, A.; Haubner, R.; Jakopic, G.; Stelzer, N.

    2007-08-01

    Barium titanate (high-k dielectric material) nano-powders (approx. 30 nm to 60 nm) were synthesised using hydrothermal route under moderate conditions. Effect of temperature and time was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction techniques. Obtained barium titanate nano-powders were dispersed in thermoplastic polymethyl methacrylate (PMMA) to get homogeneous dispersions. Thin layers were obtained using these dispersions to achieve BaTiO3 endorsed polymer layers by dip-coating for improved polymer insulators on various substrates e.g., glass, and Au sputtered silicon wafers. SEM and focused ion beam (FIB) techniques were used to study the dispersion of barium titanate nano-particles in PMMA. The layers obtained showed homogenous distribution of BaTiO3 nano particles with no agglomeration.

  20. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries.

    Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Liu, Chueh; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-07-08

    Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO₂ source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.

  1. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  2. Editorial Emerging Multifunctional Nano structures

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  3. Sustainable Applications of Nano-Catalysts and Alternative Methods in the Greener Synthesis and Transformations of Chemical

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  4. Sustainable Biomimetic Approach to Nanomaterials and Applications of Nano-Catalysts in Green Synthesis and Environmental Remediation.

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  5. Metal Particles – Hazard or Risk? Elaboration and Implementation of a Research Strategy from a Surface and Corrosion Perspective

    Midander, Klara

    2009-01-01

    Do metal particles (including particles of pure metals, alloys, metal oxides and compounds) pose a hazard or risk to human health? In the light of this question, this thesis summarizes results from research conducted on metal particles, and describes the elaboration and implementation of an in vitro test methodology to study metal release from particles through corrosion and dissolution processes in synthetic biological media relevant for human exposure through inhalation/ingestion and dermal...

  6. Synthesis and Photocatalytic Properties of Reduced Graphene Oxides Loaded-nano ZnS/CuS Heterostructures

    ZENG Bin

    2017-12-01

    Full Text Available The reduced graphene oxides(rGO loaded-nano ZnS nanoparticles were fabricated by microwave heating method and by ion exchanged reaction reduced graphene oxides(rGO loaded-nano ZnS/CuS heterostructures were obtained. The structure, morphology were characterized via scanning electron microscopy(SEM, transmission electron microscopy(TEM and X-ray diffraction pattern(XRD. The effect of the mass fraction of graphene oxides, sulfur source and microwave heating time on the morphology and photocatalyitc performance were discussed. The results show that graphene uniformly loaded-nano ZnS/CuS heterostructures are obtained on the condition of graphene mass fraction of 10%, thioacetamide acting as sulfur source, microwave heating time is 30min. rGO-loaded nano ZnS/CuS heterostructures nanoparticles enhance photocatalytic performance with 81.2% decomposition of MO in 150min under visible light, demonstrating the excellent photocatalytic performance. The high visible photocatalytic performances are attributed to photoinduced interfacial charge transfer in the nano heterostructures and their further separation and transfer by rGO.

  7. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-01-01

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb"2"+ and Cd"2"+ onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe_3O_4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe_3O_4@PAA-HEDred nanoparticles were tested as sorbent for Pb"2"+ and Cd"2"+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe_3O_4 nanoparticles and a nanosystem with disulfide groups (Fe_3O_4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials

  8. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    Odio, Oscar F. [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro-Nanotecnologías, IPN, 07738 México City (Mexico); Palacios, Elia Guadalupe [Instituto Politécnico Nacional, ESIQIE, UPALM Zacatenco, 07738 México City (Mexico); Martínez, Ricardo [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Reguera, Edilso, E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico)

    2016-11-15

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb{sup 2+} and Cd{sup 2+} onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe{sub 3}O{sub 4}@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe{sub 3}O{sub 4}@PAA-HEDred nanoparticles were tested as sorbent for Pb{sup 2+} and Cd{sup 2+} cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe{sub 3}O{sub 4} nanoparticles and a nanosystem with disulfide groups (Fe{sub 3}O{sub 4}@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high

  9. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings

    Sui, Yulei; Liu, Qingxia; Jiang, Tao; Guo, Yufeng

    2018-01-01

    In this work, highly pure nano-TiO2 photocatalysts with varying Fe doping concentration were successfully synthesized from low-cost Ti-bearing tailings by an acidolysis-hydrothermal route. The effects of H2SO4 concentration, leaching temperature, acid/tailings ratio and leaching time on the recovery of TiO2 from the tailings were investigated. Synthesized samples were characterized by XRD, TEM, EDS, XPS, and UV-vis spectroscopy. The results showed that the material prepared is characteristic anatase with the average size of 20 nm and the Fe doping concentration in the synthesized nano-TiO2 is tunable. The photocatalytic activity of synthesized nano-TiO2 photocatalyst was also evaluated by the photodegradation of Rhodamine B under visible light and UV light irradiation. Our study demonstrates a low-cost approach to synthesize highly efficient and visible light responsive catalysts.

  10. Synthesis, characterization and in vitro/in vivo evaluation of novel reduction-sensitive hybrid nano-echinus-like nanomedicine.

    Wang, Kaili; Guo, Chunjing; Zou, Shaohua; Yu, Yueming; Fan, Xinxin; Wang, Bingjie; Liu, Mengna; Fang, Lei; Chen, Daquan

    2018-04-27

    To remedy the problems resulting from the usage of anti-cancer drugs in cancer chemotherapy, such as deficient drug concentration in tumour cells, low water-solubility and non-specific distribution of antitumour drugs, a kind of reduction-sensitive polymer prodrug of curcumin (Cur) containing in the nano-echinus was synthesized and designed. The nano-echinus-like nanomedicine presented synergistic effect with glycyrrhetic acid (GA) and oligomeric hyaluronic (HA) for targeting and combating HepG2 human liver cancer cell. Firstly, a kind of small molecular prodrug of Cur, dithiodipropionic acid-Cur (-SS-Cur), was chemically conjugated onto the side chain of the conjugated glycyrrhetic acid- oligomeric hyaluronic (GA-HA) to generate an amphiphilic polymeric prodrug of Cur, GA-HA-SS-Cur. The obtained GA-HA-SS-Cur prodrug and subsidiary material mPEG-DSPE could self-assemble into a sea urchin-like micelles in aqueous media and release Cur rapidly in response to glutathion (GSH). Then, Cur was loaded into the nano-echinus with a particle size of (118.1 ± 0.2 nm) and drug-loading efficiency of (8.03 ± 2.1%). The structure of GA-HA-SS-Cur was characterized by 1 H-NMR in this report. The morphology of micelles was observed with a transmission electron microscope (TEM). Subsequently, the reduction-sensitivity of the nano-echinus was confirmed by the changes in in-vitro drug release after different concentrations of GSH treatment. Besides, the cellular uptake behaviour and MTT assays of the nano-echinus were investigated, suggesting that the nano-echinus was of desirable safety and could be taken into HepG2 cells in a time-dependent manner. Later, anti-tumour efficacy in vivo revealed the effective inhibition of tumour growth.

  11. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  12. Synthesis and characterization of nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion

    Zhou, Jianhua, E-mail: zhoujianh@21cn.com [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China); Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021 (China); Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong [College of Resource and Environment, Shaanxi University of Science and Technology, Xi’an 710021 (China)

    2015-03-15

    Graphical abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was synthesized by emulsifier-free emulsion polymerization and sol–gel process using ethyl silicate as precursor for nano-SiO{sub 2}. - Highlights: • Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. • The contact angle results showed that the finished fabric had an excellent water and oil repellency. • The nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. • The transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. • The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film–air interface. - Abstract: Nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol–gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO{sub 2} modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO{sub 2} presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer

  13. Cytokine secretion from human peripheral blood mononuclear cells cultured in vitro with metal particles.

    Cachinho, Sandra C P; Pu, Fanrong; Hunt, John A

    2013-04-01

    The failure of implanted medical devices can be associated with changes in the production of cytokines by cells of the immune system. Cytokines released by peripheral blood mononuclear cells upon contact with metal particles were quantified to understand their role in implantation intergration and their importance as messengers in the recruitment of T-lymphocytes at the implantation site. Opsonization was utilised to understand the influence of serum proteins on particle-induced cytokine production and release. Different metal compositions were used in the particulate format, Titanium (Ti), Titanium alloy (Ti6Al4V), and Stainless Steel 316L (SS), and were cultured in vitro with a mixed population of monocytes/macrophages and lymphocytes. The cells were also exposed to an exogenous stimulant mixture of phytohemagglutinin-P and interferon-gamma (IFN-γ) and opsonized particles with human serum. Interleukins, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IFN-γ, and tumor necrosis factor-alpha (TNF-α) were investigated using enzyme-linked immunosorbent assay as they are an indicator of the inflammation evoked by particulate metals. It has been experimentally evidenced that metal particles induced higher amounts of IL-6 and IL-1 but very low amounts of TNF-α. T-lymphocyte activation was evaluated by the quantification of IL-2 and IFN-γ levels. The results showed that nonopsonized and opsonized metal particles did not induce the release of increased levels of IL-2 and IFN-γ. Copyright © 2013 Wiley Periodicals, Inc.

  14. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  15. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  16. Dimerization of eosin on nanostructured gold surfaces: Size regime dependence of the small metallic particles

    Ghosh, Sujit Kumar; Pal, Anjali; Nath, Sudip; Kundu, Subrata; Panigrahi, Sudipa; Pal, Tarasankar

    2005-08-01

    Gold nanoparticles of variable sizes have been exploited to study their influence on the absorption and emission spectral characteristics of eosin, a fluorescent dye. It has been found that smaller particles of gold stimulate J-aggregation of eosin on the surface of metal particles whereas larger particles cannot induce any kind of aggregation amongst the dye molecules. The size regime dependence of the gold nanoparticles has been attributed to the intercluster interactions induced by the dye molecules for smaller gold nanoparticles and consequently, close packing of the dye molecules around the gold surface engenders intermolecular interactions amongst the dye molecules leading to dimerization.

  17. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  18. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis

    Pulišová, Petra; Kováč, J.; Voigt, A.; Raschman, P.

    2013-01-01

    Roč. 341, september (2013), s. 93-99 ISSN 0304-8853 Institutional support: RVO:61388980 Keywords : Precipitation in microemulsion s * Ferrite nano-powder * Magnetic properties * ZFC * FC measurements Subject RIV: CA - Inorganic Chemistry Impact factor: 2.002, year: 2013

  19. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  20. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs

    2014-01-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solutio...

  1. Synthesis and characterization of polypropylene/graphite nano composite preparation for in situ polymerization; Sintese e caracterizacao de nanocompositos polipropileno/grafite obtidos pela polimerizacao in situ

    Montagna, L.S.; Fim, F. de C.; Galland, G.B. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica; Basso, N.R.S., E-mail: nrbass@pucrs.b [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2010-07-01

    This paper presents the synthesis of polypropylene/graphite nanocomposites through in situ polymerization, using the metallocene catalyst C{sub 20}H{sub 16}Cl{sub 2}Zr (dichloro(rac-ethylenebis(indenyl))zircon(IV)). The graphite nanosheets in nano dimensions were added to the polymer matrix in percentages of 0.6;1.0;4.2;4.8 and 6.0% (w/w). The TEM images indicated that the thickness of graphite nanosheets ranged from 4 to 60 nm and by means of XRD analysis it was observed that the physical and chemical treatment did not destroyed the graphite layers. The presence of nanosheets did not decrease the catalytic activity of the nanocomposites. TEM images and XRD analysis of nanocomposites showed a good dispersion of the graphite nanosheets in the polypropylene matrix. (author)

  2. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  3. Microwave Assisted Synthesis of ZnO Nanoparticles: Effect of Precursor Reagents, Temperature, Irradiation Time, and Additives on Nano-ZnO Morphology Development

    Gastón P. Barreto

    2013-01-01

    Full Text Available The effect of different variables (precursor reagents, temperature, irradiation time, microwave radiation power, and additives addition on the final morphology of nano-ZnO obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by field emission scanning electron microscopy (FE-SEM in transmission mode, infrared (FTIR, UV-Vis spectroscopy, and powder X-ray diffraction (XRD. The results showed that all the above-mentioned variables influenced to some extent the shape and/or size of the synthetized nanoparticles. In particular, the addition of an anionic surfactant (sodium di-2-ethylhexyl-sulfosuccinate (AOT to the reaction mixture allowed the synthesis of smaller hexagonal prismatic particles (100 nm, which show a significant increase in UV absorption.

  4. Synthesis, Characterization and in Vitro Antibacterial Activities of CdO Nanoparticle and Nano-sheet Mixed-ligand of Cadmium(ІІ Complex

    Zohreh Rashidi Ranjbar

    2016-07-01

    Full Text Available Here, we report the synthesis of a Schiff-base mixed-ligand complex of cadmium(ІІ in bulk and nano-scales via the precipitation and sonochemical methods, respectively. The complex formula is [Cd(3-bpdh(3-bpdbCl2]n (1, where the ligands are 3-bpdh = 2,5-bis(3-pyridyl-3,4-diaza-2,4-hexadiene and 3-bpdb = 1,4-bis(3-pyridyl-2,3-diaza-1,3-butadiene. The structure of mixed-ligand complex (1 was characterized by IR, 1H NMR and elemental analyses. Cadmium(ІІ oxide nanoparticles were prepared by direct thermolysis from nanosheet of complex (1. The cadmium(ІІ oxide structure was characterized by X-ray Diffraction (XRD and Energy Dispersive X-ray  analyses (EDAX. Size, morphology and structural dispersion of all obtained nanostructures were characterized by Scanning Electron Microscopy (SEM. The Schiff-base ligands, bulk and nano-scales of complex (1 and cadmium(ІІ oxide nanoparticles were analyzed for antibacterial activities against Bacillus alvei (bacteria causing the honey bee European foulbrood disease. The Minimum Inhibitory Concentrations (MIC has been shown moderate antibacterial activities compared with some other standard drugs. Known antibiotics like penicillin and SXT (Trimethoprim/sulfamethoxazole were used as positive control.

  5. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  6. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  7. Metallic particles into mechanical and hydraulic systems in agricultural and construction machines

    Silva, Jair Rosas da; Silva, Deise Paula da [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Centro de Engenharia Agricola; Bormio, Marcos Roberto [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia

    2008-07-01

    The lubricant oil analysis are an indicator of the conditions how the lubricant is, may to allow the prevision of damages that occurred into machine due to the internal abrasion of hydraulic and mechanical components of the machines. The present study had the objective to determine the kind and quantity of the metallic particles that occurred into the lubricant oil of the mechanical and hydraulic compartments of the energy transmission systems of three kinds of machines: a tracked-tractor, a sugarcane harvester and a group of power-shovels. The metallic particles presents into these compartments were determined under laboratory tests and concerning to the following elements: iron, copper, chromium, lead, nickel, aluminum, silex, tin and molybdenum. About to the tracked-tractor, the metallic contaminators into to the oil charges surpasses the tolerate levels, considering the technical standards adopted in this evaluation. In the sugarcane harvester only a metallic element in excess was identified and, in a power-shovel group it was showed the need to correct air false entrances in the hydraulic or mechanical systems due the high presence of silex element. (author)

  8. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  9. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides); Synthese assistee par faisceau d'ions d'agregats dans les verres (argent et chalcogenures de plomb)

    Espiau de Lamaestre, R

    2005-04-15

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  10. Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nano-{beta}-TCP synthesized via microwave treatment

    Abdel-Fattah, Wafa I; Elkhooly, Tarek A, E-mail: nrcfifi@yahoo.co [Department of Biomaterials, National Research Center, Cairo (Egypt)

    2010-06-01

    The degradation and/or apatite layer precipitation ability of porous {beta}-tricalcium phosphate ({beta}-TCP) samples treated and untreated with microwave radiation during synthesis is investigated. Microwave heating was used to accelerate the formation of CDHA with the Ca/P ratio 1.5 in a shorter processing time which later forms {beta}-TCP at around 650 {sup 0}C. Soaking in simulated body fluid (SBF) for several periods (4, 8, 12, 24, 36, 48, 60 and 72 h) is performed in a cumulative manner. The deposition of an apatite layer is followed through diffuse reflected FT-IR, SEM and EDS. A microwave-treated sample having a smaller particle size than its parent induces the formation of a homogeneous carbonated apatite layer on its surface. On the other hand, the parent {beta}-TCP sample exhibited less ability to induce Ca-P formation after being soaked in SBF. The formation of an apatite layer is attributed to the increase in surface area consequent to reduced particle and grain sizes besides the presence of a minor amount of hydroxyapatite phase in the microwave-treated {beta}-TCP sample. The results prove that it is possible to control the biodegradation and apatite layer formation on sintered {beta}-TCP porous disks through controlling the particle size.

  11. Dwell-time effect on the synthesis of a nano-structured material in water by using Ni wire explosion

    Eom, Gyu Sub; Kwon, Hyeok Jung; Cho, Yong Sub; Paek, Kwang Hyun; Joo, Won Tae

    2014-01-01

    Nickel nano-structured materials are synthesized by using a wire explosion in water. Based on an analysis of each step of the wire explosion, we propose insufficient energy deposition before a plasma restrike as the cause for the inclusion of coarse particles in the wire-explosion product. We confirmed that more energy, in excess of 30%, could be deposited by increasing the dwell time, which resulted from a compression of vapor by the surrounding water and from suppression of plasma restrikes. Because of an increased energy loss into the surrounding water, the specific energy increased by two-fold compared to a gas atmosphere. The synthesized nano-structured nickel showed a uniform particle size of 20 nm with a few coarse particles that were mainly metallic nickel with a little oxide and hydroxide phases. The possibility for large-volume production through a continuous explosion of 300 shots was confirmed.

  12. Combustion synthesis by reaction and characterization of nano ferrites: study of fuel aniline, citric and its mixture

    Silva, M.C. da; Coutinho, J.P.; Costa, A.C.F.M.; Kiminami, R.H.G.A.; Freitas, N.L. de

    2012-01-01

    The present study aims to evaluate the influence of aniline and citric acid used alone and combined in a ratio of 50% each in the characterization of NiZn ferrite synthesized by combustion reaction method in a muffle furnace. Measurements were made of temperature and reaction time. The nano-powders were characterized by XRD, EDX, textural analysis and SEM. The highest temperature was achieved by the reaction using the mixture of fuel and increased reaction time using citric acid. The nano ferrites using different fuels, and the mixture changed phases, the crystallite size and decreased surface area of the samples with aniline, citric acid and a mixture of both, respectively. The powder morphology ranged from presenting the formation of irregular blocks for the use of citric agglomerated in the form of skeins with aniline and a mixture to agglomerate larger particles. (author)

  13. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method

    Shavandi, Amin, E-mail: amin.shavandi@postgrad.otago.ac.nz [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Bekhit, Alaa El-Din A. [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Ali, Azam [Department of Applied Sciences, University of Otago, Dunedin (New Zealand); Sun, Zhifa [Department of Physics, University of Otago, Dunedin (New Zealand)

    2015-01-15

    Nano-crystalline hydroxyapatite (HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) was produced from waste mussel shells using a rapid microwave irradiation method. Mussel shells were converted to rod like nano-crystalline HA particles of 30–70 nm long using 0.1 M EDTA as a chelating agent for 30 min after an appropriate pre-treatment and an irradiation step in a microwave with a power of 1.1 kW. The produced HA was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and inductively coupled plasma mass spectrometry (ICP-MS) to determine the morphology, particle size, crystal phases, elemental composition and thermal behaviour. Furthermore, to benchmark the synthesized HA obtained from mussel shells, it was compared with a commercially pure HA (Sigma–Aldrich). The thermal analysis showed that the synthesized HA has remarkable heat stability at 1000 °C, and the XRD and FTIR results showed a high purity of the synthesized HA powders. Compared to the conventional hydrothermal treatment, microwave-assisted method has the advantages of an increased rate of HA formation. The obtained HA have potential engineering applications as materials for bone-tissues. - Highlights: • Waste mussel shells were successfully converted to nano sized hydroxyapatite. • Microwave-assisted technique accelerated the conversion process. • The physicochemical properties of the produced hydroxyapatite are reported. • The prepared hydroxyapatite has nano sized particles of less than 100 nm.

  14. Synthesis of MoS₂ nano-petal forest supported on carbon nanotubes for enhanced field emission performance

    Murawala, Aditya P.; Loh, Tamie A. J.; Chua, Daniel H. C., E-mail: msechcd@nus.edu.sg [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-21

    We report the fabrication of a three-dimensional forest of highly crystalline two-dimensional (2D) molybdenum disulfide (MoS₂) nano-petals encapsulating vertically aligned carbon nanotubes (CNT) in a core-shell configuration. Growth was conducted via magnetron sputtering at room temperature and it was found that the nano-petal morphology was formed only when a critical threshold in sputter deposition time was reached. Below this threshold, an amorphous tubular structure composed of mainly molybdenum oxides dominates instead. The presence of the MoS₂ nano-petals was shown to impart photoluminescence to the CNTs, in addition to significantly enhancing their electron emission properties, where the turn-on field was lowered from 2.50 Vμm⁻¹ for pristine CNTs to 0.80 Vμm⁻¹ for MoS₂-CNT heterostructures fabricated at 30 min sputter deposition time. Photoluminescence was detected at wavelengths of approximately 684 nm and 615 nm, with the band at 684 nm gradually blue-shifting as sputter time was increased. These results demonstrate that it is possible to synthesize 2D MoS₂ layers without the need for chemical routes and high growth temperatures.

  15. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2014-02-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  16. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-01-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel–titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO 2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces. (paper)

  17. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  18. Design and Synthesis of Mono- and Bi-phasic Nano hybrids for Simultaneous Release of Two Active Agents

    Mohd Zobir Hussein; Abdul Rahman, N.S.S.; Siti Halimah Sarijo

    2011-01-01

    Organic-Inorganic nano hybrid materials, especially of host-guest types exhibit an excellent opportunity for a wide range of organic active agents for the formation of organic-inorganic nano hybrids which may find potential uses with tailor made application. A number of groups have studied the agrochemical intercalates of LDHs as potential reservoir and controlled release system. Agrochemicals, in particular herbicides such as 4-(2,4-dichlorophenoxy)butyrate (DPBA) and 2-(3- chlorophenoxy)propionate (CPPA) are commonly used in agriculture sector. Simultaneous incorporation of both phenoxy herbicides anions into Zn-Al-LDH (ZAL) have been successfully prepared by direct co-precipitation method, labeled as NCDD. Both anions were intercalated simultaneously into the inorganic ZAL interlayers and X-ray diffraction data reveal that the basal spacing increased from 8.9 to 25.1 Angstrom upon the intercalation. PXRD patterns of single anion intercalation using CPPA and DPBA labeled as NC and ND nano hybrid, respectively was simulated and found that the PXRD patterns composed of 90 % ND and 10 % NC and this show relatively similar PXRD features to that of NCDD nano hybrid. This indicates that NCDD is possibly composed of mixed phases of each of NC and ND. UV-VIS spectroscopy study shows the percentage loading of CPPA and DPBA is 2.5 % (w/w) and 41.4 % (w/w), respectively. These values are equivalent to about 5.7 % and 94.3 % contribution of CPPA and DPBA, which agree nicely with the values obtained from simulated PXRD patterns. The simultaneous release of the two herbicides from its nano hybrid exhibit different release kinetics, where DPBA shows higher percentage release than CPPA. The release process was found to be controlled by pseudo-second order kinetic. The results presented show that the intercalation and release of the dual herbicides are influenced by the anion size. The abundance of DPBA anion between the ZAL interlayer is due to its higher affinity towards LDH

  19. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  20. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling

    Rastogi, Shiva K., E-mail: srastogi@uidaho.edu [University of Idaho, Department of Chemistry (United States); Denn, Benjamin D.; Branen, A. Larry [University of Idaho, Coeur D' Alene, Biosensors and Nanotechnology Application Laboratory (BNAL) (United States)

    2012-01-15

    This study demonstrates a one versus two-step synthesis of fluorescent gold quantum dots (F-AuQDs) and nano clusters (F-AuNCs) functionalized with thiolated organic linkers using reduction of gold precursor in N,N Prime -dimethylformamide in 1 h of reaction. The F-AuQDs and F-AuNCs show fluorescence emission at 425 {+-} 5 nm upon excitation at 345 {+-} 5 nm of wavelength, with good water solubility and stability. Five different thiolated organic binary linkers consisting of various functional groups including: carboxylic acid, hydroxyl, and aromatic amine, were conjugated with the F-AuQDs and F-AuNCs. The formation mechanism and functionalization of the F-AuQDs and F-AuNCs was characterized using UV-vis absorption spectra, UV-vis light, fluorescent emission spectra, pH, TEM, and FTIR. The fluorescence emission of the F-AuQDs and F-AuNCs is greatly dependent on the thio-linker. This novel one-step approach provides facile and fast synthesis of F-AuQDs and F-AuNCs over the two-step method, with less than 5 h of reaction and workup compared to more than 28 h of reaction for the two-step approach. These thio-linker functionalized F-AuQDs and F-AuNCs have a wide application in fluorescent labeling of biomolecules, optical devices, imaging, energy transfer, and biosensing.

  1. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  2. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    Kumagai, Hiromu

    2015-01-22

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1, respectively, making them attractive in the use of catalysis and support. Although most of the TiN and NbN particles show no measurable activity for ammonia formation, the nanoparticles enabled an ammonia synthesis rate of 31 μmol h-1 g-cat-1 at 673 K and 0.1 MPa of synthesis gas (N2 + 3H2) for both TiN and NbN catalysts. It is evident that the formation of nanoparticles with high nitride surface area is essential for the materials to function as catalysts in ammonia synthesis. The addition of Fe to TiN enhanced the ammonia synthesis activity, whereas it had detrimental effects on the catalytic activity of NbN. The properties of these catalysts in ammonia synthesis are discussed.

  3. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  4. Is there a contraction of the interatomic distance in small metal particles?

    Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet

    1990-01-01

    A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...

  5. Radiation crosslinking of polymers with segregated metallic particles. Final report, June 1, 1971--September 30, 1973

    Corneliussen, R.D.; Kamel, I.; Kusy, R.P.

    1973-01-01

    Through the past four years of research, a new approach to fabricating conductive polymer/metal composites has been developed. This approach consists of compacting mixtures of polymer and metal powders and then stabilizing the composite through radiation-induced crosslinking. The result is a mechanically strong, conductive materials consisting of two intertwining networks. One is a massive network consisting of fused crosslinked, large (greater than 100 μ) polymer particles while the other is a fine network of small, metallic particles (greater than 10 μ). Nine different systems including crystalline, amorphous, and rubbery polymers were studied. Processing at this time is limited to compression molding in a closed die because of network stability problems. Costs for processing were estimated at about $6.00/lb compared to $50.00 and up for commercial material based on random networks. (U.S.)

  6. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  7. Numerical modelling of adsorption of metallic particles on graphite substrate via molecular dynamics simulation

    Rafii-Tabar, H.

    1998-01-01

    A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation related to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specially formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. (author)

  8. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  10. Characterization of typical metal particles during haze episodes in Shanghai, China.

    Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin

    2017-08-01

    Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis and study of nano-structured cellulose acetate based materials for energy applications; Synthese et etude de materiaux nanostructures a base d'acetate de cellulose pour applications energetiques

    Fischer, F

    2006-12-15

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO{sub 2} supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO{sub 2} are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm{sup -3} together with a meso-porous volume of 3,40 cm{sup 3}.g{sup -1} was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m{sup -1}.K{sup -1}. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  12. Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project

    Sara Bogren

    2015-08-01

    Full Text Available This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles.

  13. Electron beam synthesis of silica/nano silver composite and its application in controlling microorganisms in drinking water

    Ramnani, S.P.; Biswal, Jayashree; Sabharwal, S.; Rama Rao, K.C.; Sai Prasad, P.

    2008-01-01

    Silica/nano silver composites were prepared by electron beam (EB) irradiation technique. The solution containing silica nanoparticles and AgNO 3 in various proportion were subjected to EB irradiation. The EB dose delivered was such that all the Ag + is converted into metallic silver. The samples were characterized by XRD, SEM and TEM analysis. The composites were tested for their anti microbial activity in water samples. The results indicated that there is an optimum size of Ag nanoparticles that shows better antimicrobial activity. (author)

  14. Synthesis, characterization and photoluminescence properties of Dy{sup 3+}-doped nano-crystalline SnO{sub 2}

    Pillai, Sreejarani K.; Sikhwivhilu, Lucky M. [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Hillie, Thembela K., E-mail: thillie@csir.co.za [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Physics Department, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-04-15

    Nano-crystalline of tin oxide doped with varying wt% of Dy{sup 3+} was prepared using chemical co-precipitation method and characterised by various advanced techniques such as BET-surface area, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence measurements. Analytical results demonstrated that the nanocrystalline tin oxide is in tetragonal crystalline phase and doping with Dy{sup 3+} could inhibit the phase transformation, increases surface area and decreases the crystallite size. The experimental result on photoluminescence characteristics originating from Dy{sup 3+}-doping in nanocrystalline SnO{sub 2} reveals the dependence of the luminescent intensity on dopant concentration.

  15. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    Qiu Lingguang; Gu Lina; Hu Gang; Zhang Lide

    2009-01-01

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen) 2 (H 2 O) 2 ] 2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M 1 (H 2 O) 6 ].[M 2 (phen) 2 (H 2 O) 2 ] 2 .2(BTC).xH 2 O (M 1 , M 2 =Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit

  16. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    Ezzaldeen Younes Jomma

    2016-02-01

    Full Text Available In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability.

  17. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites.

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-20

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ∼25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m(-1) at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g(-1) at a current density of 2.2 A g(-1)), energy density (68.6 W h kg(-1)) and power density (1319 W kg(-1)) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge-discharge cycles.

  18. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  19. The Synthesis of Eu3+ Doped with TiO2 Nano-Powder and Application as a Pesticide Sensor

    Yao, Fei; Sun, Yang; Tan, Chunlei; Wei, Song; Zhang, Xiaojuan; Hu, Xiaoyun; Fan, Jun

    2011-01-01

    Using tetrabutyl titanate as precursor, Eu 3+ doped TiO 2 nano-powder was prepared by sol-gel method, the nature of luminescence of nano-powder was studied. The interaction of chlorpyrifos with Eu 3+ doped TiO 2 was studied by absorption and fluorescence spectroscopy. The results indicated the fluorescence intensity of Eu 3+ doped TiO 2 was quenched by chlorpyrifos and the quenching rate constant (kq) was 1.24Χ10 11 L/mol·s according to the Stern-Volmer equation. The dynamics of photoinduced electron transfer from chlorpyrifos to conduction band of TiO 2 nanoparticle was observed and the mechanism of electron transfer had been confirmed by the calculation of free energy change (ΔG et ) by applying Rehm-Weller equation as well as energy level diagram. A new rapid method for detection of chlorpyrifos was established according to the fluorescence intensity of Eu 3+ doped TiO 2 was proportional to chlorpyrifos concentration. The range of detection was 5.0Χ10 -10 -2.5Χ10 -7 mol/L and the detection limit (3σ) was 3.2Χ10 -11 mol/L

  20. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-01

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ˜25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m-1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g-1 at a current density of 2.2 A g-1), energy density (68.6 W h kg-1) and power density (1319 W kg-1) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ˜96% after 1000 charge-discharge cycles.

  1. Synthesis and application of multiple rods gold-zinc oxide nano structures in the photo catalytic degradation of methyl orange

    Arab Chamjangali, M.; Bagherian, G.; Bahramian, B.; Fahimi Rad, B.

    2015-01-01

    Zinc oxide and gold-zinc oxide (Au-Zn O) nano structures with multiple rods (multi pods) morphology were successfully prepared. Au-Zn O nano structures were synthesized via a simple precipitation route method in the presence of oligo aniline-coated gold nanoparticles. The Au-Zn O catalyst obtained was applied for the degradation of methyl orange in an aqueous solution under UV irradiation Effects of the operational parameters such as the solution p H, amount of photocatalyst, and dye concentration on the photo catalytic degradation and decolorisation of methyl orange were studied. Detailed studies including kinetic study and regeneration of catalyst were carried out on the optimal conditions for the photodegradation of methyl orange by Au-Zn O multi pods in aqueous solution. Effect of foreign species on the photodegradation of methyl orange was also studied. An enhancement of the photo catalytic activities for photodegradation of methyl orange was observed when the gold nanoparticles were loaded on the zinc oxide multi pods. The proposed catalyst was applied for the degradation of methyl orange in synthetic wastewater samples with satisfactory results.

  2. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kuila, Tapas; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-01

    Co 9 S 8 /reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co 9 S 8 nano-rods on the RGO surfaces. The average crystal size of the Co 9 S 8 nano rods grown on the RGO sheets were ∼25–36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co 9 S 8 /RGO composite was recorded as 1690 S m −1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co 9 S 8 /RGO composites. The Co 9 S 8 /RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g −1 at a current density of 2.2 A g −1 ), energy density (68.6 W h kg −1 ) and power density (1319 W kg −1 ) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge–discharge cycles. (paper)

  3. Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application

    Kumbhar, V.S.; Jagadale, A.D.; Shinde, N.M.; Lokhande, C.D.

    2012-01-01

    Highlights: ► The first time preparation of cobalt ferrite material in thin film form, using chemical method at low temperature. ► A nano-flake like morphology of the cobalt ferrite thin film. ► An application of the film as an electrode in supercapacitor cell. - Abstract: The present paper reveals the formation of cobalt ferrite (CoFe 2 O 4 ) thin film on stainless steel substrate by simple chemical route from an alkaline bath containing Co 2+ and Fe 2+ ions. The films are characterised for structural, surface morphological and FT-IR properties. The XRD and FT-IR studies revealed formation of single phase of CoFe 2 O 4 . The formation of nano-flakes-like morphology is observed from scanning electron microscope. The electrochemical behaviour of CoFe 2 O 4 film has been studied using cyclic voltammetry in 1 M NaOH electrolyte. The maximum specific capacitance of 366 F g −1 is obtained at the scan rate of 5 mV s −1 . Using AC impedance technique equivalent series resistance (ESR) value is found to be 1.1 Ω.

  4. Synthesis and Performance of an Acrylamide Copolymer Containing Nano-SiO2 as Enhanced Oil Recovery Chemical

    Zhongbin Ye

    2013-01-01

    Full Text Available A novel copolymer containing nano-SiO2 was synthesized by free radical polymerization using acrylamide (AM, acrylic acid (AA, and nano-SiO2 functional monomer (NSFM as raw materials under mild conditions. The AM/AA/NSFM copolymer was characterized by infrared (IR spectroscopy, 1H NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM. It was found that the AM/AA/NSFM copolymer exhibited higher viscosity than the AM/AA copolymer at 500 s−1 shear rate (18.6 mPa·s versus 8.7 mPa·s. It was also found that AM/AA/NSFM could achieve up to 43.7% viscosity retention rate at 95°C. Mobility control results indicated that AM/AA/NSFM could establish much higher resistance factor (RF and residual resistance factor (RRF than AM/AA under the same conditions (RF: 16.52 versus 12.17, RRF: 3.63 versus 2.59. At last, the enhanced oil recovery (EOR of AM/AA/NSFM was up to 20.10% by core flooding experiments at 65°C.

  5. Optimised synthesis of ZnO-nano-fertiliser through green chemistry: boosted growth dynamics of economically important L. esculentum.

    Jabeen, Nyla; Maqbool, Qaisar; Bibi, Tahira; Nazar, Mudassar; Hussain, Syed Z; Hussain, Talib; Jan, Tariq; Ahmad, Ishaq; Maaza, Malik; Anwaar, Sadaf

    2018-06-01

    Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.

  6. Synthesis of MnO nano-particle@Flourine doped carbon and its application in hybrid supercapacitor

    Qu, Deyu; Feng, Xiaoke [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei (China); Wei, Xi [School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei (China); Guo, Liping [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei (China); Cai, Haopeng, E-mail: cai_haopeng@whut.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei (China); Tang, Haolin [School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei (China); Xie, Zhizhong, E-mail: zhizhong_xie@163.com [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei (China)

    2017-08-15

    Highlights: • A Fluorine doped carbon encapsulated MnO nanoparticle material was fabricated through a self-assembly method. • Nafion ionomers was used as the fluorine and carbon precursor. • A lithium ion supercapacitor was assemblied by using MnO@FC and porous carbon. • A stable energy density as well as superior cycling stability were demonstrated in this hybrid system. - Abstract: A flourine doped carbon materials encapsulated MnO nano-particle was synthesized through a self-assembly method. The MnO nano-crystal covered with a thin layer of graphite were achieved. This hybrid MnO/carbon materials were employed as negative electrode in a new lithium ion hybrid supercapacitor, while the electrochemical double-layer porous carbon served as positive electrode. The electrochemical performances of this hybrid device were investigated and exhibited relative high capacity upto 40 mAh g{sup −1} in an applied current of 200 mAh g{sup −1}, good rate performance as well as superior cycling stability.

  7. Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions

    Yum, Eul Kgun; Yang, Okkyung; Kim, Jieun; Park, Hee Jank [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-09-15

    We have developed a one-step synthesis of benzofurans from o-iodophenol and various terminal alkynes, by using Pd catalyst supported on nano-sized carbon balls (NCB) under copper- and ligand free conditions. This recyclable catalyst could be reused more than 5 times in the same heteroannulation reaction. The results have demonstrated that diverse 2-substituted benzofurans with tolerant functional groups can be prepared simply and conveniently under these conditions.

  8. Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions

    Yum, Eul Kgun; Yang, Okkyung; Kim, Jieun; Park, Hee Jank

    2013-01-01

    We have developed a one-step synthesis of benzofurans from o-iodophenol and various terminal alkynes, by using Pd catalyst supported on nano-sized carbon balls (NCB) under copper- and ligand free conditions. This recyclable catalyst could be reused more than 5 times in the same heteroannulation reaction. The results have demonstrated that diverse 2-substituted benzofurans with tolerant functional groups can be prepared simply and conveniently under these conditions

  9. Synthesis of new oxindole derivatives containing benzothiazole and thiazolidinone moieties using nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) as catalyst

    BAHARFAR, ROBABEH; SHARIATI, NARGES

    2015-01-01

    A facile one-pot synthesis of novel oxindole derivatives bearing benzothiazolylmethyl-2-thioxothiazolidin-4-one was accomplished via one-pot reaction of 5-oxoindolinylidene rhodanine-3-acetic acid derivatives, 2-aminothiophenol, and triphenyl phosphite in the presence of tetrabutylammonium bromide (TBAB) and nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) as heterogeneous reusable nanocatalyst. The target compounds were obtained in excellent yields (...

  10. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    Kumagai, Hiromu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2015-01-01

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1

  11. Cobalt–iron nano catalysts supported on TiO{sub 2}–SiO{sub 2}: Characterization and catalytic performance in Fischer–Tropsch synthesis

    Feyzi, Mostafa, E-mail: Dalahoo2011@yahoo.com [Faculty of Chemistry, Razi University, P. O. Box: +98-67149, Kermanshah (Iran, Islamic Republic of); Yaghobi, Nakisa; Eslamimanesh, Vahid [Iran Polymer and Petrochemical Institute, P. O. Box: +98- 14965 Tehran, Iran, (Iran, Islamic Republic of)

    2015-12-15

    Graphical abstract: The Co–Fe/TiO{sub 2}–SiO{sub 2} catalysts were prepared. The prepared catalysts were tested for light olefins and C{sub 5}–C{sub 12} production. The best operational conditions are 250 °C, H{sub 2}/CO = 1/1 under 5 bar pressure. - Highlights: • The TiO{sub 2}–SiO{sub 2} supported cobalt–iron catalysts were prepared via sol–gel method. • The best operational conditions were 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO = 1/1 and 5 bar. • The (Co/Fe)/TiO{sub 2}–SiO{sub 2} is efficient catalyst for light olefins and C{sub 5}–C{sub 12} production. - Abstract: A series of Co–Fe catalysts supported on TiO{sub 2}–SiO{sub 2} were prepared by the sol–gel method. This research investigated the effects of (Co/Fe) wt.%, the solution pH, different Co/Fe molar ratio, calcination conditions and different promoters on the catalytic performance of cobalt–iron catalysts for the Fisher–Tropsch synthesis (FTS). It was found that the catalyst containing 35 wt.% (Co–Fe)/TiO{sub 2}–SiO{sub 2} (Co/Fe molar ratio is 80/20) promoted with 1.5 wt.% Cu and calcined in air atmosphere at 600 °C for 7 h with a heating rate of 3 °C min{sup −1} is an optimal nano catalyst for converting synthesis gas to light olefins and C{sub 5}–C{sub 12} hydrocarbons. The effects of operational conditions such as the H{sub 2}/CO ratio, gas hourly space velocity (GHSV), different reaction temperature, and reaction pressure were investigated. The results showed that the best operational conditions for optimal nano catalyst are 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO molar ratio 1/1 under 5 bar total pressure. Catalysts and precursors were characterized by, X-ray diffraction (XRD), scanning electron microcopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), temperature program reduction (TPR) and N{sub 2} adsorption–desorption measurements.

  12. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO{sub 4}] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania); Lee, Byeong Kyu [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-30

    Graphical abstract: A possible pathway for immobilization with the nano-Fe/Ca/CaO/[PO{sub 4}] treatment (a) {sup 133}Cs is adsorbed onto the soil particles, (b) Cs encapsulation through the formation of immobile salts, and (c) solid (small/finer or larger/aggregate) soil fraction separation. - Highlights: • Nano-Fe/Ca/CaO/[PO{sub 4}] composite for Cs immobilization in soil was developed. • Enhanced cesium separation and immobilization was done in dry condition. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • Nano-Fe/Ca/CaO/[PO{sub 4}] a highly potential amendment for the remediation of Cs. - Abstract: This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO{sub 4}], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant {sup 133}Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO{sub 4}], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped {sup 134}Cs and {sup 137}Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that {sup 134}Cs and {sup 137}Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO{sub 4}] treated soil were characterized using SEM–EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil

  13. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  14. Nano structures for Medical Diagnostics Md

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  15. Synthesis and application of alumina supported nano zero valent zinc as adsorbent for the removal of arsenic and nitrate

    Ahmad, Hafiz Badaruddin; Abbas, Yasir; Hussain, Mazhar; Akhtar, Naeem; Ansari, Tariq Mahmood [Bahauddin Zakariya University, Multan (Pakistan); Zuber, Muhammad; Zia, Khalid Mahmood [Government College University Faisalabad, Faisalabad (Pakistan); Arain, Shafiq Ahmad [Shah Abdul Latif University, Khairpur (Pakistan)

    2014-02-15

    Arsenic and nitrate are ill-famed environmental pollutants that are responsible for various lethal diseases. Their removal from drinking water is very essential. In present study, newly synthesized alumina supported nano zerovalent zinc (Alumina-nZvZ) has been tested to remove arsenic and nitrate. Quantitative analyses of arsenic have been performed spectrophotometrically and while that of nitrates ions colorimetrically. After optimization of time and amount of adsorbent, Langmuir, Freundlich and D-R isotherms were applied to determine different parameters for the assessment of adsorption. Synthesized samples were characterized by scanning electron microscopy (SEM) to evaluate porosity and void size. Alumina coated with reduced ZnCl{sub 2} showed better efficiency for removal of arsenic and nitrate ions. Kinetics of adsorption was evaluated by using pseudo first-order and pseudo second-order rate equations.

  16. Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand

    Hayati, Payam; Souri, Bagher; Rezvani, Ali Reza; Morsali, Ali; Gutierrez, Angel

    2017-12-01

    Nanoparticles of one new lead and K coordination polymer (CP), {[Pb6(pyc)6(N3)7K].½H2O}n (1) Hpyc = picolinic acid ligand, has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compound 1 imply that the Pb ion is seven coordinated. The thermal stability of compound 1 has been studied by thermogravimetric (TG) and differential scanning calorimetry (DSC). The role of temperature, reaction time and ultrasound irradiation power on the size and morphfology of the nano-structured compound obtained from 1, have been investigated. Results indicate that an increase of temperature and sonication power and a decrease in time reaction led to a decrease of particle size.

  17. Direct synthesis of nano-sized glass powders with spherical shape by RF (radio frequency) thermal plasma

    Seo, J.H.; Kim, J.S.; Lee, M.Y.; Ju, W.T.; Nam, I.T.

    2011-01-01

    A new route for obtaining very small, spheroid glass powders is demonstrated using an RF (radio frequency) thermal plasma system. During the process, four kinds of chemicals, here SiO 2 , B 2 O 3 , BaCO 3 , and K 2 CO 3 , were mixed at pre-set weight ratios, spray-dried, calcined at 250 deg. C for 3 h, and crushed into fragments. Then, they were successfully reformed into nano-sized amorphous powders (< 200 nm) with spherical shape by injecting them along the centerline of an RF thermal plasma reactor at ∼ 24 kW. The as-synthesized powders show negligible (< 1%) composition changes when compared with the injected precursors of raw material compounds.

  18. Synthesis and Characterization of Modified Epoxy Resins by Silicic Acid Tetraethyl Ester and Nano-SiO2

    李海燕; 张之圣

    2004-01-01

    A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 °C.The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric (TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.

  19. Carbon nanotubes: from nano test tube to nano-reactor.

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  20. Nano dentistry

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  1. GREEN SYNTHESIS OF 2-AMINO-3-CYANO-4H-CHROMENES IN WATER USING NANO SILICA-BONDED 5-N-PROPYL-OCTAHYDRO-PYRTMIDO[1,2-4]AZEPINIUM CHLORIDE AS AN EFFECTIVE AND REUSABLE NANO CATALYST

    ROBABEH, BAHARFAR; SHARIATI, SAKINEH ASGHARIAND NARGES

    2015-01-01

    Nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) is reported as an highly efficient and recyclable nano catalyst for the preparation of 4H-chromene derivatives in aqueous media. This synthetic method offers a simple, mild and time-saving method under entirely green and environmentally friendly conditions.

  2. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  3. Improved dehydriding property of polyvinylpyrrolidone coated Mg-Ni hydrogen storage nano-composite prepared by hydriding combustion synthesis and wet mechanical milling

    Linglong Yao

    2018-02-01

    Full Text Available In this work, polyvinylpyrrolidone (PVP coated Mg95Ni5 nano-composites were prepared by hydriding combustion synthesis (HCS plus wet mechanical milling (WM with tetrahydrofuran (THF and donated as WM-x wt% PVP (x = 1, 3, 5 and 7 respectively. The phase compositions, microstructures and dehydriding property, as well as the co-effect of PVP and THF were investigated in detail. XRD results showed that the average crystal size of MgH2 in the milled Mg95Ni5 decreased from 23 nm without PVP to 18 nm with 1 wt% PVP. The peak temperature of dehydrogenation of MgH2 in the milled Mg95Ni5 decreased from 293.0 °C without THF to 250.4 °C with THF. The apparent activation energy for decomposition of MgH2 in WM-7 wt% PVP was estimated to be 66.94 kJ/mol, which is 37.70 kJ/mol lower than that of milled Mg95Ni5 without THF and PVP. PVP and THF can facilitate the refinement of particle size during mechanical milling process. Attributed to small particle sizes and synergistic effect of PVP and THF, the composites exhibit markedly improved dehydriding properties. Keywords: Mg-Ni-PVP, Composite, Mg-based alloy, Wet mechanical milling, Dehydriding temperature

  4. Synthesis of bis- and tris(indolylmethanes catalyzed by an inorganic nano-sized catalyst followed by dehydrogenation to hyperconjugated products

    Khorshidi Alireza

    2016-01-01

    Full Text Available A set of bis- and tris(indolylmethanes were prepared and dehydrogenated to their hyperconjugated products in a one-pot fashion. Nano-sized-SO3H functionalized mesoporous KIT-6 coated on magnetite nanoparticles (Fe3O4@SiO2@KIT-6-OSO3H was used as an efficient catalyst in the first step of synthesis, and dehydrogenation was performed by using (NH42S2O8 after removal of the catalyst. The catalyst was fully characterized by Fourier transform infrared spectroscopy (FT-IR, transmission electron microscopy (TEM and X-ray powder diffraction (XRD, as well as nitrogen adsorption-desorption isotherms. The bis- and tris(indolylmethanes were studied by UV-Vis spectroscopy before and after dehydrogenation, and effect of the ambient parameters on their spectra was investigated. It was found that bis- and tris(indolylmethanes have no considerable absorption in the visible range and what makes them colorful is partial dehydrogenation due to exposure to air. Our catalyst as a new combination of known materials, showed superiority in terms of yield, time, and mild reaction conditions in comparison with previous reports.

  5. Rational Design and Synthesis of Carboxylate Gemini Surfactants with an Excellent Aggregate Behavior for Nano-La2O3 Morphology-Controllable Preparation.

    Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong

    2017-04-04

    A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.

  6. Synthesis and characterization of Li{sub 4}SiO{sub 4} nano-powders by a water-based sol-gel process

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin, E-mail: zywen@mail.sic.ac.c [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Xu Xiaogang; Wang Xiuyan; Lin Jiu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-08-01

    The water-based sol-gel process for the synthesis of Li{sub 4}SiO{sub 4} nano-powders was reported for the first time. LiOH.H{sub 2}O and aerosil SiO{sub 2} were used as the starting materials with citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) as the chelating agent. Li{sub 4}SiO{sub 4} powders with particle size as small as 100 nm were successfully synthesized at the temperature as low as 675 deg. C. Phase analysis, morphology, sintering behavior of the powders and ionic conductivity of the sintered bodies were investigated systematically. The experimental results showed that the powders obtained by the water-based sol-gel process (SG) possessed excellent sinterability, exhibiting a linear shrinkage of 5.2% while sintered to 900 deg. C, more than 3 times that of the powders obtained by solid state reaction (SSR). The bulk conductivity of the SG sintered bodies was much higher than that of the SSR samples at the same testing temperature.

  7. The comparative study of the structural and the electrical properties of the nano spinel ferrites prepared by the soft mehanochemical synthesis

    Sekulić D.L.

    2014-01-01

    Full Text Available Nano spinel ferrites MFe2O4 (M=Ni, Mn, Zn were obtained by soft mechanochemical synthesis in a planetary ball mill. The appropriate mixture of oxide and hydroxide powders was used as initial compounds. All of this mixture of powders was mechanically activated, uniaxial pressed and sintered at 1100°C/2h. The phase composition of the powders and sintered samples were analyzed by XRD and Raman spectroscopy. Morphologies were examined by SEM. In this study, the AC-conductivity and DC-resistivity of sintered samples of MFe2O4 (M= Ni, Mn, Zn ferrites were measured at different frequencies and at room temperature. The values of the electrical conductivities show an increase with increasing temperature, which indicated the semiconducting behavior of the studied ferrites. The conduction phenomenon of the investigated samples could be explained on the basis of hopping model. The complex impedance spectroscopy analysis was used to study the effect of grain and grain boundary on the electrical properties of all three obtained ferrites [Projekat Ministarstva nauke Republike Srbije, br. III 45003

  8. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  9. Assessment of the synthesis conditions for nano-Bi_4Ti_3O_1_2 production by the combustion route

    Dias, Jeferson A.; Nascimento, Cassia C.; Oliveira, Jessica A.; Morelli, Marcio R.

    2016-01-01

    The bismuth titanate has interesting optoelectronic properties. Its production in nanometric scale is important due to the demand of miniaturized electronic devices and greater synthesization facility. This study aims at the evaluation of synthesis parameters for nano-Bi_4Ti_3O_1_2 production by the combustion route. For that, the materials were synthesized and calcined at 600°C, 700°C and 800°C. The materials were posteriorly characterized by X-Ray diffraction, SEM, DSC-TGA, FTIR; DRS and impedance spectroscopy. The results have demonstrated that the combustion method was effective for nanocrystalline powders production, which also showed high levels of purity. Particles size growth was observed for high treatment temperatures. Low level of residual organic matter was determined and the high electrical resistivity was observed. The temperature of 600°C was enough to produce particles with optimal properties. Therefore, the results have confirmed the efficacy of combustion route to produce nanometric Bi_4Ti_3O_1_2. (author)

  10. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  11. Isolation and dispersion of reduced metal particles using the surface dipole moment of F-terminated diamond electrodes

    Miyamoto, M.; Tanaka, Y.; Furuta, M. [Department of Chemistry and Earth Sciences, School of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, T. [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Fujishima, A. [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takastu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, K. [Department of Chemistry and Earth Sciences, School of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)], E-mail: khonda@yamaguchi-u.ac.jp

    2009-04-30

    Cu particles that have been reductively generated at the oxidized surface of a boron-doped diamond electrode (O-BDD) can be removed from the electrode's surface by the repulsive electrostatic force of the surface dipole moment during a potential cycle of a solution of Cu{sup 2+} ions. The objective of this study was to isolate various metal particles other than Cu by use of a fluorine-terminated BDD surface (F-BDD) with a stronger surface dipole moment than O-BDD, and to clarify the mechanism of the metal particles' separation from the electrode. During the potential cycle treatment of Cu{sup 2+} ions using F-BDD, the reionization of the reduced Cu could be suppressed in the presence of dissolved oxygen, and the Cu particles were separated from the electrode surface as CuO. A similar result was seen with O-BDD. The degree of separation of the Cu particles could be drastically enhanced by raising the upper potential limit in the potential cycle from +0.2 to +0.8 V. By setting the upper potential to a potential greater than the metal-metal oxide equilibrium line in the potential-pH equilibrium diagram of the Cu-water system (Pourbaix Diagram), oxidation of the reduced metal surface by reaction with dissolved oxygen could be accelerated and the surface of metal particles could be insulated. The Cu particles were forced from the BDD surface by the electrostatic repulsion from the surface dipole moment of F-BDD. Also, it turned out that the physical adsorption of chloride ions (Cl{sup -}) on the electrode surface intensified the electrostatic repulsive force between the F- or O-BDD surface and the metal particles, and thus increased the degree of the metal particles' separation. For Zn with a metal-metal oxide equilibrium potential of approximately -0.8 V at pH 7, complete separation of the Zn particles was achieved with F-BDD by setting the upper potential limit to +0.8 V (vs. Ag/AgCl), decreasing the Zn{sup 2+} concentration (1/10 that of Cu{sup 2

  12. Electrostatics of spherical metallic particles in cylinder electrostatic separators/sizers

    Lu Hongzhou; Li Jia; Guo Jie; Xu Zhenming

    2006-01-01

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/sizers (ESSs). A computational algorithm is employed to depict the cylinder-type electrode arrangements applied in some electrostatic processes generating non-uniform electric fields. The ESS consists of a pair of conducting cylinders. The upper cylinder is energized by HVdc, while the lower one is grounded and mounted horizontally on a revolvable axis. The aim of this paper is to present a new electrode configuration and demonstrate the usefulness of numerical techniques for the evaluation of the particle's motion. A computer program was employed for analysing the behavior of spherical particles in a two-dimensional electrode arrangement that models the actual electric field configuration of cylinder-type electrostatic separators/sizers. The analysis is needed for the development of any new application of this cylinder-type electrode arrangement as an electrostatic separation method. The results reveal that the particle's motion depends on its radius and density and amplitude of the applied voltage. The actual granular mixtures with different specific mass and radius could be separated applying this cylinder-type electrostatic separation method; the lift voltage is an important parameter for separation. With a program for two-dimensional analysis of the electric field, the computational procedure presented in this paper could be employed for any particle shapes

  13. The effects of beryllium metal particles on the viability and function of cultured rat alveolar macrophages

    Finch, G.L.; Lowther, W.T.; Hoover, M.D.; Brooks, A.L.

    1988-01-01

    Rat pulmonary alveolar macrophages (PAM) were exposed in vitro to beryllium metal particles. The particles used were relatively large (Be-II) and small (Be-V) size fractions of beryllium metal obtained from an aerosol cyclone, and a beryllium metal aerosol generated by laser vaporization of beryllium metal in an argon atmosphere (Be-L). Glass beads (GB) were used as a negative control particle. The endpoints examined included cell killing (trypan blue dye exclusion) and phagocytic ability (sheep red blood cell uptake). Phagocytic ability was inhibited by beryllium particles at concentrations that did not cause appreciable cell killing. Results based on the mass concentration of particles in culture medium were transformed by the amount of specific surface area of the particles to permit expression of toxicity on the basis of amount of surface area of particles per unit volume of culture medium. On a mass concentration basis, the order of cytotoxicity was Be-L > Be-V ∼ Be-II > GB; for inhibition of phagacytosis, the cytotoxicity order was Be-L ∼ Be-V > Be-II > GB. On a surface area concentration basis, the order of toxicity for viability was altered to Be-II > Be-L ∼ Be-V (with GB indeterminant) and to Be-V > Be-II ∼ Be-L > GB for inhibition of phagocytosis. We conclude that there are factors in addition to specific surface area that influence the expression of toxic effects in cultured PAM. (author)

  14. Synthesis and application of nano-, meso- and macroporous sorbents based on lignin for detoxication of biological fluids

    Chopabayeva, Nazira N.; Mukanov, Kanatbek N.; Tasmagambet, Amandyk T.

    2014-05-01

    Novel nano-, meso- and macroporous sorbents based on hydrolysis lignin have been synthesized by catalytic o-alkylation of biolpolymer with epoxy resin ED-20 and subsequent amination of formed α-oxyde derivative. Composition, structure, morphology and physical, chemical properties of ion-exchangers were investigated by FTIR, SEM, TEM, porosimetry and potentiometric titration method. It has been established that alkaline activated lignin shows an increase of SBET to 20.9 m2/g while modification leads to decrease of SBET more than double (from 9.2 to 5.2 m2/g) that of an untreared sample (14.5 m2/g). Synthesized sorbents are characterized by approximately identical mesoporous structure and mainly contained a pore size of 10-14 nm. The results clearly demonstrate the efficiency of lignin based sorbents for the removal of water and lipid soluble toxic metabolites from blood serum of diabetic retinopathy patients. Samples reduced the high level of total cholesterol, including its most atherogenic fractions (LDL-C, VLDL-C), triglyceride to the level of optimum compensated diabetes without significant removal of HDL-C. Concentration of glucose was decreased to physiological norms.

  15. Biopolymers/poly(ε-caprolactone)/polyethylenimine functionalized nano-hydroxyapatite hybrid cryogel: Synthesis, characterization and application in gene delivery.

    Simionescu, Bogdan C; Drobota, Mioara; Timpu, Daniel; Vasiliu, Tudor; Constantinescu, Cristina Ana; Rebleanu, Daniela; Calin, Manuela; David, Geta

    2017-12-01

    Nano-hydroxyapatite (nHAp), surface functionalized with linear polyethylenimine (LPEI), was used for the preparation of biocomposites in combination with biopolymers and poly(ε-caprolactone) (PCL), by cryogelation technique, to yield biomimetic scaffolds with controlled interconnected macroporosity, mechanical stability, and predictable degradation behavior. The structural characteristics, swelling and degradation behavior of hydroxyapatite and hydroxyapatite/β-tricalcium phosphate (β-TCP) filled matrices were investigated as compared to the corresponding naked polymer 3D system. It was found that the homogeneity and cohesivity of the composite are significantly dependent on the size and amount of the included inorganic particles, which are thus determining the structural parameters. Surface modification with LPEI and nanodimensions favored the nHAp integration in the organic matrix, with preferential location along protein fibers, while β-TCP microparticles induced an increased disorder in the hybrid system. The biocomposite including nHAp only was further investigated targeting biomedical uses, and proved to be non-cytotoxic and capable of acting as gene-activated matrix (GAM). It allowed sustained delivery over time (until 22days) of embedded PEI 25 -pDNA polyplexes at high levels of transgene expression, while insuring a decrease in cytotoxicity as compared to polyplexes alone. Experimental data recommend such biocomposite as an attractive material for regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis of Nano- alumina Powder from Impure Kaolin and its Application for Arsenite Removal from Aqueous Solutions

    Ahmad Khodadadi Darban

    2013-07-01

    Full Text Available Adsorption is considered a cost-effective procedure, safer to handle with high removal efficiency. Activated alumina is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, activated alumina has a low adsorption capacity and acts kinetically in a slow manner. An ideal adsorbent should have a high surface area, physical and/or chemical stability and be inexpensive. To meet this requirement, nanomeso porous γ-alumina with a high surface area (201.53 m2/g and small particle size (22–36 nm was prepared from inexpensive kaolin as the raw material, by precipitation method. The research results showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved. Optimal experimental conditions including pH, initial arsenite concentration and contact time were determined. Langmuir, Freundlich and Dubinin– Radushkevich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by Langmuir adsorption isotherm equation and the maximum arsenite adsorbed by synthesized nano γ–alumina (qe was found to be 40 (mg/g.

  17. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs; J-F Guinel, Maxime

    2014-04-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solution that was then sonicated for up to 60 min, washed and vigorously stirred overnight in deionized water. In a second step, the products of this reaction were annealed in ambient air in the temperature range 285-450 °C producing the desired NONFs. The products were characterized using x-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy including electron diffraction and electron energy-loss spectroscopy. Electrochemical investigations showed that anodes made of these NONFs provided significantly higher discharge capacities (70 to 100% higher) compared to commercial nanometric NiO nanopowder used under the same conditions. Moreover, these NONFs had higher initial capacity retentions at both low and high current densities compared to the same NiO nanopowder.

  18. Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption

    Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan

    2015-11-01

    Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.

  19. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-25

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  20. Controllable synthesis in a continuous mode of unsupported molybdenum catalysts with micro/nano size for heavy oil upgrading

    Wang, J.; Hill, J.M.; Pereira Almao, P.R. [Calgary Univ., AB (Canada)

    2004-07-01

    Heavy oils contain significant amounts of impurities compared to conventional oils, thereby posing a challenge for hydroprocessing operations at refineries. Hydrodesulfurization is one of the important reactions involved in hydroprocessing. Transition metal sulfides have excellent properties in terms of sulphur removal. Molybdenum based catalysts have been used extensively in the petroleum industry for hydrotreating heavy oil fractions. Supported molybdenum based catalysts suffer strong deactivation in the traditional hydrotreating process due to the deposition of carbonaceous components on the surface of the catalyst when they are used in conventional fixed bed reactors. Unsupported catalysts have higher catalytic activity with better metal dispersion. Laboratory experiments were conducted in which micro/nano size unsupported molybdenum catalysts were synthesized from a water/oil emulsion. The catalysts were prepared in a continuous mode for online application to hydroprocessing or in situ upgrading. Dispersed molybdenum catalysts are more suitable for processing heavier feeds because they are less prone to deactivation. Also, their submicron size ensure high activities due to a large specific surface area. They are also sufficiently small to be readily dispersed in the residual oil. 4 refs., 1 tab., 2 figs.

  1. Pr6O11 micro-spherical nano-assemblies: Microwave-assisted synthesis, characterization and optical properties

    Majeed, Shafquat; Shivashankar, S.A.

    2013-01-01

    We report the synthesis of Pr 6 O 11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of 6 O 11 microspheres assembled from ultra-small nanocrystals were synthesized. • As-prepared microspheres are covered by ethylene glycol as shown by IR analysis. • Role of temperature and pressure on self-assembly studied. • Luminescence emission behaviour of as-prepared and annealed products studied

  2. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-05-01

    Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m-1 K-2 with a Seebeck coefficient of 93.63 μV K-1 and an electrical conductivity of 69.99 S cm-1. The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and

  3. The CHF enhancement on pool boiling using nano-fluids

    Chang, Won Joon; Jeong, Yong Hoon

    2009-01-01

    A increase of CHF was observed with nano-fluid. The addition of nano-particle helped to increase the wettability. This happens with the decrease in bubble diameter, breakup of bubbles and avoidance of bubble coalescence. CHF increase or decrease depends upon competition between high wettability and high instability. An optimum nano-fluid concentration is needed which must have high crystalline content. When the concentration reaches at a critical value, CHF will tend to a constant value. Deposition of nano-particles increasing the wettability and the rewetting are cause of CHF enhancement. It delay the growth of dry patch by increasing of wettability and lead to CHF enhancement. Now, we must define the wettability of nano-fluids. At case of nano-fluids using metallic particle, the explanation using contact angle using was reasonable. But, at case of nan-fluids using hydrophobic CNT, this explanation can't be acceptable. Moreover, at case of surfactant solution, contact angle was very low. But CHF enhancement was not great. So, wettability about nano-fluids must be defined anew for explanation of CHF enhancement. I suggest the extension of micro layer are acceptable concept for increasing wettability using nano-fluids

  4. Synthesis and Characterization of Upconversion Fluorescent Yb3+, Er3+ Doped CsY2F7 Nano- and Microcrystals

    Helmut Schäfer

    2009-01-01

    Full Text Available Cs Y2F7: 78%   Y3+, 20%   Yb3+, 2%   Er3+ nanocrystals with a mean diameter of approximately 8 nm were synthesized at   185°C in the high boiling organic solvent N-(2-hydroxyethyl-ethylenediamine (HEEDA using ammonium fluoride, the rare earth chlorides and a solution of caesium alkoxide of N-(2-hydroxyethyl-ethylenediamine in HEEDA. In parallel with this approach, a microwave assisted synthesis was carried out which forms nanocrystals of the same material, about 50 nm in size, in aqueous solution at 200∘C/8 bar starting from ammonium fluoride, the rare earth chlorides, and caesium fluoride. In case of the nanocrystals, derived from the HEEDA synthesis, TEM images reveal that the particles are separated but have a broad size distribution. Also an occurred heat-treatment of these nanocrystals (600∘C for 45 minutes led to bulk material which shows highly efficient light emission upon continuous wave (CW excitation at 978 nm. Besides the optical properties, the structure and the morphology of the three products were investigated by means of powder XRD and Rietveld method.

  5. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Morphology-controllable synthesis of 3D CoNiO_2 nano-networks as a high-performance positive electrode material for supercapacitors

    Zhang, Jijun; Chen, Zexiang; Wang, Yan; Li, Hai

    2016-01-01

    Here, we report a novel three-dimensional (3D) assembly of CoNiO_2 nanowire networks using a facile and scalable hydrothermal method followed by an annealing process for supercapacitor applications. The X-ray diffraction (XRD) results revealed the formation of highly-crystalline CoNiO_2 nano-networks. Scanning electron microscope (SEM) analysis showed the formation of a 3D interconnected network of CoNiO_2 nanowires during the synthesis. In addition, a formation mechanism for 3D CoNiO_2 nano-networks was proposed. Electrochemical analysis showed a typical pseudocapacitive behavior for the CoNiO_2 nanowire networks. The as-prepared CoNiO_2 electrode exhibited a high specific capacitance of 1462 F g"−"1 (45.32 F cm"−"2) at a current density of 1 A g"−"1 (31 mA cm"−"2) and an excellent rate capability of 1000 F g"−"1 (31 F cm"−"2) at 32 A g"−"1 (992 mA cm"−"2). Moreover, a good cycle stability was achieved at 4 A g"−"1 with no degradation over 800 cycles, indicating the stable 3D structure of CoNiO_2 after the redox reactions. The high rate capability and the good cycle stability indicated that the as-prepared 3D CoNiO_2 electrode could satisfy the needs of supercapacitors with both high power and energy densities. - Highlights: • A three-dimensional (3D) assembly of CoNiO_2 nanowire networks was prepared. • Sodium-p-styrenesulfonate (PSS) plays a key role in forming the structure. • The as-prepared 3D CoNiO_2 electrode exhibits high power and energy densities. • The proposed method is easy to provide an industrial mass production. • The method can be used to fabricate different morphologies of nanomaterials.

  7. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y

  8. Lanthanide ions doped Y2Sn2O7 nano-particles: low temperature synthesis and photoluminescence study

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    During the past decade, pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their higher thermal stability. Up to now, conventional solid-state reaction is the most commonly used synthetic method for preparation, of rare-earth pyrochlore oxides. This synthesis route employs a solid-state reaction of metal-oxide with appropriate rare-earth oxides at high temperature (>1200 deg C) for a long time (several days). However, in present work, Y 2 Sn 2 O 7 nanoparticles co-doped with lanthanide ions Tb 3+ and Ce 3+ were prepared based on the urea hydrolysis of Y 3+ , Sn 4+ , and Ln 3+ in ethylene glycol medium at 150 deg C followed by heating at 500, 700 and 900 deg C

  9. Nano-ZnO Catalyzed Multicomponent One-Pot Synthesis of Novel Spiro(indoline-pyranodioxine Derivatives

    Harshita Sachdeva

    2014-01-01

    Full Text Available A simple catalytic protocol for the synthesis of novel spiro[indoline-pyranodioxine] derivatives has been developed using ZnO nanoparticle as an efficient, green, and reusable catalyst. The derivatives are obtained in moderate to excellent yield by one-pot three-component reaction of an isatin, malononitrile/ethylcyanoacetate, and 2,2-dimethyl-1,3-dioxane-4,6-dione in absolute ethanol under conventional heating and microwave irradiation. The catalyst was recovered by filtration from the reaction mixture and reused during five consecutive runs without any apparent loss of activity for the same reaction. The mild reaction conditions and recyclability of the catalyst make it environmentally benign synthetic procedure.

  10. Chemical and electrochemical synthesis of nano-sized TiO{sub 2} anatase for large-area photon conversion

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A. [Hahn-Meitner-Institut, Div. of Solar Energy Research, Berlin (Germany)

    2006-05-15

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO{sub 2} particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO{sub 2} (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO{sub 2} with anatase-phase as well. (authors)

  11. Chemical and electrochemical synthesis of nano-sized TiO2 anatase for large-area photon conversion

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A.

    2006-01-01

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO 2 particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO 2 (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO 2 with anatase-phase as well. (authors)

  12. Synthesis of Fe Ni Alloy Nano materials by Proteic Sol-Gel Method: Crystallographic, Morphological, and Magnetic Properties

    Santos, C.M.D.; Martins, A.F.N.; Sasaki, J.M.; Costa, B. C.; Ribeiro, T.S.; Braga, T.P.; Soares, J.M.

    2016-01-01

    Proteic Sol-Gel method was used for the synthesis of Fe Ni alloy at different temperature conditions and flow reduction. The solids were characterized by XRD, H_2-TPR, SEM, TEM, Moessbauer spectroscopy, and VSM. It was observed by X-ray diffraction pure Fe Ni alloy in the samples reduced at 600 degree (40 ml/min H_2 flow) and 700 degree (25 ml/min H_2 flow). The Fe Ni alloy presented stability against the oxidizing atmosphere up to 250 degree. The morphology exhibited agglomerates relatively spherical and particles in the range of 10-40 nm. Moessbauer spectroscopy showed the presence of disordered ferromagnetic Fe Ni alloy, and magnetic hysteresis loop revealed a typical behavior of soft magnetic material.

  13. Synthesis and electrochemical characterization of nano-sized Ag_4Sn particles as anode material for lithium-ion batteries

    Schmuelling, Guido; Oehl, Nikolas; Fromm, Olga; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen; Winter, Martin; Placke, Tobias

    2016-01-01

    For the first time, sub 10 nm sized intermetallic Ag_4Sn particles are prepared via an aqueous synthesis route in order to improve the electrochemical performance of pure Sn nanoparticles. High-resolution transmission electron microscopy, X-ray diffraction and thermogravimetric analysis are used to investigate the morphology, crystal structure and particle surface of the as prepared Ag_4Sn nanoparticles. In addition, galvanostatic cycling and cyclic voltammetry measurements are carried out to characterize the electrochemical behavior of the particles. Upon lithiation and de-lithiation a phase transformation from Ag_4Sn to Ag_3Sn is observed, which has not been reported so far. The intermetallic nanoparticle-based anode delivers a specific de-lithiation capacity of 460 mAhg"−"1 for more than 150 cycles.

  14. Electrodeposition of nickel nano wire arrays

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  15. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  16. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  17. Synthesis and characterization of nano-crystalline Ce1-xGd xO2-x/2 (x = 0-0.30) solid solutions

    Jadhav, L. D.; Chourashiya, M. G.; Jamale, A. P.

    2010-01-01

    glycine-nitrate process (GNP) has been presented. Evolution of structural and morphological properties of nano-powders as a function of heat treatment has also been studied. The prepared samples were characterized using TG-DTA, FT-IR, Raman spectroscopy, XRD, SEM, etc. In addition, the effect of Gd......In recent years, doped ceria is an established and promising candidate as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC). In this investigation, synthesis and characterizations of nano-crystalline Gd doped ceria, (Ce1-xGdxO2-x/2, where x = 0-0.3), prepared using...... of sintered samples was observed to hinder with an increase in Gd content....

  18. Copper-doped silica cuprous sulfate: A highly efficient heterogeneous nano-catalyst for one-pot three-component synthesis of 1-H-2-substituted benzimidazoles from 2-bromoanilines, aldehydes, and [bmim]N3

    Somayeh Behrouz

    2018-03-01

    Full Text Available A facile and highly efficient one-pot three-component synthesis of 1-H-2-substituted benzimidazole derivatives from readily available substrates catalyzed by copper-doped silica cuprous sulfate (CDSCS is described. In this method, treatment of diverse 2-bromoanilines, aldehydes, and [bmim]N3 in DMF at 110 °C in the presence of CDSCS as a highly efficient heterogeneous nano-catalyst affords the corresponding 1-H-2-substituted benzimidazoles in good to excellent yields. The CDSCS is an inexpensive and stable nano-catalyst that could be simply prepared, recovered and reused for many consecutive reaction runs without significant loss of its activity.

  19. Oxidation of nano-reinforced polyolefins

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  20. Synthesis of nano intermetallic Nb{sub 3}Sn by mechanical alloying and annealing at low temperature

    López, M., E-mail: marlope@udec.cl [Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción (Chile); Jiménez, J.A. [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas, C.S.I.C., Av. Gregorio del Amo 8, 28040 Madrid (Spain); Ramam, K.; Mangalaraja, R.V. [Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción (Chile)

    2014-11-05

    Highlights: • Intermetallic Nb{sub 3}Sn nano grains were synthesized by powder metallurgy route. • Structure analysis was studied using a multiphase Rietveld refinement fit. • The presence of Nb{sub 3}Sn 86% and NbO 8% was identified. • More tin content in the equilibrium Nb–Sn diagram was obtained. • Magnetic properties show Nb{sub 3}Sn powders are soft super paramagnetic materials. - Abstract: In this study, intermetallic Nb{sub 3}Sn of nanometer-sized grains was synthesized by powder metallurgy route. Elemental powders of Nb and Sn in the stoichiometric proportions were mechanically alloyed for 3 h in a high-energy mill under a protective atmosphere of argon. X-ray diffraction patterns of milled powders confirmed the formation of a Nb(Sn) solid solution evidenced by the presence of Nb peaks only, which are shifted to higher angles. Rietveld refinements used to analyze this XRD pattern indicated a better fit when a tetragonal structure with the space group I4/mmm is used instead the Nb cubic lattice with space group Im−3m. Size-strain analysis from line-broadening of peak profiles by using “double-Voigt” approaches showed that the broadening is due to both a small crystallite size (around 6 nm) and microstrains. Subsequent heat treatment of the Nb(Sn) powder mixture was required for the formation of the Nb{sub 3}Sn ordered phase. X-ray diffraction patterns obtained after a thermal treatment at 700 °C for 1 h were fitted using a multiphase Rietveld refinement. Although the resulting powders are composed mainly by Nb{sub 3}Sn (up to 87 weight%), certain amount of other intermetallic phases like Nb{sub 6}Sn{sub 5}, NbSn{sub 2} and Nb and Sn oxides were also determined. In agreement with the Rietveld refinement analysis, microprobe analysis also revealed that changes in chemical composition at different sites of powder particles are preserved even after annealing at 700 °C. Magnetic properties measured at 300 K on resulted Nb{sub 3}Sn powders

  1. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  2. Synthesis, characterization and luminescence study of Eu3+ doped Y2Sn2O7 nano-particles

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2011-01-01

    In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ), have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. The present study deals with the synthesis and characterization of Eu 3+ doped Y 2 Sn 2 O 7 : nanoparticles prepared by the hydrolysis of Y 3+ , Sn 4+ , and Eu 3+ in ethylene glycol medium followed by heating at 700 deg C for 4 hours. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure in XRD studies. Average particle size is calculated from the width of the X-ray diffraction peaks and found to t be around 5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples. The undoped as prepared sample showed a broad emission peak around 420 nm after excitation at 285 nm. While for 700 deg C undoped heated sample, the peak maxima was shifted to 435 nm. The emission spectrum for doped as prepared samples is characterized by both host emission around 420 nm along with the characteristic Eu 3+ emission peaks in the visible region. However, very poor Eu 3+ emission from heated sample was observed

  3. Synthesis and characterization of nano- and microcrystalline cubes of pure and Ag-doped LiF

    Alharbi, Najlaa D.; Salah, Numan; Habib, Sami S.; Alarfaj, Esam

    2013-01-01

    Lithium fluoride (LiF) produced in single crystals and doped with proper activators is a highly sensitive phosphor used in several applications such as integrated optics, colour centre laser and radiation dosimetry. In this work, we have developed a new synthetic chemical co-precipitation route for the synthesis of well-crystallized micro- and nanocrystalline cubes of pure and silver (Ag)-doped LiF. The as-synthesized samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. Size of the produced cubes could be controlled in the range 10 µm-50 nm by varying the solvent : co-solvent ratio. Micro-sized cubes could be grown in the presence of water as a solvent, while ethanol, which acts as a co-solvent, is found to be effective in reducing the size to the nanoscale. XRD results show complete crystalline structures in a griceite phase. The PL result of pure nanocubes exhibits a broad band in the range 370-550 nm, while that doped with Ag shows a prominent band at 420 nm. Raman spectra of the pure and Ag-doped LiF samples display several bands located in the range 80-236 cm-1. These results show that pure nanocubes of LiF have active colour centres without irradiation, which could be enhanced/modified by Ag dopants. This implies that these nanocubes might be useful in the development of optical devices.

  4. Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

    Jang J.G.

    2017-06-01

    Full Text Available Rapid synthesis of gold nanoparticles (AuNPs by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonylimide ([EMIM]TFSI with gold trichloride (AuCl3. To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM, energy-dispersive spectroscopy (EDS, and transmission electron microscopy (TEM. The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.

  5. Synthesis, structural characterization of nano ZnTiO3 ceramic: An effective azo dye adsorbent and antibacterial agent

    R.S. Raveendra

    2014-12-01

    Full Text Available Nanocrystalline meta-zinc titanate (ZnTiO3 ceramic was prepared using a self-propagating solution combustion synthesis (SCS for the first time using urea as fuel. The product was calcined at 800 °C for 2 h to improve the crystallinity. Powder X-ray diffraction (PXRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDAX, high resolution transmission electron microscopy (HR-TEM and UV–vis absorption spectroscopy were used to characterize the final product. PXRD results show that the ilmenite type rhombohedral structure was formed when the sample was calcined at 800 °C for 2 h. Adsorption experiments were performed with cationic malachite green (MG dye. ∼96% dye was adsorbed onto nanocrystalline ZnTiO3 ceramic at pH 9 for 30 min of the contact time. The optimum adsorbent dose was found to be 0.45 g/L of dye. Langmuir–Hinshelwood model was used to study adsorption kinetics and first order kinetic model best describes the MG adsorption on ZnTiO3. Antibacterial activity was investigated against gram negative Klebsiella aerogenes, Pseudomonas desmolyticum, Escherichia coli, and gram positive Staphylococcus aureus bacteria by agar well diffusion method. Nanocrystalline ZnTiO3 ceramic showed significant effect on all the four bacterial strains at the concentration of 1000 and 1500 μg per well.

  6. Synthesis and characterization of nano- and microcrystalline cubes of pure and Ag-doped LiF

    Alharbi, Najlaa D; Salah, Numan; Habib, Sami S; Alarfaj, Esam

    2013-01-01

    Lithium fluoride (LiF) produced in single crystals and doped with proper activators is a highly sensitive phosphor used in several applications such as integrated optics, colour centre laser and radiation dosimetry. In this work, we have developed a new synthetic chemical co-precipitation route for the synthesis of well-crystallized micro- and nanocrystalline cubes of pure and silver (Ag)-doped LiF. The as-synthesized samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. Size of the produced cubes could be controlled in the range 10 µm-50 nm by varying the solvent:co-solvent ratio. Micro-sized cubes could be grown in the presence of water as a solvent, while ethanol, which acts as a co-solvent, is found to be effective in reducing the size to the nanoscale. XRD results show complete crystalline structures in a griceite phase. The PL result of pure nanocubes exhibits a broad band in the range 370-550 nm, while that doped with Ag shows a prominent band at 420 nm. Raman spectra of the pure and Ag-doped LiF samples display several bands located in the range 80-236 cm -1 . These results show that pure nanocubes of LiF have active colour centres without irradiation, which could be enhanced/modified by Ag dopants. This implies that these nanocubes might be useful in the development of optical devices.

  7. Synthesis of gold nano particles with enlargement size by gamma Co-60 irradiation and investigation of anti oxidation effect

    Nguyen Ngoc Duy; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Gold nanoparticles (AuNPs) with size in the range of 10-53 nm were synthesized by gamma Co-60 irradiation using water-soluble chitosan (WSC) as stabilizer and size enlargement by seed approach. Absorption wavelength (λ max ) was measured by UV-Vis spectroscopy and particle size was determined from TEM images. Results showed that value of λ max increased from 523 nm (seed particles) to 525, 537 and 549 nm and the size of AuNPs increased from 10 nm (seed particles) to 20, 38 and 53 nm, respectively, for concentration ratio of Au 3+ /Au 0 (seed) of 2.5, 5 and 10. Antioxidant effect of AuNPs with size of 10, 20, 38 and 53 nm was investigated using free radical 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS .+ ). Results indicated that the smaller the particle size was (10 nm) the stronger the antioxidant effect attained. Thus, AuNPs/WSC synthesis by gamma Co-60 irradiation are promising for applications as antioxidants in cosmetics and in other fields as well. (author)

  8. Synthesis of Nitrogen-Doped Carbon Nano tubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content

    Hachimi, A.; Hakeem, A.; Merzougui, B.; Atieh, M. A.; Merzougui, B.; Atieh, M. A.; Laoui, A.; Swain, G.M.; Chang, Q.; Shao, M.

    2015-01-01

    Nitrogen-doped CNTs (N-CNTs) were synthesized using an injection-vertical chemical vapor deposition (IV-CVD) reactor. This type of reactor is quite useful for the continuous mass production of CNTs. In this work, the optimum deposition conditions for maximizing the incorporation of nitrogen were identified. Ferrocene served as the source of the Fe catalyst and was dissolved in acetonitrile, which served as both the hydrocarbon and nitrogen sources. Different concentrations of ferrocene in acetonitrile were introduced into the top of a vertically aligned reactor at a constant flow rate with hydrogen serving as the carrier. The effects of hydrogen flow rate, growth temperature, and catalyst loading (Fe from the ferrocene) on the microstructure, elemental composition, and yield of N-CNTs were investigated. The N-CNTs possessed a bamboo-like microstructure with a nitrogen doping level as high as 14 at.% when using 2.5 to 5 mg/m L of the ferrocene/acetonitrile mixture at 800 degree under a 1000 sccm flow of hydrogen. A production rate of 100 mg/h was achieved under the optimized synthesis conditions.

  9. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    “Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  10. Synthesis and characterization of nano structures of Silica SBA-16 containing Gadolinium-159 as potential nanoparticulated system for cancer therapy

    Oliveira, Andre Felipe de

    2013-01-01

    Cancer is a leading cause of death worldwide, and malignant neoplasms of the lung, stomach, liver, colon and breast in greater numbers. And recently observed in the literature a large number of reviews where new materials, especially nanoparticle, has been studied as drug carriers and radioisotopes applied to cancer treatment. How mesoporous materials based on silica, thanks to its huge surface area and biocompatibility, have been studied intensively providing broad applications in various areas, the use of nanostructured silica SBA-16 might be a carrier specific radioisotope accumulate in the cells malignant. Thus the aim of this study is to develop in vitro studies using SBA-16 can selectively concentrate in malignant cells therapeutic amounts of the radioisotope Gadolinium-159 escorting them to death. This work was performed orderly synthesis of mesoporous silica, SBA-16 and incorporating the complex Gd-DTPA-BMA, as well as chemical and structural characterization. The techniques used to analyze the occurrence of the incorporation of the gadolinium complex in the silica matrix were elemental analysis (CHN), atomic emission spectroscopy (ICP-AES), infrared spectroscopy (FTIR), nitrogen adsorption (BET), small-angle X-ray scattering (SAXS) and thermogravimetric analysis (TG). To analyze the morphology of pure silica used the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By photon correlation spectroscopy (PCS) it was possible to obtain a measure of mean particle size, the polydispersity index (PDI) of the silica SBA-16, and the zeta potential by laser Doppler anemometry (LDA). The results of incorporation analyzed by ICP-AES indicated that the material SBA-16 had a higher rate of incorporation of gadolinium (93%). The release kinetics in simulated body fluid, showed considerable stability and low release (1%). The mesoporous silica SBA-16 showed cell viability in direct contact with cell culture. Samples with gadolinium

  11. Ionic liquid assisted synthesis of nano Pd-Au particles and application for the detection of epinephrine, dopamine and uric acid

    Tsai, Tsung-Hsuan; Thiagarajan, Soundappan; Chen Shenming, E-mail: smchen78@ms15.hinet.net; Cheng Chingyi

    2012-01-31

    Nano Pd-Au particles have been electrochemically fabricated utilizing ionic liquid as green electrolyte (1-Butyl-3-methylimidazolium tetrafluoroborate). Nano Pd-Au particles modified glassy carbon electrode (GCE) and indium tin oxide coated glass electrodes were examined using atomic force microscopy, field emission scanning electron microscope and X-ray diffraction studies. Electrodeposited nano Pd-Au particles' average diameter was found as 33 nm. Nano Pd-Au particle modified GCE was electrochemically active and stable in various pH solutions. The proposed nano particle modified GCE reduces the over potential and shows the well defined oxidation peaks for the detection of epinephrine and simultaneous determination of dopamine and uric acid (in pH 7.0 phosphate buffer solution) using cyclic voltammetry and differential pulse voltammetry.

  12. Photocatalytic performance of nano-photocatalyst from TiO{sub 2} and Fe{sub 2}O{sub 3} by mechanochemical synthesis

    Ghorai, Tanmay K., E-mail: tanmay_ghorai@yahoo.co.in [Department of Chemistry, West Bengal State University, Barasat, North 24 Pgs, Kolkata 700126 (India); Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chakraborty, Mukut [Department of Chemistry, West Bengal State University, Barasat, North 24 Pgs, Kolkata 700126 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2011-08-11

    Graphical abstract: Nano-particles of homogeneous solution between TiO{sub 2} and Fe{sub 2}O{sub 3} (up to 5 mol%) have been prepared by mechanochemical milling. The results show that the alloy of TiO{sub 2} with 5 mol% of Fe{sub 2}O{sub 3} (YFT1) exhibit photocatalytic activity 3-5 times higher than that of P25 TiO{sub 2} for oxidation of various dyes (RB, MO, TB and BG) under visible light irradiation. The average particle size and crystallite size of YFT1 were found to be 30 {+-} 5 nm and 12 nm measured from TEM and XRD. Optical adsorption edge is found to be 2.26 eV. Tentative schematic diagram of reaction mechanism of YFT/RFT photocatalysts under visible light irradiation. Highlights: > Synthesis of nano-sized homogeneous solid solution between Fe{sub 2}O{sub 3} and TiO{sub 2} with high photocatalytic activity for oxidative degradation of different dyes was successfully obtained through mechanochemical synthesis. XRD data shows the formation of solid solution having anatase structure with no free Fe{sub 2}O{sub 3} up to 5 mol% of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3}/TiO{sub 2} catalyst have crystallite size about 12-13 nm measured from XRD and particle size about 30 {+-} 5 nm measured from TEM. FT-IR of all Fe{sub 2}O{sub 3}/TiO{sub 2} prepared catalysts is similar to pure TiO{sub 2}. The maximum solubility of Fe{sub 2}O{sub 3} in TiO{sub 2} is 5 mol% of Fe{sub 2}O{sub 3} irrespective of source and this composition has highest photocatalytic activity that is 3-5 times higher than P25 TiO{sub 2} for the oxidation of different dyes. We also observed that the rate of degradation of Rhodamine B is faster among all the four dyes under prepared catalyst and visible light. - Abstract: Nano-particles of homogeneous solid solution between TiO{sub 2} and Fe{sub 2}O{sub 3} (up to 10 mol%) have been prepared by mechanochemical milling of TiO{sub 2} and yellow Fe{sub 2}O{sub 3}/red Fe{sub 2}O{sub 3}/precipitated Fe (OH){sub 3} using a planetary ball mill. Such novel solid

  13. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  14. Synthesis of Nano sized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    Wang, J.W.; Kuo, Y.M.

    2013-01-01

    Two nano structures of cobalt oxyhydroxide (CoOOH) and Zinc-(Zn-) doped CoOOH (1–4% Zn) are prepared from Co(NO 3 ) 2 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD) analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co + ) of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nano structure exhibits good sensitivity to carbon monoxide (CO) in a temperature range of 40–110°C with maximum sensitivity to CO at around 70–80°C. When CoOOH nano structure is doped with 1% Zn, its sensitivity and selectivity for CO gas are improved at 70–80°C; further Zn doping to 2% degraded the CO sensing properties of nano-CoOOH. The results of a cross-sensitivity investigation of the sensor to various gases coexisting at early stages of a fire show that the sensitivity of Zn-doped nano-CoOOH is the highest toward CO. Zn-doped nano-CoOOH film exhibits a high sensitivity to CO at room temperature, making it a promising sensor for early-stage fire detection.

  15. Synthesis and Characterization of Nano-Structure Metal Oxides and Peroxides Prepared by Laser Ablation in Liquids

    Drmosh, Qasem Ahmed Qasem

    Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD). ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm. Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM

  16. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  17. Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD)

    Dhonge, BP

    2014-09-01

    Full Text Available , National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa b Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India Abstract Meso...

  18. Influence of small metallic particles on the absorption and emission in amorphous materials doped with rare earths

    Malta, O.L.; Santa Cruz, P.A.; Sa, G.F. de

    1987-01-01

    The influence of small metallic clusters on the absorption and emission processes in molecular species shows a great interest as well the fundamental as the pratical point of view. This subject, which has been recently developed, covers several aspects related to the kinetics of formation of these chusters and to theirs optical properties in amorphous media. A study of this problem developed by the first time for the case of one volumetric distribution of metallic particles is presented. With this aim, fluoborate glasses doped with Eu 3+ ion which fluorescence is well known in several materials are used. (L.C.) [pt

  19. Synthesis and photophysical properties of pyrene-functionalized nano-SiO{sub 2} hybrids in solutions and doped-PMMA thin films

    Wu, Wen-Jie; He, Wen-Li; Yu, Hong-Yu [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Huang, Hong-Xiang [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chen, Meng [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2017-01-15

    Luminescent pyrene-functionalized nano-SiO{sub 2} (nano-SiO{sub 2}Pyr) hybrids were synthesized and characterized using thermogravimetry, infrared, UV–vis absorption and, X-ray photoelectron spectroscopy, as well as field emission transmission electron microscopy (FETEM). The organic substituents immobilized on the nano-SiO{sub 2}Pyr hybrids accounted for approximately 10% of the total weight. Polyethylene glycol 200 (PEG200) was found to be the most suitable solvent to suspend the nano-SiO{sub 2}Pyr hybrids compared to other commonly used organic solvents. FETEM images indicated an average SiO{sub 2} nanoparticle diameter of approximately 12 nm and a 1- to 2-nm thick organic species functionalization layer. Several emission peaks were recorded at wavelengths of 380–580 nm and were designated as emissions arising from either the monomer or excimer of the pyrene substituents. Excimer formation was concentration and solvent polarity dependent, with higher concentrations and a stronger solvent polarity benefiting excimer formation. Further, nano-SiO{sub 2}Pyr hybrids were doped in poly(methyl methacrylate) (PMMA) thin films; fluorescence spectra indicated that the excimer could be formed almost exclusively from neighboring nano-SiO{sub 2}Pyr hybrids. Time-resolved fluorescence decays revealed that the emission lifetimes of nano-SiO{sub 2}Pyr monomers and excimers were approximately 190 ns and 65–100 ns in the PEG200 solution, respectively, which was shortened to 0.45 ns to tens of ns in doped PMMA thin films, depending on the nano-hybrid concentration. Thus, the present study not only provides a method to prepare luminescent nano-materials but also a route to investigate excimer formation in solutions and thin films. - Highlights: • Luminescent pyrene-functionalized nano-SiO{sub 2}Pyr hybrids were prepared. • A 1- to 2- nm thick organic functionalization layer on nano-SiO{sub 2} was observed. • Formation of pyrene excimer was concentration and solvent

  20. Editorial Nano structures for Medicine and Pharmaceuticals

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  1. Ultrastructural analysis of metal particles released from stainless steel and titanium miniplate components in an animal model.

    Matthew, I R; Frame, J W

    1998-01-01

    Low-vacuum scanning electron microscopy (Ivac SEM) was used to characterize the appearance of metal particles released from stressed and unstressed Champy miniplates placed in dogs and to study the relationship of the debris to the surrounding tissues. Under general endotracheal anesthesia, two Champy miniplates (titanium or stainless steel) were placed on the frontal bone in an animal model. One miniplate was bent to fit the curvature of the frontal bone (unstressed) and another miniplate of the same material was bent in a curve until the midpoint was raised 3 mm above the ends. The latter miniplate adapted to the skull curvature under tension during screw insertion (stressed). The miniplates and surrounding tissues were retrieved after intervals of 4, 12, and 24 weeks. Decalcified sections were prepared and examined by light microscopy and Ivac SEM. Under Ivac SEM examination, the titanium particles had a smooth, polygonal outline. Stainless steel particles were typically spherical, with numerous small projections on the surface. Most particles were 1 to 10 microns in diameter. The tissue response to the particles was variable; some particles were covered by fibrous connective tissue or enclosed by bone, and others were intracellular. The metal particles released from stressed or unstressed Champy miniplates were similar, and this was related to their source of origin and duration within the tissues. The tissue response to the particles appeared to depend on their location.

  2. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  3. One step approach towards the green synthesis of silver decorated graphene nanocomposites for the degradation of organic dyes in water

    Karthik, Gopakumar; Harith, A.; Nazrin Thazleema, N.; Vishal, Shaji; Jayan Jitha, S.; Saritha, Appukuttan

    2018-02-01

    Recently the decoration of graphene with metallic nanoparticles by a one pot reduction of graphene oxide (GO) coupled with the synthesis of metallic nanoparticles has gained momentum. Graphene and GO have been proved to exhibit excellent biocompatibility and high antibacterial activity and hence a vast possibility lies in the utilization of GO as an antibacterial reinforcement in biomaterials and exploration of the antiseptic properties as well as the cytotoxicity of GO-containing composites. Moreover GO decorated with metal / metal oxide paves way towards an inevitable role in water purification. The use of graphene oxide as the nano scale substrates for the development of nanocomposites with metal oxides is a novel idea to obtain a hybrid which would exhibit both the properties of GO as a enthralling paper-shape material and the quality of single nano-sized metal particles. The heavy metal ions and pollutants are considered as a major problem in environmental contamination. Hence detection of trace level pollutant has become a hot topic in the present research scenario. Modified graphene oxide nanocomposites prepared using a green approach has the capacity of absorbing pollutant material ions in high efficiency and selectivity. The green synthesized nanocomposites were characterized using FTIR and UV spectroscopy and the consequence of pH and concentration on the preparation of the nanocomposites was evaluated. The efficiency of these nanocomposites towards degradation of organic dyes like methylene blue has been evaluated.

  4. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite

    Xu Jun; Yao Pei; Li Xuan; He Fei

    2008-01-01

    Water-soluble and conducting sulfonated polyaniline (SPAN)/phenylamine groups contained MWNTs (p-MWNTs) nano-composite were synthesized by in situ oxidation polymerization followed by sulfonation and hydrolysis. TEM, Raman spectroscopy, FTIR, XPS, TGA and standard four-probe methods were employed to characterize morphology, chemical structure and performance of the nano-composite. The results show that phenylamine groups are grafted on the surface of p-MWNTs via amide bond and oxidized phenylamine groups initiate polyaniline polymerized on the surface of p-MWNTs. SPAN chains covalently attached to p-MWNTs render p-MWNTs compatibility with SPAN matrix and lead to SPAN/p-MWNTs nano-composite highly soluble and stable in water. Improved thermal stability illuminate existence of a new phase in the nano-composite where there is chemical interaction between p-MWNTs and SPAN coatings. Owing to incorporation of p-MWNTs conductivity of the nano-composite at room temperature is increased by about two orders of magnitude over neat SPAN

  5. Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.

    Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge

    2018-05-09

    Herein, we synthesize successfully ultrafine TiN nanoparticles (hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.

  6. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  7. The world of Nano

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  8. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo

    Hong W

    2017-06-01

    Full Text Available Wei Hong,1 Xiang Gao,1 Peng Qiu,1 Jie Yang,1 Mingxi Qiao,2 Hong Shi,3 Dexian Zhang,1 Chunlian Tian,1 Shengli Niu,1 Mingchun Liu1 1Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenhe, Shenyang, Liaoning, People’s Republic of China; 2Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangning, Nanjing, 3Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China Abstract: Bacitracin A (BA is an excellent polypeptide antibiotic that is active against gram-positive bacteria without triggering multidrug resistance. However, BA is inactive against gram-negative bacteria because of its inability to cross the outer membrane of these cells, and it has strong nephrotoxicity, thus limiting its clinical applications. Nanoantibiotics can effectively localize antibiotics to the periplasmic space of bacteria while decreasing the adverse effects of antibiotics. In this study, biodegradable hydrophobic copolymers of poly (D,L-lactide-co-glycolide (PLGA were attached to the N-termini of BA to design a novel class of self-assembled nano-bacitracin A (nano-BAs, and their potential as antibacterial agents was evaluated in vitro and in vivo. Nano-BAs had a core-shell structure with a mean diameter <150 nm. Impressively, nano-BAs had strong antibacterial properties against both gram-positive and gram-negative bacteria, and the distribution of antibacterial activity as a function of PLGA block length was skewed toward longer PLGA chains. No cytotoxicity against HK-2 cells or human red blood cells (hRBCs was observed in vitro, suggesting good biocompatibility. A high local density of BA mass on the surface promoted endocytotic cellular uptake, and hydrophobic interactions between the PLGA block and lipopolysaccharide (LPS facilitated the uptake of nano-BAs, thereby leading to

  9. Nano Fertilizers

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  10. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells; Synthese, caracterisation et nanostructuration de derives du polythiophene pour des applications en cellules photovoltaiques organiques

    Berson, S

    2007-10-15

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  11. Hetero-Colloidal Metal Particle Multilayer Films Grown Using Electrostatic Interactions at the Air-water Interface

    Sastry, Murali; Mayya, K.S.

    2000-01-01

    The formation of nanoparticle multilayer films by electrostatic immobilization of surface-modified colloidal particles at the air-water interface has been recently demonstrated by us. In this paper, we extend our study to show that multilayer assemblies consisting of metal particles of different chemical nature (hetero-colloidal particle superlattices) and size can be deposited by the versatile Langmuir-Blodgett technique. Multilayer films consisting of a different number of bilayers of gold and silver colloidal particles have been deposited and characterized using quartz crystal microgravimetry and UV-visible spectroscopy measurements. It is observed that while layer-by-layer deposition of the different colloidal particle assemblies is possible by this technique without a detectable variation in the cluster density in the different layers, a degree of post-deposition reorganization of the clusters occurs in the film. In addition to this aging behavior, the effect of different organic solvents on the reorganization process has also been studied

  12. Facile synthesis of flake-like TiO{sub 2}/C nano-composites for photocatalytic H{sub 2} evolution under visible-light irradiation

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai, E-mail: suxintai827@163.com

    2017-01-15

    Highlights: • TiO{sub 2}/C nano-flakes were prepared by a facile phase-transfer strategy combined with salt-template calcination method. • The sub–10 nm of TiO{sub 2} NPs were uniformly dispersed on the carbon flakes. • The TiO{sub 2}/C nano-flakes showed a superior visible-light photocatalytic activity for H{sub 2} production. - Abstract: The production of H{sub 2} by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H{sub 2} by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO{sub 2}/C nano-flakes, which was used as an efficient visible-light photocatalyst for H{sub 2} evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO{sub 2} nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m{sup 2} g{sup −1} and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H{sub 2} production rate of 57.2 μmol h{sup −1} under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO{sub 2} and carbon in this hybrid catalyst. This work highlights the potential of TiO{sub 2}/C nano-flakes in the field of photocatalytic H{sub 2} evolution under visible-light irradiation.

  13. One-step solution combustion synthesis of Fe{sub 2}O{sub 3}/C nano-composites as anode materials for lithium ion batteries

    Li, Peiyang; Deng, Jiachun; Li, Ying [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liang, Wei, E-mail: liangwei@tyut.edu.cn [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Kun [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Kang, Litao, E-mail: kangltxy@gmail.com [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zeng, Shaozhong; Yin, Shanhui; Zhao, Zhigang [Chery Automobile Co. Ltd., Wuhu 241006 (China); Liu, Xuguang; Yang, Yongzhen [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Feng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-03-25

    Highlights: • Fe{sub 2}O{sub 3}/C composite anode materials were prepared by a solution combustion process. • The carbon content could be adjusted by regulating the ratio of oxidizer/fuel. • The Fe{sub 2}O{sub 3}/C composite showed capacity 470 mA h g{sup −1} at the 80th cycle at 125 mA g{sup −1}. -- Abstract: This article describes a one-step solution combustion route (within 30 min at 350 °C in air) to prepare Fe{sub 2}O{sub 3} anode materials for lithium ion batteries (LIBs) from Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O solution with citric acid. XRD, SEM-EDX and TEM showed that the product consisted a mixture of nano-sized α-Fe{sub 2}O{sub 3} and γ-Fe{sub 2}O{sub 3} crystals that agglomerated into porous particles. Significantly, in situ formed carbon could be introduced into the product (i.e., Fe{sub 2}O{sub 3}/C nano-composites) by simply increasing the dosage of citric acid in the precursor solution. The as-prepared Fe{sub 2}O{sub 3}/C nano-composite exhibited high reversible capacities of 470 and 419 mA h g{sup −1} at the 80th and 200th cycles with a current density of 125 mA g{sup −1}, which are much higher than those of counterparts without carbon (i.e., Fe{sub 2}O{sub 3} nano-particles). Comparison experiments correlated with the performance improvement of Fe{sub 2}O{sub 3}/C nano-composites with in situ formed carbon, well-developed mesopores and relatively high specific surface areas.

  14. Synthesis, structural characterization, thermal analysis, and DFT calculation of a novel zinc (II)-trifluoro-β-diketonate 3D supramolecular nano organic-inorganic compound with 1,3,5-triazine derivative

    Mirtamizdoust, Babak, E-mail: babakm.tamizdoust@gmail.com [Department of Chemistry, Yasouj University, Yasouj, 75918-74831 (Iran, Islamic Republic of); Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Islamic Republic of Iran (Iran, Islamic Republic of); Ghaedi, Mehrorang [Department of Chemistry, Yasouj University, Yasouj, 75918-74831 (Iran, Islamic Republic of); Hanifehpour, Younes, E-mail: y_hanifehpour@yu.ac.kr [School of Mechanical Engineering, WCU Nano Research Center, Yeungnam University, Gyongsan, 712-749 (Korea, Republic of); Mague, Joel T. [Department of Chemistry, Tulane University, New Orleans (United States); Joo, Sang Woo, E-mail: swjoo1@gmail.com [School of Mechanical Engineering, WCU Nano Research Center, Yeungnam University, Gyongsan, 712-749 (Korea, Republic of)

    2016-10-01

    A sonochemical method was used to synthesize a novel nano-structure of a zinc(II) organic-inorganic compound [Zn(dapt){sub 2}(ttfa){sub 2}] (1) [dapt = 2,4-diamino-6-phenyl-1,3,5-triazine and ttfa = 2-thenoyltrifluoroacetonate]. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, elemental analysis, and thermal analysis. The single-crystal X-ray structure shows that 1 is a discrete coordination compound. Strong intra- and intermolecular hydrogen bonds are observed in the structure with the latter forming chains of molecules running parallel to (110). The chains are further extended into a three-dimensional supramolecular structure by intermolecular C−F⋯π interactions between trifluoromethyl and triazine moieties. The coordination number of the zinc(II) ion is six (ZnN{sub 2}O{sub 4}), and the coordination sphere is tetragonally elongated octahedral. The structure of the title complex was optimized by DFT calculations. - Highlights: • A new zinc(II) 3D coordination supramolecular compound was synthesized. • Ultrasound synthesis of nano coordination compound have been reported. • The X-ray crystal structure of the compound is reported.

  15. Synthesis of Nano-Zinc Oxide Loaded on Mesoporous Silica by Coordination Effect and Its Photocatalytic Degradation Property of Methyl Orange.

    Shen, Zhichuan; Zhou, Hongjun; Chen, Huayao; Xu, Hua; Feng, Chunhua; Zhou, Xinhua

    2018-05-09

    Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded on mesoporous silica (ZnO-MCM-3 and ZnO-MCM-9). The material structures were systematically studied by Fourier transform infrared spectroscopy (FTIR), N₂ adsorption/desorption measurements, X-ray powder diffraction (XRD), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet diffused reflectance spectrum (UV-vis DRS), and thermogravimetry (TGA). Methyl orange (MO) was used to investigate the photocatalysis behavior of ZnO-MCM-3 and ZnO-MCM-9. The results confirmed that nano ZnO was loaded in the channels as well as the outside surface of mesoporous silica (MCM-41). The modification of salicylaldimine helped MCM-41 to load more nano ZnO on MCM-41. When the modification amount of salicylaldimine was one-ninth and one-third of the mass of the silicon source, respectively, the load of nano ZnO on ZnO-MCM-9 and ZnO-MCM-3 had atomic concentrations of 1.27 and 2.03, respectively. ZnO loaded on ZnO-MCM-9 had a wurtzite structure, while ZnO loaded on ZnO-MCM-3 was not in the same crystalline group. The blocking effect caused by nano ZnO in the channels reduced the orderliness of MCM-41. The photodegradation of MO can be divided in two processes, which are mainly controlled by the surface areas of ZnO-MCM and the loading amount of nano ZnO, respectively. The pseudo-first-order model was more suitable for the photodegradation process.

  16. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  17. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A New Nano Silica Gel Supported by Thionyl Chloride as a Solid Acid for the Efficient Diazotization of Aniline Derivatives: Application and Synthesis of Azo Dyes

    Mohammad Mirjalili

    2012-01-01

    Full Text Available A new nano silicagel supported by thionyl chloride as a solid acid was synthesized and used as a increasing the production yield of dye to affect the efficient diazotization of arylamines. The diazonium salts thus obtained were coupled, using standard experimental procedures, to anilines and naphthols to afford the requisite azo dyes in good yield. The diazotization and subsequent azo-coupling generated the related azo dyes at low temperature in short reaction times with a simple experimental procedure.

  19. Porous Ni3(NO3)2(OH)4 nano-sheets for supercapacitors: Facile synthesis and excellent rate performance at high mass loadings

    Shi, Mingjie; Cui, Mangwei; Kang, Litao; Li, Taotao; Yun, Shan; Du, Jing; Xu, Shoudong; Liu, Ying

    2018-01-01

    For supercapacitors, pores in electrode materials can accelerate chemical reaction kinetics by shortening ion diffusion distances and by enlarging electrolyte/electrode interfaces. This article describes a simple one-step route for the preparation of pure-phase porous Ni3(NO3)2(OH)4 nano-sheets by directly heating a mild Ni(NO3)2 and urea solution. During heating, urea decomposed into NH3·H2O, which provided a suitable alkaline environment for the formation of Ni3(NO3)2(OH)4 nano-sheets. Meanwhile, the side product, NH4NO3, created numerous pores as a pore-forming agent. After NH4NO3 removal, the specific surface areas and pore volumes of products were boosted by ∼180-times (from 0.61 to 113.12 m2/g) and ∼90-times (from 3.40 × 10-3 to 3.17 × 10-1 m2/g), respectively. As a cathode material of supercapacitor, the porous Ni3(NO3)2(OH)4 nano-sheets exhibited a high specific capacitance of 1094 F/g at an ultrahigh mass loading of 17.55 mg/cm2, leading to an impressive areal capacitance of 19.2 F/cm2. Furthermore, a Ni3(NO3)2(OH)4 nano-sheet//commercial active carbon asymmetric supercapacitor was constructed and delivered an energy density of 33.2 Wh/Kg at a power density of 190.5 W/Kg, based on the mass of active materials on both electrodes.

  20. Nano-TiCl4.SiO2: A Versatile and Efficient Catalyst for Synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes

    B. F. Mirjalili; A. Bamoniri; L. Zamani

    2013-01-01

    Nano-silica supported titanium tetrachloride (TiCl4.SiO2) was prepared and used as an acid catalyst for the 14-aryl or alkyl-14H-dibenzo[a,,j]xanthenesreaction under solvent-free conditions. Compared to the classical 14-aryl or alkyl-14H-dibenzo[a,j]xanthenesreaction conditions, this method consistently has the advantage of excellent yields, mild reaction conditions, ease of workup, survival of different functional groups and short reaction times.

  1. Nano-TiCl4.SiO2: A Versatile and Efficient Catalyst for Synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes

    B. F. Mirjalili

    2013-12-01

    Full Text Available Nano-silica supported titanium tetrachloride (TiCl4.SiO2 was prepared and used as an acid catalyst for the 14-aryl or alkyl-14H-dibenzo[a,,j]xanthenesreaction under solvent-free conditions. Compared to the classical 14-aryl or alkyl-14H-dibenzo[a,j]xanthenesreaction conditions, this method consistently has the advantage of excellent yields, mild reaction conditions, ease of workup, survival of different functional groups and short reaction times.

  2. Facile large scale synthesis of Bi{sub 2}S{sub 3} nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application

    Vadivel, S. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Naveen, A. Nirmalesh [Department of Physics, Anna University, Chennai, Tamil Nadu 600025 (India); Kamalakannan, V.P. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Cao, P. [Department of Chemistry and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India)

    2015-10-01

    Graphical abstract: - Highlights: • A Bi{sub 2}S{sub 3}/RGO composite was synthesized by one pot precipitation method. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibit rod like morphology. • As synthesized composite was applied for malachite green degradation. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibits a specific capacitance of 290 F g{sup −1} at a scan rate of 1 A g{sup −1}. • Photocatalytic and supercapacitor properties of Bi{sub 2}S{sub 3} were enhanced mainly due to effective graphene incorporation. - Abstract: Bi{sub 2}S{sub 3} nano rods–graphene (BG) composite material was synthesized by a simple one step precipitation method. The crystallanity, structural and morphological properties were studied by the X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques. The photocatalytic activity of BG was evaluated by the photocatalytic degradation of malachite green dye (MG) aqueous solution under the visible light irradiation. The effect of graphene content on the photoelectrochemical property of Bi{sub 2}S{sub 3} nano rods was also studied. The enhancement of photocurrent and photocatalytic properties of BG composite attributed to the synergistic effect between the Bi{sub 2}S{sub 3} nano rods and graphene sheets which improves the charge separation efficiency in Bi{sub 2}S{sub 3} nano rods. The supercapacitor behavior was studied using cyclic voltametry and galvanostatic charge discharge studies. The BG composite exhibits a maximum specific capacitance of 290 F g{sup −1} at a current density of 1 A g{sup −1}. The present study may provide as a new approach in improving the performance of BG composite in supercapacitor, solar cells and photocatalytic applications.

  3. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  4. The facile synthesis of chitosan-based silver nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy.

    Davoodbasha, MubarakAli; Kim, Seong-Cheol; Lee, Sang-Yul; Kim, Jung-Wan

    2016-09-01

    Silver nanoparticles (AgNPs) were synthesized in a chitosan matrix with varying AgNO3 (1, 3, 5 mM) and chitosan (1, 3%) concentrations via the one-step solution plasma process (SPP). Plasma was discharged for 3 min in the AgNO3 and chitosan solutions using unipolar power at 800 V with a frequency of 30 kHz. Fibrous 3D scaffolds were prepared by lyophilizing the nano-biocomposite solutions, and they were stabilized via cross-linking with UV irradiation. UV-Vis spectroscopy showed strong peaks with maximal absorbance at 415-440 nm, indicating the formation of AgNPs in the chitosan with an increase in peak height as the concentration of the precursor, AgNO3, increased. The chemical association between AgNPs and chitosan was confirmed using Fourier transform infrared spectroscopy (FTIR). The scaffolds had a micro-porous structure with pore diameters in the range of 5.8-157.0 μm, and a transmission electron microscopy (TEM) analysis revealed that spherical shaped AgNPs with diameters in the range of 2.5-27.6 nm were well-dispersed in the biocomposites. The nano-biocomposites had a broad spectrum of antimicrobial activity against various pathogens with minimal inhibition concentrations of 0.68-2.71 and 2.71-10.80 μg mL(-1) for bacteria and fungi, respectively. These are the lowest concentrations achieved by nano-biocomposites reported thus far. The SPP was shown to be a facile, effective, and eco-friendly method of synthesizing nano-biocomposites for biomedical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sonochemical synthesis and characterization of nano-sized zinc(II coordination complex as a precursor for the preparation of pure-phase zinc(II oxide nanoparticles

    Maryam Ranjbar

    2017-01-01

    Full Text Available In current study, nanoparticles and single crystals of a Zn(II coordination complex, [Zn(dmphI2](1, {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine}, have been synthesized by the reaction of zinc(II acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy (SEM, X-ray powder diffraction (XRD, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of nano-sized 1 has been studied by thermogravimetric (TG and differential thermal analyses (DTA. Structural determination of compound 1 reveals the Zn(II ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-Phenanthroline ligand and two terminal I atoms. The effect of supercritical condition on stability, size and morphology of nano-structured compound 1 has also been studied. The XRD pattern of the residue obtained from thermal decomposition of nano-sized compound 1 at 600 °C under air atmosphere provided pure phase of ZnO with the average particles size of about 31 nm.

  6. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  7. Synthesis of LaCoO{sub 3} nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells

    Cheng, Chia Siang; Zhang, Lan; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Zhang, Yu.Jun [Key Lab for Liquid Structure and Heredity of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan (China)

    2008-04-15

    LaCoO{sub 3} (LC) perovskite powders for intermediate temperature solid oxide fuel cells (IT-SOFCs) are synthesized by a simple and cost-effective aqueous gel-casting technique using metal nitrates as raw materials. Effect of the ratio of organic precursors (acrylamide (AM) monomer and N,N'-Methylenebisacrylamide (MBAM) crosslinker) to metal nitrates (lanthanum nitrate, cobalt nitrate) and the ratio of AM to MBAM on the particle size are investigated in detail. TEM results indicate that the particle size of LC nano-powders is in the range of 31-60 nm and decreases with increasing ratio of organic precursor to metal nitrates but is not affected by the ratio of AM to MBAM. Preliminary results show that the nano-structured electrode approach based on wet impregnation is effective to combine the high electrocatalytic activity of LC nano-powders and the structural stability of La{sub 0.72}Sr{sub 0.18}MnO{sub 3} {sub -} {sub {delta}} (LSM) electrodes for the development of IT-SOFC cathodes. (author)

  8. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  9. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Nano-bio-sensing

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  11. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  12. Synthesise of Zn O nano wires by direct oxidation method

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  13. Characterization and H2-O2 reactivity of noble nano-metal tailored single wall nano-carbons

    K Kaneko; T Itoh; E Bekyarova; H Kanoh; S Utsumi; H Tanaka; M Yudasaka; S Iijima; S Iijima

    2005-01-01

    Full text of publication follows: Single wall carbon nano-tube (SWNT) and single wall carbon nano-horn (SWNH) have nano-spaces in their particles and the nano-spaces become open by oxidation. In particular, SWNH forms a unique colloidal structure which has micropores and meso-pores between the SWNH particles. Although non-treated SWNH colloids have quasi-one dimensional nano-pores [1], oxidized SWNH colloids have both of interstitial and internal nano-pores [2-5]. SWNH colloids show excellent supercritical methane storage ability [6], molecular sieving effect [7], and unique hydrogen adsorption characteristic [8]. Selective adsorptivity of SWNH colloids for H 2 and D 2 due to uncertainty principle of those molecules was shown [9-10]. As SWNH has no metallic impurities, we can study the effect of tailoring of metallic nano-particles on the surface activities of SWNH [11]. We tailored Pd or Pt nano-particles on SWNH and SWNH oxidized at 823 K (ox-SWNH) using poly[(2-oxo-pyrrolidine-1-yl)ethylene]. The oxidation of SWNH donates nano-scale windows to the single wall. The tailored metal amount was determined by TG analysis. TEM showed uniform dispersion of nano-metal particles of 2-3 nm in the diameter on SWNH. The nitrogen adsorption amount of SWNH oxidized decreases by tailoring, indicating that nano-particles are attached to the nano-scale windows. The electronic states of tailored metals were characterized by X-ray photoelectron spectroscopy. The surface activities of Pd tailored SWNH and ox-SWNH were examined for the reaction of hydrogen and oxygen near room temperature. The catalytic reactivities of Pd tailored SWNH and ox-SWNH were 4 times greater than that of Pd-dispersed activated carbon. The temperature dependence of the surface activity will be discussed with the relevance to the tube porosity. References [1] T. Ohba et al, J. Phys. Chem. In press. [2] S. Utsumi et al, J. Phys. Chem. In press. [3] C.- Min Yang, et al. Adv. Mater. In press. [4]C.M. Yang, J

  14. A preliminary evaluation of immune stimulation following exposure to metal particles and ions using the mouse popliteal lymph node assay

    Tvermoes, Brooke E., E-mail: brooke.tvermoes@cardno.com [Cardno ChemRisk, LLC., 4940 Pearl East Circle Suite 100, Boulder, CO 80301 (United States); Unice, Kenneth M. [Cardno ChemRisk, LLC., 20 Stanwix St. Suite 505, Pittsburgh, PA 15222 (United States); Winans, Bethany [Cardno ChemRisk, LLC., 101 2nd St. Suite 700, San Francisco, CA 94105 (United States); Kovochich, Michael [Cardno ChemRisk, LLC., 130 Vantis Suite 170, Aliso Viejo, CA 92656 (United States); Christian, Whitney V. [Cardno ChemRisk, LLC., 20 Stanwix St. Suite 505, Pittsburgh, PA 15222 (United States); Donovan, Ellen [Cardno ChemRisk, LLC., 101 2nd St. Suite 700, San Francisco, CA 94105 (United States); Fung, Ernest S. [Cardno ChemRisk, LLC., 130 Vantis Suite 170, Aliso Viejo, CA 92656 (United States); Finley, Brent L. [Cardno ChemRisk, LLC., 101 2nd St. Suite 700, San Francisco, CA 94105 (United States); Kimber, Ian [University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT (United Kingdom); Paustenbach, Dennis J. [Cardno ChemRisk, LLC., 101 2nd St. Suite 700, San Francisco, CA 94105 (United States)

    2016-10-01

    The objective of this preliminary study was to evaluate the threshold for immune stimulation in mice following local exposure to metal particles and ions representative of normal-functioning cobalt-chromium (CoCr) metal-on-metal (MoM) hip implants. The popliteal lymph node assay (PLNA) was used in this study to assess immune responses in BALB/c mice following treatment with chromium-oxide (Cr{sub 2}O{sub 3}) particles, metal salts (CoCl{sub 2}, CrCl{sub 3} and NiCl{sub 2}), or Cr{sub 2}O{sub 3} particles together with metal salts using single-dose exposures representing approximately 10 days (0.000114 mg), 19 years (0.0800 mg), and 40 years (0.171 mg) of normal implant wear. The immune response elicited following treatment with Cr{sub 2}O{sub 3} particles together with metal salts was also assessed at four additional doses equivalent to approximately 1.5 months (0.0005 mg), 0.6 years (0.0025 mg), 2.3 years (0.01 mg), and 9.3 years (0.04 mg) of normal implant wear. Mice were injected subcutaneously (50 μL) into the right hind foot with the test article, or with the relevant vehicle control. The proliferative response of the draining lymph node cells (LNC) was measured four days after treatment, and stimulation indices (SI) were derived relative to vehicle controls. The PLNA was negative (SI < 3) for all Cr{sub 2}O{sub 3} particle doses, and was also negative at the lowest dose of the metal salt mixture, and the lowest four doses of the Cr{sub 2}O{sub 3} particles with metal salt mixture. The PLNA was positive (SI > 3) at the highest two doses of the metal salt mixture and the highest three doses of the Cr{sub 2}O{sub 3} particles with the metal salt mixture. The provisional NOAEL and LOAEL values identified in this study for immune activation corresponds to Co and Cr concentrations in the synovial fluid approximately 500 and 2000 times higher than that reported for normal-functioning MoM hip implants, respectively. Overall, these results indicate that normal wear

  15. HNF - Helmholtz Nano Facility

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  16. Nano-technology and nano-toxicology

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  17. Sol-hydrothermal synthesis and optical properties of Eu3+, Tb(3+)-codoped one-dimensional strontium germanate full color nano-phosphors.

    Lin, Liangwu; Sun, Xinyuan; Jiang, Yao; He, Yuehui

    2013-12-21

    Novel near-UV and blue excited Eu(3+), Tb(3+)-codoped one dimensional strontium germanate full-color nano-phosphors have been successfully synthesized by a simple sol-hydrothermal method. The morphologies, internal structures, chemical constitution and optical properties of the resulting samples were characterized using FE-SEM, TEM, HRTEM, EDS, XRD, FTIR, XPS, PL and PLE spectroscopy and luminescence decay curves. The results suggested that the obtained Eu(3+), Tb(3+)-codoped strontium germanate nanowires are single crystal nanowires with a diameter ranging from 10 to 80 nm, average diameter of around 30 nm and the length ranging from tens to hundreds micrometers. The results of PL and PLE spectra indicated that the Eu(3+), Tb(3+)-codoped single crystal strontium germanate nanowires showed an intensive blue, blue-green, green, orange and red or green, orange and red light emission under excitation at 350-380 nm and 485 nm, respectively, which may attributed to the coexistent Eu(3+), Eu(2+) and Tb(3+) ions, and the defects located in the strontium germanate nanowires. A possible mechanism of energy transfer among the host, Eu(3+) and Tb(3+) ions was proposed. White-emission can be realized in a single-phase strontium germanate nanowire host by codoping with Tb(3+) and Eu(3+) ions. The Eu(3+), Tb(3+)-codoped one-dimensional strontium germanate full-color nano-phosphors have superior stability under electron bombardment. Because of their strong PL intensity, good CIE chromaticity and stability, the novel 1D strontium germanate full-color nano-phosphors have potential applications in W-LEDs.

  18. Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties.

    Li, Guogang; Peng, Chong; Zhang, Cuimiao; Xu, Zhenhe; Shang, Mengmeng; Yang, Dongmei; Kang, Xiaojiao; Wang, Wenxin; Li, Chunxia; Cheng, Ziyong; Lin, Jun

    2010-11-15

    LaCO(3)OH nano/microcrystals with a variety of morphologies/sizes including nanoflakes, microflowers, nano/microrhombuses, two-double microhexagrams sandwichlike microspindles, and peach-nucleus-shaped microcrystals have been synthesized via a facile homogeneous precipitation route under mild conditions. A series of controlled experiments indicate that the pH values in the initial reaction systems, carbon sources, and simple ions (NH(4)(+) and Na(+)) were responsible for the shape determination of the LaCO(3)OH products. A possible formation mechanism for these products with diverse architectures has been presented. After annealing at suitable temperatures, LaCO(3)OH was easily converted to La(2)O(2)CO(3) and La(2)O(3) with the initial morphologies. A systematic study on the photoluminescence and cathodoluminescence properties of Eu(3+)- or Tb(3+)-doped La(2)O(2)CO(3)/La(2)O(3) samples has been performed in detail. The excitation and site-selective emission spectra were recorded to investigate the microstructure, site symmetry, and difference in the (5)D(0) → (7)F(2) transition of Eu(3+) ions in La(2)O(2)CO(3) and La(2)O(3) host lattices. In addition, the dependence of the luminescent intensity on the morphology for the as-prepared La(2)O(2)CO(3)/La(2)O(3):Ln(3+) (Ln = Eu, Tb) samples has been investigated. The ability of generating diverse morphologies and multiemitting colors for different rare-earth activator ion (Ln = Eu, Tb) doped La(2)O(2)CO(3)/La(2)O(3) nano/microstructures provides a great opportunity for the systematic evaluation of morphology-dependent luminescence properties, as well as the full exploration of their application in many types of color display fields.

  19. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  20. Nano Polyamidoamine-G7 (NPAMAM-G7 Dendrimer Synthesis and Assessment the Effect of its antibacterial on Escherichia Coli, Klebsiella Oxytoca, Pseudomonas Aeruginosa , Proteus Mirabilis and Staphylococcus Aureus from aqueous solution

    mitra Gholami

    2016-06-01

    Full Text Available Background: Nano scale dendrimers are macromolecules synthetic which frequently used in medical and health field. This study was aimed to examine synthesis and the antibacterial effect of NanoPolyamidoamine-G7 (NPAMAM-G7 dendrimer on Escherichia Coli, Klebsiella Oxytoca, Pseudomonas Aeruginosa , Proteus Mirabilis and Staphylococcus Aureus from aqueous solution. Material and methods: In this experimental study, initially dilution of 103 CFU/ml were prepared from each strain of bacteria. Then different concentrations of dendrimer (0.025, 0.25, 2.5 and 25 µg/ml in the laboratory temperature (23-25 °C was added to water. In order to determine the efficiency of dendrimers in removal of bacteria, samples were taken at different times (0, 10, 20, 30, 40, 50 and 60 min and were cultured on nutrient agar medium. Samples were incubated for 24 hours at 37 °C and then number of colonies were counted. Results: Antibacterial properties of dendrimers in aqueous solution by increasing the dendrimer concentration and contact time is directly related. At a concentration of 25 μg/ml at 60 minutes all bacteria except Staphylococcus Aureus, and at 30 minutes, Escherichia Coli and Klebsiella Oxytoca bacteria for 100% excluded. The concentration of 2.5 μg/ml at 60 minutes of bacteria, Escherichia Coli, Klebsiella Oxytoca and Proteus Mirabilis are 100% excluded. All concentrations of dendrimers at different times were reduced bacteria in the PAMAM- G7 dendrimer effect on gram-negative bacteria, gram-positive bacteria was better. Conclusion: The NPAMAM-G7 dendrimer with end amine groups exhibited a positive impact on the removal of standard strains, gram-positive and gram-negative bacteria. Therefore, it is possible to use these nanodendrimers as antibacterial in the future.

  1. 自模板法制备介孔空心无机微/纳米结构%Synthesis of Mesoporous Hollow Inorganic Micro-/Nano-structures via Self-templating Methods

    张百慧; 樊华; 卞僮; 吴骊珠; 佟振合; 张铁锐

    2013-01-01

    Mesoporous hollow inorganic micro-/nano-structures are very promising in various fields such as catalysis, energy and medicine because of their multiple and tunable functions, and their synthetic methodologies have attracted much attention. Compared with conventional hard-template or soft-template methods, the self-templating methods developed recently have many advantages, such as simpler procedures and without using extra costly templates. In this manuscript, the recent developments on the synthesis of mesoporous hollow inorganic mirco-/nano-strctures prepared by the self-templating methods were discussed in details according to the four kinds of different reaction mechanisms, including Ostwald ripening, surface-protected etching, Kirkendall effect and galvanic replacement, respectively. Finally, we concluded with a brief outlook for future research directions.%与传统的软、硬模板法相比,近期发展的自模板法具有反应步骤少和无需额外模板等众多优点,同时,介孔空心无机微/纳米结构在催化、能源和医药等领域的巨大应用前景也使其制备方法备受关注.本文根据不同的反应机理,从Ostwald熟化、表面保护刻蚀、柯肯达尔效应和电偶置换反应4个方面分别综述了自模板法的最新研究进展和应用现状,并展望了自模板法的研究与应用前景.

  2. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  3. The Synthesis of Eu{sup 3+} Doped with TiO{sub 2} Nano-Powder and Application as a Pesticide Sensor

    Yao, Fei; Sun, Yang; Tan, Chunlei; Wei, Song; Zhang, Xiaojuan; Hu, Xiaoyun; Fan, Jun [Northwest Univ., Xi' an (China)

    2011-12-15

    Using tetrabutyl titanate as precursor, Eu{sup 3+} doped TiO{sub 2} nano-powder was prepared by sol-gel method, the nature of luminescence of nano-powder was studied. The interaction of chlorpyrifos with Eu{sup 3+} doped TiO{sub 2} was studied by absorption and fluorescence spectroscopy. The results indicated the fluorescence intensity of Eu{sup 3+} doped TiO{sub 2} was quenched by chlorpyrifos and the quenching rate constant (kq) was 1.24Χ10{sup 11} L/mol·s according to the Stern-Volmer equation. The dynamics of photoinduced electron transfer from chlorpyrifos to conduction band of TiO{sub 2} nanoparticle was observed and the mechanism of electron transfer had been confirmed by the calculation of free energy change (ΔG{sub et}) by applying Rehm-Weller equation as well as energy level diagram. A new rapid method for detection of chlorpyrifos was established according to the fluorescence intensity of Eu{sup 3+} doped TiO{sub 2} was proportional to chlorpyrifos concentration. The range of detection was 5.0Χ10{sup -10}-2.5Χ10{sup -7}mol/L and the detection limit (3σ) was 3.2Χ10{sup -11} mol/L.

  4. Synthesis of Si, N co-Doped Nano-Sized TiO2 with High Thermal Stability and Photocatalytic Activity by Mechanochemical Method

    Peisan Wang

    2018-05-01

    Full Text Available Τhe photocatalytic activity in the range of visible light wavelengths and the thermal stability of the structure were significantly enhanced in Si, N co-doped nano-sized TiO2, and synthesized through high-energy mechanical milling of TiO2 and SiO2 powders, which was followed by calcination at 600 °C in an ammonia atmosphere. High-energy mechanical milling had a pronounced effect on the mixing and the reaction between the starting powders and greatly favored the transformation of the resultant powder mixture into an amorphous phase that contained a large number of evenly-dispersed nanocrystalline TiO2 particles as anatase seeds. The experimental results suggest that the elements were homogeneously dispersed at an atomic level in this amorphous phase. After calcination, most of the amorphous phase was crystallized, which resulted in a unique nano-sized crystalline-core/disordered-shell morphology. This novel experimental process is simple, template-free, and provides features of high reproducibility in large-scale industrial production.

  5. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    El-Sayed, Karimat [XRD Lab, Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt); Mohamed, Mohamed Bakr, E-mail: mbm1977@yahoo.com [XRD Lab, Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt); Hamdy, Sh.; Ata-Allah, S.S. [Reactor Physics Department, NRC, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    2017-02-01

    Nano-crystalline NiFe{sub 2}O{sub 4} was synthesized by citrate and sol–gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution. - Highlights: • Annealed nano NiFe{sub 2}O{sub 4} was prepared by different methods. • The crystallite sizes are critical. • Mössbauer spectra show superparamagnetic doublet. • Cations distributions by MÓ§ssbauer and Bertaut method are constituents. • Cations distribution are significantly affects the magnetic properties.

  6. Novel Green Synthesis and Characterization of Nanopolymer ...

    Purpose: To develop a novel approach to green synthesis of nano-polymer porous gold oxide nanoparticles, and examine the effects of the temperatures on their surface. Methods: Green synthesis of nano-polymer porous gold oxide nanoparticles (GONPs) using cetyle trimethylammonium bromide (CTAB) surfactant with a ...

  7. Nano materials for Cancer Phototheranostics

    Huang, P.; Ling, D.; Song, J; Liu, G.; Xie, J.

    2016-01-01

    The rapid development of advanced nano technology promises the integration of multiple diagnostic/therapeutic modalities into one nano platform for cancer theranostics. This issue compiles 3 review articles and 7 high-quality original research articles related to the field of nano material-based cancer theranostics. Photo therapies, such as photothermal therapy (PTT), photodynamic therapy (PDT), or photo-triggered drug/gene delivery, have gained considerable attention because of specific spatiotemporal selectivity and minimal invasiveness. Considering the inherent biocompatibility and biodegradability of proteins and peptides, P. Huang and coworkers summarized recent advances in the development of protein/peptide-based photothermal cancer theranostics, using protein/peptide as delivery vehicles or synthesis bio templates of PTT agents. M. G. O∼Toole and coworkers developed a near-infrared (NIR) responsive oligonucleotide-coated (AS1411, hairpin, or both) gold nanoplate loaded with doxorubicin (DOX), which is demonstrated to be nontoxic to cells without triggered release, while being acutely toxic to cells after 5 minutes of laser exposure to trigger DOX release. K. Na and coworkers described an acidic tumor pH-responsive nanophotomedicine (pH-NanoPM), which was prepared by self-assembly of a pH-responsive polymeric photo sensitizer (pH-PPS) consisting of pH-cleavable methoxypolyethylene glycol (pH-C-mPEG), for targeted PDT

  8. Nano-technology and nano-toxicology.

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  9. Nano crystals for Electronic and Optoelectronic Applications

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  10. Identification of TiO2 clusters present during synthesis of sol-gel derived TiO2 nano-particles

    Simonsen, Morten Enggrob; Søgaard, Erik Gydesen

    Synthesis of titanium dioxide nanoparticles with controlled size distribution and morphology are of great interest for many applications i.e. photocatalysis and dye sensitized solar cells (DSSC). The sol-gel method has some advantages over other preparation techniques in the many parameters, whic...

  11. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  12. Synthesis and characterization of iron nano particles for the arsenic removal in water; Sintesis y caracterizacion de nanoparticulas de hierro para la remocion de arsenico en agua

    Gutierrez M, O. E.

    2011-07-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  13. Synthesis of 1,2-Disubstituted Benzimidazoles in the Presence of SBA-Pr-SO3H as a Nano Solid Acid Catalyst

    G. Mohammadi Ziarani

    2012-06-01

    Full Text Available In this article, simple, convenient synthesis of 2-aryl-1- arylmethyl-1H-1,3-benzimidazole (1,2-disubstituted benzimidazoles via condensation of 1,2-phenylenediamine and aromatic aldehydes using SBA-Pr-SO3H as a nanoporous solid acid catalyst in green protocol was reported.

  14. Optical emission spectroscopic study of Ar/H2/CH4 plasma during the production of graphene nano-flakes by induction plasma synthesis

    Mohanta, Antaryami; Lanfant, Briac; Asfaha, Mehari; Leparoux, Marc

    2017-01-01

    Graphene nano-flakes using CH 4 precursor were synthesized in a radio frequency inductively coupled plasma reactor with in-situ investigation of Ar/H 2 /CH 4 plasma by optical emission spectroscopy at fixed H 2 and Ar flow rates of 4 and 75 slpm, respectively, and at different plate powers (12 to 18 kW), pressures (400 to 700 mbar) and CH 4 flow rates (0.3 to 2 slpm). Emissions from C 2 Swan band, C 3 , CH and H 2 are observed in the optical emission spectra of Ar/H 2 /CH 4 plasma. Plasma temperature estimated analyzing the C 2 Swan band emission intensities is found to be decreased with increasing pressure and decreasing plate power. The decreasing plasma temperature gives rise to increase in production rate due to increase in condensation process. The production rate is observed to be increased from 0 to 0.3 g/h at 18 kW and from 0 to 1 g/h at 15 kW with increase in pressure from 400 to 700 mbar at fixed CH 4 flow rate of 0.7 slpm. Broad band continuum emission appears in the emission spectra at specific growth conditions in which the formation of vapor phase nanoparticles due to condensation of supersaturated vapor is facilitated. The production rate at 12 kW, 700 mbar, and 0.7 slpm of CH 4 flow rate is found to be 1.7 g/h which is more than that at 15 and 18 kW. Thus, the broadband continuum emission dominates the optical emission spectra at 12 kW due to lower temperature and higher production rate, and is attributed to the emission from suspended nanoparticles formed in vapor phase. The synthesized nanoparticles exhibit flake like structures having average length and width about 200 and 100 nm, respectively, irrespective of the growth conditions. Nano-flakes have thickness between 3.7 to 7.5 nm and are composed of 11 to 22 graphene layers depending on the growth conditions. The intensity ratio (I D /I G ) of D and G band observed in the Raman spectra is less than 0.33 which indicates good quality of the synthesized graphene nano-flakes. (paper)

  15. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    Tian, Y.; Wu, D.; Yu, B.; Jia, X.; Zhan, S.

    2011-01-01

    Fe 3 O 4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe 2 O 3 shell was produced in situ on the surface of the Fe 3 O 4 nanoparticle by surface oxidation in molten salts, forming α-Fe 2 O 3 /Fe 3 O 4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe 3 O 4 nanoparticles were oxidized. Furthermore, the obtained a-Fe 2 O 3 /Fe 3 O 4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe 2 O 3 /Fe 3 O 4 nanoparticles were more efficient than the self-prepared α-Fe 2 O 3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  16. Synthesis RMn{sub 2}O{sub 5} (R = Gd and Sm) nano- and microstructures by a simple hydrothermal method

    Zhu Gangqiang, E-mail: zgq2006@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Liu Peng [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Hojamberdiev, Mirabbos [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Ge Bao [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Liu Yun; Miao Hongyan; Tan Guoqiang [College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021 (China)

    2009-12-15

    Single-phase RMn{sub 2}O{sub 5} (R = Gd and Sm) nano- and microstructures have been successfully synthesized via a simple hydrothermal process at 250 deg. C for 24 h using NaOH as mineralizer. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selective area electron diffraction patterns (SAED) were used to characterize the as-synthesized GdMn{sub 2}O{sub 5} and SmMn{sub 2}O{sub 5} samples. The effect of NaOH concentration and the molar ratio of Mn{sup 2+}/Mn{sup 7+} on the morphology and size of the final products was studied, and a possible formation mechanism of RMn{sub 2}O{sub 5} (R = Gd and Sm) nanoplates and nanorods under hydrothermal conditions was proposed.

  17. Synthesis, structural and morphological characterization of Ca0.45Eu0.05Zr2(PO4)3 nano phosphors

    Alcaraz, L.; Isasi, J.; Peiteado, M.; Cabalero, A.

    2015-01-01

    Ca 0 .45Eu 0 .05Zr 2 (PO 4 ) 3 samples were synthesized by a preparation process in two step: a sol-gel method using two pH values, acid (pH ∼ 2) and basic pH (∼ 10), and a subsequent treatment of the precursor powders in a N 2 :H 2 (90:10) flow in order to stabilized 2+ oxidation state of europium. X-ray diffraction patterns exhibit diffraction maxima typical of NASICON type structure of rhombohedral symmetry and space group R-3. Most intense diffraction maxima are seen for the samples prepared in a basic reaction medium. Magnetic measurements confirm 2+ oxidation state of europium cations in the synthesized samples. Microscopy images show particles of spherical shape and nano metric size according to X-ray diffraction results, indicating that these samples may be useful in certain luminescent devices. (Author)

  18. A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: A potential electrocatalyst for the detection of dopamine

    Fashedemi, OO

    2011-07-01

    Full Text Available A facile method has been utilized to synthesize ahydrophobic form of nano-scaled iron (II) tetrasulfophthalocyanine (nanoFeTSPc), integrated with functionalized multi-walled carbon nanotubes (fMWCNT-nanoFeTSPc). The nanocomposite was characterized...

  19. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  20. Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method

    Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia

    2018-01-01

    Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.